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Abstract—It is expected that future shop-floors will be popu-
lated by thousands of networked embedded devices. Those will
not only communicate using IP (as in TCP/IP), but also feature
some autonomy, allowing them to collaborate among themselves
and with enterprise systems. As they can offer both their
mechatronic and higher-level functions as a service and support
dynamic deployment of new code, they can execute business
logic locally, allowing for new classes of business processes that
are executed collaboratively by back-end and embedded systems.
While some parts of a process will still be executed in the data
centre, the rest will execute directly on embedded devices on
the shop-floor. Business Process execution will therefore be more
dynamic and context-based. We introduce an approach to manage
efficient business process execution over such highly dynamic
infrastructures.

I. MOTIVATION AND PROBLEM STATEMENT

With technological advances, networks of embedded devices
have become more powerful and capable of executing tasks
in a peer to peer fashion. The infrastructure envisioned by
the Internet of Things [4] is a heterogeneous one, where
millions devices are interconnected, are ready to receive in-
structions and create event notifications, and where the most
advanced ones can self-organize and collaborate. With this
new paradigm, business logic can be pushed down and be
distributed to several layers such as the network or even the
device layer, thus reducing the information load that has to be
processed by the enterprise system, increasing scalability and
response time as the business logic is executed at the point of
action [10].

Service Oriented Architecture (SOA) has emerged as the
de-facto standard approach of handling business processes.
Despite severe heterogeneity of devices and embedded soft-
ware, SOA is starting to be applied also to networks of
networked embedded systems [3]. Standards that define web
service communication and management for embedded de-
vices, such as Device Profile for Web Services (DPWS [2])
and OPC Unified Architecture (OPC-UA [12]) act as enablers
for this ambitious step forward. They enable business process
management and execution at the device level with interfaces
that are independent of programming languages and operating.

Although SOA at the device level simplifies business pro-
cess composition using services that execute on dynamic net-
works of devices, new challenges rise due to the characteristics
of such networks. With networked embedded devices, context
information is commonly used to decide if a given device
should execute a service or not. For instance it can be desirable
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that only devices in a certain location or under a certain
environment condition execute a specific task of a business
process.

Hence, to compose a business process that is partially
executed in a network of embedded devices, it is necessary
to adequately consider the dynamics of the system and verify
changes in context information, in order to ensure reliable
execution of the process. This paper outlines our approach
that enables dynamic business process execution for networked
embedded systems based on devices that offer their function-
ality as services.

II. OVERVIEW OF OUR SOLUTION

The approach proposed abstracts the business process as a
sequence of semantically annotated tasks (T1, T2, ..., Tn) as
depicted in Figure 1. We further differentiate between service
types (S1, S2, ..., Sn) and service instances (s1, s2, ..., sn). A
service type is mainly determined by its interface while a
service instance, i.e. an installed, running, and connected copy
of the service, has a unique identity, a network address (e.g.
a WS endpoint reference), and context information.

We only consider those tasks that involve an interaction
with a service that is not part of the process itself, e.g. an
invocation of a service (such as a web service, a REST-like
service [13], a remote procedure call, etc.) or the receipt
of an asynchronous message from such a service. In BPEL
semantics, this corresponds to invoke and receive operations.



For the invocation tasks, control is handed over from the
executing process instance to the service and is returned
to the process instance after the external service replied.
For the reception task, process execution is suspended until
the expected message arrives. The services are provided by
devices that are capable of executing them. The proposed
approach has its greatest benefit if the devices are connected in
an unreliable fashion and therefore provide their services in an
unreliable way, which we assume to be typical characteristic
of networked embedded devices.

We further assume that context information is available for
each device (e.g. by monitoring or self-announcement of the
devices and/or the services instances they host) and that the
context information can be used to calculate technical cost
of sending a one-way message from any service instance to
any target service instance (cost of communication cci,j) and
executing the corresponding action within the target (cost of
execution cei,j). The context information is expected to vary
over time, hence so is the calculated cost. For instance, the
communication cost between two hosted service instances will
be dependent on the location of the devices, network load,
network media etc. In another example, executing an action
on an overheated machine will be assigned a higher cost than
executing it on an idle device.

Our approach tries to find and continuously adapt a service
orchestration that executes a given process (a sequence k
determining a sequence of instances s1,k1 , s2,k2 , ..., sn,kn

) that
is optimal w.r.t. the technical cost involved, i.e. where the total
cost c =

∑m
n=0(ccm,km + cem,km) is minimal.

