Mobile Codeasan Enabling Technology
for Sewice-oriented Smartcard Middlewar e

RogerKehr MichaelRohs HaraldVogt
T-Nova Researcl.abs Instituteof InformationSystems Instituteof InformationSystems
DeutscheTelekom AG ETH Zurich ETH Zurich

rogerkehr@telebm.de

Abstract

Smartcadscanbeseenasserviceproviding entitiesthat
implementa secue, tamperproof storage and offer com-
putationalresouceswhich male themideally suitedfor a
variety of taskssud asauthenticationmanaemenof per
sonal profiles, and other kinds of secue information pro-
cessing Integration of smartcadsinto networled environ-
mentsthough, has not beenachievedyetin a transpaent
manner

In this paperwedescribetherequirrmentdor thedesign
of a middlewvare for smartcadsand proposea platformfor
theexecutionof mobilecodeasthecore of sudy middlevare.
Thisis in contrastto traditional architectures basedon a
request-boker schemethat would needhuge standadiza-
tion efforts to be applicableto smartcads. Asan instance
of sudh middlevare, we describeour implementatiorwhich
is centeed around the mobile code facilities available in
Javaandthe servicetradingfeaturesof Jini.

1. Intr oduction

Only recently large computingsystemshave begun to
shaw thetrendof dissolvinginto vastcrowdsof smallunits,
working togetherin orderto supplyservicesto clients. An
indicationfor thisdevelopmentis theextensie proliferation
of PDAs andotherdevicesdesignedor specific,domain-
dependengpplications,and the increasingneedfor com-
municationbetweerthem. Communicatiorabilitiesarees-
sentialin orderto allow for morecomplex andmoreuseful
tasks. Corversely devices specificallydesignedfor com-
munication, such as mobile phones,are approachingthe
statusof computingplatforms (cf. WAP [23]). This de-
velopments likely to leadto new computingervironments
whereservicesareexpectedto be availableat ary place,at
ary time, often referredto as ubiquitouscomputingervi-
ronmentq25].

rohs@infethz.t

vogt@infethz.@

In contrasto theseincreasinglydynamiccomputingen-
vironments,smartcardgemainisolatedto a greatextent,
trappedin proprietaryapplicationervironments.The most
attractve smartcardapplications,such as authentication,
digital signaturesencryption,andcashlespaymentarefar
from beinguniversally available. Interworking of devices
is one of the mainissuesin ubiquitouscomputing,andit
is not acceptablehatsmartcardsrenot easilyintegratable
into interworking scenarios.

Isolationis evenlessacceptablén thefaceof theobvious
gualitiesof smartcardsthey arehighly mobile, sincethey
areeasilycarriedby their owners,andthey arestronglyper
sonalizedwith a focuson security(thoughnot being“per-
fectly” secure[12], they seemto achiese a propertrade-
off betweenthe potentialrisks andcost). This enableshe
cardto sene asa “useragent”which knows muchandre-
vealslittle aboutits ownerwhenactingon his or herbehalf.
Thus,smartcardgsouldplayavital role in future highly dis-
tributed computingsystems,underthe provision that they
are easily integratedinto suchtypesof ervironments. In
this paper we shov how suchan integrationcould be ap-
proachedandwhatproblemsarelik ely to occut

This papempresentshe designof amiddlevarearchitec-
ture for smartcards.Jini [19, 21] senesasan exemplary
generalserviceframeavork uponwhich we build our archi-
tecture. The designof a specializedaccesgoint, a smart-
cardterminal,is presentedn Sect.2. Suchaterminalcould
beimplementedasaphysicaldevice aswell asavirtual de-
vice, consistingof a corventionalsmartcardeadertogether
with supportingnfrastructuren the Jini federationitself.

Themainfunctionalityof suchaterminalis theactive ex-
plorationof a smartcard capabilities. This is achieved by
dynamicallyloadablepiecesof code for which Jini supplies
a suitableframework. In Sect.3 we shov how smartcard
servicesareintegratedin aJini federation.Sect.4 describes
how applicationdevelopmentis facilitatedwithin suchan
infrastructure.

In the remainderof this sectionwe try to investigatehe
reasondor the relatively inflexible use of smartcardsaand

we shov how emeging developmentscould contribute to
resole someof thetechnicalobstacles.

1.1 The StatusQuo of Smartcards

We seethreemain practicalreasondor the relative in-
flexibility of smartcardsFirst,smartcardnteractionis stan-
dardizedon a perapplicationbasis. Institutional standards
exist for (simple)applicationsin a variety of domains.e.g.
datastoragetransportationandmobiletelepholy [8, 2, 4].
Standardd$or moresophisticate@pplicationssuchasdig-
ital signatureshave just recentlybegunto shawv up [17].
But standardgyuaranteanteroperabilityonly to a limited
degree, as marketing needsrequire certain variability and
proprietaryextensions.

The secondreasonis that smartcard$iave very limited
resourcesn termsof memorysize,computingpower, and
communicatiorbandwidth.Thislimits their rangeof appli-
cability and makesthemextremelydependenbn their en-
vironments.Without an appropriatecardreaderanda soft-
warepackageit is impossiblefor a userto accessa smart-
cardsfunctionality.

Furthermore, such smartcardervironments are often
highly proprietary thus further restrictinginteroperability
Applicationsin suchernvironmentsusuallywork only with
specifically configuredsmartcardsand refuse to interact
with third party cards. This hasboth technicaland non-
technical aswell asbusiness-relateteasonsA prominent
examplearepaymenttransactionsvith the German‘Geld-
karte” (cashcard)[3] which areonly possibleat particular
terminals.

This technologically-orientednalysismirrors the mar
ket structure: usually smartcardsare distributedin large
guantitiesand applicationsareimplementedby tight inter-
actionbetweercardmanufictureraandcardissuersHence,
thesepartnershipgendto be very strongandlong-lasting,
which oppose®penarchitectures.

1.2 A NewAge

Smartcards as Software Platforms

Until recently smartcardsand their applications were
tightly coupled,resultingin the cardbeingusefulfor only
one application. But the idea of viewing a smartcardas
a mere platform has obtainedwide dispersion. Increas-
ingly, applicationsshav up thattry to use smartcardsal-
readyin thefield for new applicationsge.g. ticketing with
cashcards[1]. Thisis possibleif the specificationsallow
for third party accessvhich, however, is usuallyhampered
by strict regulationsof the cardissuers.

The mostconsequenstepin this directionis the evolv-
ing of executionenvironmentsfor smartcardssuchasJava-
Card[9] andWindows for Smartcard$26]. Thisincreases

extensibility andflexibility andallowsto openupthesmart-
cardmarketto independenapplicationproviders.As smart-
cardsare becomingincreasinglyopen,their role asa soft-
wareplatformgainsimportanceandthesmartcargaradigm
changessincethe separatiorof cardsandapplicationsbe-
comespossible.

