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Abstract—The increasing penetration of the real world with
embedded and globally networked sensors leads to the formation
of the Internet of Things, offering global online access to the
current state of the real world. We argue that on top of this real-
time data, a Web of Things is needed, a software infrastructure
that allows the construction of applications involving sensor-
equipped real-world entities living in the Internet of Things. A
key service for such an infrastructure is a search engine that sup-
ports lookup of real-world entities that exhibit a certain current
state as perceived by sensors. In contrast to existing Web search
engines, such a real-world search engine has to support searching
for rapidly changing state information generated by sensors. In
this paper, we show how the existing Web infrastructure can
be leveraged to support publishing of sensor and entity data.
Based on this we present a real-time search engine for the Web
of Things.

I. INTRODUCTION

The physical world is being increasingly penetrated by
embedded sensors that are connected to the Internet and the
World Wide Web, making it possible to observe an ever-
increasing proportion of the world with minimal delay using
a standard Web browser. For example, sensor networks are
deployed to monitor the environment, mobile phones are
equipped with an increasing number of sensors that can be
used as mobile sensor nodes [1], and indoor plants are en-
abled to publish their current state using Twitter [2]. Services
like Microsoft SenseWeb and pachube.com strive to simplify
this process by providing platforms for publishing structured
sensor data on the Web. Additionally, real-time data regarding
the state of the real world is also published by various services:
Examples include traffic status integrated with Google Maps,
public transport operators who provide RSS-feeds of incidents
and delays, or Bicing [3], a public bicycle-sharing system
in Barcelona, Spain, that provides the number of bicycles
available at each rental station in real time on the Web.
Extrapolating this trend into the future, we should soon be able
to infer the state of many real-world entities (people, places
and things) in real time by analyzing the output of associated
sensors and publishing this information on the Web.

We believe that these trends are precursors of a Web of
Things [4] which will extend the original document-centric
Web, making it a universal interface for the real world by
giving real-world entities a Web presence that can be accessed
using lightweight APIs (typically based on the REST prin-
ciple [5]). These representations include the current state of
those entities (empty room, sleeping person, quiet restaurant)
as perceived by embedded sensors. However, in contrast to
visions of a Sensor Web, which offers access to raw output of
sensors, users of the Web of Things will most likely not be

interested in searching for sensors with a specific raw reading,
but for entities of the real world with a specific current state.
For example, instead of searching for loudness sensors with a
current reading below 30 dB, we expect that users will rather
be interested in searching for places which are quiet.

As for today’s Web, a key service for the Web of Things
will be a search engine that allows to search for real-world
entities with certain properties. While the traditional Web is
dominated by static or slowly changing, unstructured content
being manually typed in by humans, a key feature of the
Web of Things is rapidly changing, structured content being
automatically produced by sensors. Thus, a search engine for
the Web of Things has to support searching for structured and
rapidly changing content, which is a key challenge given that
existing Web search engines are based on the assumption that
most Web content changes slowly, such that it is sufficient
to update an index at a frequency of days or weeks. This
is clearly insufficient for the Web of Things where the state
of many real-world entities changes within minutes or even
seconds.

The contribution of this paper is a real-time search engine
for the Web of Things, addressing the key challenge of scalable
search for rapidly changing content while leveraging existing
Web infrastructure. Essentially, our search engine called Dyser
supports the search for real-world entities with a user-specified
current state. For example, Dyser could be used to search for
rooms in a large building which are currently occupied, for
bicycle rental stations which have currently bikes available, for
currently quiet places at the waterfront, or for current traffic
jams in a city. Essentially, we turn the algorithmic foundations
of our previous work [6] into a running system – presenting
its design, implementation, and evaluation.

II. PROBLEM STATEMENT AND APPROACH

The key challenge that needs to be addressed in constructing
a search engine for the Web of Things is the anticipated huge
size and extreme dynamics of the search space. Extrapolating
the current trend of instrumenting objects, places, and even
people with sensors several years into the future, we can expect
that the Web of Things may contain orders of magnitude
more sensors than currently existing Web pages. Moreover,
the output of these sensors is highly dynamic. In contrast, the
large majority of today’s Web is static in the sense that Web
pages are changed at time intervals orders of magnitude longer
than the update rate of sensors. Thus, traditional indexing
approaches are insufficient as an index would be outdated as
soon as it has been constructed.