To handle the dynamic aspects of such systems, this so-
lution proposes the use of several components that not only
define and execute an optimized control flow between services
implementing individual tasks, but also monitor the respective
context information of the selected devices and hosted services
in order to track changes and redefine the path of the control
flow when necessary.

III. ARCHITECTURE

The business process life-cycle is composed of five main
phases: (1) Design, (2) Path Assignment, (3) Execution, (4)
Path reassignment, and (5) Removal. A software architecture
supporting all of these phases is presented in Figure 2.

During Design time, a Process Modelling Application (e.g.
a BPMN, BPEL, or generic work flow modelling tool) will
assist the business process designer to create the structure
and connections of the tasks involved in the process. This
is usually performed using an intuitive GUI that provides the
required support for users. However, a mere text editor can also
serve as a ”‘modelling tool”’, where the user creates a textual
representation of the process that follows a given standard (e.g.
a given XML format as in the case of BPEL). The output of
the modelling application is an abstract process that contains a
description of the services type it is going to use, but contains
no links to concrete instances of that service type.

Once the process has been designed, it is necessary to
assign the subset of its tasks that are supposed to interact with
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embedded services, to the service instances running on the
smart devices. The Decision Maker component is responsible
for this phase (2). It makes use of previously incoming, cached
discovery/monitoring data to compute and report services
instances that match the requirements of each defined task.
Considering contextual information, a cost estimation of the
execution of a task in a specific service instance cei,j is
calculated. Additionally, the interaction costs between each
task and the different possible subsequent services instances
cci+1,0, cci+1,1, ..., cci+1,n are also calculated. Finally, the
Decision Maker component chooses the path with the least
cost (k1, k2, ..., kn) and returns it to the Executable Process
Model Generator (EPMG).

The EPMG generates an executable process model with par-
titioning instructions and stores it in the Process Description
Repository. When a running version of the process is needed
(phase (3)), the executable process description is inserted into a
Central Execution Engine which will coordinate the execution
of the process between the different service instances as
described in section III-F.

The set of currently active process instances determines,
which part of all data monitored about the devices and service
instances is relevant. Hence, upon process activation, the
Reactive Query Observer is armed to monitor the subset of
monitoring data that is relevant to the active processes in the
network. A (possibly complex) rule set is installed for each
process. In case any of the rules is violated, the reactive query
observer triggers the EPMG to re-calculate the optimal path
for the respective process (phase(4)).

When a human administrator or an application decides to
remove a process from the network (phase (5)), it is removed
from the central orchestration engine and the local ones.

A. Executable Process Model Generator

The Process Modelling Application (e.g. BPMN Modeller)
helps building an abstract model of the process. This model
reflects e.g. the business aspects of the process; it defines the



actors, the actions to be performed, the sequence in which
tasks are performed, which tasks can be executed in parallel,
forks and joins from sequential to parallel execution and back
to sequential as well as how the outputs of previous service
interactions are used in subsequent service interactions.

An example model at that level would be an the work flow
of an order through a company from coming in, processing by
a particular chain of workers/machines, storage, to delivery. A
process expert would model this process in a modelling tool.
The Executable Process Model Generator takes that model
and maps its tasks to concrete service calls. A number of
languages can be used as that level such as XPDL or BPEL.
But the Executable Process Model Generator (simply referred
to as generator hereafter) goes beyond simple translation.
To establish the execution model it works collaboratively
with the Decision Maker to split the execution into smaller
execution units. These units are constructed both based on
partitioning instructions, and availability of devices able to
execute the semantically described sub-tasks. The Executable
Process Model Generator also asks the Decision Maker to
find the optimal execution path of the process (for a detailed
analysis see III-B). This information is also taken into account
when establishing the partitioned executable process model.
This model is then sent to the Process Description Repository.

Because the processes we are considering are partly exe-
cuted on a network of embedded devices (i.e. the tasks of
the process are interactions with services provided by these
devices), the partitioned execution model can not be statically
defined: the execution context and hence the cost of execution
c is likely to change over time. In order to keep the process
requirements continuously satisfied, the generator is informed
of changes in the optimal execution path by the Reactive Query
Observer by means of asynchronous messages. The continuous
queries (realized by a rule set) are instantiated every time a
process instance is activated. Whenever it identifies a change in
the results of the stored queries, the Reactive Query Observer
sends a message to the generator. Upon arrival of the message
the generator will decide whether a re-evaluation of some parts
of the execution path is required, e.g. because the technical
cost of the current path now exceeds a given threshold or has
increased by a given percentage compared to the original cost.
If this is the case, the generator will again use the Decision
Maker to find a better execution path.