The shift towards the platform paradigmis accompa-
nied by a simplification of software development. This
is achieved by bringing high-level, standardorogramming
languagego smartcardgJava, VisualBasic),openingup
smartcargprogrammingo a new classof developers.Sim-
ilarly, accesgo smartcarddérom applicationss unified by
architecturetiketheOpenCard-ramevork[14] andPC/SC
[15], which integratethe cardreaderinfrastructureinto op-
eratingsystemsandprogramminganguages.

Neverthelessjn software developmentfor smartcards,
manuficturerandapplicationproviderindependencs still
anunmatchedjoal. It seemgeachableatleast.

Smartcardsin Networked Envir onments

In networked systemsdevices and applicationsare work-
ing togetheron differentlevels. On the network level, pro-
tocolsareusedto exchangedata,e.g. TCP/IP Ontop of the
networking level protocolssuchasHTTP allow for peer
to-peercommunicatioruponwhich servicescanbe imple-
mented. On the servicelevel, a sener, e.g.a Web sener,
supportsaclientin orderto provide servicego otherclients
and/orusers.

Recentwork has shovn the feasibility of integrating
smartcard®n the network level [16, 6, 5, 24]. This makes
it possibleto regardsmartcardasreal network nodes.

Integrating smartcardon the servicelevel requiresthe
descriptionof smartcardservicestheir announcement a
service-tradingervironment,and establishmenof links to
the services.Theseare generictaskswhich areusuallyfa-
cilitated by middleware systems. Sucha systemprovides
a framework for the descriptionandstandardizatiomf ser
vices. Lowerlevel detailsare hiddenin suchdescriptions,
thus standardizatiorctan focus on the servicedescriptions
themseleswithout referring to technicaldetails. Service
managements carried out by standardapplicationlevel
serviceswhile communicatioris performedover standard
protocols. This makesaccesdo smartcardservicestrans-
parentw.r.t. their location and the card’s communication
features.

Smartcardsare devicesthat aretemporarilyaccessible.
Their availability usuallycorrespondso the physicalpres-
enceof the user This requirestransparentquick integra-
tion of smartcard#nto thelocal erwvironment.Additionally,
applicationamustbe designedo handleabruptdisconnec-
tionssmoothly Thereforemiddlewarethatoffersmeango
addressheserequirementss needed.

2. Aspectsof Middlewar e for Smartcards

The goalis to designmiddlewvarearchitecturegndsys-
temsthatfacilitatesmartcardntegrationinto servicefeder
ationsasmuchaspossible. In the sequelwe discussgen-
eral designissuesof middlevare systemsleadingto our
proposedarchitecurefor a smartcardniddlevare. We start
by discussingthe basicrequirementgor a smartcad ter-
minal, a componentthat offers network connectity for
smartcards,and continue by comparingdifferent design
paradigmsfor the middleware implementedn sucha ter
minal.

2.1 Smartcard Terminal

Servicesimplementedn the smartcardnustbe ableto
offer their interfacesto the network the smartcarderminal
is attachedo. Figurel illustratestherole of theterminalin
asmartcardniddlewvarearchitecture A smartcarderminal
couldbe partitionedinto the following components:

Smartcard Terminal

Intra-/Internet
APDU- Service-
Layer) Layer
— Terminal- _SF—
Middleware A
= Card- IP- ‘(j>\\
reader Layer -
Smartcard /////
with Services T ﬁy

Network Clients

Figure 1. Smartcard terminal

Card readerand APDU layer. Thecardreadercompo-
nent provides accesgo the smartcardbasedon standard-
ized protocols[8]. Essentially it handlescommunication
betweerthe smartcardandthe terminalby exchangingap-
plication protocol dataunits (APDUSs, refer to [8] for de-
tails).

Network layer. This layer provides basicterminal con-
nectvity to the network. In caseof IP this layerwould im-
plementan|P stack.

Sewvice layer. This layer presentssmartcardservicesto
thenetwork in ary suitableform. A numberof technologies
suchasCORBA [13], Java/Jini[19, 21], or DCOM might
be usedto make the smartcardservicesaccessiblédrom ar
bitrary network clients. We believe thatthe actualtechnol-
ogy chosenfor representingsmartcardservicesshouldbe
independenbf the scopeof the concretemiddlevarecom-
ponent. Hence,the componentshouldbe able to support
ary of thosetechnologies.

Terminal middleware. The terminal middlevare hasto
performanumberof tasks:

e It mustbe ableto explorethe services/applicationsn
asmartcardasit getsinsertednto the cardreader

e Basedon the serviceinformation found it mustin-
form the servicelayer aboutthe network-interfaceof
thesmartcardapplications.

e |t mustact asa gatevay for incoming requestsrom
network clientsthat accesshe smartcardservicesvia
the servicelayer and forward requestgo the APDU
layerbackandforth.

As suchthe terminalmiddlewvarerepresentshe “glue” be-
tweenthe externally offered network servicesof the card
andthe communicatiorlayerwith thesmartcard.

2.2 DesignChoicesfor Smartcard Middlewar e

Variousimplementatiorstratgyiescanbe ervisionedfor the
smartcardterminal as outlined above. We describesome
possibleapproacheandcompareheir strengthsandweak-
nessesv.r.t. thefollowing criteria: simplicity, flexibility, and
standadization effort from the perspectie of serviceand
applicationdeveloperson theonehandandmiddlewvareim-

plementoronthe otherhand.

2.2.1 Middlewareasan APDU Gateway

This approachcan be describedas a simple gatevay for
APDU-requestgo the smartcard. Clients sendpacletsto
the service-layeiof the smartcarderminal containingAP-
DUs which are routed via the APDU-layer to the card
reader Hence, there is no real abstractionabore AP-
DUs, and the middleware would be responsibleonly for
multiplexing communicatiorbetweenarbitrary clientsand
smartcardservices.

The interfacesat the servicelayer would thereforeof-
fer methodssuchas sendAPDU enterMute / leaveMute
(neededor locking accesgo the cardfor a certainperiod
of time), etc. From the perspectie of the middlevareim-
plementotthisis arathersimplemiddlevare,easyto imple-
mentandflexible, sinceit burdensall the compleity onto
theservicedeveloper Servicesoperateat the samelevel of
abstractiorasbefore,but with the intricaciesof distributed
applicationprogrammingsuchaspartialfailures.

2.2.2 Middlewar e asRequestBroker

With this approachthe middleware first exploresthe ser
vicesavailableonthecard. Thisrequiresanenormousstan-
dardizatioreffort sinceapartfrom detectinghecorrecttype

of card,theremustbe a standarizedvay to performthis ex-
ploration. This could be achiered by the definition of new
ISO7816classandinstructionbytesthatreturndescriptions
of the servicesavailablein the card. Usually servicede-
scriptionsconsistof interfacedescriptionsadditionalinfo-
blocks,andaddressingnformation,e.g.applicationidenti-
fiers,neededo addressheservicefrom a smartcarctlient.
Thisinformationcouldcomein avarietyof formatsranging
from binary encodeddescriptionsto IDL- or XML-based
documents.

