
MobileIoT Toolkit:
Connecting the EPC Network to Mobile Phones.

Dominique Guinard, Felix von Reischach
Florian Michahelles and Elgar Fleisch

Auto-ID Labs, ETH Zurich and University of St. Gallen
Sonneggstrasse 63

CH-8092 Zurich, Switzerland
+41 58 871 78 46

dguinard@ethz.ch

ABSTRACT
In this paper we discuss the MobileIoT Toolkit. This software
framework offers a number of tools to ease the design and
implementation of Java Mobile application prototypes interacting
with the Internet of Things. In particular, we focus on mobile
phones accessing a “standardized Internet of Things”, known as
the EPC Network (Electronic Product Code). In this paper we
introduce the EPC Network1 and then describe the toolkit. Finally,
we introduce two applications based on the toolkit.

1. INTRODUCTION
In general terms, Auto-ID techniques enable computers to identify
the physical world. In particular the term refers to identifications
techniques such as barcodes, RFID (Radio Frequency
Identification), biometry, OCR (Optical Character Recognition)
and the like.
The relatively new ability for mobile phones to read RFID tags as
well as barcodes, makes them the ideal candidates for designing
and prototyping all kind of applications involving ubiquitous
services. Yet, in order to design such systems in a realistic way, a
number of distributed components need to be installed and
integrated. This makes the whole prototyping experience rather
time-consuming and cumbersome.
A number of mobile service development toolkits do exist
already. In [1] Rukzio et al. present a framework for supporting
mobile interactions with real world objects. As the MobileIoT
toolkit, this framework addresses the various technical steps in the
interaction; from the reading of a tag (RFID, NFC, barcode, etc.)
on a mobile phone to the invocation of a corresponding service on
the server side. In [3] Adelmann et al. a toolkit focusing on
barcodes is discussed. In [2] Broll et al. propose a similar
framework based on Web Services.
While our architecture leverages from these work the usage of the
MobileIoT Toolkit (see Figure 6) the novelty of our approach is to
offer connectivity to the EPC Network [4], a standardized Internet
of Things. The adoption of standards at prototype level enables
for the application to be more realistic and convincing. It also
permits to build prototypes on top of one another. Finally it makes
it easier to turn a research prototype into a real application.
In the MobileIoT Toolkit, we package and assemble the standards
and their implementations in order to make them useable without
too much overhead.

1 http://www.epcglobalinc.org

The EPC Network in a Nutshell
In the early years of the RFID technology the scope of
applications was somewhat limited. The applications were rather
local (access control, etc.) and did not require carefully thought
frameworks to be based upon [5]. The advent of RFID in global
business and in particular the vision of an Internet of Things [5],
where common objects are part of a global network of
information, changed the needs. From being local, Auto-ID
applications became global. In 1999, the Auto-ID centers were to
foster this challenge. After several years of research the EPC
Network concept was born and handed over to EPCglobal to turn
research into industry standards [4].
As of today, EPCglobal today represents about 12 major
industries and over 50 industry segments ranging from healthcare
and life sciences to transportation and logistics, footwear and
apparel, and aerospace, automotive and high technology. As a
consequence, the uniquely identifying numbering code: EPC
(Electronic Product Code) and the standardized server-side
components of EPCIS managing track & trace RFID events are
the most adopted standards in business and industry (see [7] for
further details).
When applied to mobile interactions with the Internet of Things
these standards offer the luxury to think in the wide, i.e. about
global use cases. Thus, mobile applications connected to the EPC
Network take an interesting direction both in research and
commercial terms.
In the world of prototyping for the EPC Network, the Accada
project [5] prevails. This project proposes an open-source
implementation of the EPC Network standards. While based on
web services, Accada was not meant to prototype mobile
applications. Thus, rather than re-inventing the wheel, the
MobileIoT Toolkit integrates parts of the Accada project and
provides a set of additional tools for mobile development.

2. MOBILEIOT TOOLKIT
This software toolkit is in essence an aggregation of various
components as well as a design methodology. As shown on Figure
6, it is composed of two main parts: the Mobile Tools and the
Server Tools, both implemented in Java. Additionally it integrates
and abstracts a number of open source libraries.
In general terms the toolkit provides tools for every step required
in a typical mobile to IoT client-server application. These steps
are listed on the top of Figure 6.
In order to better understand what the tools provide let us
imagine a concrete application that enables a consumer to

mailto:dguinard@ethz.ch
http://www.epcglobalinc.org/

retrieve information about the places a product (say an MP3
player) traveled through before arriving at the store.

