
Mobile Codeasan Enabling Technology
for Service-orientedSmartcard Middleware

RogerKehr
T-NovaResearchLabs
DeutscheTelekomAG

roger.kehr@telekom.de

MichaelRohs
Instituteof InformationSystems

ETH Zurich
rohs@inf.ethz.ch

HaraldVogt
Instituteof InformationSystems

ETH Zurich
vogt@inf.ethz.ch

Abstract

Smartcardscanbeseenasserviceprovidingentitiesthat
implementa secure, tamper-proof storage and offer com-
putationalresourceswhich make themideally suitedfor a
varietyof taskssuch asauthentication,managementof per-
sonalprofiles,and other kindsof secure informationpro-
cessing. Integration of smartcards into networkedenviron-
mentsthough,hasnot beenachievedyet in a transparent
manner.

In thispaperwedescribetherequirementsfor thedesign
of a middleware for smartcardsandproposea platformfor
theexecutionofmobilecodeasthecoreof suchmiddleware.
This is in contrast to traditional architecturesbasedon a
request-broker schemethat would needhuge standardiza-
tion efforts to beapplicableto smartcards. Asan instance
of such middleware, wedescribeour implementationwhich
is centered around the mobile codefacilities available in
Javaandtheservicetradingfeaturesof Jini.

1. Intr oduction

Only recently, large computingsystemshave begun to
show thetrendof dissolvinginto vastcrowdsof smallunits,
working togetherin orderto supplyservicesto clients. An
indicationfor thisdevelopmentis theextensiveproliferation
of PDAs andotherdevicesdesignedfor specific,domain-
dependentapplications,and the increasingneedfor com-
municationbetweenthem.Communicationabilitiesarees-
sentialin orderto allow for morecomplex andmoreuseful
tasks. Conversely, devicesspecificallydesignedfor com-
munication,such as mobile phones,are approachingthe
statusof computingplatforms (cf. WAP [23]). This de-
velopmentis likely to leadto new computingenvironments
whereservicesareexpectedto beavailableat any place,at
any time, often referredto asubiquitouscomputingenvi-
ronments[25].

In contrastto theseincreasinglydynamiccomputingen-
vironments,smartcardsremain isolatedto a greatextent,
trappedin proprietaryapplicationenvironments.Themost
attractive smartcardapplications,such as authentication,
digital signatures,encryption,andcashlesspaymentarefar
from beinguniversallyavailable. Interworking of devices
is oneof the main issuesin ubiquitouscomputing,and it
is not acceptablethatsmartcardsarenot easilyintegratable
into interworkingscenarios.

Isolationisevenlessacceptablein thefaceof theobvious
qualitiesof smartcards:they arehighly mobile, sincethey
areeasilycarriedby theirowners,andthey arestronglyper-
sonalizedwith a focuson security(thoughnot being“per-
fectly” secure[12], they seemto achieve a proper trade-
off betweenthe potentialrisks andcost). This enablesthe
cardto serve asa “user agent”which knows muchandre-
vealslittle aboutits ownerwhenactingonhisor herbehalf.
Thus,smartcardscouldplayavital role in futurehighly dis-
tributedcomputingsystems,underthe provision that they
are easily integratedinto suchtypesof environments. In
this paper, we show how suchan integrationcould be ap-
proachedandwhatproblemsarelikely to occur.

Thispaperpresentsthedesignof amiddlewarearchitec-
ture for smartcards.Jini [19, 21] servesasan exemplary,
generalserviceframework uponwhich we build our archi-
tecture.The designof a specializedaccesspoint, a smart-
cardterminal,is presentedin Sect.2. Suchaterminalcould
beimplementedasaphysicaldeviceaswell asavirtual de-
vice,consistingof aconventionalsmartcardreadertogether
with supportinginfrastructurein theJini federationitself.

Themainfunctionalityof suchaterminalis theactiveex-
plorationof a smartcard’s capabilities.This is achievedby
dynamicallyloadablepiecesof code,for whichJini supplies
a suitableframework. In Sect.3 we show how smartcard
servicesareintegratedin aJini federation.Sect.4 describes
how applicationdevelopmentis facilitatedwithin suchan
infrastructure.

In theremainderof this sectionwe try to investigatethe
reasonsfor the relatively inflexible useof smartcardsand



we show how emerging developmentscould contribute to
resolvesomeof thetechnicalobstacles.

1.1. The StatusQuo of Smartcards

We seethreemain practicalreasonsfor the relative in-
flexibility of smartcards.First,smartcardinteractionis stan-
dardizedon a per-applicationbasis.Institutionalstandards
exist for (simple)applicationsin a varietyof domains,e.g.
datastorage,transportation,andmobiletelephony [8, 2, 4].
Standardsfor moresophisticatedapplications,suchasdig-
ital signatures,have just recentlybegun to show up [17].
But standardsguaranteeinteroperabilityonly to a limited
degree,asmarketing needsrequirecertainvariability and
proprietaryextensions.

The secondreasonis that smartcardshave very limited
resourcesin termsof memorysize,computingpower, and
communicationbandwidth.This limits their rangeof appli-
cability andmakesthemextremelydependenton their en-
vironments.Without anappropriatecardreaderanda soft-
warepackage,it is impossiblefor a userto accessa smart-
card’s functionality.

Furthermore,such smartcardenvironments are often
highly proprietary, thus further restrictinginteroperability.
Applicationsin suchenvironmentsusuallywork only with
specifically configuredsmartcardsand refuse to interact
with third party cards. This hasboth technicaland non-
technical,aswell asbusiness-relatedreasons.A prominent
examplearepaymenttransactionswith theGerman“Geld-
karte” (cashcard)[3] which areonly possibleat particular
terminals.

This technologically-orientedanalysismirrors the mar-
ket structure: usually, smartcardsare distributed in large
quantitiesandapplicationsareimplementedby tight inter-
actionbetweencardmanufacturersandcardissuers.Hence,
thesepartnershipstendto be very strongandlong-lasting,
whichopposesopenarchitectures.

1.2. A NewAge

SmartcardsasSoftwarePlatforms

Until recently, smartcardsand their applications were
tightly coupled,resultingin the cardbeingusefulfor only
one application. But the idea of viewing a smartcardas
a mere platform has obtainedwide dispersion. Increas-
ingly, applicationsshow up that try to usesmartcardsal-
readyin the field for new applications,e.g. ticketing with
cashcards[1]. This is possibleif the specificationsallow
for third partyaccesswhich, however, is usuallyhampered
by strict regulationsof thecardissuers.

Themostconsequentstepin this directionis the evolv-
ing of executionenvironmentsfor smartcards,suchasJava-
Card[9] andWindows for Smartcards[26]. This increases

extensibilityandflexibility andallowsto openupthesmart-
cardmarketto independentapplicationproviders.Assmart-
cardsarebecomingincreasinglyopen,their role asa soft-
wareplatformgainsimportanceandthesmartcardparadigm
changes,sincetheseparationof cardsandapplicationsbe-
comespossible.

