
Extending Mobile Devices with Spatially Arranged
Gateways to Pervasive Services

Dominique Guinard
Department of Informatics

University of Fribourg
Boulevard de Perolles 90

1700 Fribourg, Switzerland
dguinard@gmipsoft.com

Sara Streng
Institute for Computer Science
Ludwig-Maximilians University

Amalienstrasse 17
80333 Munich, Germany

sara.streng@gmail.com

Hans Gellersen
Computing Department

InfoLab21
Lancaster University

Lancaster LA1 4WA, UK
hwg@comp.lancs.ac.uk

Categories and Subject Descriptors
H.5.2 [Interfaces and Presentation]: User Interfaces -
Interaction styles; C.5.3 [Computer System Implemen-
tation]: Microcomputers - Portable devices

Keywords
Spontaneous mobile interactions, nomadic user interfaces,
pervasive services, sentient computing, pervasive services.

ABSTRACT
Discovery and interaction with services is as much a user
interface problem as a networking problem. In this paper
we introduce a system in which mobile devices are seam-
lessly extended with Gateways to services in their environ-
ment. The gateways are realized as widgets that are ar-
ranged around the edge of the mobile device’s user interface
to indicate the direction of discovered services, thus provid-
ing the user with an overview of interaction opportunities.
The gateways also afford direct access to services integrate
with the device’s interface, for example supporting drag-
and-drop of objects to a gateway and through the gateway
to the corresponding service.

1. INTRODUCTION
Mobile users can potentially benefit from access to per-
vasive services that are physically manifest in their envi-
ronment, such as display, printers, appliances and other
computer- and network-enabled devices. Discovery and in-
teraction with pervasive services has been primarily inves-
tigated from a networking perspective, concerned with how
a user’s device entering a network can become aware of the
availability of useful services and how they can interoperate
with identified services. We consider it of equal importance
to view discovery and interaction with services from the per-
spective of the human user: how can a user become aware
of the services that are available in their environment, and
how can they invoke services and interact with them.

There are many ways in which mobile devices can facilitate
or support their user’s interaction with pervasive services.
Generally these fall into two classes, the support for discov-
ery of available services, and the support for access to and
interaction with identified services. Examples for discovery
support include use of Bluetooth, as available in many types
of mobile device, to scan the environment for Bluetooth-
enabled services. This approach is network-based and has
the problem that there is no direct way for a user to asso-
ciate names of discovered devices and services with actual
devices in their environment. Other approaches to support
interaction with pervasive services are based on some form
of physical scanning, using mobile devices like a probe that
is moved through an environment in order to find and use
interaction opportunities. Examples are Fitzmaurice’s pio-
neering work in which the mobile device is used like a lens
[1], Rekimoto’s Navicam which used augmented reality tech-
niques [7], as well as more recent examples enabled by RFID-
or NFC-technologies [8]. These approaches support physi-
cal identification of a service in the environment, but they
do not help the user obtain an overview of services that are
available in their proximity. We should also note other sys-
tems that use more bespoke techniques and metaphors for
access to pervasive services through mobile devices, for ex-
ample uPhoto which provides a “camera” to capture images
that have embedded links to services in the photographed
scene [3]. ICrafter takes a more programmatic approach
and offers a framework to generate UI interfaces represent-
ing services in interactive workspaces [6].

As in ICrafter and Speakeasy [5] we introduce a system in
which mobile devices are extended to support awareness of
nearby services, as well as direct interaction with services
through a novel kind of user interface. However, our system
uses real-time relative spatial information: how far a ser-
vice is located from the user’s mobile device, and in which
direction; this information can be obtained from an indoor
location system, or by way of direct device-to-device sens-
ing as demonstrated in related work [4]. This information
is used to extend the mobile device’s user interfaces with
Gateways to services: these are small areas included at the
edge of the screen, arranged to point in the direction of
the discovered service, and serving as access point for in-
teraction with the service. The spatial arrangement of the
gateways around the user interface supports “visual service
discovery” as opposed to “network service discovery”, as it
corresponds with the spatial arrangement of devices in the



Figure 1: The compass concept of the user interface.

environment as seen from the user’s perspective. In earlier
work we demonstrated a similar concept by providing mo-
bile users with a 2D map view of co-located mobile devices
as seen from their viewpoint [4]. The Gateway interface in
contrast provide spatial references at the periphery of the
user’s interface, to be ready to hand but not in the way of
other interactions with their device.