Mobile Tools
The Mobile tools contain a set of classes that can help the
developer implementing the mobile side of the application. The
first step (Tag Access) addresses the access to identifiers. The
contribution here is to provide a unified way of fetching
identifiers: the seeds of the Internet of Things!
Ideally, prototypes of mobile to IoT applications should not be
restricted to use EPC tags or barcodes or NFC (Near Field
Communication) tags. Rather they should be based on hybrid code
that enables to switch between the Auto-ID readers in order to test
them all and find the most suitable. However, implementing and
using various readers is quite time-consuming as these do not
implement a common API (Application Programming Interfaces).
We solve this using a simple object-oriented design as shown on
Figure 1. The concrete implementation of Auto-ID readers
(barcode, NFC, EPC Gen2, etc.) is hidden behind an abstract
IDReader object that offers the same reading method for every
reader (e.g. readID()). In the particular case of Figure 1, the
IDReader interface hides the UDPLink and UDPListener
classes which belong to the implementation of an RFID UHF
reader on a mobile phone.
The current toolkit comes with three implemented readers: a 1D
Barcode reader based on the BaToo toolkit [3], an NFC reader
based on the JSR 257 (Java Specification Request), and more
importantly in our case a reader for the E61i EPC UHF prototype
from Nokia Research [9].

Figure 1: Interactions with the Server-side Software.
At this step in our concrete example, the mobile application read
the unique identifier (EPC code) of the MP3 player:
880020EC420FE632.
After accessing the tag, one needs to be able to trigger the
corresponding service (Communication Medium and Service
Interface on Figure 6). We initially planned to achieve this
invocation via direct Web Service calls, as Accada’s EPCIS offer
such an interface, but faced a challenge: while standards for the
invocation of web services within mobile Java applications do
exist, (Java Specification Request 172), only few devices fully
implement them yet. Thus, a common alternative to invoking
services on mobile devices is to use “gateways” based on servlets.

In the MobileIoT Toolkit we provide a mechanism to issue light-
weight, but still object-oriented, service consumption through
these gateways. As shown on Figure 2, a component called
RESTLikeInvoker takes care of converting the service calls
into simple HTTP GET requests on a servlet.

Figure 2: Invocation over the RESTLikeInvoker.
At this step the application on the mobile device sent a request to
the EPC Information Server in order to know where the MP3
player comes from.

Server Tools
Next (Business Connectors on Figure 6), the toolkit offers the
Tag Data Translation component based on Mark Harrison’s
implementation of the TDT2. It basically offers to translate EPC
codes from the form they are read in by a device into a form that
is understood by the backend-services. Rather than being one
standard the Electronic Product Code is an aggregation and an
extension of various well-established standards. Furthermore, an
EPC code can have various forms, e.g. binary, hexadecimal, URI,
tag-encoding, etc. Since services on the EPCIS accept only one
form (the URI or pure-identity in EPC jargon) there is a need for a
conversion engine. The EPC polymorph object does this by
accepting any form and any supported standard as an input and
transforming it into any other form upon request.
In our concrete example we create the EPC object and invoke
getURIForm() on it to get the correct form for a service request
on the EPCIS: urn:epc:id:sgtin:0037000.030241.1041970.
The next step is to invoke the service on the EPC Information
Server. The connectors offer this last functionality. They make a
subset of simple services available to be consumed by mobile
devices using the toolkit. In our case we use the Accada EPCIS
Connector.
When replying to a service invocation on the server side we
experienced another challenge: we wanted to be able to transport
the objects returned by the Accada EPCIS over the network and
recompose them back on the mobile device. This process is
commonly called serialization and de-serialization; two
unsupported mechanisms in Java Mobile.
Thus, on the server side and the mobile side a set of tools enable
for objects to be transformed into strings. These are then sent as a
reply to the service request, pretty much like a browser gets an
HTML code back when asking for a webpage. This process is
summarized on Figure 3.
In our case the EPCIS returns a set of records which are
transformed to a single string by the MobileFormatter and
sent over the network. On the mobile side they are then
recomposed to objects corresponding to the places the MP3
players went through prior arriving at the store.

2 http://www.accada.org/tdt/index.html

http://www.accada.org/tdt/index.html

Figure 3: Transforming objects to strings and back to objects.

3. EVALUATION BY PROTOTYPING
Our approach has been to create a prototype of an application
requiring interactions with the EPCNetwork first with the goal to
extract a set of tools (namely classes) that could help the design of
further applications.
Thus, the toolkit is based on the challenges we faced during the
implementation of the first prototype: EPCFind [9]. Finally, the
application was re-implemented using the toolkit for the sake of
evaluation.

EPCFind
EPCFind is a community-based lost-and-found application
improving the shortcomings of traditional lost and found
approaches [9]. It demonstrates how our mobile companions can
help us both tracking our belongings as well as easily and quickly
reporting the recovery of objects.
In EPCFind all products are enhanced with an EPC tag. Every
user is then given a mobile phone with an EPC reader. In our
particular case we used a Nokia E61i extended with UHF EPC
RFID reader as a functional cover. Since these mobile devices
have a reading range of about 50 centimeters, they can silently
(i.e. without explicit human interaction) register tagged objects in
their vicinity. One can then use the application to locate where his
laptop was last “seen” by the reader of the mobile phone of the
owner. This implements the tracking of belongings.
The easy and quick reporting the recovery of items is
implemented on a community-based model. Using the EPCFind
application on his mobile phone one can report the finding of an
object within a few seconds. The finder starts by scanning the
object. The application then connects to a lost-and-found server
and finds the object’s owner. Finally, the owner is automatically
contacted through the EPCFind application on his mobile phone
and can arrange a way of sending the lost item back with the
finder.
Technically speaking EPCFind uses all the toolkit features
exposed before. As shown on Figure 4, it is used to read the
identifiers on the mobile phone and to invoke the services on the
backend. Furthermore, the EPCFind server is using the EPC
Information Server to store the RFID events and query for them.