There are two fundamental approaches to construct a search
engine for the Web of Things. With a push approach, sensor
output is proactively pushed to a search engine, such that the
search engine can resolve queries based on that data. With a
pull approach, only upon a user entering a query the search
engine sends the query to the sensors to pull the relevant data.

In the Web of Things we can expect substantially more
sensors than users typing queries, and sensors would produce
data at a much higher rate than users can type queries. Hence,
the pull approach can be expected to generate a substantially
smaller communication volume between sensors and search
engine than the push approach. Still, pulling all sensors upon
each query would not scale. Therefore, in previous work
we have proposed an approach called sensor ranking [6],
which for a given query computes the probability that a
sensor produces the sought output at the time of the query
by using indexed prediction models. Sensors are then pulled
in decreasing order of probability until enough matches have
been found, thus spending effort first where it counts. Here, we
also exploit the fact that users of search engines are typically
not interested in all results, since these are typically far too
many to check manually.

The main assumption in our approach is that there are
enough sensors which offer a sufficient level of predictability.
While this may not be the case for arbitrary sensors, many
phenomena in the real world feature periodic characteristics,
especially those related to people. For example, in a person’s
life, daily, weekly and yearly cycles can usually be identified.
Recent research (e.g., [7], [8]) has shown promising results
regarding the predictability of human behavior. For this reason,
we focus on sensors related to human behaviors.

In the following subsections we formally define our system
model and detail the basic operation of the search engine,
summarizing the main results from our previous work [6] to
make the paper self-contained.

A. System Model

Formally, a sensor s is a function

s : T 7→ V (1)

where T denotes real time and V the set of possible sensor
values. V is assumed to be a finite set of discrete states that
an entity can be in (e.g., a room entity could include an
occupancy sensor that can yield one of two values “occupied”
or “empty”). Note that the mapping of raw sensor readings to
discrete states may introduce subjectivity, as it often requires
interpretation of the sensor data. We let the operator of the
sensor implement this mapping, as he has comprehensive
information about its context. The modality of the mapping
is beyond the scope of this paper.

Each sensor is associated with a type and optionally further
structured meta information such as a location. For example,
the following function can be used to obtain the type ∈ Y of
a sensor:

type : S 7→ Y (2)

A prediction model for a sensor s is a function

ms,t0,t1 : T × V 7→ [0, 1] (3)

The parameter t0 ∈ T refers to the time of the first con-
sidered sensor reading, t1 ∈ T refers to the time when the
model has been constructed, meaning that all sensor values
s(t0 ≤ ti ≤ t1) have been available for the construction of
the model. The idea behind constraining the construction of
the prediction model to the time window [t0, t1] is that sensor
values from the distant past are typically bad indicators for the
future output of the sensor. Also, using a time window instead
of all past data typically reduces the resource consumption
(i.e., execution time and memory footprint) of the model
construction.

Given a point in time t > t1 and a sensor value v ∈ V ,
ms,t0,t1(t, v) is an estimate of the probability that s(t) = v
holds. We call t− t1 the forecasting horizon.

An entity e ∈ E is associated with one or more sensors,

sensors : E 7→ P(S) (4)

whereas we assume that each sensor of an entity e has a
distinct type.

B. Basic Operation
Given the above defintions, we can now outline the basic

operation of the search engine. At regular intervals, the search
engine crawls the Web of Things. For each visited entity ei,
the search engine downloads and indexes the structured meta
information including the prediction models of all sensors(ei)
associated with that entity.

A basic search operation issued at time t would specify the
current state of sought entities at time t, where the current state
of an entity is represented as a set of sensor types y ⊂ P(Y )
and a mapping function val : Y 7→ V that maps sensor types
in y to the requested values. That is, an entity matches the
search if for each type yi ∈ y the entity contains a sensor s
of that type with s(t) = val(yi).

To perform a search operation, the search engine first fetches
entities ei from the index which contain sensors of requested
types. Next, for each fetched entity ei a probability pi is
computed that the entity matches the search. As the search
is conjunctive (e.g., the entity must contain a matching sensor
for each type and value specified in the search), pi equals the
product of the prediction probabilities of the individual sensors
(assuming independent sensors):

pi :=
∏

s∈sensors(ei)∧type(s)∈y

ms(t, val(type(s))) (5)

Next, entities ei are sorted by decreasing values pi. Be-
ginning with the entities with the largest pi, the sensors of
the entities are consulted to check whether indeed s(t) =
val(type(s)) holds. Entities where all requested sensor states
match are returned as search results until enough matching
entities have been found.

