
Distributed Facility Location Algorithms for Flexible
Configuration of Wireless Sensor Networks

Christian Frank and Kay Römer

Department of Computer Science
ETH Zurich, Switzerland

{chfrank,roemer}@inf.ethz.ch

Abstract. Many self-configuration problems that occur in sensor networks, such
as clustering or operator placement for in-network data aggregation, can be mod-
eled as facility location problems. Unfortunately, existing distributed facility lo-
cation algorithms are hardly applicable to multi-hop sensor networks. Based on
an existing centralized algorithm, we therefore devise equivalent distributed ver-
sions which, to our knowledge, represent the first distributed approximations
of the facility location problem that can be practicably implemented in multi-
hop sensor networks with local communication. Through simulation studies, we
demonstrate that, for typical instances derived from sensor-network configuration
problems, the algorithms terminate in only few communication rounds, the run-
time does not increase with the network size, and, finally, that our implementation
requires only local communication confined to small network neighborhoods. In
addition, we propose simple extensions to our algorithms to support dynamic
networks with varying link qualities and node additions and deletions. Using link
quality traces collected from a real sensor network deployment, we demonstrate
the effectiveness of our algorithms in realistic multi-hop sensor networks.

1 Introduction

An important problem in wireless sensor networks [1] is self-configuration [2], where
network nodes take on different functions to achieve a given application goal. One ex-
ample is clustering [3], where some nodes are elected as cluster leaders, serving as
communication hubs for nearby nodes. A similar problem is aggregator placement [4],
where some nodes are elected as aggregators that collect and aggregate sensor data
from nearby sensor nodes. Recently, tiered sensor networks [5] have been proposed,
consisting of resource-poor sensor nodes in the first tier and powerful hub nodes in the
second tier. In these networks, every sensor node is assigned to and controlled by a
hub node. Note that in all of the above examples, self-configuration consists in electing
some nodes as servers while the remaining client nodes are assigned to a server.

While many proposals exist for finding such network configurations, they often do
not pay attention to optimizing the overall cost of these configurations, which consists
of two components: on the one hand, the costs of operating the servers (e.g., represent-
ing the servers’ increased communication load as these forward traffic for many clients),
and, on the other hand, the costs of communication between clients and their server. In
wireless networks, the latter cost can be dependent on the physical distance between a

client and its server (as a longer wireless link requires higher transmit power and thus
increased energy consumption), on the number of hops in a multi-hop network graph,
or on interference and network congestion. In all cases, lowering communication costs
by means of additional hub nodes may prove beneficial.

Our goal is to provide a generic and practical mechanism for finding cost-optimized
solutions to the above self-configuration problems. Our approach is based on the obser-
vation that the above optimization problem can be modeled as an (uncapacitated) facil-
ity location problem. There, we are given a set F of facilities, a set C of clients (also
known as cities or customers), a cost fi for opening a facility i ∈ F and connection
costs cij for connecting client j to facility i. The objective is to open a subset of facil-
ities in F and connect each client to an open facility such that the sum of connection
and opening costs is minimized.

Although the facility location problem has been studied extensively in the past, no
practical solutions exist that would be suitable for multi-hop sensor networks. While
distributed algorithms for facility location exist, they are either not generally applicable
[6], require a certain (albeit small) amount of global knowledge [7], require impractical
communication models [7,8], or (based on the provided approximation factor [8]) might
not improve over existing configuration heuristics for sensor networks.

We therefore contribute a local facility location algorithm that lends itself well for
implementation in multi-hop sensor networks and provides an approximation factor
of 1.61 for metric instances. By means of an experimental study, we show that the
algorithm terminates after few communication rounds for typical problem instances
derived from sensor network configuration problems.

While the above view adopts a static graph model of sensor networks, practical
sensor networks are rather dynamic: nodes may fail and the quality of wireless links
fluctuates over time. To make our algorithm applicable to such realistic settings, we
propose a set of rules to repair a sensor network configuration in case of node failures,
additions, and link quality changes. Also, we study the optimality of our algorithm using
link quality traces collected from a real sensor network deployment.

2 Preliminaries

We model the multi-hop network subject to configuration as a graph G = (V,E). In
our application of the facility location problem, a network node takes on the role of
a client and that of a potential facility at the same time, that is, F = C = V . In
some cases, only a subset nodes have the necessary capabilities (e.g., remaining energy,
available sensors, communication bandwidth, or processing power) to execute a service.
In such cases, the nodes eligible as facilities can be selected beforehand based on their
capabilities [9], which results in F ⊆ C = V . When clients are connected to facilities,
we will use σ(j) to refer to the facility that connects a client j.

Based on the problem at hand, one may choose a particular setting of opening costs
fi and connection costs cij . In most settings, for a network link (i, j) ∈ E, the respec-
tive communication cost cij will be set to some link metric that can be determined lo-
cally at the nodes, e.g., based on dissipated energy or latency. Some approximation algo-
rithms require that the costs cij constitute a metric instance. A metric instance requires
that, for any three nodes i, j, k, the direct path is shorter than a detour (cij ≤ cik + ckj).

However, if connection costs cij should represent the transmit power used for sending,
these are often proportional to the square of the geographic distance between i and j,
which results in non-metric instances, for example:

i j

k
4

8

1

If the input to a facility location algorithm is non-metric, the problem is particularly
hard to solve (see Section 3 below). However, one may obtain a metric instance by
ignoring non-metric links and setting cij to the cost of a shortest path between two
nodes i and j. In multi-hop networks, the required shortest-paths computation can be
achieved using a local flood around the current node.

When addressing settings in which facilities and clients can be an arbitrary num-
ber of network hops apart, we will always compute cij via shortest-paths. We refer to
this metric problem setting as multi-hop. Alternatively, we will consider a second (con-
strained) version of the problem, in which we require that every client is connected
to a facility which is its direct network neighbor. We denote this constrained problem
definition as one-hop. One-hop instances are inherently non-metric, as missing links
(i, j) /∈ E, modeled by cij = ∞, violate the metric property.