The shift towards the platform paradigmis accompa-
nied by a simplification of software development. This
is achieved by bringing high-level, standardprogramming
languagesto smartcards(Java, VisualBasic),openingup
smartcardprogrammingto a new classof developers.Sim-
ilarly, accessto smartcardsfrom applicationsis unified by
architecturesliketheOpenCardFramework [14] andPC/SC
[15], which integratethecardreaderinfrastructureinto op-
eratingsystemsandprogramminglanguages.

Nevertheless,in software developmentfor smartcards,
manufacturerandapplicationprovider independenceis still
anunmatchedgoal. It seemsreachable,at least.

Smartcards in NetworkedEnvir onments

In networked systems,devicesandapplicationsarework-
ing togetheron differentlevels. On thenetwork level, pro-
tocolsareusedto exchangedata,e.g.TCP/IP. On topof the
networking level protocolssuchas HTTP allow for peer-
to-peercommunicationuponwhich servicescanbe imple-
mented. On the servicelevel, a server, e.g.a Web server,
supportsaclient in orderto provideservicesto otherclients
and/orusers.

Recentwork has shown the feasibility of integrating
smartcardson thenetwork level [16, 6, 5, 24]. This makes
it possibleto regardsmartcardsasrealnetwork nodes.

Integratingsmartcardson the servicelevel requiresthe
descriptionof smartcardservices,their announcementin a
service-tradingenvironment,andestablishmentof links to
theservices.Thesearegenerictaskswhich areusuallyfa-
cilitated by middlewaresystems.Sucha systemprovides
a framework for thedescriptionandstandardizationof ser-
vices. Lower-level detailsarehiddenin suchdescriptions,
thusstandardizationcan focuson the servicedescriptions
themselveswithout referring to technicaldetails. Service
managementis carried out by standardapplication level
services,while communicationis performedover standard
protocols. This makesaccessto smartcardservicestrans-
parentw.r.t. their location and the card’s communication
features.

Smartcardsaredevices that are temporarilyaccessible.
Their availability usuallycorrespondsto thephysicalpres-
enceof the user. This requirestransparent,quick integra-
tion of smartcardsinto thelocalenvironment.Additionally,
applicationsmustbedesignedto handleabruptdisconnec-
tionssmoothly. Therefore,middlewarethatoffersmeansto
addresstheserequirementsis needed.



2. Aspectsof Middlewar e for Smartcards

Thegoal is to designmiddlewarearchitecturesandsys-
temsthatfacilitatesmartcardintegrationinto servicefeder-
ationsasmuchaspossible. In the sequelwe discussgen-
eral designissuesof middleware systemsleading to our
proposedarchitecurefor a smartcardmiddleware.We start
by discussingthe basicrequirementsfor a smartcard ter-
minal, a componentthat offers network connectivity for
smartcards,and continue by comparingdifferent design
paradigmsfor the middlewareimplementedin sucha ter-
minal.

2.1. Smartcard Terminal

Servicesimplementedin the smartcardmustbe ableto
offer their interfacesto thenetwork thesmartcardterminal
is attachedto. Figure1 illustratestherole of theterminalin
a smartcardmiddlewarearchitecture.A smartcardterminal
couldbepartitionedinto thefollowing components:

Smartcard Terminal

Network Clients

Smartcard
with Services

IP-
Layer

Service-
Layer

Card-
reader

APDU-
Layer

Terminal-
Middleware

Intra-/Internet

Figure 1. Smar tcar d terminal

Card readerand APDU layer. Thecardreadercompo-
nent provides accessto the smartcardbasedon standard-
ized protocols[8]. Essentially, it handlescommunication
betweenthesmartcardandthe terminalby exchangingap-
plication protocol dataunits (APDUs, refer to [8] for de-
tails).

Network layer. This layer provides basic terminal con-
nectivity to thenetwork. In caseof IP this layerwould im-
plementanIP stack.

Service layer. This layer presentssmartcardservicesto
thenetwork in any suitableform. A numberof technologies
suchasCORBA [13], Java/Jini [19, 21], or DCOM might
beusedto make thesmartcardservicesaccessiblefrom ar-
bitrary network clients. We believe that theactualtechnol-
ogy chosenfor representingsmartcardservicesshouldbe
independentof thescopeof theconcretemiddlewarecom-
ponent. Hence,the componentshouldbe able to support
any of thosetechnologies.

Terminal middleware. The terminal middlewarehasto
performa numberof tasks:

� It mustbeableto exploretheservices/applicationson
a smartcardasit getsinsertedinto thecardreader.

� Basedon the service information found it must in-
form the servicelayer aboutthe network-interfaceof
thesmartcardapplications.

� It mustact asa gateway for incoming requestsfrom
network clientsthat accessthe smartcardservicesvia
the servicelayer and forward requeststo the APDU
layerbackandforth.

As suchthe terminalmiddlewarerepresentsthe “glue” be-
tweenthe externally offerednetwork servicesof the card
andthecommunicationlayerwith thesmartcard.

2.2. DesignChoicesfor Smartcard Middlewar e

Variousimplementationstrategiescanbeenvisionedfor the
smartcardterminal as outlined above. We describesome
possibleapproachesandcomparetheirstrengthsandweak-
nessesw.r.t. thefollowingcriteria:simplicity, flexibility, and
standardizationeffort from the perspective of serviceand
applicationdeveloperson theonehandandmiddlewareim-
plementorson theotherhand.

2.2.1 Middlewar easan APDU Gateway

This approachcan be describedas a simple gateway for
APDU-requeststo the smartcard.Clientssendpackets to
the service-layerof the smartcardterminalcontainingAP-
DUs which are routed via the APDU-layer to the card
reader. Hence, there is no real abstractionabove AP-
DUs, and the middleware would be responsibleonly for
multiplexing communicationbetweenarbitraryclientsand
smartcardservices.

The interfacesat the servicelayer would thereforeof-
fer methodssuchassendAPDU, enterMutex / leaveMutex
(neededfor locking accessto the cardfor a certainperiod
of time), etc. From the perspective of the middlewareim-
plementorthis is arathersimplemiddleware,easyto imple-
mentandflexible, sinceit burdensall the complexity onto
theservicedeveloper. Servicesoperateat thesamelevel of
abstractionasbefore,but with the intricaciesof distributed
applicationprogrammingsuchaspartialfailures.

2.2.2 Middlewar easRequestBroker

With this approachthe middleware first exploresthe ser-
vicesavailableonthecard.Thisrequiresanenormousstan-
dardizationeffort sinceapartfrom detectingthecorrecttype



of card,theremustbeastandarizedway to performthisex-
ploration. This couldbe achievedby the definitionof new
ISO7816classandinstructionbytesthatreturndescriptions
of the servicesavailable in the card. Usually, servicede-
scriptionsconsistof interfacedescriptions,additionalinfo-
blocks,andaddressinginformation,e.g.applicationidenti-
fiers,neededto addresstheservicefrom a smartcardclient.
Thisinformationcouldcomein avarietyof formatsranging
from binary encodeddescriptionsto IDL- or XML-based
documents.