In this paper we report on the implementation of a proof-of-
concept system including the seamless integration of Gate-
ways in the mobile user interface, and the underlying infras-
tructure for access to services and interaction with services.
The infrastructure allows data to be pushed “through the
gateways” to discovered services to invoke default handling,
and it also supports invocation of a service menu for other in-
teractions a service may support. For our proof-of-concept,
we demonstrate interactions with a public display, a printer,
and a keyboard.

2. DESIGN OF THE GATEWAY SYSTEM
Our system brings two aspects together: the visual discov-
ery of what is available (and where), and the spontaneous
interaction with services that are available.

2.1 Visual Discovery of Services
In order to enable visual discovery of pervasive services we
designed a user interface behaving like a compass. The inter-
faces shows gateways to services as small widgets arranged
at the periphery of the screen. These gateways move as the
user moves in the environment. Thus, if the user stands in
front of a printer, a printer gateway will appear on the upper
edge of the mobile display. Similarly, if the user stands left
from a public display, the mobile user interface will show
corresponding gateway on its left edge, facing toward the
public display. As a concrete example of this concept con-
sider Figure 1. The user is represented by the black spot in
the middle of the first figure. In this situation, the printer
is situated at the left of our user, the keyboard behind her
and the display on her right. The application is aware of this
context and will map the user’s view of this environment on
the user interface. As shown in the last part of Figure 1,
three gateways are shown to the user on the mobile screen.
The printer gateway appears on the left, the display gateway
on the right and the keyboard gateway at the bottom.

Furthermore, two different modes of operation are provided
for discovery. In the so called “scanning mode” the sys-
tem displays a gateway for every device within the user’s
visibility range, to achieve a correspondence of what users
see in front of them with what becomes identified through
their interface. Alternatively, the “conditional mode” shows
only services when certain spatial conditions are met. For
instance, one could decide that the gateway to a public dis-
play is only shown to the user as long as they are facing it.
Similarly, a gateway to a the keyboard might only appear
when the user is close enough for direct interaction.

The gateways support two ways of interacting with the ser-

Figure 2: User Interface after clicking on the printer
gateway icon at the top of the screen. Note the
interface also shows a gateway to a display available
to the right.

vice they represent. First, the user can drag-and-drop ob-
jects onto the gateway area. For example, dropping a pre-
sentation on the public display gateway will start it on the
display, and dropping a PDF file onto the printer gateway
will invoke printing. Secondly, a service can be invoked us-
ing a click operation on the gateway area, in order to access
a menu or dialog which will provide further service options.
As shown in Figure 2, dropping a PDF file on the printer
gateway will result in printing it with the default options,
clicking on the gateway will open a print dialog on the mo-
bile device to allow the selection of further options.

2.2 Spontaneous Interaction
The Gateway interface helps users make sense of devices
and services that are available. In addition we provide an
infrastructure that allows to interact with services, without
any need for pre-configuration of interfaces. To facilitate
this, a service is composed of a requester and a provider.
The requester contains the information needed by a client to
access the service, and the provider contains the actual logic.
As shown on Figure 3 the service providers and requesters
act as abstractions of the actual services. For example, when
a user drags and drops a file onto the display gateway the
UI checks whether it has a requester for the display. If this
is the case the file is passed to the requester, which loads the
file and sends it over the network to the provider. On the
other end-point the provider running on a server gets the
file and applies the core logic of the service using a concrete
connector (or driver) to the final device.

Furthermore, each service can be either of type “push” or
“pull-and-push”. A push service describes a stateless, asyn-
chronous service provided by a concrete device. A typical
example would be a printer providing a service that prints
a document using the default settings. The only data re-
quired from the client in such an interaction scheme is the
file to be printed. Thus, the client can simply push the docu-
ment to the other end-point and expect for it to be printed.
The push services are quite interesting since they can be
addressed in a uniform manner, using a single universal re-
quester, without regards for the particular service semantics
and core logic. Consider the printing service once again. If
we now want to offer double-sided printing we need another
type of service. Pull-and-push services offer to prompt the
user for customized, statefull input before pushing it to the
service provider.

This distinction at the service level permits the user interface
to address all the requester in a uniform way, distinguishing
them only by their method of invocation. Indeed, from the
UI point of view push services are called using simple drag-
and-drop, whereas pull-and-push services are invoked using
a click on the gateway’s iconic representation of the device.

3. PROTOTYPE IMPLEMENTATION



Figure 3: Invoking a service

Figure 4: Three concrete gateways.