3 Related Work

An ample amount of literature exists on (centralized) approximation algorithms for the
NP-hard facility location problem [10]. Such centralized algorithms are not applicable
as these would require a prohibitive communication overhead associated with collecting
the whole network topology at a single point (e.g., at the network basestation).

For non-metric instances of the facility location problem, even approximations are
hard to come by: As the set cover problem can be reduced to (non-metric) facility lo-
cation, the best achievable approximation ratio (even with a centralized algorithm) is
logarithmic1 in the number of nodes [11]. A classic and simple algorithm [12] already
comes close to this lower bound. Distributed approximations are rare: [7] solve non-
metric facility location even in a constant number of communication rounds. However,
the algorithm requires that a coefficient ρ, which is computed from a global view of
the problem instance, is distributed to all nodes before algorithm execution – which
prevents it from being used “as-is” in practice. Moreover, the algorithm requires global
communication among all relevant clients and facilities and therefore can only effi-
ciently be used in the one-hop setting where such communication can be implemented
efficiently by wireless broadcast. Finally, the best approximation factor it can obtain,
which is independent of the problem instance, is on the order of O(log(m+n) log(mn))
where m and n denote the number of facilities and clients, respectively.

For metric instances of the facility location problem, much better approximation
factors ∈ O(1) can be achieved. While it has been shown [13] that a polynomial-time
algorithm cannot obtain an approximation ratio better than 1.463, a centralized algo-
rithm [14] already provides a solution that is at most a factor of 1.52 away from the
optimum. For the metric case, to our knowledge only one distributed algorithm has

1 This holds unless every problem in NP can be solved in O(nO(log log n)) time.

been mentioned [8] which solves only a constrained version of the problem in which
facilities and clients may be at most 3 hops away. It provides a 3+ ε approximation fac-
tor derived from a parallelized execution of a respective centralized algorithm [15] and
is formulated in terms of a synchronous message passing model. The same paper [8]
includes additional versions, which restrict the facility location problem in one way
or another. Only recently, a highly-constrained version of the facility location problem
has been addressed in a distributed manner [6]. Finally, a distributed algorithm based
on hill-climbing [16] addresses a version of the problem in which exactly k facilities
are opened. However, the worst-case time complexity and the obtained approximation
factor are not discussed explicitly.

In this paper, we develop a distributed version of a centralized algorithm [17] which
provides an 1.61 approximation factor with metric instances. Compared to related work,
our work improves on the approximation factor achievable in a distributed manner.
Moreover, we provide the adaptations required to execute this algorithm in multi-hop
networks for which, to our knowledge, no efficient algorithm with guaranteed worst-
case approximation factor exists. Finally, compared to [7,8], our algorithms do not re-
quire a synchronous message passing model. Instead, they perform synchronization
among network neighbors implicitly as nodes wait for incoming messages.

In the remainder of the paper, we briefly summarize the centralized approximation
algorithms [17] our work is based on in Section 4. We then describe their distributed
re-formulation in two steps. The first variant, in Section 5, still requires global commu-
nication, namely that all clients communicate with all relevant facilities in each step,
and is therefore only applicable to the one-hop setting, where this can be efficiently
implemented as a wireless broadcast. In the second step, we use this algorithm as a
subroutine in the algorithms of Section 6, which distribute messages only to a local
neighborhood around the sending node and may therefore be used in multi-hop net-
works. Finally, we provide experimental results in Section 7 and an outlook to future
work in Section 8.

4 Centralized Algorithms

Jain et al. [17] devised two centralized approximation algorithms for the facility location
problem. Both use the notion of a star (i, B) consisting of a facility i and an arbitrary
choice of clients B ⊆ C (in clustering terminology, a star corresponds to a cluster
leader and a set of associated slave nodes). The first is shown in Algorithm 1. In its core
step (line1.3), the algorithm selects the star (i, B) with best (lowest) cost efficiency. The
cost efficiency of a star is defined as

c(i, B) =
(
fi +

∑
cij

)
/|B| (1)

and represents the average cost per client which this star adds to the total cost.
Therefore, in each step, the algorithm selects the most cost-efficient star (i, B),

opens the respective facility i, connects all clients j ∈ B to i (sets σ(j) = i), and from
this point on disregards all (now connected) clients in B. The algorithm terminates once
all clients are connected.

Algorithm 1: Centralized 1.861-approximation algorithm [17]
set U = C1.1
while U 6= ∅ do1.2

find most cost-efficient star (i, B) with B ⊆ U1.3
open facility i (if not already open)1.4
set σ(j) = i for all j ∈ B1.5
set U = U \B1.6
set fi = 01.7

Note that in spite of there being exponentially many sets B ⊆ U , the most efficient
star can be found in polynomial time: For each facility i, clients j can be sorted by
ascending connection cost to i. Any most cost-efficient star spanning some k = |B|
clients will consist of the first k clients with lowest connection costs – all other subsets
of k clients can be disregarded as these cannot be more efficient. Hence, at most |C|
different sets must be considered.

When a facility i is opened, its opening cost fi is set to zero. This allows facility
i to be chosen again to connect additional clients in later iterations, based on a cost-
efficiency that disregards i’s opening costs fi – as the facility i has already been opened
before in order to serve other clients. For metric instances, Algorithm 1 provides a
1.861 approximation factor. Note that line 1.7 constitutes the only difference to a classic
algorithm [12], whose approximation factor for metric instances is much worse. An
even better approximation factor of 1.61 can be obtained when changing the above
algorithm to additionally take into account the benefit of opening a facility i for clients
that are already connected to some other facility. This involves two changes.