Themiddlewarecouldimplementagenericsenerwhich
is capableprocessingncoming requestsdrom clients and
transformgheminto appropriatesequencesf APDUS. As
an exampleonecouldimaginea CORBA IDL description
thatdescribes smartcardservicewhich canbe usedto au-
tomatically generatesener skeletoncode,bind a CORBA
objectwith an ORB runningin the smartcarderminaland
registerthe objectwith a CORBA namingservice.In addi-
tion to a pureinterfacedescriptionthe mappingof method
invocationgo sequencesf APDUssentto asmartcardeed
to bedefined.

The requestbroker middleware operatesat a much
higherlevel of abstraction.For clients, the smartcardser
vicesappearasobijectsin a distributed objectsystemsuch
as CORBA, Java/RMI, RPC, etc. Service implementors
only needto provide an interfacedefinition and appropri-
ate APDU-mappingsto integratelegag/ applicationsinto
the outlinedmiddleware. Fromthe perspectie of the mid-
dlewareimplementomumerousstandardizatiorstepshave
to be taken first: exploration of servicedescriptions for-
mat of descriptionsmappingto distributed object system
of choice, servicepublication,to namea few. We think
thatthis approachhoughpromisingin generakuffersfrom
theamounbf standardizatiostepsecessarfor real-world
deployment.

2.2.3 Middlewar easan Execution Platform for Mobile
Code

The middleware architecturepresentedn this subsection
tries to circumvent most of the drawvbacksof the previ-
ous approachedy completelyreconsideringhe underly-
ing middleware paradigm. Put shortly, the middlewareis
not“glue” codebetweercomponentdut a platformfor the
executionof dynamicallydownloadedmobile code.We en-
visionthe following corescenario:

e The smartcardyetsinsertedinto the terminalandthe
AnswerTo-Rese(ATR) identificationstringis read.

e The ATR is usedto fetch a componentthat acts as
a card managerfrom a well-known set of Web sites
hostingsuchproxies. Theseproxiesareimplemented
in amobile codeprogramminganguagesuchasJava.

Thesmartcarderminalprovidesanexecutionplatform
suchas a Java virtual machine(JVM). The service
proxyis containedn anappropriatelaszaarchive (JAR)
file, whichis downloadedo theterminalandexecuted
in its JVM. In the basic scenariothis card manager
coulditself now registerasa servicerepresentinghe
cardwith thenet.

e Inamoreadwancedscenaridhecardmanageexplores
the contentsof the smartcardn searchfor smartcard
services.Thisis possibleif we assumeheimplemen-
tation of the card managerknows aboutthe particu-
lar kind of cardwhich triggeredits activation. Hence,
it knows how to actuallyexplore the cardandfind its
availableservices.Eachservicefound may consistof
aURL pointingto aservicemanagewhichin turncan
be fetchedand instantiatedn the executionplatform
andoffer its particularserviceto thenet.

It shouldhave becomeclearthat this approachessentially
defines(a) an execution platform for mobile code, (b) a
well-defined processto fetch a card managerfrom the
network, and (c) someAPI or protocol for the manager
to accessthe smartcardand the network. Comparedto
the brokerlike middleware much less standardizatioris
neededthoughthe overall flexibility haseven increased,
sincethe cardandservicemanagerare active components
that not only act as serviceshut can also proactively be
clients to other services. The most significantdravback
with this approactis the factthatthe complexity is mostly
shiftedtowardsthe implementorof cardandserviceman-
agersandthe properdefinition of anexecutionplatform.

We have foundthe advantage®f the executionplatform
sufficiently appealingto further experienceit by designing
andimplementinga completearchitecturérom scratch.In
thesequelwe describethis architecturealongwith themost
interestingdesignconsiderationsve werefacedwith.

3. The Architecture of the JiniCard Frame-
work

As outlinedin Sect.1, smartcardsaretemporarydevices.
Consequentlythe availability of the servicesthatthey of-
fer is short-termand volatile in nature. Smartcardsand
hencetheir servicescanappearanddisappeawithout prior
notice, that is, spontaneously Smartcardsare physically
portableand can easily be carriedinto unknonn erviron-
ments. Yetsmartcardsireutterly dependerftontheir ervi-

1Examplesare public and semi-publicplaceslike offices, meeting-
rooms, banks, post offices, and shops,in which smartcardsact as user
agents.

2For ataxonomyof the designspaceof smalldevicesalongthedimen-
sionsof autonomycomputationapower, andability to communicatesee

ronmento beuseful,asthey generallylackany inputor out-
put devices (Uls) for humans. Theseusagecharacteristics
call for aneffortlessintegrationinto differentervironments
thatdo not requireary setupor configuration.Servicedis-
covery andintegrationmusttake placespontaneously

The requirementfor spontaneoutegration of smart-
cardsandtheirservicesvasour motivationto chooselinias
thefoundationof theservicelayer, asdescribedn Sect.2.1.
Jini's objective is to provide simplemechanismsvhich en-
able devicesto plug togetherto form animpromptucom-
munity, without any planning,installation,or humaninter
action. ThereforeJini asamiddlewareis anidealchoiceto
supportheintegrationof smartcardshecaus@& meetssome
essentiatequirementshatareimposedoy theseultra-small
devices. Jini relieson the Java programminganguageand
the Javavirtual maching(VM) asits executionplatform. A
key point, which we exploit in our architecturejs the abil-
ity to move codeandobjectsbetweerphysicallydistributed
JaraVMs.

3.1 DesignObijectives

We call our architectureJiniCard to emphasizeahe fact
thatit makescardservicesavailable as Jini services,inde-
pendenbf thetype of smartcardused. It wasakey design
objective to supportawide variety of smartcardgy impos-
ing only a minimal setof requirement®n the smartcards
side. Basically the only requiremenin the card’s sideis
thatit adheredo the ISO/IEC 7816standard8, parts1-3],
i.e. thatit communicateby exchangingAPDUs,asthevast
majority of smartcardsloes.

Oneof the mainissueshatwe encounteredvashow to
dealwith smartcardshatarecompletelyunknaovnto anen-
vironment,giventhe extremelylimited amountof informa-
tion thatcanbe extractedfrom anunknown card. A related
issuewashow to dynamicallyinstantiatecardserviceghat
arenot yet presentin the ervironmentat the time of card
insertion. In our implementationmobile codeand mobile
objectsplay a majorrole in this regard. The stepsinvolved
in the processf serviceinstantiationwill be explainedin
detail. Finally we will describewhat the JiniCardframe-
work lookslikefor cardservicedevelopersj.e. which APIs
they canrely onandhow they canbe used.