Figure 5: A screenshot of APriori

Figure 4: Interactions with the Server-side Software.
While no formal evaluation has been undertaken yet, the EPCFind
application was successfully demonstrated during the HotMobile
Workshop 2008 [10].

A Priori
In the Internet of today, many people use so called product
recommendation systems before taking their buying decision.
These systems allow consumers to share the experiences they
have made with certain products in a community-like fashion.
With APriori, consumers utilize their Auto-ID enabled mobile
mobile phone (in our prototype: NFC) to retrieve and write
recommendations. On the sales floor, they identify products by
scanning associated tags, and based on the identification, they
access recommendations made by other users. Having bought and
used particular products, a similar procedure allows them to
actively rate and recommend these products.
System-wise, Apriori consists of a mobile application and a server
application, where all recommendations are stored. When
developing the APriori prototype, we used the MobiliIoT Toolkit
to help us realizing the communication between the
recommendation server and the numerous mobile application
clients.
Our experience in the development of the APriori prototype is that
the MobileIoT Toolkit facilitates the development of distributed
applications where mobile clients are implemented using Java
ME. Using the toolkit, we could work with Java objects on the
client side as well as the server side, making the communication
through servlets (using strings) transparent.

Future Work
While we already have experienced these applications were easier
to design using the toolkit, it was also identified that further work
is needed to make it easier to handle. Indeed, in its current state
the toolkit rather hints a methodology for programming mobile
applications interacting with the Internet of Things and provides a
set of tools to achieve that. We believe the toolkit could be further
extended in order to completely encapsulate the methodology.
That is: one could build a mobile application only by using and
extending classes of the toolkit.
Furthermore we want to extend the toolkit to encapsulate more
standards such as the Object Naming Service (ONS) used to
retrieve authoritative sources of information given an EPC

number, as well as the JSR 257 (Java Specification Request)
which encapsulates Auto-ID in a standard fashion.

4. ACKNOWLEDGMENTS
This project was supported by Nokia Research. Our special thanks
to Sassan Iraji and his team in Helsinki for their work on the E61i
UHF EPC RFID prototype. We would also like to thank the whole
Accada team as well as Robert Adelmann for his barcode reading
module (BaToo).

5. REFERENCES
[1] E. Rukzio, S. Wetzstein, A. Schmidt: “A Framework for

Mobile Interactions with the Physical World.”, Wireless
Personal Multimedia Communication (WPMC'05), Aalborg,
Denmark, 2005.

[2] G. Broll, S. Siorpaes, E. Rukzio, M. Paolucci, J. Hamard, M.
Wagner, A. Schmidt: „Supporting Mobile Service Usage
through Physical Mobile Interaction” Pervasive 07 USA,
2007.

[3] R. Adelmann, M. Langheinrich, C. Flörkemeier: ''Toolkit for
Bar Code Recognition and Resolving on Camera Phones –
Jump Starting the Internet of Things'' MEIS'06 at Informatik
‘06, Dresden, Germany, 2006.

[4] F. Thiesse, F. Michahelles: “An overview of EPC
technology”, Sensor Review, Vol. 26, No. 2. (April 2006),
pp. 101-105.

[5] C. Floerkemeier, C. Roduner, M. Lampe: “RFID Application
Development with the Accada Middleware Platform”,
IEEE Systems Journal, Special Issue on RFID Technology,
2007.

[6] E. Fleisch, F. Mattern: “Das Internet der Dinge: Ubiquitous
Computing und RFID in der Praxis“, Springer-Verlag 2005.

[7] EPCglobal Inc.; “The EPCglobal Architecture Framework”,
Technical Report, 2007.
http://www.epcglobalinc.org/standards/architecture

[8] T. Wiechert, F. Thiesse, F. Michahelles, P. Schmitt, E.
Fleisch: “Connecting Mobile Phones to the Internet of
Things: A Discussion of Compatibility Issues between EPC
and NFC.”, AMCIS ’07, Keystone, Colorado, USA, 2007.

[9] D. Guinard, O. Baecker, F. Michahelles,: “Supporting a
Mobile Lost and Found Community”, MobileHCI ’08,
Amsterdam, Netherlands, 2008.

[10] D. Guinard, F. Michahelles, S. Iraji, H. Hirvola, E. Fleisch:
“EPCFind: Implementing a Mobile Lost and Found
Infrastructure”, Demonstration at HotMobile ’08, Napa
Valley CA, USA, 2008.

[11] F. von Reischach, F. Michahelles: „APriori: A Ubiquitous
Product Rating System“, PERMID’08 at Pervasive 08,
Sydney, Australia, 2008.

Figure 6: The MobileIoT Toolkit.

http://www.epcglobalinc.org/standards/architecture