First, this requires that a revised cost-efficiency definition is used in line 1.3. We let
B(i) denote the set of clients j which are already connected to some facility σ(j) and
would benefit if i would be opened as their connection cost to i would be lower than
their current connection cost cσ(j)j , i.e.,

B(i) =
{
j ∈ C with σ(j) 6= none and cij < cσ(j)j

}
. (2)

The cost efficiency of a star (i, B) can now be restated as

c(i, B) =

fi +
∑
j∈B

cij −
∑

j∈B(i)

(cσ(j)j − cij)

 /|B|. (3)

A second analogous change is made to line 1.5. In addition to the clients which are part
of the most-efficient star (i, B), all already-connected clients B(i) which benefit from
switching are connected to i. For this, line 1.5 becomes

set σ(j) = i for all j ∈ B ∪B(i).

The authors prove [17] that this change improves the approximation factor to 1.61 for
metric instances. In the following, we will present a distributed version of this 1.61-
algorithm. In the discussed distributed adaptations, we will always use the revised cost-
efficiency definition of Eq. (3).

5 One-hop Approximation

Consider the distributed algorithms given in Algorithm 2 (for facilities) and 3 (for
clients). We will show below that they perform the exact same steps as the centralized
Algorithm 1. While these algorithms require that each client communicates with each
facility and vice versa, the algorithms can be also applied “locally” such that each node
communicates only with its network neighbors. This way, they can be used to com-
pute a solution to the one-hop version of the facility location problem, for example, to
compute an energy-efficient clustering that takes costs of individual links into account.
Unfortunately, this constrained problem version results in a non-metric instance (see
Section 2) and thus the approximation guarantee of 1.61 cannot be preserved. However,
in the next section, we will use these algorithms as a subroutine to obtain an algorithm
that maintains the approximation factor of 1.61 for multi-hop sensor networks. More-
over, we will show that it computes good solutions, nevertheless, in our experimental
results of Section 7.

We assume that after an initial neighbor discovery phase, each client j knows the
set of neighboring facilities, which it stores in the local variable Fj , and the connection
costs cij to facilities i ∈ Fj . Vice versa, each facility i knows the set of neighboring
clients Ci and cij of all i ∈ Ci. In the following we will simply write C and F , as the
respective indices i and j can be deduced from the context.

Algorithm 2: Distributed formulation of Algorithm 1 for Facility i

set U = C2.1
repeat2.2

find most cost-efficient star (i, B) with B ⊆ U2.3
send c(i, B) to all j ∈ U2.4
receive “connect-requests” from set B∗ ⊆ U2.5
if B∗ = B then2.6

open facility i (if not already open)2.7
send “open” to all j ∈ F2.8
set U = U \B2.9
set fi = 02.10

receive σ(j) 6= none from set Ca2.11
set U = U \ Ca2.12

until U = ∅2.13

As in Algorithm 1, this time each facility i maintains a set U of unconnected clients
which is initially equal to C (line 2.1). Facilities start a round by finding the most cost-
efficient star (i, B) with respect to U and sending the respective cost efficiency c(i, B)
to all clients in B (lines 2.3-2.4). In turn, the clients can expect to receive cost-efficiency
numbers c(i, B) from all facilities i ∈ F (line 3.2). In order to connect the most cost-
efficient star among the many existing ones, clients reply to the facility i∗ that has sent
the lowest c(i∗, B) with a “connect request” (line 3.4). In turn, facilities collect a set
of clients B∗ which have sent these “connect requests” (line 2.5). Intuitively, a facility
should only be opened if B = B∗, that is, if it has connect requests from all clients B in
its most efficient star (line 2.6). This is necessary, as it could happen that some clients
in B have decided to connect to a different facility than i as this facility spans a more

Algorithm 3: Distributed formulation of Algorithm 1 for a Client j

repeat3.1
receive c(i, B) from all i ∈ F3.2
i∗ = argmini∈F c(i, B) // use node ids to break ties among equal c(i, B)3.3
send “connect-request” to i∗3.4
if received “open” from i∗ then3.5

set σ(j) = i∗3.6
send σ(j) to all i ∈ F3.7

until connected3.8
on “open” from i with cij < cσ(j)j3.9

set σ(j) = i3.10
send σ(j) to all i ∈ F3.11

cost efficient star. So, if all clients in B are ready to connect, facility i opens, notifies all
clients in B about this, removes the connected clients B from U , and sets its opening
costs to 0 (lines 2.7-2.10) as in the centralized algorithm.

If a client j receives such an “open” message from the same facility i∗ which it
had previously selected as the most cost efficient, it can connect to i∗ (lines 3.5-3.6).
Further, in line 3.7, client j notifies all facilities that it is now connected to i∗, which
update their sets of unconnected clients U in lines 2.11-2.12.

Once connected, clients simply switch the facility they are connected to in case
a closer facility becomes available (lines 3.9-3.10). This feature enables the 1.61 ap-
proximation factor. Note that whenever a client changes its facility σ(j), it informs all
facilities about this (lines 3.7 and 3.11). All these σ(j) messages include the associated
connection costs cσ(j)j and will be received in line 2.11 of the facility algorithm. By
the next iteration, facilities will have received σ(j) and cσ(j)j from all relevant clients,
and will therefore be able to correctly compute the most cost-efficient star (line 2.3)
according to Eq.(3).
Discussion. In the following, we argue that the distributed and the centralized versions
are equivalent. For this, we denote one execution of the inner loops at Algorithms 3
and 4 as a round. Note that the distributed version opens some stars out-of-order, that
is, earlier than the centralized version. The following lemma states that these stars are
disjunct from any star that might follow and has lower cost-efficiency.