Sewice Integration. An earlyconsideratiorwhendevel-
opingtheJiniCardarchitecturavasthatsmartcardisersare
not primarily interestedn physicalsmartcardshemseles,
but in the servicesthey provide. Therefore the main goal
wasto make theseservicesvailablewithoutmucheffort on
theusers side.Ideally, cardservicesshouldbecomepartof

[11]. Onall dimensionssmartcardsank at the lower end,which means
thatthey arevery dependenbn propersupportfrom the infrastructureof
theirervironment.

theinfrastructureassoonasthe cardthatcarriesthemis in-

sertedinto a cardterminal. This shouldbe possibleevenif

thereis no a priori knowledgeof the serviceghatarecon-
tainedon a particularsmartcard Anotherdesirableeature,
especiallyif onetakesonamorenet-centrigqperspectie[7],

is to have theseservicesavailable not only locally, but as
partof alocal or wide-areanetwork. Thereforethegoalcan
be describecasmakinginstance®f smartcardservicesm-

mediatelyavailablein a network ervironment,asaresultof

insertinga cardinto a cardreader

The Card Terminal asa Network Component. We felt
that the designof current card readersand their device
driversis unsatisctoryto meetthesegoals. They areusu-
ally not self-contained put attachedto a general-purpose
PC to function. We proposeto view a cardterminalasa
self-containeckentity that providesaccesgo smartcardgo
a whole network infrastructure. The ultimate vision is to
build the JiniCardterminal as a physicaldevice that con-
tainsa Java VM, canbe pluggedinto a network, anddoes
not needary additionalhardware. This approaclrequires
that sucha device is ableto describeits capabilitieson its
own. To makethecardterminalavailableasanetwork-wide
resourcewe decidedto modelit asa Jini service.This has
thefollowing benefits:

¢ the terminal is modeledas a Java interface which
meanghatlow level technicaldetailsof theimplemen-
tation of the terminalareabstractec&ndareno longer
important;

e theterminalis seamlesslyntegratednto aninfrastruc-
tureandcanbeusedby ary client, withoutany knowl-
edgeof the concreteunderlyingterminaltechnology;
finally,

¢ theclientmaybelocatedanywherein theervironment.
3.2 Architecture

The JiniCardframeawvork consistsof threecateoriesof
componentshat canconceptuallybe dividedinto two lay-
ers. Thelower layer providesthe abstractiorof a cardter-
minal as a Jini serviceand senes as a commonbasefor
the other componentof the framavork. The upperlayer
consistsof a mechanisnto explore smartcardgo identify
servicesthat are containedon them. The actualcard ser
vicescanalsobeseeraspartof thislayer Cardserviceget
instantiatedastheresultof anexplorationprocessFigure2
givesasimplifiedlayoutof the architecture.

3.2.1 Lower Layer: The JiniCard Terminal

Cardservicesaremeantto be downloadednto mary differ-
entsettings.Thisrequiresawell-definedervironment,con-

...

’ CardExplorer; H CardExplorer,

P ‘www.fooservice.com ‘

|

’ CardExplorerManager ‘

Upper Layer

ATRMapper

! Smart card exploration mechanism

‘ www.barservice.com ‘

FooCardService
BarCardService

i | JiniCard services and their origins

o Terminal ‘ ’ SmartCard ‘
(O]

&) —
4 G .

o D g (physical)
() £ Smartcard
2 e

O

|

 Jini enabled smart card terminal

Figure 2. Components of the JiniCar d frame work

sistingof well-known interfaces,into which theseservices
canbe embedded.Oneway to provide this foundationis
by modelinga cardterminalasa network componenthat
providesa standardneansof remoteaccesdo a smartcard.

Accessing Smartcards Remotely The purposeof the

lower layer of the JiniCard framework is to provide a

uniform and simple way to accesssmartcardsremotely

With regardto uniform accessiotivationssimilar to those
thatled to the developmentof the OpenCard Framevork

(OCF) [14] apply here. OCFis a Java-basedramawvork

that provides a uniform applicationinterfacefor building

smartcardapplications.A major differenceto OCFis that
theJiniCardterminalis designedo be usedremotelyandis

not restrictedto be usedby a single Jarza VM. This means
that remotemutual exclusionof accesdo a smartcardhas
to be considered.

The card terminal can be assumedo be a more per
manentresourcethana smartcard becausesmartcardsare
only temporarilyinsertednto terminals.Therefordat makes
sensdo considerthe cardterminalasthe foundationof the
architectureSmartcardandtheservicexontainenthem
aremorevolatile resources.

We have modeledthe JiniCardterminalas an ordinary
Jini service.It becomegartof the local Jini federationby
finding lookup servicesand uploadingits proxy to them.
This processs known asdiscovery andjoin [20].

As shawn in Fig. 3, the JiniCardterminal hasa very
thin interface.Usingthenot i f ySt at us method clients
can register for remoteevents, which are triggeredupon
cardinsertionand cardremoval. The get Car d method
returnsa remote referenceto the smartcardthat is cur

rently inserted. Calling this methodleadsto a Car d-
Not Pr esent Excepti on, if no cardis currently avail-
able. Cardpresenceanbe testedby usingthei sCar d-
Pr esent method.

package jinicard.core;
public interface Termi nal {

Event Regi stration notifyStatus(
Renot eEvent Li st ener | i stener,
Mar shal | edObj ect handback,
| ong | easeDur ati on)
t hrows Renot eExcepti on;

Smart Card get Card()
t hrows Renot eExcepti on,
Car dNot Pr esent Excepti on;

bool ean i sCardPresent ()
t hrows Renot eExcepti on;

Figure 3. API of the JiniCar d Terminal

In contrastto OCF, the methoddfor interactionwith the
actualsmartcardare factoredout into a separatenterface,
calledSnar t Car d. Thisinterfaceis shavnin Fig. 4. The
terminalactsasaresourcananageifor the smartcardlt is
the startingpoint of accesgo the card.

It is an inherentfeatureof smartcardgo be available
only temporarilyandpossiblyfor shortperiodsonly. There-
fore it is essentialto designapplicationsrobustly in this
respect. The fact that smartcardscan be disconnected

without notice is reflectedin the designof the Snart -
Car d interface. Most methodsthrow cardrelatedexcep-
tions. Car dNot Present Except i on is derived from
Smar t Car dExcept i on, which is the common super
classfor all smartcardelatedexceptions.Car dNot Pr e-
sent Except i on indicateghatthetemporaryassociation
betweena smartcardand the card terminal hasbeenlost.
Renot eExcept i on indicatesthatthe respectie method
canbeusedremotely;it is thrown to indicate(possiblytem-
porary)errorsthat arerelatedto the underlyingcommuni-
cationssystem.Theapproachotto try to hidetheseerrors
is in line with RMI's generalphilosophyto make remote
exceptionsa partof theinterface. A discussiorof this ap-
proachcanbefoundin [22].