Note the difference between sensor ranking and the rele-
vance ranking of traditional search engines. The former tries
to optimize the performance of the search engine, while the
latter tries to optimize user satisfaction. As detailed in Sects.
III and IV, we combine both in Dyser: sensor ranking for the
internal search process, and relevance ranking when displaying
the results to the user.



C. Prediction Models

We now sketch three examples for concrete prediction
models for use in Dyser, more details can be found in [6].

Our simplest prediction model computes the fraction of the
time during which the sensor output equals the sought value v
within the time window [t0, t1]. For example, if the sensor
output was v during the whole time window [t0, t1], then
the probability computed by the above prediction for value
v equals 1. Note that the output of the prediction model is
independent of the actual point in time t of the search. We
call this model the aggregated prediction model (APM).

A more elaborate model would take into account the time
t of the search. For this, we exploit the assumption that there
is a dominant period length L after which the sensor output
is likely to repeat, where L is either known in advance or
derived by a spectral analysis of past data. For example, it is
reasonable to assume that the occupancy pattern of a room
is likely to repeat every week, that is, L equals one week.
Here, the computed probability that a given room is empty on
Monday noon equals the fraction of Monday noons contained
in the time window [t0, t1] at which the room was empty over
all Monday noons contained in that time window. As this
model assumes a periodic process with a single period, we
call this model the single period prediction model (SPPM).

The previous model ignores the fact that sensor output is
often the result of many periodic processes with different
period lengths. For example, a meeting room may host a
group meeting every Monday and a general assembly every
first Tuesday of each month. Here, we have two periodic
processes with period lengths of one week and one month,
respectively. To support such multi-period processes, we use
the following approach. In a first step, we discover so-called
periodic patterns in the time window using a variant of an
existing algorithm [9]. As a result, we obtain a list of periodic
patterns of the form (l, o, w, p), where l is the period length
of the pattern, o is an offset in the period such that the sensor
output s(kl+o) equals w for integer values k with probability
p. For example, the pattern (one week, 1, occupied, 0.5) means
that every second day in a week (i.e., Tuesday) a room is
occupied with probability 0.5. To make a prediction, we first
filter all patterns that match the search time t, that is we keep
a pattern (l, o, w, p) if and only if there exists some integer
k such that kl + o = t and w = v, where v is the sought
sensor value. Among all remaining patterns we compute the
maximum probability and output it as the prediction. We call
this model the multi-period prediction model (MPPM).

III. DESIGN

The basic algorithmic approach sketched above now needs
to be mapped to a concrete system design and implementation.
In particular, we have to design basic abstractions for the Web
of Things to represent real-world entities and their states. On
top of these, we need to define the system architecture for
the search engine. One key goal herein is to retain the open
and loosely coupled architecture of the current Web such that
everybody can introduce one’s own search engine for things –
rather than producing a closed system under exclusive control
of one party, thus hampering scalability and sharing.

In the Web of Things, entities of the real world should there-
fore be represented as Web resources, accessed using HTTP,
and should provide (among others) an HTML representation.
This allows a seamless integration into the existing Web in-
frastructure, making it possible to utilize existing applications
and services with Web-enabled things [5].

Our search engine for the Web of Things follows the basic
approach of existing Web search engines: it builds up an index
of all relevant pages and offers a simple search language
to find indexed entities. Note that our pull-based approach
does not require sensor or entity publishers to register with
Dyser, as pages are found by following hyperlinks. While our
search engine indexes representations of sensors and entities,
including their structured data, it does not rely on the last
known reading of a sensor for facilitating the search by the
current state of an entity. Instead, indexed prediction models
are utilizied to efficiently resolve a search request as outlined
in Sec. II.

Note that published prediction models might affect privacy
when used with certain sensor installations: they reveal a “big
picture” of the sensed phenomenon at once, which would
otherwise have to be composed by an attacker himself, by
periodically collecting sensor readings over a longer period of
time. However, this issue is beyond the scope of this paper.

A. Overview

An overview of the system architecture is depicted in Fig. 1.
There, sensors are connected to sensor gateways which are in
charge of creating prediction models and publishing sensor
information on the Web. Note that sensor gateways may also
be implemented as processes running directly on the sensors,
if resources permit.

As an example for a real-world entity, we consider a meeting
room, represented by an HTML page. This page does not
only contain static information like a textual description, but
also dynamic information about its real-world state. This
information is gathered from an associated sensor which
detects whether the room is currently occupied. This sensor is
also represented by an HTML page, which contains besides
unstructured text also structured meta data about the sensor.