Themiddlewarecouldimplementagenericserverwhich
is capableprocessingincoming requestsfrom clients and
transformstheminto appropriatesequencesof APDUs. As
an exampleonecould imaginea CORBA IDL description
thatdescribesa smartcardservicewhich canbeusedto au-
tomaticallygenerateserver skeletoncode,bind a CORBA
objectwith anORB runningin thesmartcardterminaland
registertheobjectwith a CORBA namingservice.In addi-
tion to a pureinterfacedescriptionthemappingof method
invocationsto sequencesof APDUssentto asmartcardneed
to bedefined.

The requestbroker middleware operatesat a much
higher level of abstraction.For clients, the smartcardser-
vicesappearasobjectsin a distributedobjectsystemsuch
as CORBA, Java/RMI, RPC, etc. Service implementors
only needto provide an interfacedefinition andappropri-
ate APDU-mappingsto integrate legacy applicationsinto
theoutlinedmiddleware. Fromtheperspective of themid-
dlewareimplementornumerousstandardizationstepshave
to be taken first: exploration of servicedescriptions,for-
mat of descriptions,mappingto distributedobject system
of choice,servicepublication, to namea few. We think
thatthisapproachthoughpromisingin generalsuffersfrom
theamountof standardizationstepsnecessaryfor real-world
deployment.

2.2.3 Middlewar easan ExecutionPlatform for Mobile
Code

The middleware architecturepresentedin this subsection
tries to circumvent most of the drawbacksof the previ-
ous approachesby completelyreconsideringthe underly-
ing middlewareparadigm. Put shortly, the middleware is
not “glue” codebetweencomponentsbut a platformfor the
executionof dynamicallydownloadedmobilecode.Ween-
vision thefollowing corescenario:

� The smartcardgetsinsertedinto the terminalandthe
Answer-To-Reset(ATR) identificationstringis read.

� The ATR is usedto fetch a componentthat acts as
a card managerfrom a well-known set of Web sites
hostingsuchproxies. Theseproxiesareimplemented
in a mobilecodeprogramminglanguagesuchasJava.

Thesmartcardterminalprovidesanexecutionplatform
such as a Java virtual machine(JVM). The service
proxyis containedin anappropriateJavaarchive(JAR)
file, which is downloadedto theterminalandexecuted
in its JVM. In the basicscenariothis card manager
could itself now registerasa servicerepresentingthe
cardwith thenet.

� In amoreadvancedscenariothecardmanagerexplores
the contentsof the smartcardin searchfor smartcard
services.This is possibleif we assumetheimplemen-
tation of the card managerknows aboutthe particu-
lar kind of cardwhich triggeredits activation. Hence,
it knows how to actuallyexplore the cardandfind its
availableservices.Eachservicefoundmayconsistof
aURL pointingto aservicemanagerwhichin turncan
be fetchedand instantiatedin the executionplatform
andoffer its particularserviceto thenet.

It shouldhave becomeclear that this approachessentially
defines(a) an executionplatform for mobile code, (b) a
well-defined processto fetch a card managerfrom the
network, and (c) someAPI or protocol for the manager
to accessthe smartcardand the network. Comparedto
the broker-like middleware much less standardizationis
needed,thoughthe overall flexibility haseven increased,
sincethe cardandservicemanagerareactive components
that not only act as servicesbut can also proactively be
clients to other services. The most significantdrawback
with this approachis thefact that thecomplexity is mostly
shiftedtowardstheimplementorsof cardandserviceman-
agersandtheproperdefinitionof anexecutionplatform.

We have foundtheadvantagesof theexecutionplatform
sufficiently appealingto furtherexperienceit by designing
andimplementinga completearchitecturefrom scratch.In
thesequelwedescribethisarchitecturealongwith themost
interestingdesignconsiderationswe werefacedwith.

3. The Ar chitecture of the JiniCard Frame-
work

As outlinedin Sect.1, smartcardsaretemporarydevices.
Consequently, the availability of the servicesthat they of-
fer is short-termand volatile in nature. Smartcards,and
hencetheirservices,canappearanddisappearwithoutprior
notice, that is, spontaneously. Smartcardsare physically
portableandcan easily be carriedinto unknown environ-
ments1. Yetsmartcardsareutterlydependent2 ontheirenvi-

1Examplesare public and semi-publicplaceslike offices, meeting-
rooms,banks,post offices, and shops,in which smartcardsact as user
agents.

2For a taxonomyof thedesignspaceof smalldevicesalongthedimen-
sionsof autonomy, computationalpower, andability to communicate,see



ronmentto beuseful,asthey generallylackany inputorout-
put devices(UIs) for humans.Theseusagecharacteristics
call for aneffortlessintegrationinto differentenvironments
thatdo not requireany setupor configuration.Servicedis-
coveryandintegrationmusttakeplacespontaneously.

The requirementfor spontaneousintegration of smart-
cardsandtheirserviceswasourmotivationto chooseJini as
thefoundationof theservicelayer, asdescribedin Sect.2.1.
Jini’s objective is to providesimplemechanismswhich en-
abledevices to plug togetherto form an impromptucom-
munity, without any planning,installation,or humaninter-
action.Therefore,Jini asamiddlewareis anidealchoiceto
supporttheintegrationof smartcards,becauseit meetssome
essentialrequirementsthatareimposedby theseultra-small
devices. Jini relieson theJava programminglanguageand
theJava virtual machine(VM) asits executionplatform. A
key point, which we exploit in our architecture,is theabil-
ity to movecodeandobjectsbetweenphysicallydistributed
JavaVMs.

3.1. DesignObjectives

We call our architectureJiniCard to emphasizethe fact
that it makescardservicesavailableasJini services,inde-
pendentof thetypeof smartcardused.It wasa key design
objectiveto supportawidevarietyof smartcardsby impos-
ing only a minimal setof requirementson the smartcard’s
side. Basically, the only requirementon the card’s sideis
thatit adheresto theISO/IEC7816standard[8, parts1–3],
i.e. thatit communicatesby exchangingAPDUs,asthevast
majorityof smartcardsdoes.

Oneof themain issuesthatwe encounteredwashow to
dealwith smartcardsthatarecompletelyunknown to anen-
vironment,giventheextremelylimited amountof informa-
tion thatcanbeextractedfrom anunknown card.A related
issuewashow to dynamicallyinstantiatecardservicesthat
arenot yet presentin the environmentat the time of card
insertion. In our implementation,mobilecodeandmobile
objectsplay a majorrole in this regard.Thestepsinvolved
in the processof serviceinstantiationwill be explainedin
detail. Finally we will describewhat the JiniCardframe-
work lookslikefor cardservicedevelopers,i.e. whichAPIs
they canrely on andhow they canbeused.