package jinicard.core;
public interface SmartCard {

ATR[] get ATRs()
t hrows Renot eExcepti on;

voi d set Sel ect APDU(byt e[] sel APDU)
t hrows Renot eExcepti on;

voi d begi nMut ex()
throws Renot eExcepti on,
Smar t Car dExcepti on;

voi d endMit ex()
t hrows Renot eExcepti on,
Car dNot Pr esent Excepti on,
I'l'l egal St at eExcepti on;

void reset ()
throws Renot eExcepti on,
Smart Car dExcept i on,
I'l'l egal St at eExcepti on;

byte[] sendAPDU(byte[] apdu)
throws Renot eExcepti on,
Smar t Car dExcepti on,
I'l'l egal St at eExcepti on;

ResponseAPDU sendAPDU(APDU apdu)
throws Renot eExcepti on,
Smar t Car dExcepti on,
I'l'l egal St at eExcepti on;

Figure 4. The SmartCard interface

Maintaining the APDU Interface. TheSnart Car d in-
terfaceprovidesauniformandeasyto useabstractioror all
kinds of smartcardshut it doesnot changethe basicprinci-
plesof interactionwith a smartcard.The APDU asthe low
level protocolunit is visible in the interface. A stepin the
protocolstill consistsin the exchangeof a pair of APDUs

—acommandAPDU followed by a responséAPDU. This
rendergheinterfacevery flexible anddoesnot constrainits
applicabilityto certainkinds of smartcards.

Multiple clientsof a single JiniCardterminal canhold
areferenceo the currentsmartcardsimultaneously Inter-
actionswith a smartcardftenrequirethe atomicexchange
of multiple APDU pairs,e.g.to navigatethroughafile sys-
temhierarchy During this processtateis establishedh the
card. This meansthat APDUs are not independenbf one
another It is not possibleto provide transparenscheduling
of accesgo a smartcardpecauset is unknovn what state
was establishedy one cardclient, andhow to reestablish
that state, after anotherclient hasbeenusing the card in
between. This fact, and the fact that multiple clients can
hold referencedo the samesmartcardrequiressomekind
of mutualexclusionmechanisnthatis exposedn theinter-
face. Thisis achievedthroughthe methodshegi nMut ex
andendMut ex. They provide mutual exclusion between
distributedclientsof asmartcardA problemis thataclient
can effectively block a smartcardf it doesnot relinquish
control of the smartcarcbnceit hasacquiredexclusive ac-
cesdoit. Possiblaeactiongo thisproblemare(1) toignore
it, (2) to useafixedmaximumamountof timethataclientis
allowedto access smartcard(3) to let theclient specifyin
adwance(on calling begi nMut ex) how long it needsthe
card,and(4) to usea fixed maximuminactiity time after
which the cardis revoked from the client. None of these
approachess without problems,however. For reasonof
simplicity, we have choserthefirst approach.

A clientof thesmartcardnterfaceshouldaccessismart-
card exclusively only during a single atomic sequencef
APDU pairs. Exclusive accesshouldbe heldasshortlyas
possible to give otherclientsa chanceto obtainaccesdo
thecard.

Themethodnamedset Sel ect APDUis acorvenience
methodfor Java cards. Normally, a client cannotassume
thata cardhasnotbeenusedby anotherclientbetweersuc-
cessve exclusive accesseto a smartcard.If anotherclient
hasusedthecardin betweenit is likely thatthis otherclient
haschangedhe statethatwasestablishean the card,e.g.
by selectinganotherapplet. Thereforeaclientalwayshasto
selectits appletagaineachtime it gainsexclusive accesso
the card. With acall to set Sel ect APDU the clientcom-
municatedthe selectionAPDU of its card-residentoun-
terpartto the terminal. The terminalrecordsthis selection
APDU andsinceit logsall accesse® thecard,it is ableto
decidewnhetherit is requiredto selectheappletagain.This
is doneif meanwhilethe cardhasbeentouchedby another
client.

The actualmeando talk to the cardstill is to sendcom-
mand APDUs andto receve responseAPDUs. JiniCard
is fully transparenin this respect.A serviceimplementer
canbe surethatJiniCardwill notchangethe contentof the

exchangeof APDU messagesThis hasthe advantagethat
JiniCardworkswith all ISO/IEC7816compliantcardsthat
rely on exchangingAPDUsto communicate.

Immediately after reset, smartcardsissue a short se-
guenceof bytes,calledthe ATR (answerto reset) It con-
tainsinformationaboutlow level communicatiorprotocol
parameters.lt alsocontainsup to fifteen so called histor
ical characters thatareusedin differentwaysby different
vendors. ISO/IEC 7816-3only statesthat "the historical
characters designategeneml information,for example the
card manufactuer, thechip insertedin thecard, themasled
ROM in the chip, the stateof thelife of thecard. [...]" . In
our approachwe usethe ATR simply as a key to obtain
furtherinformationabouta card.

The ATRsof acardareobtainedby invokingtheget A-
TRs method.It returnsanarrayof ATRsto reflectthefact
that some smartcardshave multiple ATRs. By consecu-
tively resettinga card, it is possibleto cycle throughthe
setof ATRsof thatcard.

A JiniCardterminalservicetogetherwith the Smart -
Car d it managerovides an effective abstractionof the
underlyingcardreadertechnology It makesthe cardter-
minal and an insertedsmartcarda part of the network in-
frastructure. By modelingthe terminal and smartcardas
Java interfacesthey becomeeasyto use. Clientsjust need
to know the Ter mi nal and Smart Car d interfacesand
how to look up a cardterminalin a Jini environment. De-
tailsrelatedto remotecommunicatiorarehiddenby Jiniand
RMI. Details concerningthe interactionwith the physical
terminalare hiddenby JiniCard. Mutual exclusionallows
multiple applicationsat differentlocationsto actasclients
of a single smartcardn an orderedmanner Keepingthe
exchangeof APDUs asthe basicmeansof communication
retainsthe flexibility thatis neededo useawide variety of
differentsmartcards.

As such,the lower layer of JiniCardis an instanceof
the APDU-gatevay middlewvaredescribedn Sect.2.2.1and
providesthe API for the manageto accesghe smartcard.

3.2.2 Upper Layer: Smartcard Exploration Mecha-
nism

The componentdescribedabove provide a uniform way
to accessmartcardsisnetwork componentsBut they are
not enoughto reachour goal to effortlessly integratethe
serviceghata smartcardffersinto anervironment.

To reachthis goal, we proposean exploration mecha-
nismto identify the serviceghatare containedon a smart-
cardandto make themavailablein the ervironment. Our
approachto reachthe goal of card serviceintegrationin-
cludesthe dynamicdownload of exploration components
aswell ascard-eternalpartsof cardservices.

As our target ervironmentwe choselini, which senes

as a platform that representsall systementities as ser

vices. Thereforewe representll applicationscontainedon

a smartcardas Jini services. This placesservicesthat are
offered by smartcardson an equalfooting with other Jini

services. In the following sectionswe describethe steps
thatthe cardexplorationmechanisniakes.