3.1 User Interface
One of the most important requirements of the RelateGate-
ways UI were integration and unobtrusion. In order to
achieve these goals the interface is composed of small wid-
gets integrated to the desktop. A view of the concrete imple-
mentation is shown as a detailed screenshot on Figure 2 or
more concretely while running on a mobile device on Figure
7. Three types of GUI (Graphical User Interface) elements
were designed:

• The visual representations of gateways are implemented
as small windows in order to be able to move them
at the screen periphery. As shown on Figure 4 each
gateway contains an iconic representation of the ac-
tual device the gateway stands for. It helps the user
in her visual discovery of the service and is used for
the click invocation as well as for drag-and-drop inter-
actions with the services.

• A toolbar offering various functionality such as start-
ing and stopping the application, swapping between
the conditional and the scanning mode, starting and
stopping the service providers.

• A number of dialogs. These are used for user confirma-
tion or user input (e.g. selecting the printing options)
when a service is invoked.

Technically speaking, the user interface is implemented as
a Java Swing GUI making use of the Swing Layout Exten-
sions library. In terms of software components, a gateway is
composed of:

• Two concrete views subclasses of VerticalView and Hor-

izontalView. These are the visual representation of the
gateways. The former is used when the gateway has
to be mapped on the left or right side of the mobile
display (see Figure 4, left and right), whereas the lat-
ter appears when the gateway has to be displayed on
the top or bottom (Figure 4, middle).

• A GatewayController in charge of abstracting the po-
sitioning information in order to load and move the
gateways’ views at the periphery of the mobile screen.

Thus, the gateways’ architecture implements the well-known
MVC (Model View Controller) pattern. The VerticalView and
HorizontalView of a gateway represent the views, the concrete
GatewayController is the controller and the model is formed
of the positioning information acquired from a sensing layer
together with the service information.

3.2 Service Architecture
Our prototype system is implemented in Java SE. In our
architecture, a concrete service extends the Service class and
provide two components extending the ServiceProvider and
ServiceRequester classes. Furthermore, each service has to be
either of type PushService or PullAndPushService by extending
the corresponding interface. As mentioned before, a Push-

Service represents stateless and fully asynchronous service
whereas a PullAndPushService is used to model statefull ser-
vices requiring more user input than the object to apply the
service on, also known as the service subject (e.g. the file
to print, the presentation to start, etc.). This distinction
is particularly interesting since it permits to create a “uni-
versal requester” for PushServices. Indeed, as such a service
simply pushes the service subject, it does not need to know
anything about the service logic and semantics. Thus, while
each concrete PullAndPushService needs to offer a proper Ser-

viceRequester to the mobile device, all the PushServices can be
addressed using a single generic requester: the UniversalPush-

ServiceRequester.

In order the understand the interactions of the software com-
ponents, Figure 3 depicts the invocation of a presentation
service. When the user drag-and-drops a presentation onto
the display gateway the user interface has to send it to a ser-
vice requester corresponding to the current device or to the
universal requester. It will thus look for a concrete requester
to invoke. Since all the requesters extend the ServiceRequester

class the UI can address them in a uniform manner using
the request(Object o) method they provide. The nature of
the argument Object o depends on the type of service. The
universal requester of a PushService (i.e. the UniversalPush-

ServiceRequester) is called with a String object containing the
local path to the dragged-and-dropped object. In turn, the
particular requester of a PullAndPushService is called with a
GatewayView object as parameter. Indeed, as futher user in-
put is required when using a pull-and-push service, the re-
quester needs to be able to address the gateway it was called
from, for instance to pop up dialogs as on Figure 2.

Once invoked the UniversalPushServiceRequester connects to
the PresentationProvider using a TCP/IP socket and sends
it a copy of the drag-and-dropped presentation enclosed in
a UniversalPushTransferObject. The provider is responsible for
executing the service’s logic. In order to reach this goal and
make the services’ logic as reusable as possible, a provider in-
stantiates and uses a Connector. Such a software component
is an abstraction of a service’s logic. In this case an OpenOf-

ficeConnector is instantiated. This latter class uses the Java
UNO API1 to connect to OpenOffice and eventually start
the presentation on the public display.

In order to test the application, five concrete services are
provided. They all use the architecture described above.
Table 1 describes them into further details.

The concrete providers and requester form the networked

1http://api.openoffice.org/



Device Name Type of Service Description Concrete Connector

Printer DirectPrinting Push Prints document with the print-
ers’ default options.

Java Print Service API

CustomPrinting Pull-and-Push Prompts the user for file selec-
tion and open a printing option
dialog box. Prints document
with the selected options.

Java Print Service API

Display PresentationShow Push Starts a presentation. OpenOffice UNO API
Presentation Pull-and-Push Pops up a file selection dialog

and opens the presentation in
OpenOffice Impress.

OpenOffice UNO API

Keyboard Typing Pull-and-Push Redirects the typed keys to re-
questing device.