Service Integration. An earlyconsiderationwhendevel-
opingtheJiniCardarchitecturewasthatsmartcardusersare
not primarily interestedin physicalsmartcardsthemselves,
but in the servicesthey provide. Therefore,the main goal
wasto maketheseservicesavailablewithoutmucheffort on
theuser’sside.Ideally, cardservicesshouldbecomepartof

[11]. On all dimensions,smartcardsrank at the lower end,which means
that they arevery dependenton propersupportfrom the infrastructureof
theirenvironment.

theinfrastructureassoonasthecardthatcarriesthemis in-
sertedinto a cardterminal. This shouldbepossibleevenif
thereis no a priori knowledgeof theservicesthatarecon-
tainedon a particularsmartcard.Anotherdesirablefeature,
especiallyif onetakesonamorenet-centricperspective[7],
is to have theseservicesavailablenot only locally, but as
partof a localor wide-areanetwork. Thereforethegoalcan
bedescribedasmakinginstancesof smartcardservicesim-
mediatelyavailablein anetwork environment,asaresultof
insertinga cardinto a cardreader.

The Card Terminal asa Network Component. We felt
that the designof current card readersand their device
driversis unsatisfactoryto meetthesegoals.They areusu-
ally not self-contained,but attachedto a general-purpose
PC to function. We proposeto view a card terminalasa
self-containedentity that providesaccessto smartcardsto
a whole network infrastructure. The ultimatevision is to
build the JiniCardterminal asa physicaldevice that con-
tainsa Java VM, canbe pluggedinto a network, anddoes
not needany additionalhardware. This approachrequires
that sucha device is ableto describeits capabilitieson its
own. To makethecardterminalavailableasanetwork-wide
resource,we decidedto modelit asa Jini service.This has
thefollowing benefits:

� the terminal is modeledas a Java interface which
meansthatlow level technicaldetailsof theimplemen-
tationof theterminalareabstractedandareno longer
important;

� theterminalis seamlesslyintegratedinto aninfrastruc-
tureandcanbeusedby any client,withoutany knowl-
edgeof the concreteunderlyingterminal technology;
finally,

� theclientmaybelocatedanywherein theenvironment.

3.2. Ar chitecture

The JiniCardframework consistsof threecategoriesof
componentsthatcanconceptuallybedivided into two lay-
ers. The lower layer providestheabstractionof a cardter-
minal as a Jini serviceand serves as a commonbasefor
the othercomponentsof the framework. The upper layer
consistsof a mechanismto explore smartcardsto identify
servicesthat arecontainedon them. The actualcard ser-
vicescanalsobeseenaspartof this layer. Cardservicesget
instantiatedastheresultof anexplorationprocess.Figure2
givesasimplifiedlayoutof thearchitecture.

3.2.1 Lower Layer: The JiniCard Terminal

Cardservicesaremeantto bedownloadedinto many differ-
entsettings.This requiresawell-definedenvironment,con-



Lo
w

er
 L

ay
er

Jini enabled smart card terminal

Terminal SmartCard

CardExplorerManager
www.atr.net

ATRMapper

CardExplorer1 CardExplorern

FooCardService

BarCardService

www.fooservice.com

www.barservice.com

(physical)
Smartcard

U
pp

er
 L

ay
er

JiniCard services and their originsSmart card exploration mechanism

(p
hy

si
ca

l)
T

er
m

in
al

...

Figure 2. Components of the JiniCar d frame work

sistingof well-known interfaces,into which theseservices
canbe embedded.Oneway to provide this foundationis
by modelinga cardterminalasa network componentthat
providesa standardmeansof remoteaccessto a smartcard.

AccessingSmartcards Remotely. The purposeof the
lower layer of the JiniCard framework is to provide a
uniform and simple way to accesssmartcardsremotely.
With regardto uniform access,motivationssimilar to those
that led to the developmentof the OpenCard Framework
(OCF) [14] apply here. OCF is a Java-basedframework
that provides a uniform applicationinterfacefor building
smartcardapplications.A major differenceto OCF is that
theJiniCardterminalis designedto beusedremotelyandis
not restrictedto be usedby a singleJava VM. This means
that remotemutualexclusionof accessto a smartcardhas
to beconsidered.

The card terminal can be assumedto be a more per-
manentresourcethana smartcard,becausesmartcardsare
only temporarilyinsertedinto terminals.Thereforeit makes
senseto considerthecardterminalasthefoundationof the
architecture.Smartcardsandtheservicescontainedonthem
aremorevolatile resources.

We have modeledthe JiniCardterminalasan ordinary
Jini service.It becomespartof the local Jini federationby
finding lookup servicesand uploadingits proxy to them.
Thisprocessis known asdiscoveryandjoin [20].

As shown in Fig. 3, the JiniCard terminal has a very
thin interface.UsingthenotifyStatus method,clients
can register for remoteevents,which are triggeredupon
card insertionand card removal. The getCard method
returns a remote referenceto the smartcardthat is cur-

rently inserted. Calling this method leads to a Card-
NotPresentException, if no card is currently avail-
able. Cardpresencecanbe testedby usingtheisCard-
Present method.

package jinicard.core;

public interface Terminal
�

EventRegistration notifyStatus(
RemoteEventListener listener,
MarshalledObject handback,
long leaseDuration)

throws RemoteException;

SmartCard getCard()
throws RemoteException,

CardNotPresentException;

boolean isCardPresent()
throws RemoteException;�

Figure 3. API of the JiniCar d Terminal

In contrastto OCF, themethodsfor interactionwith the
actualsmartcardarefactoredout into a separateinterface,
calledSmartCard. This interfaceis shown in Fig. 4. The
terminalactsasa resourcemanagerfor thesmartcard.It is
thestartingpointof accessto thecard.