Smartcard Insertion. The serviceexplorationprocesss
triggeredby theinsertionof asmartcardnto a JiniCardter-
minal. This causesheterminalto distribute aremoteevent
toall listenerghatpreviouslyregisteredwith it (1,in Fig. 5).
Theeventcontainghe ATRsof thecardto allow listenergo
decideearlyon, if they areinterestedn the eventandwish
torespondoit. Thesetof ATRsis theonly informationthat
canbeobtainedrom acardif thereis noapriori knowledge
aboutit.

The Card Explorer Manager drivesCard Exploration.
The componenthat controlsthe card exploration process
is known asthe card explorer manayer. This components
registeredat the cardterminalasaneventlistener Thecard
explorermanagemanages setof card explorers. Cardex-
plorerscarryouttheactualwork of exploring a certainkind
of smartcardgo identify the servicescontainedon them.
Cardexplorersaredynamicallyloadedinto the Java virtual
machineof the cardexplorer managerif anunknown kind
of smartcardis encountered.The card explorer manager
passes referenceto the smartcardon to its card explor-
ers and asksthemto explore the card (2). The result of
this explorationprocesss aninstanceof classExpl or a-
ti onResul t (3), whichcontainsasetof Ser vi cel nf o
objectsor anindicationthatthecardexplorercouldnothan-
dle the card. A Ser vi cel nf o objectdescribesa single
serviceand provides enoughinformationto engagein the
serviceinstantiationprocess.

www.atr.net
CardExplorer JAR files

A
ATRMapper | . ®_
@1 | e Reauest) | o es
names /
ATRs entry class @
@ / names@ v

. Terminal-
Terminal Event Card Explorerl\/{anager ‘
\
SmartCard | ., eé)ar J @ \

\
ExplorationResult \

’ CardExplorer, ‘ ’ CardE>.<pIorern

Figure 5. Download and instantiation of card
explorer s for unkno wn smar tcards

The role of manifest files. What happensf noneof the
instantiatedcard explorerswas able to handlea card? In

this casethe cardexplorermanagercontactsa specialwell-

known Web sener. For the following assumethat this
seneris namedwww.atr.net 3. Thisis a Websitethathosts
card explorersfor mary typesof smartcards.Thesecard
explorersare storedas Java archive (JAR) files. A single
JAR file aggreyatesmultiple Java classfiles andotherfiles.
An importantpartof a JAR file is its manifestfile thatcon-
tainsinformationaboutthe archivedfiles. The contentsof

anexamplemanifestfile areshavn in Fig. 6.

Mani f est - Version: 1.0

Mai n-Cl ass: jinicard.javacardexpl orer.JavaCar dExpl orer
Created-By: 1.2.2 (Sun Mcrosystenms Inc.)

Smart car d- ATR: O78RAMAQVF 5EU01AU QuQOFGRSAXLj FDWQ==

Figure 6. Example manif est file

Manifestfiles for cardexplorerscontaintwo specialen-
tries. Thefirst oneis the Mai n- d ass attribute thatwas
introducedwith the Java2 platform. It allows to designate
theclassthatsenesastheentrypointinto thecardexplorer.
It refersto aclassthatimplementgheCar dExpl or er in-
terfaceasshawn in Fig. 7.

package jinicard. core.exploration;

public interface CardExplorer {
Expl orati onResult exploreCard(Smart Card sc)
throws | OExcepti on;

Figure 7. The CardExplorer interface

The examplemanifestfile refersto a cardexplorer that
is ableto explore JavaCards. The secondspecialentry is
namedSmar t car d- ATR. Its valueis a setof base-64en-
codedATRs. The ATRs have to be base-64encoded pe-
causethe manifestfile specificatio{18] doesnotallow ar-
bitrary 8-bit entries. This setof ATRs determineghe set
of cardsthatthe exploreris willing to handle. Theexample
shavstheencoded\TR of aJaraCard.Thismechanisntan
be extendedby usingregularexpressiongo gainmoreflex-
ibility . CurrentlyeachATR mustbe specifiedseparately

ATR Mapper. A componentalledATR mapperinspects
all cardexplorer JAR filesthatarestoredon www.atr.net, in
orderto establisha mappingfrom a setof ATRsto a setof
namesof cardexplorer AR files.

Swwwe.atr.net is just usedfor illustrative purposeshere, so don't
worry if it doesnt actuallycontaincardexplorers.

If a cardexplorer managemwas not ableto find a suit-
ablecardexplorerfor a particularcard,it contactgshe ATR
mapperavailable on www.atr.net (4, in Fig. 5). Theresult
is (hopefully) the nameof a suitablecardexplorer (5) that
the managercanthen usefor download (6 and 7) andin-
stantiation(8) by usinga customclassloader This newly
instantiateccardexploreris thenin chage of exploring the
cardin question.Alternatively, the ATR mappercould,in-
steadof a URL, returnthe actualimplementatiordirectly.

SevwiceInformation Objects. As alreadymentionedthe
resultof a successfuexplorationprocesss anExpl or a-

ti onResul t instancethat containsa setof Ser vi ce-

I nf o objects— onefor eachservice.The Ser vi cel nf o
interfaceis shovn in Fig. 8. An Expl or ati onResul t

objectis whatis handedbackfrom a card explorer to the
cardexplorer managerto enableit to instantiatecard ser
vicesasthefinal step.

The Ser vi cel nf o interfaceis shavn below. It con-
tainsJini relatedinformation,suchasthe serviceidentifier
(servicelD), codebaseénformation and entry point infor-
mation. TheservicelD is usedto uniquelyidentify thecard
serviceasa Jini serviceinstance. The groupsarray spec-
ifies namesof servicecataoriesthat the servicebelongs
to. Nameand commentare usereditabledescriptionsof a
service. The locators attribute explicitly specifieslookup
serviceghatthe servicehasto connecto onceit getsiniti-
ated.The Jini specificatiorprescribesghattheseserviceat-
tributes(servicelD, groups attributes,andlookuplocators)
are storedpersistently Oncea Jini servicegetsa service
identifier assignedo it, it shouldremembetthatidentifier
anduseit in all futureinteractionswith lookupservicesand
otherJini services.To bein line with the Jini specification
we decidedto storeJini relatedinformation on the smart-
card whenever possible. For JavaCardsfor example, we
wrote a small appletthat storesserviceinformationentries
by predefinedkeys. The restrictionsin termsof memory
spacerequirea clever organizationof this information. A
furthercomplicationis thatmostentrieshave varyinglength
andcanbechangedasaresultof userconfiguration.

JiniCard’ s Card Serwices. To enablethe card explorer
manageto retrieve the actualcardservicecode,the code-
baseandentry pointinformationareessential.The service
URL refersto a site that containsthe codeof the cardser
vice described namedwww.service.com in Fig. 9). The
serviceclassnamedenotesa classthat implementsinter-
facej i ni card. core. CardSer vi ce. With thisinfor-
mation the card explorer manageris able to dynamically
downloadandinstantiatethe cardservice.