OpenOffice UNO API and Java
AWT Event API

Table 1: Concrete services implemented for the tests.

Figure 5: User interface and Wizard of Oz interface.

communication end-points between the actors. Thus, an
important assumption for our architecture is the fact that
all the devices providing services as well as the mobile device
have to be part of the same network, or at least have able to
access one another over a TCP/IP network. Since nowadays
a lot of mobile devices tend to have wireless connectivity we
believe that this assumption is not excessively restrictive.
Using relatively low-level sockets for service communication
rather than higher-level networking schemes (such as RMI,
CORBA, etc.) is a conscious choice. Indeed, we wanted the
RelateGateway application to be as portable as possible in
order to test it on various types of devices (handheld PCs,
mobile phones, etc.) and allow the rapid prototyping of ser-
vices. While using a Java implementation already helps to-
wards portability, implementing the services on a socket ba-
sis reduces the language dependency, allows to think about
cross-platform and cross-languages services and keeps the
architecture simple and lightweight.

It is worth noting that no network discovery mechanisms
are implemented in this prototype. As a consequence the IP
addresses used by the requesters to connect to the providers
are hard-coded in a configuration file used by the mobile de-
vices. Furthermore, the requesters required to invoke pull-
and-push services are bundled with the application on the
mobile device. While this would certainly not be a good
solution for a real application it is adapted to this early pro-
totype. Indeed, the principal aim of this first version was to
run a user study focusing on visual discovery and sponta-
neous interactions. Involving network discovery mechanisms
at this early stage was neither necessary nor bringing a real
added-value for the user study.

4. EVALUATION
4.1 Scenario
In order to evaluate the application we designed a small sce-
nario. As shown on Figure 6, three devices are installed in
a large room: a printer, a display, and a keyboard. Each
device is attached to a computer. Each computer is then
connected to a router coupled with a wireless access point

Figure 6: Location of services in the test room.

Figure 7: RelateGateways application running on a
Windows XP OQO.

in order to create both a wired and wireless local network.
Each of the three devices provides various services as de-
scribed on Table 1. Additionally, the Gateway system was
installed on two types of mobiles devices: a OQO handheld
PC (see Figure 7) and a Paceblade tablet PC both running
Windows XP. It is worth noting that the application could
as well run on a PDA or a mobile phone as long as these
offer Java SE support.

4.2 Formative User Study
The study was conduct in two phase. The initial phase
was essentially a test-run with five users intended to detect
as many bugs as possible. Observations during this phase
also permitted to improve some parts of the user interface.
As an example, most user expressed a feeling of having to
disconnect from the keyboard gateway once the service was
consumed. This feature was not provided nor really required
by the application but it was included in the next release.
The interaction zones of the gateways were also redesigned
after the first study. Indeed, the initial version comprised
two distinct zones corresponding to the two interaction tech-
niques exposed in Subsection 2.1: a drag-and-drop zone and
a button. Since our five first users mentioned this fact as
quite confusing we decided to redesign the gateways with
a single zone (as shown on Figure 4) for both interaction
schemes.

During the second phase, fifteen users evaluated the appli-
cation in the room described above. The majority of re-
cruited users were students with Computer Science back-
ground. Half of them were given an OQO handheld PC and
the other half a tablet PC running the application. After a
brief introduction to the project’s context and field of use
the user were asked to use the mobile device we provided



them with in order to solve three tasks:

1. Discover a keyboard and use it in order to type some
text in an instance of Open Office running on the mo-
bile device.

2. Discover a public display and use it for starting a slide
show stored on the mobile device.

3. Print a document located on the mobile device by dis-
covering a printer and interacting with it.

As shown on Figure 5, a Wizard of Oz interface was used
to track the user in the test room and to provide spatial
information to our system, thus effectively serving as a very
controlled sensing layer.

In general terms, the study revealed the users’ excitement
for these type of interactions: most of our test users com-
mented this would be very useful in places they were not
familiar with, which confirms our initial assumption. The
fact that no installation or configuration was required to in-
teract with the service was the most widely perceived benefit
of the application. This shows, once more, the relevance of
Weiser’s vision [9] of the disappearing computer, in which
the users’ administrative tasks (e.g. device installation or
configuration) are reduced to as few as possible. Our users
expressed this fact as a requirement when it comes to visit-
ing a new environment, which shows the pertinence of this
assumption when addressing interactions with pervasive ser-
vices.