It is an inherentfeatureof smartcardsto be available
only temporarilyandpossiblyfor shortperiodsonly. There-
fore it is essentialto designapplicationsrobustly in this
respect. The fact that smartcardscan be disconnected



without notice is reflectedin the designof the Smart-
Card interface. Most methodsthrow card relatedexcep-
tions. CardNotPresentException is derived from
SmartCardException, which is the commonsuper-
classfor all smartcardrelatedexceptions.CardNotPre-
sentException indicatesthatthetemporaryassociation
betweena smartcardand the card terminal hasbeenlost.
RemoteException indicatesthat therespective method
canbeusedremotely;it is thrown to indicate(possiblytem-
porary)errorsthat arerelatedto the underlyingcommuni-
cationssystem.Theapproachnot to try to hidetheseerrors
is in line with RMI’s generalphilosophyto make remote
exceptionsa partof the interface. A discussionof this ap-
proachcanbefoundin [22].

package jinicard.core;

public interface SmartCard
�

ATR[] getATRs()
throws RemoteException;

void setSelectAPDU(byte[] selAPDU)
throws RemoteException;

void beginMutex()
throws RemoteException,

SmartCardException;

void endMutex()
throws RemoteException,

CardNotPresentException,
IllegalStateException;

void reset()
throws RemoteException,

SmartCardException,
IllegalStateException;

byte[] sendAPDU(byte[] apdu)
throws RemoteException,

SmartCardException,
IllegalStateException;

ResponseAPDU sendAPDU(APDU apdu)
throws RemoteException,

SmartCardException,
IllegalStateException;�

Figure 4. The Smar tCard interface

Maintaining the APDU Interface. TheSmartCard in-
terfaceprovidesauniformandeasyto useabstractionfor all
kindsof smartcards,but it doesnotchangethebasicprinci-
plesof interactionwith a smartcard.TheAPDU asthelow
level protocolunit is visible in the interface. A stepin the
protocolstill consistsin the exchangeof a pair of APDUs

– a commandAPDU followed by a responseAPDU. This
renderstheinterfaceveryflexible anddoesnotconstrainits
applicabilityto certainkindsof smartcards.

Multiple clients of a singleJiniCardterminal canhold
a referenceto the currentsmartcardsimultaneously. Inter-
actionswith a smartcardoftenrequiretheatomicexchange
of multiple APDU pairs,e.g. to navigatethrougha file sys-
temhierarchy. Duringthisprocessstateis establishedin the
card. This meansthat APDUs arenot independentof one
another. It is not possibleto providetransparentscheduling
of accessto a smartcard,becauseit is unknown whatstate
wasestablishedby onecardclient, andhow to reestablish
that state,after anotherclient hasbeenusing the card in
between. This fact, and the fact that multiple clients can
hold referencesto thesamesmartcard,requiressomekind
of mutualexclusionmechanismthatis exposedin theinter-
face.This is achievedthroughthemethodsbeginMutex
andendMutex. They provide mutualexclusionbetween
distributedclientsof asmartcard.A problemis thataclient
caneffectively block a smartcardif it doesnot relinquish
controlof the smartcardonceit hasacquiredexclusive ac-
cessto it. Possiblereactionsto thisproblemare(1) to ignore
it, (2) to useafixedmaximumamountof timethataclientis
allowedto accessasmartcard,(3) to let theclientspecifyin
advance(on calling beginMutex) how long it needsthe
card,and(4) to usea fixed maximuminactivity time after
which the card is revoked from the client. Noneof these
approachesis without problems,however. For reasonsof
simplicity, we havechosenthefirst approach.

A clientof thesmartcardinterfaceshouldaccessasmart-
card exclusively only during a single atomic sequenceof
APDU pairs.Exclusive accessshouldbeheldasshortlyas
possible,to give otherclientsa chanceto obtainaccessto
thecard.

ThemethodnamedsetSelectAPDU is aconvenience
methodfor Java cards. Normally, a client cannotassume
thatacardhasnotbeenusedby anotherclientbetweensuc-
cessive exclusive accessesto a smartcard.If anotherclient
hasusedthecardin between,it is likely thatthisotherclient
haschangedthestatethatwasestablishedon thecard,e.g.
by selectinganotherapplet.Thereforeaclientalwayshasto
selectits appletagaineachtime it gainsexclusiveaccessto
thecard.With a call to setSelectAPDU theclient com-
municatedthe selectionAPDU of its card-residentcoun-
terpartto the terminal. The terminalrecordsthis selection
APDU andsinceit logsall accessesto thecard,it is ableto
decidewhetherit is requiredto selecttheappletagain.This
is doneif meanwhilethecardhasbeentouchedby another
client.

Theactualmeansto talk to thecardstill is to sendcom-
mandAPDUs and to receive responseAPDUs. JiniCard
is fully transparentin this respect.A serviceimplementer
canbesurethatJiniCardwill not changethecontentof the



exchangeof APDU messages.This hastheadvantagethat
JiniCardworkswith all ISO/IEC7816compliantcardsthat
rely on exchangingAPDUsto communicate.

Immediately after reset, smartcardsissue a short se-
quenceof bytes,calledthe ATR (answerto reset). It con-
tainsinformationaboutlow level communicationprotocol
parameters.It alsocontainsup to fifteen so calledhistor-
ical characters thatareusedin differentwaysby different
vendors. ISO/IEC 7816-3only statesthat ”the historical
characters designategeneral information,for example, the
card manufacturer, thechip insertedin thecard, themasked
ROM in thechip, thestateof the life of thecard. [...]” . In
our approach,we usethe ATR simply as a key to obtain
furtherinformationabouta card.

TheATRsof acardareobtainedby invokingthegetA-
TRs method.It returnsanarrayof ATRsto reflectthefact
that somesmartcardshave multiple ATRs. By consecu-
tively resettinga card, it is possibleto cycle throughthe
setof ATRsof thatcard.

A JiniCardterminalservicetogetherwith theSmart-
Card it managesprovidesan effective abstractionof the
underlyingcard readertechnology. It makesthe card ter-
minal andan insertedsmartcarda part of the network in-
frastructure. By modeling the terminal and smartcardas
Java interfacesthey becomeeasyto use. Clientsjust need
to know the Terminal andSmartCard interfacesand
how to look up a cardterminalin a Jini environment. De-
tailsrelatedto remotecommunicationarehiddenbyJiniand
RMI. Details concerningthe interactionwith the physical
terminalarehiddenby JiniCard. Mutual exclusionallows
multiple applicationsat differentlocationsto actasclients
of a singlesmartcardin an orderedmanner. Keepingthe
exchangeof APDUsasthebasicmeansof communication
retainstheflexibility thatis neededto usea wide varietyof
differentsmartcards.

As such, the lower layer of JiniCardis an instanceof
theAPDU-gatewaymiddlewaredescribedin Sect.2.2.1and
providestheAPI for themanagerto accessthesmartcard.

3.2.2 Upper Layer: Smartcard Exploration Mecha-
nism

The componentsdescribedabove provide a uniform way
to accesssmartcardsasnetwork components.But they are
not enoughto reachour goal to effortlessly integratethe
servicesthata smartcardoffersinto anenvironment.

To reachthis goal, we proposean exploration mecha-
nismto identify theservicesthatarecontainedon a smart-
cardandto make themavailable in the environment. Our
approachto reachthe goal of card serviceintegration in-
cludesthe dynamicdownload of exploration components
aswell ascard-externalpartsof cardservices.

As our target environmentwe choseJini, which serves

as a platform that representsall systementities as ser-
vices.Thereforewe representall applicationscontainedon
a smartcardasJini services.This placesservicesthat are
offeredby smartcardson an equalfooting with other Jini
services. In the following sections,we describethe steps
thatthecardexplorationmechanismtakes.