Lemma 1. Let Uk be the set of uncovered clients prior to the beginning of round k. If
a client j is part of a star (i, B) opened by the distributed algorithm in round k, then
there is no star (i′, B′) considering B′ ⊆ Uk with j ∈ B′ and c(i′, B′) < c(i, B).

Proof. Assume the contrary, namely that a star (i′, B′) exists with c(i′, B′) < c(i, B)
and say j is a client in B′ ∩ B. Note that B′ ⊆ Uk, and therefore i′ will choose some
star (i′, B′′) with cost-efficiency c(i′, B′′) ≤ c(i′, B′) in line. However, as (i, B) is
opened in round k, client j has sent its connect request to i and not to i′, which implies
c(i′, B′) ≥ c(i, B) and contradicts the assumption.

Given the above, we can show that the stars opened by the distributed algorithm can
be re-ordered to correspond to the execution of the centralized algorithm.

Theorem 1. The distributed and centralized versions are equivalent.

Proof. We sequentialize the distributed algorithm as follows: In the sequentialized ver-
sion we open only one star (the globally most cost-efficient star) per round. Further,
we postpone opening a star (i, B) which has been opened in parallel by the distributed
algorithm to a later round prior to which all stars (i′, B′) with c(i′, B′) < c(i, B) have
been processed. Let (i′, B′) denote one such star. Because of Lemma 1, B′ ∩ B = ∅,
and therefore opening (i′, B′) ahead of time does not remove any client in B from U
and therefore does not interfere with opening (i, B). Similarly, postponing any (i, B)
will not allow that a more cost-efficient star including elements of B is formed earlier
– again by Lemma 1. Postponing (i, B) can further influence (raise) the cost-efficiency
of the stars (i′, B′) as it changes the set B(i) for these facilities and thus may change
the order in which these are processed. However, as by Lemma 1 all these stars are mu-
tually disjunct, the order in which they are opened does not affect total costs. Finally,
all stars opened in parallel are disjunct and re-ordering them does not change algorithm
execution.

Therefore, the sequentialized version opens the same stars as the distributed algo-
rithm. Moreover, as the sequentialized version opens the most cost-efficient star in every
round, it implements the execution of the centralized algorithm.

Nevertheless, the worst-case number of rounds required by Algorithms 2 and 3 re-
mains linear in the number of nodes, because there can be a unique point of activity
around the globally most cost-efficient facility i∗ in each round: Consider for instance a
chain of m facilities located on a line, where each pair of facilities is interconnected by
at least one client, and assume that facilities in the chain have monotonously decreas-
ing cost efficiencies. Each client situated between two facilities will send a “connect-
request” to only one of them (the more cost efficient), thus the second cannot open.
In this example, only the facility at the end of the chain can be opened in one round.
Similarly, once at least one facility is open, it could happen that in each round only one
client connects to this facility. The worst-case runtime is therefore O(n), in which n is
the number of network nodes.

The linear number of rounds required in the worst-case would constitute a very
high overhead in large-scale sensor networks. However, a worst-case configuration on
a larger scale is highly improbable (as we will show in Section 7), and the approxima-
tion factor inherited from the centralized version is intriguing, particularly because the
algorithm performs even much better than 1.61 on average instances. We will evaluate
the average number of rounds required for typical instances in sensor networks and the
optimality gap when the algorithm is executed with such instances in Section 7.

As we mentioned, however, the above algorithm only retains its approximation fac-
tor with metric instances, and as any metric instance is essentially a complete graph, it
requires global communication between all clients and facilities. This is only efficient
in few settings, for example when all nodes hear each other over the wireless broadcast
medium. In the next section we use the algorithms of this section as subroutines in an
adapted “local” version that functions properly in multi-hop networks.

6 Multi-hop Approximation

The described algorithm can be changed to work in multi-hop settings using only a
slight adaptation. As it turns out, if connection costs represent shortest paths between

Algorithm 4: Multi-Hop Adaptation of Algorithm 3 for a Client j

set s = 1, set σ(j) = none4.1
repeat4.2

set s = s× a4.3
send “start(s)” to all i ∈ Fs4.4
if no “begin(s)” received then continue4.5
repeat4.6

receive c(i, B) from all facilities Fs4.7
set Fa = {i ∈ Fs with c(i, B) ≤ s}4.8
if Fa 6= ∅ then4.9

i∗ = argmini∈Fa c(i, B) // use node ids to break ties4.10
send “connect-request” to i∗4.11
if received “open(s)” from i∗ then4.12

set σ(j) = i∗4.13
send σ(j) to all i ∈ Fs4.14

until connected or Fa = ∅4.15

until connected4.16
on “open(s∗)” from i with cij < cσ(j)j4.17

set σ(j) = i4.18
send σ(j) to all i ∈ Fs∗4.19

network nodes, the communication performed by the algorithms can be restricted to
small network neighborhoods. Specifically, if one is interested in determining whether
a facility i has a cost-efficiency of less than a certain threshold s, it is sufficient to
consider only clients j that are reachable by i over a path with costs of at most s, i.e.,
clients j with cij ≤ s. To see this, consider the definition of a facility’s cost-efficiency
and assume that some star’s cost efficiency c(i, B) ≤ s. One can always obtain an even
smaller cost-efficiency once one removes the clients j ∈ B′ which have cij > s, that
is, c(i, B \B′) < c(i, B). Similarly, given a facility i, the clients with cσ(j)j > cij will
not occur in the set B(i) of Eq. (3). Therefore, it is sufficient that clients j which are
newly connected to σ(j) distribute σ(j) only to facilities i with cost cij < cσ(j)j .

In an outer loop added around Algorithms 2 and 3, we therefore exponentially in-
crease the communication scope s, that is, the maximum distance over which messages
are forwarded. Specifically, given a certain scope s, a message is only flooded within
a localized neighborhood Ns(i) around the sending node i, where Ns(i) := {j ∈
V with cij ≤ s}. Note that if the direct link (i, j) is not present in the network graph,
cij representing the shortest path from j to i can be determined on the fly while flooding
a message within Ns(j). Nodes simply stop forwarding a message if it has covered a
distance of larger than s or if it has already been received over a shorter path.