1) Partitioning the Process: After the generator has ob-
tained the information, which services will be used to realize
each of the tasks in the process description, it evaluates if it is
beneficial to partition the process. To do so, it must be aware of
all process execution engines that are available in the system.
We assume that there is a central execution engine available to
execute the process as a whole. But to make process execution
more local, more execution engines are available which are
lightweight enough to run on gateways to devices or on the
embedded devices themselves. In the most extreme case, each
device not only hosts services, but also a lightweight execution
engine ready to execute process fractions.

The reason for partitioning the process is that the inter-
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Fig. 3. Relocation of Process Parts

action between the central execution engine and the service
instances on the devices might involve higher technical cost
than interactions between the services directly. If, for example,
two services on the same network or on the same device are
used in a sequence, it may be more beneficial to execute this
interaction locally. Figure 3 shows an example, where process
partitioning replaces 8 expensive operations by 2 expensive
an 3 cheap ones (at the cost of message size, if tasks depend
on outcome of previous tasks). Since the central execution
engine might also be remote (e.g. because it is part of a hosted
application), the communication from the central engine to
the service leads to longer latency, added unreliability, and
communication overhead.

B. Decision Maker

The Executable Process Model Generator issues a request
to the Decision Maker to find the optimal path (as depicted in
Figure 4). This will trigger a cost evaluation of task execution
on specific service instances. The evaluation is done based
on key performance indicators (KPI) that are either selected
on-the-fly or are defined in the system configuration. Such
KPIs are realized by calculating technical cost (as described
earlier). The costs look at the usage of different resources like
communication cost, latency, communication density among
tasks, computation cost, memory usage, energy consumption
or even other related constraints like e.g. time, software version
constraint cost etc. All of these are considered as criteria based
on which decisions are made. According to the previous cost
model, there is a c for all of these dimensions, so you would
add another index to c and the cci,j and cei, j and introduce
a weight function, combining the costs along the different
dimensions: ctotal =

∑n
k=1(αk · ck). Once a final decision

is made, the Executable Process Model Generator will insert
the executable process model with partitioning instructions in
the Process Description Repository. Later this executable is
inserted in an Execution Engine which will coordinate the
execution of the process.

We can approximate the possible process task allocation to
a weighted graph, where the vertexes are the services instances
and the edge weight is directly related to the cost. In its
simplest form the weight is equal to one. The exact formation
of the graph will have an effect on the algorithms that will be
needed to find the optimal path. As an example this could be
a complete graph or a directed graph etc.



Fig. 4. Control flow for creating executable process from abstract process

Fig. 5. Example of different strategies for cost evaluation

We assume that all metrics representing the costs (the cks)
can be merged and successfully be represented by a single
cost ctotal (i.e. a real positive number). With this assumption,
we can approximate the business process task allocation to
known graph problems, such as the shortest path problem.
For instance, given a connected weighted graph, we seek the
shortest path i.e. trying to solve the all-pairs shortest path
problem, which will provide the business process allocation
with minimum overall cost. Example algorithms to solve this
graph problem include the Johnson [9] and the Floyd-Warshall
[5] algorithms. Another example is provided at a later section.

C. Cost Strategy

The cost strategy is based on cost dimensions that can
be measured on the service host. Each cost dimension is
associated with specific constraints, which define the limits
of changes in this variable before triggering a re-calculation
of the tasks allocation.

As depicted in Figure 5, according to different cost cal-
culation strategies, each cost dimension will have a different
contribution to the overall cost, which is weighted according
to its significance at the specified time or business process.

Fig. 6. Business Process Task Allocation Algorithm

The Strategy Advisor is a component that contains several
pre-defined strategies that can be selected based on specific
criteria (e.g. topology, nature of process, density of the net-
work, communication). Each strategy uses a specific set of
algorithms to calculate the cost associated with the KPIs (e.g.
performance, time-to-deliver results etc).