The cardserviceinterfaceis shavn in Fig. 10. It senes
asanentrypointanddefinesheinteractionbetweera card
serviceandthe JiniCardframework.

package jinicard.core.exploration;
public interface Servicelnfo {

/1 get methods

Servi cel D get Servicel D();
String[] getGoups();

Nane get Nane();

Comment get Conment () ;
LookupLocator[] getLocators();

URL get Servi ceURL();
String get Serviced assNane();
CardServi ce get Service();

/1 set methods
voi d set Servi cel D(Servi cel D sid)

throws | OExcepti on;
voi d set Groups(String[] gs)

throws | CExcepti on;
voi d set Nane(Nane n)

throws | CExcepti on;
voi d set Comment (Conment c)

throws | CExcepti on;
voi d set Locat ors(LookupLocator[] rs)

throws | CExcepti on;
voi d set Servi ceURL(URL url)

throws | OExcepti on;
voi d set Servi ceCl assNanme(String scn)

throws | OExcepti on;

Figure 8. Interface Servicelnfo

To beuseful,a cardservicemusthave accesso its card-

residentcounterparandthereforgo thephysicalsmartcard.

Thisis achieredby usingtheSnar t Car d interfacethatthe
JiniCardterminalprovides. The JiniCardframewvork com-
municatesit to the card serviceby calling the set Car d
methodwith a remotereferenceo the smartcardbject. It
is setto nul | if thecardis nolongeravailable.

The get Attri but eSet s method returns Jini at-
tributesetsthatareimmutableandthatdonotdependnthe
specificserviceinstance. The get Pr oxy methodreturns
the proxy objectthatwill (in serializedform) be uploaded
to the Jini lookup service(abbreviatedas LUS in Fig. 9),
whereit canbe downloadedby clients. No restrictionsare
imposedontheproxy objectotherthanthatit is serializable.

Thisis all thereis to know to understandhe placethata
cardserviceoccupiesin the JiniCardframework. It usesa
smartcardbjectthatabstract§rom the needto know ary-
thing aboutthe underlyingcardreadertechnologyor about
the location of the smartcardin the network. It interacts
with its servicemanagethroughthe simplecardservicein-
terface.Everythingelseis up to the cardservicedeveloper
who hasmaximumfreedomto designa cardservicethatis
appropriatdor theapplication.

WWW.Service.com
CardService JAR files
A

HTTP request | |(4)
using serviceURL& IAR files /
serviceClassName class files

@)y
’ CardExplorerManager ‘

AY
\ \setCard
\getAttributeSets
ExplorationResult \\getProxy

@ card

service
proxy

exploreCard

’ CardExplorer, ‘ ‘ CardService

Figure 9. Download and instantiation of card
services

package jinicard. core. cardservi ce;

public interface CardService {
voi d setCard(Smart Card sc)
throws Snart Car dExcepti on,
Renot eExcepti on;
Entry[] getAttributeSets();
Obj ect get Proxy();

Figure 10. Interface CardService

4. The JiniCard API from the Sewice Devel-
oper’s Perspectve

In the following sectionwe will describehow the Jini-
Cardframawork looks to the developer who wantsto de-
velopcardservicesusingthe JiniCardframework.

4.1 Implementing a Card Explorer

If acardserviceis to bewritten for a smartcardype for
which a cardexplorerdoesnot yet exist, thenthe developer
hasto provide animplementatiorof the Car dExpl or er
interface. This interfacehasjust a single method,named
expl or eCar d, thattakesa Smar t Car d objectasanar-
gument. The card explorer mustfind a way to explore the
setof cardsthatit is wishesto handle.This canbe doneby
using an on-carddirectory, which is particularly useful, if
multi-applicationJavaCardsare used. Anotherway to ex-
ploreacardmaybeto simply probethe cardby usingsome
selectionAPDUs and by examiningif the card generates
the expectedresponsesThis is whatwe have donewhen
implementinga cardexplorerfor GSM cards[2]. Thedeci-

sionaboutthe way to explore cardsis cardspecificandhas
to follow pragmaticconsiderations.

As describedabove, theresultof the explorationprocess
is a setof Servi cel nf o objectsthat provide informa-
tion abouta serviceandalsodescribehow to instantiateit.
Therearetwo differentpossibilitiesto instantiatecard ser
vices: Oneis to provide a URL from which the serviceim-
plementationcan be downloaded(called serviceURL, the
otheris to provide a referenceto the card servicethat the
card explorer is ableto instantiateby itself. The method
get Ser vi ce is intendedto geta referencdo a cardser
vice thatwasinstantiatedhisway. TheJiniCardframenork
first testsif get Ser vi ce returnsavalid (i.e. nonnul 1)
reference.If it doesnot, the Ser vi cel nf o objectmust
give a serviceURL to downloadthe codefrom. The first
approachmight be usefulif the setof servicesfor a given
cardis fixed. This allows to storethe serviceimplementa-
tion togetherwith card explorerimplementation. Also, if
the card-eternalcodeof a smartcardapplicationis stored
on the carditself, insteadof beingstoredon a Web sener,
this mightbe advantageous.

Thereasorfor makingthe card-eternalpartof a smart-
cardapplicationavailable on a Web sener, insteadof stor
ing it on the carditself, is the limited amountof memory
thatis available on currentsmartcards.The card-eternal
partof a cardapplicationmay in fact be ordersof magni-
tudeslarger thanwhat currentsmartcardsare able to pro-
vide. It may, for example,containagraphicaluserinterface
thatoftenneedsalargeamountof code.

To install a cardexplorer, all classfiles thatarerelated
to it have to bestoredin a JAR file. Its net ai nf / mani -
fest. nf file hasto containthe ATRsthatareto be han-
dledby the cardexploreraswell asthe nameof theimple-
mentations entry class. Finally, the JAR file hasto be up-
loadedto awell-known Websener, lik e www.atr.net, where
it canbeinspectedy an ATR-mapper

4.2 Implementing a Card Service

To implementa cardservicethatthe JiniCardframework
can handle,the following stepsmust be taken: First, the
interfaceCar dSer vi ce (or its subinterbce Admi ni s-
trabl eCar dSer vi ce) hasto be implemented. Apart
from implementingthe interface methods this meansim-
plementingheactualservicemethods Theserviceusegshe
Smar t Car d interfaceto talk to the card. At runtime, an
objectimplementinghisinterfacewill beprovidedthrough
theset Car d method.It is importantto emphasiz¢hatthe
JiniCardframework doesnot definethe way in which the
card-ternalpartof anapplicationtalksto its card-resident
counterpart. Both partshave to agreeupon a proprietary
protocol,i.e. a setof APDUs andtheir meaning. The de-
veloperis freeto definethis privateprotocol,usingAPDUSs.

The developeris alsofree to designthe card-residenpart
of the applicationin arny way that he or shedeemsappro-
priate. This flexibility allows for the integration of cards
thatprovide afixed APDU protocol. We have, for example,
integratedGSM cardsinto JiniCardthatusea standardized
APDU protocolthatis definedin [2]. In thatcasethe card-
residentpart, andthereforethe APDU protocol,wasfixed,
andourtaskwasto write a card-externalpartthatintegrates
aservicefor GSM cardsinto the JiniCardframework.