The updated versions are given in Algorithm 4 (clients) and Algorithm 5 (facilities).
In the following, we will respectively use Cs and Fs to refer to client and facility nodes
within scope s of the current node.

In the outer loop, the considered scope s is raised exponentially (lines 4.3 and 5.3).
To initialize an outer round, clients, which have not yet been connected, send a “start”
message containing their current scope s to all facilities in scope (line 4.4). In turn,
facilities wait for at least one such “start” message for a certain time (line 4.5) upon
which they reply “begin(s)”. The waiting period must be long enough to allow relevant

Algorithm 5: Multi-Hop Adaptation of Algorithm 2 for Facility i

set s = 15.1
repeat5.2

set s = s× a5.3
if “start(s)” received then send “begin(s)” to all j ∈ Cs else continue5.4
query σ(j) from all j ∈ Cs5.5
set Us = {j ∈ Cs with σ(j) = none}5.6
repeat5.7

find most cost-efficient star (i, B) with B ⊆ Us5.8
send c(i, B) to all j ∈ Us5.9
if c(i, B) ≤ s then5.10

receive “connect-requests” from set B∗ ⊆ Us.5.11
if B∗ = B then5.12

open facility i (if not already open)5.13
send “open(s)” to all j ∈ C5.14
set Us = Us \B, set fi = 05.15

receive σ(j) 6= none from some clients B′ ⊆ Us5.16
set Us = Us \B′5.17

until Us = ∅ or c(i, B) > s5.18

until s > smax5.19

clients to send the respective start messages and finish earlier rounds. If no “start” mes-
sages were received, facilities simply advance to the next outer round (line 5.4) to wait
for “start” messages from a larger scope. Clients, analogously, wait and then skip the
current round if no neighboring facility has sent “begin”.

A start message sent by a client j thus triggers execution of one outer round at all
the facilities in scope Fs. Facilities then query all clients in scope for their status σ(j)
in line 5.5 and compute the set of yet unconnected clients Us. This query-reply cycle al-
lows the facility to wait for all relevant clients to catch up to the current scope s. Clients
reply to this query once they have reached scope s – note that we have omitted the
respective code in the client algorithm. Similarly clients can wait for facilities lagging
behind in line 4.7 where they expect to receive a message from all facilities in scope.

After this initialization, facilities execute Algorithm 2 in an inner loop (lines 5.7-
5.18) and clients react accordingly (lines 4.6-4.15) implementing Algorithm 3. Com-
pared to Algorithms 2 and 3 the termination conditions of the inner loops must be
changed to allow clients and facilities to proceed to a larger scope in a properly synchro-
nized manner. As with the 1-hop version, clients terminate their inner loop once they are
connected (line 4.15) and facilities once no active clients remain in scope (line 5.18).
In addition, within an inner-loop with scope s, the algorithm should only consider stars
(i, B) with cost-efficiency c(i, B) < s. Therefore, facilities only proceed with the cur-
rent inner loop as long as they are efficient enough for this scope (lines 5.10 and 5.18)
while in turn clients only proceed with their inner loop as long as there is a facility in
scope that is efficient enough to connect them (lines 4.8,4.9 and 4.15).

Finally, once a client has been connected (4.17-4.19), it acts analogously to Al-
gorithm 3: It simply changes its facility if this is beneficial and notifies all relevant
facilities about it. Here the client can synchronize to the scope s∗ of the sending facility
as it is included in the received “open” message to ensure that all relevant facilities are

informed. Note that the messages sent in line 4.19 are also received by facilities still
performing their inner loop in line 5.16.
Discussion. The algorithms presented in this section enhance Algorithms 3 and 4 by
making them “local”, meaning that they do not need to communicate with all relevant
facilities but only to the ones within a confined neighborhood. This allows to perform
shortest-paths computations in these confined neighborhoods which, in turn, give rise
to metric instances and preserve the approximation factor of Algorithm 1.

An additional outer loop provides for both, an adequate expansion of the involved
communication scope and for sufficient synchronization of the nodes in scope with-
out depending on a synchronized communication model. Because clients and facilities
may repeatedly have to wait in lines 4.5 and 5.4, respectively, the worst-case runtime
becomes O(n loga smax) where smax denotes the cost efficiency of the least efficient
star which occurs in the network and n denotes the total number of participating nodes.
However, the maximum number of rounds involving actual communication is smaller.
If no unconnected clients or eligible facilities are present, the involved nodes do not
communicate in their inner loop at all. Instead, they simply skip the inner loop. In turn,
in rounds involving communication, a client or facility can be a single point of activity
only once during algorithm execution. Therefore, the number of required communica-
tion rounds is still in O(n).
Dynamic Re-configuration. In real-world deployments of sensor networks, link qual-
ities change over time and nodes may fail. To accommodate for major changes in the
network topology, the algorithms are re-executed at regular intervals. As such re-starts
involve relatively high overhead, these are performed only infrequently (e.g., once a
day). In between such re-starts, a client j combines periodic re-evaluations of link costs
cij (within a local scope of size cσ(j)j) with a liveness check on the facility σ(j). In both
cases, if σ(j) has failed or a closer open facility has been found, client j re-connects
to the closest open facility. In Section 7, we will show that such adaptations suffice to
maintain a close-to-optimal configuration over longer periods of time.

7 Experimental Results

In the following, we show results from two distinct sets of experiments. The first, de-
tailed in Section 7.1, is based on simulations which test the scalability of the proposed
algorithms. The second, detailed in Section 7.2 tests the applicability of the proposed
algorithms to operational networks with dynamic links.