The consideration of the Strategy Advisor is optional, as
is also the Cost Evaluation cache which contains partial
evaluations already done in order to speed-up the process.
Once the cost evaluation process starts several algorithms and
their respective implementations are selected.

1) Example for Business Process Task Allocation Algo-
rithm: One implementation example of a business process task
allocation algorithm is presented in the pseudo code in Figure
3. This algorithm is based on the algorithm defined by Dijkstra
and seeks to find the overall lowest cost for the task allocation
problem.

Note that each service instance can either run on a con-
ventional server (information service) or on a constrained,
embedded device (real world service). An example for service
execution on a constrained device is a temperature service.
If someone wants to read a temperature value of a specific
location some cost of sensing is involved. Alternatively it
could be cheaper to use an information service, e.g. from a
weather information service provider.

The algorithms can be either executed in a distributed
manner close to the location of service execution, i.e. on
particular smart devices, or alternatively in a central manner.
For the second option it would be useful to have outgoing cost
of connecting si,jwith any si+1,k readily available, e.g. in the
service monitor. The pseudo code of the algorithm is shown
in Figure 6.

This algorithm has a complexity of O(max(deg(si,j)+|T |).

D. Reactive Query Observer

The Reactive Query Observer’s role is the passive moni-
toring of cost dimensions from services and devices that are
available in the system. This information is useful when the



availability and properties of services change once a specific
process description has been created. The Reactive Query
Observer is programmed using a set of rules that specify
constraints that need to be followed at any time. Once the rules
are programmed into the system, the systems will continuously
receive messages from various devices and services within the
system. This information is available any time to be used by
the Executable Process Model Generator so that processes
can be re-composed using the information available. The
newest information is persisted into a database so that it is
accessible to different components in the system, consisting
of e.g. events and up-to-date status information about all the
services available to the system. The the different services
that have been allocated to a specific business process task
are monitored and their status and quality of service are
continuously updated. This information will be directly made
available to the Decision Maker module, which ensures that
the newest information available is used to react to changes
in the network of devices.

When new event notifications are received, the Reactive
Query Observer must check all the existing business processes
that could be affected by changes in services, and triggers
an event to the Executable Process Generator to update the
previous process using the newest information. All these noti-
fications will be done using lightweight, yet reliable messaging
systems. The core of the Reactive Query Observer integrates a
module for performing Complex Event Processing (CEP), so
that meaningful events can be identified and correlated across
all the events received by the query observer. This not only
allows a drastic reduction of data that will be output by the
Reactive Query Observer to other modules in the system, but
also the possibility to identify meaningful eventing patterns
and correlation analysis.

E. Process Description Repository

This component is a passive storage container, holding the
enhanced process models along with the partitioning instruc-
tions, i.e. the fragments of the business process along with
the instructions on which execution engine do deploy each
of the fragment. This may be implemented by a database or
any structured persistent storage method. An administrator or
application may choose to take such an enhanced process
model with partitioning instructions and deploy it on the
central execution engine. That engine may be equipped with a
deployment mechanism to deploy the process parts according
to the attached partitioning instructions.

F. Execution Engine for Executable Process Model

The execution engine for the executable process model is
responsible for performing two tasks: (1) execution of the
central part of the partitioned process and (2) deployment of
the process fragments that are supposed to be executed by
lightweight and/or remote execution engines that are available
close to or directly on the devices. No decisions have to
be made at this point, since the executable process model
generator already calculated and added information to the

process model regarding where each process fragment should
run. The central execution engine simply sends the process
fragment descriptions to the relevant execution engines. A new
instance of a process is created when the central execution
engine receives a message that is marked as the starting point
for a new process instance. It will create the new instance,
and (given that it involves interactions with remote process
fragments) may hand over control to remote process fragments
and obtain back control in case of successful remote execution.
The process description may contain a state that is marked
to terminate the current instance. If a given instance reaches
this state, it is terminated. The central engine, as well as the
lightweight distributed engines may implement protocols (like
time out mechanisms and message integrity checks) to deal
with messages being lost and inconsistency of process state
about a process instance between several execution engines.

IV. APPLICATION SCENARIO

In SOA-based supply chain management, operations like are
focused to be collaborative and automated.

The comprehensive process management introduced in this
paper can e.g. be used to automate tasks in collaborative supply
chain management. This includes order creation, processing
and inventory, and dependent tasks like procurement, produc-
tion, and distribution.