Smartcard Insertion. Theserviceexplorationprocessis
triggeredby theinsertionof asmartcardinto aJiniCardter-
minal. Thiscausestheterminalto distributea remoteevent
toall listenersthatpreviouslyregisteredwith it (1, in Fig.5).
TheeventcontainstheATRsof thecardto allow listenersto
decideearlyon, if they areinterestedin theeventandwish
to respondto it. Thesetof ATRsis theonly informationthat
canbeobtainedfrom acardif thereis noapriori knowledge
aboutit.

The Card Explorer Manager dri vesCard Exploration.
The componentthat controlsthe cardexplorationprocess
is known asthecard explorer manager. This componentis
registeredat thecardterminalasaneventlistener. Thecard
explorermanagermanagesasetof card explorers. Cardex-
plorerscarryout theactualwork of exploringacertainkind
of smartcardsto identify the servicescontainedon them.
Cardexplorersaredynamicallyloadedinto theJava virtual
machineof thecardexplorermanager, if anunknown kind
of smartcardis encountered.The card explorer manager
passesa referenceto the smartcardon to its card explor-
ers and asksthem to explore the card (2). The result of
this explorationprocessis an instanceof classExplora-
tionResult (3),whichcontainsasetof ServiceInfo
objectsor anindicationthatthecardexplorercouldnothan-
dle the card. A ServiceInfo objectdescribesa single
serviceandprovidesenoughinformationto engagein the
serviceinstantiationprocess.

Terminal

ATRs

JAR file 
names / 
entry class 
names

HTTP
Request JAR files /

class files

www.atr.net
CardExplorer JAR files

ATRMapper

Terminal-
Event 

ExplorationResult

exploreCard

1

2
3

4
6

5

7

8SmartCard

CardExplorerManager

CardExplorer1 CardExplorern...

Figure 5. Download and instantiation of card
explorer s for unkno wn smar tcar ds



The role of manifest files. What happensif noneof the
instantiatedcardexplorerswas able to handlea card? In
thiscasethecardexplorermanagercontactsaspecial,well-
known Web server. For the following assumethat this
server is namedwww.atr.net 3. This is a Websitethathosts
cardexplorersfor many typesof smartcards.Thesecard
explorersarestoredasJava archive (JAR) files. A single
JAR file aggregatesmultiple Java classfiles andotherfiles.
An importantpartof a JAR file is its manifestfile thatcon-
tainsinformationaboutthe archivedfiles. Thecontentsof
anexamplemanifestfile areshown in Fig. 6.

Manifest-Version: 1.0
Main-Class: jinicard.javacardexplorer.JavaCardExplorer
Created-By: 1.2.2 (Sun Microsystems Inc.)
Smartcard-ATR: O78RAMAQMf5EU01AUlQgQ0FGRSAxLjFDwQ==

Figure 6. Example manif est file

Manifestfiles for cardexplorerscontaintwo specialen-
tries. The first oneis theMain-Class attribute thatwas
introducedwith theJava2 platform. It allows to designate
theclassthatservesastheentrypoint into thecardexplorer.
It refersto aclassthatimplementstheCardExplorer in-
terfaceasshown in Fig. 7.

package jinicard.core.exploration;

public interface CardExplorer
�

ExplorationResult exploreCard(SmartCard sc)
throws IOException;�

Figure 7. The CardExplorer interface

The examplemanifestfile refersto a cardexplorer that
is able to explore JavaCards. The secondspecialentry is
namedSmartcard-ATR. Its valueis a setof base-64en-
codedATRs. The ATRs have to be base-64encoded,be-
causethemanifestfile specification[18] doesnot allow ar-
bitrary 8-bit entries. This setof ATRs determinesthe set
of cardsthattheexploreris willing to handle.Theexample
showstheencodedATR of aJavaCard.Thismechanismcan
beextendedby usingregularexpressionsto gainmoreflex-
ibility . CurrentlyeachATR mustbespecifiedseparately.

ATR Mapper. A componentcalledATRmapperinspects
all cardexplorerJAR files thatarestoredonwww.atr.net, in
orderto establisha mappingfrom a setof ATRsto a setof
namesof cardexplorerJAR files.

3www.atr.net is just usedfor illustrative purposeshere, so don’t
worry if it doesn’t actuallycontaincardexplorers.

If a cardexplorer managerwasnot able to find a suit-
ablecardexplorerfor a particularcard,it contactstheATR
mapperavailableon www.atr.net (4, in Fig. 5). The result
is (hopefully) the nameof a suitablecardexplorer (5) that
the managercan thenusefor download(6 and7) and in-
stantiation(8) by usinga customclassloader. This newly
instantiatedcardexplorer is thenin chargeof exploring the
cardin question.Alternatively, theATR mappercould, in-
steadof a URL, returntheactualimplementationdirectly.

ServiceInf ormation Objects. As alreadymentioned,the
resultof a successfulexplorationprocessis anExplora-
tionResult instancethat containsa setof Service-
Info objects– onefor eachservice.TheServiceInfo
interfaceis shown in Fig. 8. An ExplorationResult
object is what is handedbackfrom a cardexplorer to the
cardexplorer manager, to enableit to instantiatecardser-
vicesasthefinal step.

TheServiceInfo interfaceis shown below. It con-
tainsJini relatedinformation,suchastheserviceidentifier
(serviceID), codebaseinformation and entry point infor-
mation.TheserviceID is usedto uniquelyidentify thecard
serviceasa Jini serviceinstance.The groupsarrayspec-
ifies namesof servicecategoriesthat the servicebelongs
to. Nameandcommentareusereditabledescriptionsof a
service. The locators attribute explicitly specifieslookup
servicesthat theservicehasto connectto onceit getsiniti-
ated.TheJini specificationprescribesthat theseserviceat-
tributes(serviceID, groups,attributes,andlookuplocators)
arestoredpersistently. Oncea Jini servicegetsa service
identifier assignedto it, it shouldrememberthat identifier
anduseit in all futureinteractionswith lookupservicesand
otherJini services.To be in line with theJini specification
we decidedto storeJini relatedinformationon the smart-
card whenever possible. For JavaCardsfor example,we
wrotea smallappletthatstoresserviceinformationentries
by predefinedkeys. The restrictionsin termsof memory
spacerequirea clever organizationof this information. A
furthercomplicationis thatmostentrieshavevaryinglength
andcanbechangedasa resultof userconfiguration.

JiniCard’ s Card Services. To enablethe card explorer
managerto retrieve theactualcardservicecode,thecode-
baseandentrypoint informationareessential.Theservice
URL refersto a site that containsthe codeof the cardser-
vice described(namedwww.service.com in Fig. 9). The
serviceclassnamedenotesa classthat implementsinter-
facejinicard.core.CardService. With this infor-
mation the card explorer manageris able to dynamically
downloadandinstantiatethecardservice.