The servicerelatedclassfiles have to be packagedasa
JAR file andhave to be madeaccessibléo anHTTP sener.
If sucha JAR file is smallenoughjt mayalsobe storedon
the card. In ary case,the card explorer that exploresthe
cardhasto be ableto examinethe serviceinformationand
to find away to acquireaccesdgo theservicecode.

If a cardserviceimplementations installedon a multi
applicationcard, then its existencehasto be announced.
This can be doneby storing serviceinformationin some
kind of on-carddirectory Cardexplorersexaminethis di-
rectoryto learnaboutservicesthat are available from the
card.

4.3 Implementation and Performance Experi-
ences

The API descriptionin theform of Javadocpagescanbe
foundat[10]. The sourcecodeof the JiniCardframework
is availablefrom theauthorsuponrequest.

Although thereis a noticeabledelay when the down-
load of a card explorer for an unknown cardis required,
we foundthe performancef the JiniCardframework quite
acceptable.We expect,thatin mostcasesa cardexplorer
will be availablelocally andonly a cardservicehasto be
downloadedandinstantiatecdynamically Simple caching
stratgiescould helpto improve performancssignificantly

5. Conclusionand Futur e Work

In this contribution we have motivatedthe needfor a
new typeof middlewvarethataddressethe specificneedf
smartcardgor integrationinto a distributed computingen-
vironment.Smartcardgareonetypicalinstanceof smallde-
viceswith limited computingpower andmemoryresources
thatposespecialrequirementso theervironmentto beuse-
ful in a servicescenario.Theselimitations requirespecial
attentionfrom themiddlewarethatmustbeableto integrate
devicesin aflexible andcorvenientway.

Our middlewareis essentialljcomprisecbf anexecution
platform for mobile codein a card terminal and a well-
definedprocessof how appropriatemobile codeis trans-
ferred to the terminal as smartcardsare insertedinto its
reader We argued that our approachoutperformsother
approachesv.r.t. flexibility and effort of standardization,

whichwe considera crucialpointin proposingmiddlevare
in general.

The Jini network infrastructurehas beenusedboth as
thetradingplatformfor servicesofferedby smartcardsnd
asa meansto implementthe JiniCardframewnork asa set
of cooperatingnetwork services.We have found Jini to be
particularlywell-suitedfor this purposesinceit builds upon
mobilecode which nicelyfits into the paradigmof our pro-
posedmiddleware.

We think that our approactcanbe appliedto otherset-
tings wheredevicesneedingassistancérom their erviron-
mentsmustbe integratedinto a servicefederation.Further
researchinto this domainis necessaryo supportthis as-
sumption.

Untouchedin our work are security aspectswhich are
especiallycritical in conjunctionwith smartcardsCommu-
nicationbetweeranetwork clientanda smartcarcturrently
traverseseveralcomponentin theJiniCardframework, i.e.
severalnodesof differenttrustworthinessarecrossed.

Acknowledgements

We would like to thank F. Mattern, J. Posgga, and
U. Wilhelm for mary usefulcommentson earlierversions
of this paper

References

[1] C.Blum. Elektronischegicketingbeider DeutscherBahn
AG. In M. Flur, editor OMNICARD 2000. www.omnicard.
de.

[2] EuropeanTelecommunicationStandardinstitute. Digital
cellular telecommunicationsystem(Phase2+); Specifica-
tion of the Subscribeddentity Module— Mobile Equipment
(SIM-ME)interface(GSM11.11) 1998.

[3] W. Gentz.ElektronischeGeldibrsenin Deutschland DuD,
1,1999.

[4] GSM Association.www.gsmworld.com.

[5] S.Guthery R. Kehr, andJ. Posgga. How to Turna GSM
SIM into a Web Sener. In To appearin Proceedingsof
CARDIS’2000Sept.2000.

[6] S. Guthery R. Kehr, J. Posgga, and H. Vogt. GSM
SIMs asWeb Seners. In Short-Poceeding®f 7th Interna-
tional Confeenceon Intelligencein Servicesand Networks
IS&N’2000,Athens Greece Feh 2000.

[7] M. A. Hamilton. Java andthe Shift to Net-CentricComput-
ing. IEEE Computer29(8):31-39,1996.

[8] InternationalStandard€Organization. International Stan-
dard ISO/IEC 7816: IdentificationCards - Integrated Cir-
cuit Cardswith contacts 1989.

[9] Java CardTechnology.java.sun.com/products/javacard/.

[10] JiniCardAPI Documentation Available at www.inf.ethz.ch/
~rohs/JiniCard/.

[11] R.Kehr A. Zeidler, andH. Vogt. Towardsa GenericProxy
ExecutionServicefor Small Devices. FuSeNetDAbrkshop
PositionPaper Heidelbeg, Oct. 1999.

[12] O. Kdmmerlingand M. G. Kuhn. Design Principlesfor
TamperResistanSmartcard®rocessorsin USENIXWork-
shopon Smartcad Technolagy, 1999.

[13] CORPBA 2.2 Specification.Availableatwww.omg.org.

[14] OpenCardConsortium. OpenCad Framevork 1.1.1 Pro-
grammers Guide third edition, Apr. 1999. www.opencard.
org.

[15] PC/SC Workgroup Specifications. www.pcscworkgroup.
com.

[16] J. Reesand P. Honeyman. Webcard: A Java Card Web
Sener. Technicakeport,Centerfor InformationTechnology
Integration, University of Michigan, 1999. www.citi.umich.
edu/techreports/reports/citi-tr-99-3.pdf.

[17] RSA. PKCS#11- Cryptagraphic TokenInterfaceStandad,
1999. www.rsalabs.com/rsalabs/pkcs/pkcs-11/.

[18] Sun Microsystemsinc. Manifest and Signatue Specifi-
cation, 1996. java.sun.com/products/jdk/1.2/docs/guide/jar/
manifest.html.

[19] SunMicrosystemdnc. Jini Architecue Specification- Re-
vision1.0, Jan.1999.

[20] SunMicrosystemdnc. Jini Discovery and Join Specifica-
tion — Revision 1.0, Jan.1999.

[21] J.Waldo. The Jini Architecturefor Network-centricCom-
puting. Communicationof the ACM, 42(7):76-82,July
1999.

[22] J.Waldo,G. Wyant,A. Wollrath,andS.Kendall. A Noteon
DistributedComputing. TechnicalReportSMLI TR-94-29,
Sun Microsystemd_aboratories,1994. www.sunlabs.com/
technical-reports/1994/abstract-29.html.

[23] WirelessApplicationProtocolForum. www.wapforum.org.

[24] EurescomP1005Project. Furtherinformation available at
www.eurescom.de/~websim/, Apr. 2000.

[25] M. Weiser The Computerfor the 21stCentury. Scientific
American pages94-104,Sept.1991.

[26] Windows for Smartcardswww.microsoft.com/smartcard/.