These embedded sensor data can be identified by the in-
dexer, which periodically crawls the Web in order to build an
index of relevant pages. Essential information about entities
and sensors, including their prediction models, are then stored
in the index. When a user issues a search request (in this
case “room ifw occupancy:empty”), the resolver is in
charge of handling its execution. For this, it will first reduce
the result set to entities which match the static part of the
search term (“room ifw”) and feature the requested sensor
type(s) (“occupancy”), by querying the index. In a second
step, the dynamic part of the search request is handled by
executing the prediction models of the specified sensor types
for the specified sensor states (“empty”) and the current time.
The probabilities determined by the prediction models of the
sensors are then combined to an overall probability for each
entity according to Eq. 5. This probability reflects how likely
it is that all of the entity’s sensors currently monitor the states
posed in the search request. Beginning with the entity which
has the highest probability, the sensors of each entity are then
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Fig. 1. Overview of the system architecture

contacted to gather their actual state, in descending order of
their overall probabilities. As soon as enough hits are found,
this process is stopped and the results are returned to the
user. Note that our search engine will only return results that
match the query, even if the indexed prediction models are
inaccurate, which could happen for newly added sensors, for
example. Inaccurate prediction models will, however, degrade
the performance of the search engine. To sum up, prediction
models are periodically created by a sensor gateway, based on
a set of recent sensor states, periodically indexed by Dyser, at
a rate of days to weeks, and evaluated by Dyser during the
resolution of a search request.

B. Integration with the World Wide Web
As all Web resources, sensors and entities should be identi-

fied by a URL and accessed using HTTP. While there may be
multiple suitable data formats, we focus on HTML, as it can be
directly viewed in Web browsers, is indexed by existing search
engines, can be hyperlinked with other HTML documents, and
is well-known to today’s Web users. We denote an HTML page
that represents a sensor as a sensor page, and an HTML page
that represents a real-world entity as an entity page.

In order to be able to display sensor-specific information
to the user and at the same time provide this data accord-
ingly structured for the indexer, we follow the concept of
microformats [10]. By “abusing” certain portions of HTML
markup, microformats provide the possibility to semantically
tag information included in HTML pages, while still giving
the authors complete freedom on how that data is displayed.

C. Search Language
As we expect that the search for entities of the real world,

based on their dynamic state, will be as common as the search
for Web pages or images is today, it is important that the
usability of Dyser is comparable to that of today’s popular
search engines. In particular, the search language used to
construct search requests should be usable by the average
search engine user without great learning efforts. We believe
that query languages like SQL or SPARQL do not fulfil this
requirement and are also oversized for our needs. Hence,
we aim to gently extend the keyword-based search language

<div class="sensor">
<div class="id">OccupancySensor7</div>
<div class="location">IFW D44</div>
<div class="type">Occupancy</div>
<div class="currentState">occupied</div>
<div class="possibleStates">

<div class="state">empty</div>
<div class="state">occupied</div>

</div>
<div class="predictionModelType">

SinglePeriodPredictionModel
</div>
<div class="predictionModel">

<!-- JSON serialization, omitted for
readability reasons -->

</div>
</div>

Fig. 2. HTML source of prototypical sensor microformat.

<a href="http://example.org/sensors/OccupancySensor7"
rel="http://dyser.org/sensor">occupied</a>

Fig. 3. HTML source of an entity page including a sensor. The hyperlink
text occupied is not evaluated by the search engine.

utilized by the majority of today’s Web search engines. There,
one can already include structured data in a search request
by using attributes, which are (name, value) pairs denoted as
“name:value”. In order to be able to search for sensor data,
we introduce additional attributes to the search language which
allow the specification of sensors and their current readings.
For example, “people:few loudness:quiet” consti-
tutes a search term with two dynamic attributes, people and
loudness. The set of available attributes is defined by the
sensor types indexed by the search engine.

D. Sensor Gateways
A sensor gateway connects sensors to the World Wide

Web and makes their captured states and additional meta-
information available on the Web via HTTP. Sensor gateways
are also in charge of creating and publishing the prediction
models for the sensors they administrate. They may further-
more offer additional functionality, like providing access to
archived sensor states. While sensor gateways may run on the
sensing devices itself, there may be technical or administrative
limitations which require the use of dedicated gateways.