7.1 Scalability

In the experiments based on simulations, we uniformly deployed a variable number of
nodes (x-axis) onto a 300m by 300m area. The network graph has an edge (i, j) ∈ E if
the nodes i and j are less than 30m apart (this number stems from a model that is based
on the characteristics of the CC1000 transceiver used on BTnodes [18] and Berkeley
Motes). Assuming that nodes can control their transmit power, for (i, j) ∈ E, we set
connection costs cij ∼ g(i, j)2 where g(i, j) denotes the distance in meters between i
and j and normalize them such that cij ∈ [0, 1].

Scenarios. To test our algorithms with a range of applications, we examined three dif-
ferent parameterizations of the facility location problem, of which qualitative results are
shown in Figure 1. In the first, we set opening costs fi = 1 and additionally require that
clients and facilities must be neighbors. We show a solution obtained by the one-hop
Algorithms 2 and 3 on such an instance in Figure 1(a).

Further, we tested the multi-hop Algorithms 4 and 5 in two different settings. In the
first, we set fi = 5 to denote that a high effort is required to operate a cluster leader,
of which an example result is shown in Figure 1(b). In the second scenario, shown
in Figure 1(c), we assumed that cluster leaders must send much data to the network
basestation and therefore their operation costs increase with their network distance to
the sink (yielding smaller stars close to the sink and larger ones further away).

(a) fi = 1 (b) fi = 5 (c) fi = 2×D(sink, i)

Fig. 1. Effects of varying opening costs (D(sink, i) denotes the shortest-path distance
to the sink, which is located in the upper left corner of the simulated area)

One-Hop Clusters. In the one-hop setting (Figure 1(a)), we evaluated the costs of
configurations produced by different algorithms while varying the number of nodes in
the simulation area (that is, the node density). The results are given in Figure 2(a) which
shows the costs obtained with the following five methods.

One-hop denotes the simple one-hop algorithms of Section 5. Respectively, one-hop
IP refers to the optimal configuration of the constrained case which requires clients to
connect to facilities which are direct network neighbors. Further, multi-hop denotes the
multi-hop algorithm described in Section 6, which has a 1.61 approximation guarantee.
Here, clients may connect to facilities which are an arbitrary number of hops away. Re-
spectively, multi-hop-IP computes the optimal solution to the facility location problem,
in which facilities and clients may be multiple hops apart and the instance is made met-
ric by a centralized shortest-paths computation. Finally, MDS-IP denotes the optimal
solution to the minimum dominating set problem, in which dominator nodes represent
open facilities and slave nodes are clients that connect to the closest dominator node.
The costs are computed using the original (non-metric) instance.

The costs of a minimum dominating set (MDS-IP) which suffer from expensive
long links mark one end of the optimization spectrum. Here we argued that facility lo-
cation can provide a more energy efficient configuration. On the other hand, the optimal
facility-location based configuration (multihop-IP) marks the other end as it represents
a lower bound for the employed approximation algorithms.

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 200 250 300 350 400 450 500

C
os

ts

Number of nodes

one-hop
one-hop IP

multi-hop
multi-hop IP

MDS IP

(a) One-hop

 180

 200

 220

 240

 260

 280

 300

 320

 340

 200 250 300 350 400 450 500

C
os

ts

Number of nodes

dist
dist IP
simple

simple IP

(b) Multi-hop

Fig. 2. Performance of one-hop and multi-hop algorithms

The one-hop algorithm performs well and is even close to the respective optimal
configuration one-hop IP, although it operates on a non-metric instance and thus with-
out a guaranteed approximation factor.

Note that in this particular setting, the constrained versions, which require facilities
and clients to be direct neighbors (one-hop and the optimal one-hop IP), are not far away
from the multi-hop results and the optimum of the unconstrained case (multi-hop IP).
This is due to the low opening costs we used, which are set to fi = 1 for all facilities.
With larger opening costs, multi-hop solutions would benefit more from larger stars.

Multi-Hop Clusters. In the experiments shown in Figure 2(b), we additionally evaluate
the quality of the solutions obtained by the multi-hop algorithm with the two different
opening cost settings shown in Figures 1(b) and 1(c). In the first (denoted as simple) we
set opening costs to a constant fi = 5 which corresponds to configurations as shown in
Figure 1(b). In the second, denoted as dist, we apply the heuristic shown in Figure 1(c),
where the opening costs correspond to twice the costs of the shortest path to the sink. In
both cases, the results of the distributed implementation are very close to the achievable
optimum computed by CPLEX on the same instance.

Runtime and Overhead. In the experiments shown in Figure 2(b), the scope s started
out with 0.2 and a was set to 2, thus doubling the scope in each outer round. Note,
however, that these two parameters do not influence the quality of the obtained solution.
Rather, they determine the trade-off achieved between the runtime of the algorithms and
the scope within which messages are sent. On the one hand, the smaller a is set, the more
one may be sure that scopes are not increased too far (in vain). On the other hand, the
required number of outer rounds until termination increases with lower a-values.

Figure 3 demonstrates this trade-off as observed in the simulation run corresponding
to Figure 2(b). In Figure 3(a) we show the average scope with which messages were sent
during algorithm execution, given different settings of a (the scope s always starts at
0.2). The lower we set a, the better the results as the scope is increased by smaller
amounts. Note that in general, the effort involved in the execution of our algorithm
is proportional to the “locality” implied by the problem instance: On the one hand, if
opening costs are high (here fi = 5), a facility will generally connect clients in a larger

neighborhood (as seen in Figure 1(b)). On the other hand, the experienced scopes are
even much lower with small opening costs (e.g., for fi = 1, not shown).