Thecardserviceinterfaceis shown in Fig. 10. It serves
asanentrypointanddefinestheinteractionbetweena card
serviceandtheJiniCardframework.



package jinicard.core.exploration;

public interface ServiceInfo
�

// get methods
ServiceID getServiceID();
String[] getGroups();
Name getName();
Comment getComment();
LookupLocator[] getLocators();

URL getServiceURL();
String getServiceClassName();
CardService getService();

// set methods
void setServiceID(ServiceID sid)

throws IOException;
void setGroups(String[] gs)

throws IOException;
void setName(Name n)

throws IOException;
void setComment(Comment c)

throws IOException;
void setLocators(LookupLocator[] rs)

throws IOException;
void setServiceURL(URL url)

throws IOException;
void setServiceClassName(String scn)

throws IOException;�

Figure 8. Interface ServiceInf o

To beuseful,a cardservicemusthaveaccessto its card-
residentcounterpartandthereforeto thephysicalsmartcard.
Thisis achievedbyusingtheSmartCard interfacethatthe
JiniCardterminalprovides. TheJiniCardframework com-
municatesit to the card serviceby calling the setCard
methodwith a remotereferenceto thesmartcardobject. It
is setto null if thecardis no longeravailable.

The getAttributeSets method returns Jini at-
tributesetsthatareimmutableandthatdonotdependonthe
specificserviceinstance.ThegetProxy methodreturns
the proxy objectthat will (in serializedform) be uploaded
to the Jini lookup service(abbreviatedasLUS in Fig. 9),
whereit canbedownloadedby clients. No restrictionsare
imposedontheproxyobjectotherthanthatit is serializable.

This is all thereis to know to understandtheplacethata
cardserviceoccupiesin the JiniCardframework. It usesa
smartcardobjectthatabstractsfrom theneedto know any-
thing abouttheunderlyingcardreadertechnologyor about
the location of the smartcardin the network. It interacts
with its servicemanagerthroughthesimplecardservicein-
terface.Everythingelseis up to thecardservicedeveloper,
who hasmaximumfreedomto designa cardservicethat is
appropriatefor theapplication.

LUS

HTTP request 
using serviceURL& 
serviceClassName

JAR files /
class files

www.service.com 
CardService JAR files

ExplorationResult

exploreCard

6

1 2

3

4

5

CardExplorerManager

CardExploreri CardService

setCard

getAttributeSets

getProxy

card
service
proxy

Figure 9. Download and instantiation of card
services

package jinicard.core.cardservice;

public interface CardService
�

void setCard(SmartCard sc)
throws SmartCardException,

RemoteException;
Entry[] getAttributeSets();
Object getProxy();�

Figure 10. Interface CardService

4. The JiniCard API fr om the Service Devel-
oper’s Perspective

In the following sectionwe will describehow the Jini-
Cardframework looks to the developer, who wantsto de-
velopcardservicesusingtheJiniCardframework.

4.1 Implementing a Card Explorer

If a cardserviceis to bewritten for a smartcardtypefor
whicha cardexplorerdoesnot yetexist, thenthedeveloper
hasto provide an implementationof theCardExplorer
interface. This interfacehasjust a singlemethod,named
exploreCard, that takesaSmartCard objectasanar-
gument.The cardexplorermustfind a way to explore the
setof cardsthatit is wishesto handle.This canbedoneby
usingan on-carddirectory, which is particularlyuseful, if
multi-applicationJavaCardsareused. Anotherway to ex-
ploreacardmaybeto simplyprobethecardby usingsome
selectionAPDUs and by examining if the card generates
the expectedresponses.This is what we have donewhen
implementinga cardexplorerfor GSM cards[2]. Thedeci-



sionabouttheway to explorecardsis cardspecificandhas
to follow pragmaticconsiderations.

As describedabove,theresultof theexplorationprocess
is a set of ServiceInfo objectsthat provide informa-
tion abouta serviceandalsodescribehow to instantiateit.
Therearetwo differentpossibilitiesto instantiatecardser-
vices:Oneis to providea URL from which theserviceim-
plementationcanbe downloaded(calledserviceURL), the
other is to provide a referenceto the cardservicethat the
cardexplorer is able to instantiateby itself. The method
getService is intendedto geta referenceto a cardser-
vicethatwasinstantiatedthisway. TheJiniCardframework
first testsif getService returnsa valid (i.e. non-null)
reference.If it doesnot, theServiceInfo objectmust
give a serviceURL to downloadthe codefrom. The first
approachmight be useful if the setof servicesfor a given
cardis fixed. This allows to storetheserviceimplementa-
tion togetherwith cardexplorer implementation.Also, if
the card-externalcodeof a smartcardapplicationis stored
on the carditself, insteadof beingstoredon a Web server,
thismight beadvantageous.

Thereasonfor makingthecard-externalpartof a smart-
cardapplicationavailableon a Web server, insteadof stor-
ing it on the card itself, is the limited amountof memory
that is availableon currentsmartcards.The card-external
part of a cardapplicationmay in fact be ordersof magni-
tudeslarger thanwhat currentsmartcardsareable to pro-
vide. It may, for example,containagraphicaluserinterface
thatoftenneedsa largeamountof code.

To install a cardexplorer, all classfiles that arerelated
to it have to bestoredin a JAR file. Its metainf/mani-
fest.mf file hasto containthe ATRs that areto be han-
dledby thecardexploreraswell asthenameof the imple-
mentation’s entryclass.Finally, the JAR file hasto be up-
loadedto awell-known Webserver, likewww.atr.net, where
it canbeinspectedby anATR-mapper.

4.2 Implementing a Card Service

To implementacardservicethattheJiniCardframework
can handle,the following stepsmust be taken: First, the
interfaceCardService (or its subinterfaceAdminis-
trableCardService) has to be implemented. Apart
from implementingthe interfacemethods,this meansim-
plementingtheactualservicemethods.Theserviceusesthe
SmartCard interfaceto talk to the card. At runtime,an
objectimplementingthis interfacewill beprovidedthrough
thesetCard method.It is importantto emphasizethatthe
JiniCardframework doesnot definethe way in which the
card-externalpartof anapplicationtalksto its card-resident
counterpart. Both partshave to agreeupon a proprietary
protocol,i.e. a setof APDUs andtheir meaning.The de-
veloperis freeto definethisprivateprotocol,usingAPDUs.

The developeris also free to designthe card-residentpart
of the applicationin any way that he or shedeemsappro-
priate. This flexibility allows for the integrationof cards
thatprovideafixedAPDU protocol.Wehave,for example,
integratedGSM cardsinto JiniCardthatusea standardized
APDU protocolthatis definedin [2]. In thatcasethecard-
residentpart,andthereforetheAPDU protocol,wasfixed,
andour taskwasto write acard-externalpartthatintegrates
aservicefor GSM cardsinto theJiniCardframework.