In most cases, sensors do not output a high-level state
directly, but capture low-level data from which the high-level
state of an entity has to be inferred, which can be performed
by the sensor gateway. For example, the GSN middleware [11]
may be used for that purpose as it offers a homogeneous
interface to a large variety of sensors and can also perform
complex data-stream processing.

IV. IMPLEMENTATION

In this section, we show how we leverage existing Web
infrastructure in order to realize our real-time search engine
for the Web of Things. The implementation of our prototype
of Dyser is based on Java and PHP, using web services for
communication between components.

A. Sensor and Entity Pages
As there is currently no microformat for sensor information,

we designed a prototypical microformat for this purpose,
which is depicted in Fig. 2. Semantic tagging is achieved



by utilizing dedicated labels for Cascading Style Sheet (CSS)
classes within HTML element tags, e.g., class="sensor".
Note that although the depicted example solely uses <div>
elements, sensor information can be specified using any
HTML element, given that it supports the class attribute.

In order to create a sensor page, one has to define the
following structure: an enclosing HTML element is required
whose class attribute is set to "sensor". Inside this element,
information regarding the sensor is defined using further
HTML elements, whose enclosed text defines the value for
the aspect specified by the CSS class names: id is the (local)
identifier for the sensor at its sensor gateway, location
provides information about the location of the sensor, type
identifies the type of the sensor, and currentState lists
the state the sensor currently detects. possibleStates
includes a list of states, which together specify the list of
states this sensor can perceive. In predictionModelType,
the utilized type of the prediction model is specified, while in
predictionModel, a serialized version of the prediction
model is stored, using the JSON format.

To adapt the visual appearance of a sensor page, one can
select the appropriate HTML elements and also define the
according CSS classes. As CSS allow not only to change
font style and color, but also to hide complete elements
or to prepend or append specified text, the embedding of
sensor information does not need to have an influence on the
depiction of the according sensor page.

In order to create an entity page, one has to include at
least one hyperlink to a sensor page, which has to follow
a particular syntax: The attribute rel needs to be set to the
specific URL http://dyser.org/sensor in order to denote that
the corresponding hyperlink is a semantic link between an
entity and a sensor page. Crawlers parsing HTML pages and
following the embedded links utilize this information to detect
entity pages and their associated sensors. An example of such
a hyperlink is depicted in Fig. 3.

Note that in our current approach, sensor types and their
states are just text labels, which can be specified at will
by sensor publishers. This simplistic approach is intended to
provide an open and flexible approach for publishing sensor
data. In order to be able to provide well-defined and global
semantics for sensor types, one could enhance the concept
by outsourcing the definition of a sensor type, including
its possible states and further specifications to a separate
document. A sensor page would then use a hyperlink to the
specification of the according sensor type.

B. Sensor Gateway

The sensor gateway was implemented in Java and features
a SOAP Web service which provides access to information
regarding the administrated sensors. To facilitate testing of our
prototype, the sensor gateway automatically generates both a
sensor and an entity page for each sensor it is in charge of and
automatically publishes them using a REST interface. The cur-
rent state of a sensor is modeled as a separate resource below
the URL of the sensor: For example, the current state of the
sensor http://example.org/sensors/occupancy42 could be ac-
cessed at http://example.org/sensors/occupancy42/currentstate
(note that the suffix to the base URL of the sensor matches the

name of the respective section of the microformat on purpose).
This greatly reduces the overhead of resolving the current
reading of a sensor, as only the current state is transmitted
instead of the complete sensor page.

Our sensor gateway does not only support physical sensors,
but also allows the creation of virtual sensors, based on
recorded log files or methods generating synthetic sensor data,
for example. If not done by the sensor itself, the sensor
gateway will infer a state based on recent readings of a sensor.
For each sensor, a history of its perceived states is stored and
utilized to create a prediction model.

C. Prediction Models
Besides the time-independent, single-period and multi-

period model presented in Sec. II-C, we also implemented
a random prediction model, as a baseline for evaluation. This
model outputs random probabilities, which change for each
time slot, state, and sensor. It is used to simulate the lookup
of current sensor readings in random order.

One important aspect is an efficient representation of the
models with respect to memory footprint, as the models need
to be transmitted between the sensor gateway and the search
engine and stored in the index. For APM, we only need to
transmit one probability value for every possible output state
of a sensor. For the other models, we transmit the discretized
output of the model for every possible state for a certain
forecasting horizon.