The next most cited benefit was the dynamic spatial ar-
rangement of the gateways. They commented it as making
the mobile user interface more natural, “really smart” and
quite helpfull for discovering the services in the room. This
is not a surprise since it is known from various studies that
humans structure their environment primarily spatially [2].
They also enjoyed being able to interact with all the ser-
vices available using the same intuitive techniques. All users
mentioned the drag-and-drop interactions across devices as
being particularly appealing.

In terms of design issues a number of users discussed the
size of the gateways. We designed them in order to be as
unintrusive as possible on mobile devices, i.e. quite small.
While this was fine with the users as long as they did not
interact with the gateways, they suggested the system to
somehow detect their will to use a particular gateway, e.g.
when approaching the mouse, and make it bigger in order
to ease the interaction.

On the negative side, about half of the users expressed con-
cerns about security issues. Indeed, while many users per-
ceived very positively the simplicity of the interactions (no
installation, configuration or log-in) they also perceived this
fact as raising a number of security issues. As a consequence,
eleven of our twenty users said they would not use the ap-
plication (or some of the provided services) for confidential
or personal data. They suggested automatic authentication
and encryption techniques to solve these concerns (betraying
a Computer Science background for most of the users).

Eventually, for most users the critical mass of offered ser-
vices and places offering them was one of the most important
points towards user acceptance. As such they suggested im-
plementing providers for multimedia players, service points,
file servers, shared calendars and blackboards, scanners, mo-
bile phones and other mobile devices in environments such
as business offices, universities, schools and other public fa-
cilities.

5. CONCLUSION
The presented proof-of-concept prototype, and its exposure
to users, highlight integration of access to pervasive services
in mobile user devices in a manner that helps users under-
stand what services are available, and that allows them to
interact with services through intuitive techniques. Users
experience the provided interface functionality as, in prin-
ciple, easy to understand and use. However it is also im-
portant to understand the limitations of the study carried
out so far, in the small number of services integrated and
the replacement of real sensor data with Wizard of Oz con-
trol. Key questions in further development of the concept
are the impact of increased number of services on usability
of the interface, the integration with network-level discovery
mechanisms, and the impact of using a real sensor system
for real-time tracking of spatial relationships between user
device and services.

6. ACKNOWLEDGMENTS
This research is part of the Relate project, supported by the
Commission of the European Union (Project No. 013790,
FP6 IST Programme, RELATE).



7. REFERENCES
[1] G. W. Fitzmaurice. Situated information spaces and

spatially aware palmtop computers. Commun. ACM,
36(7):39–49, 1993.

[2] F. Hupfeld and M. Beigl. Spatially aware local
communication in the raum system. In IDMS ’00:
Proceedings of the 7th International Workshop on
Interactive Distributed Multimedia Systems and
Telecommunication Services, pages 285–296, London,
UK, 2000. Springer-Verlag.

[3] N. Kohtake, T. Iwamoto, G. Suzuki, D. M. Shun Aoki,
T. Kouda, K. Takashio, and H. Tokuda. u-Photo: A
Snapshot-based Interaction Technique for Ubiquitous
Embedded Information. In Video Proceedings of the
Second International Conference on Pervasive
Computing, 2004.

[4] G. Kortuem, C. Kray, and H. Gellersen. Sensing and
visualizing spatial relations of mobile devices. In UIST
’05: Proceedings of the 18th annual ACM symposium
on User interface software and technology, pages
93–102, New York, NY, USA, 2005. ACM Press.

[5] M. W. Newman, J. Z. Sedivy, C. M. Neuwirth, W. K.
Edwards, J. I. Hong, S. Izadi, K. Marcelo, T. F. Smith,
J. Sedivy, and M. Newman. Designing for serendipity:
supporting end-user configuration of ubiquitous
computing environments. In DIS ’02: Proceedings of
the conference on Designing interactive systems, pages
147–156, New York, NY, USA, 2002. ACM Press.

[6] S. Ponnekanti, B. Lee, A. Fox, P. Hanrahan, and
T. Winograd. ICrafter: A Service Framework for
Ubiquitous Computing Environments. In UbiComp ’01:
Proceedings of the 3rd international conference on
Ubiquitous Computing, pages 56–75, London, UK, 2001.
Springer-Verlag.

[7] J. Rekimoto and K. Nagao. The world through the
computer: Computer augmented interaction with real
world environments. In ACM Symposium on User
Interface Software and Technology, pages 29–36, 1995.

[8] E. Rukzio, A. Schmidt, and H. Hussmann. Physical
posters as gateways to context-aware services for
mobile devices. In Proc. 6th IEEE Workshop on Mobile
Computing Systems and Applications (WMCSA 2004),
2004.

[9] M. Weiser. The computer for the twenty-first century.
Scientific American, pages 94–10, 1991.