 0.5

 1

 1.5

 2

 2.5

 3

 200 250 300 350 400 450 500

A
ve

ra
ge

 s
co

pe
 s

iz
e

Number of nodes

a=2.0
a=1.5
a=1.2
a=1.1

(a) Scope

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 200 250 300 350 400 450 500

R
un

tim
e

(in
 r

ou
nd

s)

Number of nodes

a=2.0
a=1.5
a=1.2
a=1.1

(b) Rounds

Fig. 3. Average scope size vs. total runtime (in rounds). In Figure 3(b) the error bars
denote the maximum and the minimum that occurred.

In contrast, in Figure 3(b), we show the runtime in rounds (one round corresponds
to one execution of the inner loop) of the multi-hop algorithm on the same instances.
Note that, while previously the error bars indicated confidence intervals of 95%, we use
them in Figure 3(b) to mark the maximum and minimum values that occurred in 10
random instances (as we are particularly interested in the maximum value). The results
show that – while in theory the worst case runtime can be large – in typical instances
based on multi-hop networks the runtime is sufficiently small and does not even grow
with the number of nodes. Moreover, based on the trade-off between runtime and scope
size, the runtime improves with higher a values. Finally, the scope size decreases with
increasing network density. This is due to the fact that, given certain opening costs,
the algorithms will connect stars of around the same size (namely, facilities are opened
once enough clients are connected to pay for opening them). Therefore, smaller stars
are opened in denser networks and the cumulated communication overhead stays the
same.

7.2 Network Dynamics

One open question is whether such, albeit close-to-optimal solutions, can provide a
benefit for real-world deployments in which the network topology changes over time.
To obtain realistic link qualities, we extended a testbed of 13 TMote Sky modules
that gather temperature, humidity, and light measurements from our office premises
to record network topology information as well. Next to its sensor measurements, every
5 seconds, a node reports the set of nodes from which an application-layer message has
been received since the last update.

Such topology information received from each node i allows to compute a (packet-
level) link quality estimate eij(t) for each network link directed from j to i [19]. The
estimate eij(t) is based on the packet success rate rij = packets received in T

packets expected in T which
is smoothened using an exponentially weighted moving average such that eij(t) =

αrij(t) + (1 − α)eij(t − 1). In our experiments, we set α=0.6 according to [19] and
T to 300 s. We transform the quality estimates eij ∈ [0, 1] into link cost estimates by
setting cij = 1 + 10(1 − eij) if eij > 0.5 and cij = ∞, otherwise. Further, we set
opening costs to constant fi = 2.

To give the reader an impression of

8

1

5
3

9

20

15

0

23

7

4

17

12

Fig. 4. Deployment plan (left); network
topology at 9:28 a.m. showing cij × 100
and computed configuration (right)

the examined networks, Figure 4 shows
our mote deployment, the resulting net-
work topology, and a configuration com-
puted by the multi-hop algorithms.

Given the link costs {cij(t0)} ob-
served at a certain time of the experi-
ment t0, we let the presented multi-hop
algorithms compute a configuration (a set
of open facilities and assigned clients),
whose costs C(t0, t) vary with t as link
qualities change over time. Once a con-
figuration has been computed, only small
dynamic adaptations (detailed in Sec-
tion 6) are performed.

In Figure 5(a), we show the ratio be-
tween C(t0, t) and the costs of an optimal
configuration Copt computed by CPLEX
– for configurations computed at three ar-
bitrarily chosen instants of time t0. Ob-
serve how at t = t0, e.g. at 7:46 or at 11:42, the respective optimality gap is close
to 1. As expected, however, this is not always the case. For example the configuration
obtained at t0=9:28 is not optimal even at this time.

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

0
7

:0
0

0
7

:3
0

0
8

:0
0

0
8

:3
0

0
9

:0
0

0
9

:3
0

1
0

:0
0

1
0

:3
0

1
1

:0
0

1
1

:3
0

1
2

:0
0

O
p

ti
m

a
lit

y
 g

a
p

t

7:46

9:28

11:42

(a) C(t0, t)/Copt for dif-
ferent t0 during 5 hours

 1

 1.2

 1.4

 1.6

 1.8

 2

1
8

:0
0

2
0

:0
0

2
2

:0
0

0
0

:0
0

0
2

:0
0

0
4

:0
0

0
6

:0
0

0
8

:0
0

1
0

:0
0

1
2

:0
0

1
4

:0
0

1
6

:0
0

1
8

:0
0

O
p

ti
m

a
lit

y
 g

a
p

t

CMDS / Copt

Average C(t0,t) / Copt

Confidence intervals (95%)

(b) Average C(t0, t)/Copt

vs. MDS during 24 hours

Fig. 5. Solutions’ optimality over time

In Figure 5(a), one can observe how the time t0 at which the initial configuration is
computed influences the respective outcome of C(t0, t). To obtain more general results,
t0 is randomly drawn from the total 24 hour interval corresponding to available topol-
ogy data and used to compute the respective curve C(t0, t) in 20 repeated simulation

runs. The ratio of the average C(t0, t) to the costs of the optimal configuration is shown
Figure 5(b). In addition, Figure 5(b) shows the costs CMDS of a minimum dominating
set computed by CPLEX for each instant of experiment time. The latter costs can be
used as an assessment of whether a much faster MDS approximation, which can be
re-executed frequently, could out-perform a facility location algorithm executed more
rarely. As said earlier, however, MDS-based configurations require slaves to use expen-
sive links (with poor link quality estimates) to communicate with their cluster leader.
Such “bad” links are often the most volatile and cause the costs of an MDS-based
configuration to diverge significantly from an optimal configuration. While this is not
always the case (Figure 5(b) has portions in which MDS is close-to-optimal), one can
observe that facility-location based configurations, which focus on high-quality links,
are robust with respect to varying link qualities. The observed gap to an optimal config-
uration remains small – in the observed 24 hours it stayed below 10% at all times.