D. Search Engine
Like the sensor gateway, the search engine was implemented

in Java and features a simple SOAP Web service to pose search
requests. This Web service is wrapped by a PHP script, which
provides an HTML front-end for entering search requests and
displaying their results. Since we cannot expect that users are
aware of all possible sensor types or of all possible states of
a sensor, we provide an auto-suggest mechanism which helps
the user to complete the search term by suggesting possible
matches. Besides the front-end, the search engine consists of
three main components:

1) Indexer: We implemented two indexers in our prototype:
The first one is using a third-party Web search engine like
Google in order to find all entity pages. For this, all entity
pages must contain a “magic” string of characters. By search-
ing for this magic string with Google, all entity pages can be
found. However, it may take several days or even weeks until
Google’s Web crawler visits a page and includes it in Google’s
index, which is impractical for experimental purposes. For this
reason, we include an alternative indexer which contacts sensor
gateways directly, using the provided Web services, in order
to obtain the URLs of all sensor and entity pages. The pages
found by either of those methods are then downloaded, parsed
and the contents are stored in the index.

2) Index: In our prototype, the index is implemented as
a relational database, which is accessed using the JDBC
interface, thus allowing for a large variety of different database
implementations. We are currently using the MYSQL database
with the InnoDB engine as storage backend. In order to speed
up the evaluation of the prediction models at query time, we
materialize the outputs of all indexed prediction models in the
database for a given forecasting horizon. That is, the database



does not contain the prediction models, but the discretized
output of the prediction models (i.e., probability values) for a
certain forecasting horizon. Finding the entity with the highest
probability of matching sensor outputs is thus realized as an
efficient database lookup operation.

3) Resolver: The resolution of a search request is imple-
mented as a chain of filters over sets of entity pages as follows:

i) The given search term is parsed and separated into a static
part (i.e., static keywords referring to the entity page) and
a dynamic part (i.e., referring to the current output of
sensors associated with an entity page).

ii) A third-party search engine like Google is used to find
entity pages matching the static part of the search request.
For this, a magic character string contained in every entity
page is appended to the static part of the search request.
As a side effect, we also obtain a relevance ranking for
each entity page from Google. As for the indexer, we also
implement an alternative approach which does not rely on
Google, but queries the index of Dyser directly.

iii) Each entity page found in the previous step is checked
whether it includes sensors of all types requested in
the dynamic part of the search request. Entities which
do not contain all requested sensor types are removed
from the result set. For the remaining entities, the overall
probability that they match the dynamic part of the search
is then determined by querying the index holding the
materialized prediction models.

iv) The entity pages produced by the previous step are then
considered with decreasing probability of matching. For
each entity, the sensors associated with that entity page are
contacted and their current values retrieved. If the current
state of a sensor does not match the state requested in the
search term, the entity is removed from the list of results.
To speed up processing, multiple sensors are contacted in
parallel, using a pool of threads. This process stops when
enough matching entities have been found.

v) Finally, all matching entities are sorted according to their
relevance ranking obtained during step ii) and presented
to the user.

To avoid the overhead of generating large intermediate lists
of entity pages, the above steps are performed in a pipelined
fashion. As soon as a certain number of entity pages are
produced by one of the above steps, they are passed on to
the next step. Only if not enough matching entity pages are
generated in the last step, the previous steps are triggered
recursively to generate more input.

V. EVALUATION

We evaluated the performance of our prototypical search
engine in terms of the communication overhead and latency.
To obtain repeatable results, we used a realistic data set that
is replayed by the sensor gateway instead of real sensors.
The data set has been captured from the Bicing service, a
short-term bicycle rental service in the city of Barecelona,
Spain, which contains 385 sensors that measure the number
of available bicycles at the different rental stations. This data
set represents an exemplary case for our system as the data
is heavily affected by the behavioral patterns of people in
everyday life.
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A. The Bicing Service

Bicing [3] was started in March 2007 and currently operates
about 6000 bicycles, which can be rent at and returned to any
of the existing stations distributed throughout the city. Unlike
commercial bicycle rental services, Bicing aims at extending
the public transport service in Barcelona. This is not only
reflected by the large number of bicycles and fully automated
rental stations, but also by the pricing scheme, which enforces
short hire periods.

B. Data Set

Bicing provides an interactive map on its homepage, which
displays all bicycle stations, including the number of available
bicycles and free slots at each station. Using a simple script,
we fetched the HTML code of this page every 5 minutes
between January and May 2009. The raw data was then
processed into a single log file, resulting into a total of 385
stations. Each of those stations results in a sensor measuring
the current number of available bicycles. To mimic high-
level states of entities, the numbers were mapped to one
of six discrete states none (no bikes available), 1to5 (1...5
bikes available), 6to10, 11to15, and many (more than 15 bikes
available). To limit the amount of data, three consecutive time
slots of 5 minutes each were averaged to a single time slot of
15 minutes.