The servicerelatedclassfiles have to be packagedasa
JAR file andhaveto bemadeaccessibleto anHTTPserver.
If sucha JAR file is smallenough,it mayalsobestoredon
the card. In any case,the cardexplorer that exploresthe
cardhasto beableto examinetheserviceinformationand
to find a way to acquireaccessto theservicecode.

If a cardserviceimplementationis installedon a multi
applicationcard, then its existencehas to be announced.
This can be doneby storing serviceinformation in some
kind of on-carddirectory. Cardexplorersexaminethis di-
rectory to learnaboutservicesthat areavailable from the
card.

4.3 Implementation and Performance Experi-
ences

TheAPI descriptionin theform of Javadocpagescanbe
foundat [10]. Thesourcecodeof the JiniCardframework
is availablefrom theauthorsuponrequest.

Although there is a noticeabledelay when the down-
load of a card explorer for an unknown card is required,
we foundtheperformanceof theJiniCardframework quite
acceptable.We expect,that in mostcasesa cardexplorer
will be availablelocally andonly a cardservicehasto be
downloadedandinstantiateddynamically. Simplecaching
strategiescouldhelpto improveperformancesignificantly.

5. Conclusionand Future Work

In this contribution we have motivatedthe needfor a
new typeof middlewarethataddressesthespecificneedsof
smartcardsfor integrationinto a distributedcomputingen-
vironment.Smartcardsareonetypical instanceof smallde-
viceswith limited computingpowerandmemoryresources
thatposespecialrequirementsto theenvironmentto beuse-
ful in a servicescenario.Theselimitations requirespecial
attentionfrom themiddlewarethatmustbeableto integrate
devicesin aflexible andconvenientway.

Ourmiddlewareis essentiallycomprisedof anexecution
platform for mobile code in a card terminal and a well-
definedprocessof how appropriatemobile codeis trans-
ferred to the terminal as smartcardsare insertedinto its
reader. We argued that our approachoutperformsother
approachesw.r.t. flexibility and effort of standardization,



which weconsidera crucialpoint in proposingmiddleware
in general.

The Jini network infrastructurehasbeenusedboth as
thetradingplatformfor servicesofferedby smartcardsand
asa meansto implementthe JiniCardframework asa set
of cooperatingnetwork services.We have foundJini to be
particularlywell-suitedfor thispurposesinceit buildsupon
mobilecode,whichnicelyfits into theparadigmof ourpro-
posedmiddleware.

We think thatour approachcanbe appliedto otherset-
tingswheredevicesneedingassistancefrom their environ-
mentsmustbe integratedinto a servicefederation.Further
researchinto this domainis necessaryto supportthis as-
sumption.

Untouchedin our work are securityaspectswhich are
especiallycritical in conjunctionwith smartcards.Commu-
nicationbetweenanetwork clientandasmartcardcurrently
traversesseveralcomponentsin theJiniCardframework, i.e.
severalnodesof differenttrustworthinessarecrossed.

Acknowledgements

We would like to thank F. Mattern, J. Posegga, and
U. Wilhelm for many usefulcommentson earlierversions
of thispaper.

References

[1] C. Blum. ElektronischesTicketingbei derDeutschenBahn
AG. In M. Flur, editor, OMNICARD, 2000. www.omnicard.
de.

[2] EuropeanTelecommunicationsStandardInstitute. Digital
cellular telecommunicationssystem(Phase2+); Specifica-
tion of theSubscriberIdentityModule– Mobile Equipment
(SIM–ME)interface(GSM11.11), 1998.

[3] W. Gentz.ElektronischeGeldb̈orsenin Deutschland.DuD,
1, 1999.

[4] GSM Association.www.gsmworld.com.
[5] S. Guthery, R. Kehr, andJ. Posegga. How to Turn a GSM

SIM into a Web Server. In To appear in Proceedingsof
CARDIS’2000, Sept.2000.

[6] S. Guthery, R. Kehr, J. Posegga, and H. Vogt. GSM
SIMs asWebServers. In Short-Proceedingsof 7th Interna-
tional Conferenceon Intelligencein ServicesandNetworks
IS&N’2000,Athens,Greece, Feb. 2000.

[7] M. A. Hamilton. Java andtheShift to Net-CentricComput-
ing. IEEE Computer, 29(8):31–39,1996.

[8] InternationalStandardsOrganization. International Stan-
dard ISO/IEC7816: IdentificationCards - IntegratedCir-
cuit Cardswith contacts, 1989.

[9] Java CardTechnology.java.sun.com/products/javacard/.
[10] JiniCardAPI Documentation.Availableat www.inf.ethz.ch/

�
rohs/JiniCard/.

[11] R. Kehr, A. Zeidler, andH. Vogt. Towardsa GenericProxy
ExecutionServicefor SmallDevices. FuSeNetDWorkshop
PositionPaper, Heidelberg, Oct.1999.

[12] O. Kömmerlingand M. G. Kuhn. Design Principlesfor
Tamper-ResistantSmartcardProcessors.In USENIXWork-
shopon Smartcard Technology, 1999.

[13] CORBA 2.2Specification.Availableatwww.omg.org.
[14] OpenCardConsortium. OpenCard Framework 1.1.1 Pro-

grammer’s Guide, third edition,Apr. 1999. www.opencard.
org.

[15] PC/SC Workgroup Specifications. www.pcscworkgroup.
com.

[16] J. Reesand P. Honeyman. Webcard: A Java Card Web
Server.Technicalreport,Centerfor InformationTechnology
Integration,University of Michigan,1999. www.citi.umich.
edu/techreports/reports/citi-tr-99-3.pdf.

[17] RSA. PKCS#11- CryptographicTokenInterfaceStandard,
1999.www.rsalabs.com/rsalabs/pkcs/pkcs-11/.

[18] Sun MicrosystemsInc. Manifest and Signature Specifi-
cation, 1996. java.sun.com/products/jdk/1.2/docs/guide/jar/
manifest.html.

[19] SunMicrosystemsInc. Jini Architecure Specification– Re-
vision1.0, Jan.1999.

[20] SunMicrosystemsInc. Jini Discovery and Join Specifica-
tion – Revision1.0, Jan.1999.

[21] J. Waldo. The Jini Architecturefor Network-centricCom-
puting. Communicationsof the ACM, 42(7):76–82,July
1999.

[22] J.Waldo,G. Wyant,A. Wollrath,andS.Kendall.A Noteon
DistributedComputing.TechnicalReportSMLI TR-94-29,
Sun MicrosystemsLaboratories,1994. www.sunlabs.com/
technical-reports/1994/abstract-29.html.

[23] WirelessApplicationProtocolForum. www.wapforum.org.
[24] EurescomP1005Project. Furtherinformationavailableat

www.eurescom.de/
�

websim/, Apr. 2000.
[25] M. Weiser. The Computerfor the 21stCentury. Scientific

American, pages94–104,Sept.1991.
[26] Windows for Smartcards.www.microsoft.com/smartcard/.