8 Conclusion and Outlook

In this paper, we motivated the use of facility location algorithms to address configura-
tion tasks in multi-hop networks as they can flexibly implement many sensor-network
configuration problems, such as an energy-efficient clustering, a clustering in which
cluster leaders can connect nodes through multiple hops, or a configuration in which
cluster leaders are chosen based on their distance to the sink. We claim that many more
such applications of the problem can be found.

Further, we have shown that algorithms which are very good in theory (with an ap-
proximation factor of 1.61 whilst the theoretically best polynomial algorithm cannot be
better than 1.463) can be feasibly transformed for distributed execution. The transfor-
mations we described resulted in (to our knowledge) the first facility location algorithm
which can be efficiently executed in multi-hop networks.

In the experimental evaluation, we were able to show that although our algorithm
exhibits a linear worst-case runtime, in typical sensor-network instances it terminates
in only few communication rounds. Moreover, by analyzing the scopes within which
messages were forwarded during algorithm execution, we showed that the devised al-
gorithm, although equivalent to its centralized ancestor, requires only very local com-
munication. Further, we showed that the distributed algorithm always performs close to
the optimal solution, a quality which it inherits from the centralized version [17].

Finally, there is much left to do. The algorithms we described could be made faster,
possibly employing a technique inspired by [7], in which stars are connected “frac-
tionally” in small parallel steps and the obtained fractional solution is rounded later.
Moreover, in wireless multi-hop networks two “harder” versions of the facility loca-
tion problem have particular applicability, for which, to our knowledge, no distributed
algorithms exist at all: The capacitated version, in which a facility can only serve a
limited number of clients and the robust version, in which every client is connected by
k facilities.

Acknowledgments. We would like to thank Thomas Moscibroda for many valuable
discussions, in particular on [7,8,17]. This work was supported by NCCR-MICS, a
center funded by the Swiss National Science Foundation.

References

1. Karl, H., Willig, A.: Protocols and Architectures for Wireless Sensor Networks. Wiley (May
2005)

2. Cerpa, A., Estrin, D.: ASCENT: Adaptive Self-Configuring Sensor Networks Topologies.
In: Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communi-
cations Societies (INFOCOM’02), New York, NY, USA (June 2002)

3. Basagni, S., Mastrogiovanni, M., Petrioli, C.: A performance comparison of protocols for
clustering and backbone formation in large scale ad hoc networks. In: Proceedings of the 1st
IEEE International Conference on Mobile Ad-hoc and Sensor Systems (MASS’04). (2004)

4. Madden, S., Franklin, M.J., Hellerstein, J.M., Hong, W.: TAG: a Tiny AGgregation Service
for Ad-Hoc Sensor Networks. In: Proceedings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI’02), Boston, MA, USA (December 2002)

5. Gnawali, O., Greenstein, B., Jang, K.Y., Joki, A., Paek, J., Vieira, M., Estrin, D., Govindan,
R., Kohler, E.: The TENET architecture for tiered sensor networks. In: Proceedings of
the 4th International Conference on Embedded Networked Sensor Systems (SENSYS’06),
Boulder, CO, USA (November 2006)

6. Gehweiler, J., Lammersen, C., Sohler, C.: A distributed O(1)-approximation algorithm for
the uniform facility location problem. In: Proceedings of the 18th Annual ACM Symposium
on Parallel Algorithms and Architectures (SPAA’06), Cambridge, MA, USA (2006)

7. Moscibroda, T., Wattenhofer, R.: Facility location: Distributed approximation. In: Pro-
ceedings of the 24th ACM Symposium on Principles of Distributed Computing (PODC’05).
(2005) 108–117

8. Chudak, F., Erlebach, T., Panconesi, A., Sozio, M.: Primal-dual distributed algorithms for
covering and facility location problems. Unpublished Manuscript (2005)

9. Frank, C., Römer, K.: Algorithms for generic role assignment in wireless sensor networks.
In: Proceedings of the 3rd International Conference on Embedded Networked Sensor Sys-
tems (SENSYS’05), San Diego, CA, USA (November 2005)

10. Vygen, J.: Approximation algorithms for facility location problems. Technical Report
05950-OR, Research Institute for Discrete Mathematics, University of Bonn (2005)

11. Feige, U.: A threshold of ln n for approximating set cover. Journal of the ACM 45(4) (1998)
12. Hochbaum, D.S.: Heuristics for the fixed cost median problem. Mathematical Programming

22(1) (1982) 148–162
13. Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms. Journal of

Algorithms 31 (1999) 228–248
14. Mahdian, M., Ye, Y., Zhang, J.: Improved approximation algorithms for metric facility loca-

tion problems. In: Proceedings of the 5th International Workshop on Approximation Algo-
rithms for Combinatorial Optimization (APPROX’02), Rome, Italy (September 2002)

15. Jain, K., Vazirani, V.V.: Primal-dual approximation algorithms for metric facility location
and k-median problems. In: Proceedings of the 40th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS’99). (October 1999) 2–13

16. Krivitski, D., Schuster, A., Wolff, R.: A local facility location algorithm for sensor networks.
In: Proceedings of the International Conference on Distributed Computing in Sensor Systems
(DCOSS’05), Marina del Rey, CA, USA (June 2005)

17. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility location
algorithms analyzed using dual fitting with factor-revealing LP. Journal of the ACM 50
(November 2003) 795–824

18. BTnodes. www.btnode.ethz.ch (2006)
19. Woo, A., Tong, T., Culler, D.: Taming the underlying challenges of reliable multihop rout-

ing in sensor networks. In: Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems (SENSYS’03), Los Angeles, CA, USA (November 2003)

www.btnode.ethz.ch

	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Centralized Algorithms
	5 One-hop Approximation
	6 Multi-hop Approximation
	7 Experimental Results
	7.1 Scalability
	7.2 Network Dynamics

	8 Conclusion and Outlook