The aggregated distribution of sensed states is displayed in
Fig. 4. For each possible state, the list of sensors is sorted
according to the fraction of time that they yield the respective
state, in descending order. For example, for the state “none”,
there exist a few sensors which always yield this state, while
the vast majority of sensors will output this state less than 50%
of the time. Fig. 5 visualizes the average number of sensors
reading state none over the course of the week as an example,
showing clear daily and weekly patterns.

C. Setup

We utilized the search engine implementation with virtual
sensors that replay the Bicing data set described above. The
time window determining the amount of past sensor data to
be used for the creation of the prediction models was set to
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Fig. 6. Communication overhead when searching for the different states.
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Fig. 7. Latency when searching for the different states.

8 weeks, and the size of the forecasting horizon was set to
one week. The length of a time slot was set to 15 minutes
and the number of required search results was set to 20. In
order to perform the simulation, we used a PHP script which
accessed both the sensor gateway and the search engine using
the provided SOAP web services. All processes were running
on the same local machine, which features two dual-core Intel
Xeon Core 2 CPUs running at 2,66 GHz. The maximum
number of threads for the resolver was set to 8.

Starting on March 1st 2009, all prediction models are
created and indexed by the search engine. Then, a query is
posed for each possible state and the outcomes are recorded
for later analysis. After all states have been queried at the given
point of virtual time (i.e., simulation time), the sensor gateway
and search engine are instructed to advance their virtual time
by one time slot (i.e., 15 minutes) and search requests for
all possible states are posed again. If the forecasting horizon
of one week is reached, all prediction models are recreated
at the sensor gateway and re-indexed by the search engine.
This process is continued for 3 months, until the end of the
simulation is reached on June 1st 2009.

We consider two metrics. Firstly, the communication over-
head is the number of contacted sensors Ln divided by
the number of requested results n for a given query. A
communication overhead of 1 is an optimal result, indicating
that no non-matching sensors were contacted. Secondly, we
consider the latency from issuing a query until the requested
number of matches has been found and returned to the user.

D. Results

Figure 6 shows the average communication overhead when
searching for the different states. We note that there is a
considerable difference in the overhead caused by the random
prediction model and the other prediction models. This is as
expected and shows the improvement of sensor ranking over
a naive approach, which would contact sensors in arbitrary
order until enough results are found. Compared to the other
prediction models, the aggregated prediction model produces

good results despite the fact that it does not take the factor
time into account. This can be explained by two reasons: First,
as can be seen from Fig. 4, there is a significant number of
sensors which read the searched state 40% - 50% of the time,
for example, considering the state “1to5”. In this case, this
should result in an expected average communication overhead
of 2 - 2.5, which is confirmed by our simulations. The second
reason are irregularities in the simulation data: although one
can identify periodic patterns in the simulation data, these are
often disturbed with outliers. This might partly be attributed
to the simulation data, which is inherently ordered and was
mapped to unordered states. A small change in the underlying
raw sensor data (e.g., the number of free bicycles changing
from 10 to 11) may provoke a change of the deduced state.
Prediction models which rely on periodicities in the data are
susceptible to these imperfections.

Figure 7 depicts the average latency when searching for the
different states, showing a similar trend as the communica-
tion overhead. However, the differences between the different
models and the improvement over Random are smaller, as
the latency does also include overhead for datebase lookups
which are shared by all prediction models and which result in
a constant latency baseline for all models. This baseline makes
up about half of the total latency (about 160 ms for none and
about 120 ms for all other states), showing potential for further
improvements in our prototype. The remainder of the latency
is predominantly caused by remote sensor readouts. Note that
the latter heavily depends on the parallelism of remote sensor
readout operations. In our setup, where the sensor gateway
and the search engine are executing on a single computer,
this parallelism is limited by the number of CPU cores and
hence the latency figures can be considered a worst case that
is unlikely to occur in a real deployment where sensor gate-
ways are distributed over many computers, resulting in higher
parallelism despite longer average latency for a single remote
access to a sensor due to higher round-trip times in the global
Internet. A notable artefact in the results are the relatively
high latencies for the single-period prediction model. Based on
the communication overhead figures, we would expect similar
values for all three prediction models. Analysis indicates that
this is an implementation-specific problem caused by memory
management issues in the Java virtual machine.