Consider a manufacturing site where sensors and actuators
are deployed. Examples of sensors include gas sensors, smoke
detectors, motion sensors, or water sensors; example actuators
could be sprinkler systems or fire shutters. These technologies
are used to increase the overall safety of a manufacturing site,
which is not only of interest to the plant owner, but also the
company’s insurer. Insurance companies could recommend the
deployment of such technology that prevents incidents and
offer reduced insurance rates if certain safety requirements
are fulfilled. In addition, such technology of cause also can
save lives and reduce loss expenses.

As there are many devices of the same kind available in
the given example, the same service type is offered a large
set of smart devices. In order to execute the overall business
process of monitoring the safety within a production plant, it
is necessary to select which services should be used in which
sequence. We assume a network of wireless sensor/actuator
nodes.

From an economical perspective, it does not make sense to
use every available service frequently, as one critical problem
of the deployment of sensor/actuator nodes is short battery
life. This in turn requires efficient energy-aware algorithms
that allow minimizing the frequency of battery replacements.
The goal of these algorithms is to find a suitable dynamic
business process composition that, based on the available
services, reduces the frequency of battery replacements while
still guaranteeing a required level of safety. As for the input
parameters of the cost evaluation that is part of the algorithm,
the following context information can be used: remaining
battery power, cost for the invocation of a sensing/actuating
service, location of the sensor/actuator, etc. The cost associated



with a specific sensing/actuating service is therefore a function
of that context information, which determines whether a given
device should execute the service.

Since we face highly dynamic environments where devices
join and leave the network, we also need to track the dynamics
of the system and react to changing context information (as
described in the section about the Reactive Query Observer).
Especially, context like the remaining battery power changes
frequently. As a concrete example, two water sensors located
close-by can execute their sensing service alternately or in a
similar pattern based on their remaining battery power instead
of sensing simultaneously. If one of them is likely to fail soon
because of low battery voltage, the process distribution is re-
calculated to switch to its alternative neighbour.

V. RELATED WORK

The work in [11] describes a way of decentralizing the
execution of BPEL processes by partitioning them into parts
and deploying the parts in decentralized locations. This is
similar to what is provided by the Executable Process Model
Generator and can be considered an example implementation
of it. In [1] the authors further talk about design-time and run-
time issues of decentralized process execution. The approach
does not take into account a changing and unreliable service
set as it is offered by a set of devices that we assume in this
work: dynamic, potentially mobile and potentially wirelessly
coupled devices.

In [7] and [8], Hackman et al. present practical work in
form of a lightweight BPEL engine that is small enough to be
deployed on mobile devices that are able to run the reduced
Java ME version of the Java VM (such as mobile phones,
PDAs, set-top-boxes and other embedded devices). This open
source software could be used to realize local orchestration
engines. However, it only covers this aspect of the whole
execution mode that we propose.

Friese at al. describe in [6] an approach for peer-to-peer
process healing in case of errors. They use a distributed
discovery process to create a distributed service repository.
All interaction of the process instances with service are not
executed directly, but through this distributed repository that
will redirect a request to an alternative service if its destination
service is not reachable. This layer of indirection hides service
failures and increases reliability of process execution. Al-
though this approach has similar goals with respect to process
execution healing, it is not applicable for services provided by
constrained devices. It requires significant processing power
that is not available on distributed devices, but could be
realized on more powerful gateway devices that are deployed
close to the devices providing the services. All in all, the
approach only covers a fraction of our solution (namely
Reactive Query Observer and discovery / monitoring) and does
not try to partition a process and deploy its parts.

VI. CONCLUSIONS AND FUTURE WORK

This paper laid out an approach for reliable execution of
processes on a networked of unreliable, embedded devices. It

introduced a way of assessing the performance of a particular
service orchestration by taking into account various state
information about devices and services in the network and
summing them up to a single technical cost figure. This cost
function is used as an objective function to identify an optimal
solution in the search space of process fragments and their
deployment to the central or some distributed orchestration
engines. The computed distribution is deployed and monitored;
corrective re-calculation is triggered if the current deployment
degrades w.r.t. the objective function.

The approach, although conclusive by itself, still needs to
be evaluated for its feasibility to find optimal process distribu-
tions in large simulated and real installations. An interesting
quantitative evaluation would be to compare the additional
computational effort spent on establishing and maintaining
optimal process distribution, with the amount of resources
saved.
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