VI. RELATED WORK

We identify two major subfields of related work: recently
emerging real-time Web search engines, and search engines
specifically designed for networks of sensors.

A. Real-Time Web Search
The concept of real-time Web search engines has recently

gained momentum, also for established search engines and
social networks [12]. Twitter, for example, introduced Twitter
Search (search.twitter.com). Users can search a vast number of
Twitter messages using keywords and get the latest results in
real time. Messages are pushed to the Twitter service, where
they are archived. Twitter also provides a feed of all public
Twitter messages called the firehose [13], which is updated in
real time. Selected partners can build applications on top of
this data stream. For example, Google and Bing offer real-time
search based on Twitter’s firehose data.



Facebook provides an integrated search engine which allows
searching in the various status updates of its members. There
is also a central feed of all status updates (visible to everyone)
of its members, which can also be searched using Bing.

OneRiot (www.oneriot.com) is a real-time search engine
that focuses on links shared by users of social community
sites such as Digg and Twitter. It restricts its index to these
shared sites, thus focusing on search results that are currently
considered relevant by users of these communities.

Technorati.com is a search engine for blogs. According to
the site, Technorati “indexes millions of blog posts in real
time and surfaces them in seconds.” Initially, users were able
to provide a hint to the search engine when they updated their
blogs, using a dedicated API call – a so-called RPC ping.
However, the site notes that it is no longer using these hints,
claiming that “more than 90% of the pings we received were
spam and non-blogs”.

An approach used in all of the outlined examples is the
limitation of the search space: Twitter has strict limits not
only on the allowed size of messages but also on the allowed
publishing rate of messages. OneRiot focuses on a small subset
of the Web, which is currently popular among users of social
networks. Technorati only considers blogs, which are a small
subset of the Web. A second approach is to utilize user-
specified hints, which may affect the order and frequency in
which sites are re-indexed. This is performed by OneRiot and
was utilized in a simpler variant by Technorati. Finally, Twitter
is using a centralized approach – all data is stored at Twitter’s
servers, thus the service has a real-time view of all published
messages. These techniques would not scale to the huge and
highly dynamic search space of the Web of Things.

B. Sensor Search Engines

The basic idea behind Snoogle [14], Microsearch [15], and
MAX [16] is that sensor nodes attached to real-world objects
carry a textual description of that object in terms of keywords.
For example, a node attached to a book would contain the
keyword “book”. Users then have the opportunity to find real-
world objects matching an ad hoc query consisting of a list
of keywords. The system would return a ranked list of the
top k entities matching this query. All these systems are not
applicable to the Web of Things as they do not support search
for dynamic content.

In Distributed Image Search [17], camera sensors are con-
sidered. A user can pose a query by specifying an image
and the system returns sensors that captured similar images.
Results are ranked and the top k most relevant matching
sensors/images are returned to the user. While the system
supports search for dynamic content, all queries are pushed to
all sensors, which does not scale to a global Web of Things.

GSN [11] is a system for Internet-based interconnection
of heterogeneous sensors and sensor networks, supporting
homogeneous data-stream query processing on the resulting
global set of sensor data streams. However, the selection of
sensors is based on static meta data describing the sensors,
not on their dynamic output. SenseWeb [18], a system similar
to GSN, also provides for sensor discovery based on static
meta data of the sensors, including geographical locations of
the sensors. As in GSN, keyword-based search over static meta

data is supported. In addition, geospatial queries are supported
to discover sensors in a certain geographical region typically
described by a polygon, assuming static sensor locations.

VII. CONCLUSIONS

Founded in the increasing trend of enriching real-world
entities with embedded and globally networked sensors, we
proposed the augmentation of the existing Web with repre-
sentations of these real-world entities – thus offering online
and real-time Web access to the state of the real world. We
presented the design and implementation of Dyser, a real-
time search engine that enables finding real-world entities that
exhibit a certain state at the time of the query. We studied the
performance of Dyser on a real-world data set containing data
from 385 sensors over a period of 5 months.

An important thread for future work is the distribution –
where several instances of the search engine take care of
certain subsets of entity and sensor pages – and parallelization
of the search engine – where the search engine itself and
its index are distributed over multiple computers. The former
is expected to offer a significant speedup for the execution
of multiple simulateneous queries, while the latter can be
expected to also speed up the execution of a single query.
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