
Diss. ETH No. 19891

A Web of Things Application Architecture -

Integrating the Real-World into the Web

A dissertation submitted to

ETH Zurich

for the degree of

Doctor of Science

Presented by

Dominique Guinard

M.Sc. in Computer Science, University of Fribourg

born February 27, 1981

citizen of Switzerland

accepted on the recommendation of

Prof. Dr. Friedemann Mattern, examiner, ETH Zurich

Prof. Dr. Gustavo Alonso, co-examiner, ETH Zurich

Prof. Dr. Sanjay Sarma, co-examiner, MIT Boston

2011

Abstract

A central concern in the area of pervasive computing has been the integration of digi-

tal artifacts with the physical world and vice-versa. Recent developments in the field of

embedded devices have led to smart things increasingly populating our daily life. We

define smart things as digitally enhanced physical objects and devices that have commu-

nication capabilities. Application domains are for instance wireless sensor and actuator

networks in cities making them more context-aware and thus smarter. New appliances

such as smart TVs, alarm clocks, fridges or digital-picture frames make our living-rooms

and houses more energy efficient and our lives easier. Industries benefit from increasingly

more intelligent machines and robots. Usual objects tagged with radio-tags or barcodes

become linked to virtual information sources and offer new business opportunities.

As a consequence, Internet of Things research is exploring ways to connect smart things

together and build upon these networks. To facilitate these connections, research and in-

dustry have come up over the last few years with a number of low-power network protocols.

However, while getting increasingly more connected, embedded devices still form multiple,

small, incompatible islands at the application layer: developing applications using them

is a challenging task that requires expert knowledge of each platform. As a consequence,

smart things remain hard to integrate into composite applications. To remedy this fact,

several service platforms proposing an integration architecture appeared in recent years.

While some of them are successfully implemented on some appliances and machines, they

are, for the most part, not compatible with one another. Furthermore, their complexity

and lack of well-known tools let them only reach a relatively small community of expert

developers and hence their usage in applications has been rather limited.

On the other hand, the Internet is a compelling example of a scalable global network of

computers that interoperate across heterogeneous hardware and software platforms. On

top of the Internet, the Web illustrates well how a set of relatively simple and open stan-

dards can be used to build very flexible systems while preserving efficiency and scalability.

The cross-integration and developments of composite applications on the Web, alongside

with its ubiquitous availability across a broad range of devices (e.g., desktops, laptops,

mobile phones, set-top boxes, gaming devices, etc.), make the Web an outstanding can-

didate for a universal integration platform. Web sites do not offer only pages anymore,

but Application Programming Interfaces that can be used by other Web resources to cre-

ate new, ad-hoc and composite applications running in the computing cloud and being

accessed by desktops or mobile computers.

In this thesis we use the Web and its emerging technologies as the basis of a smart things

application integration platform. In particular, we propose a Web of Things application

architecture offering four layers that simplify the development of applications involving

smart things. First, we address device accessibility and propose implementing, on smart

things, the architectural principles that are at the heart of the Web such the Repre-

sentational State Transfer (REST). We extend the REST architecture by proposing and

implementing a number of improvements to fit the special requirements of the physical

world such as the need for domain-specific proxies or real-time communication.

In the second layer we study findability : In a Web populated by billions of smart things,

how can we identify the devices we can interact with, the devices that provide the right

service for our application? To address these issues we propose a lightweight metadata

format that search engines can understand, together with a Web-oriented discovery and

lookup infrastructure that leverages the particular context of smart things.

While the Web of Things fosters a rather open network of physical objects, it is very

unlikely that in the future access to smart things will be open to anyone. In the third

layer we propose a sharing infrastructure that leverages social graphs encapsulated by

social networks. We demonstrate how this helps sharing smart things in a straightforward,

user-friendly and personal manner, building a Social Web of Things.

Our primary goal in bringing smart things to the Web is to facilitate their integration into

composite applications. Just as Web developers and tech-savvies create Web 2.0 mashups

(i.e., lightweight, ad-hoc compositions of several services on the Web), they should be able

to create applications involving smart things with similar ease. Thus, in the composition

layer we introduce the physical mashups and propose a software platform, built as an

extension of an open-source workflow engine, that offers basic constructs which can be

used to build mashup editors for the Web of Things.

Finally, to test our architecture and the proposed tools, we apply them to two types

of smart things. First we look at wireless sensor networks, in particular at energy and

environmental monitoring sensor nodes. We evaluate the benefits of applying the pro-

posed architecture first empirically by means of several prototypes, then quantitatively

by running performance evaluations and finally qualitatively with the help several devel-

opers who used our frameworks to develop mobile and Web-based applications. Then,

to better understand and evaluate how the Web of Things architecture can facilitate the

development of real-world aware business applications, we study automatic identification

systems and propose a framework for bringing RFID data to the Web and global RFID

information systems to the cloud. We evaluate the performance of this framework and

illustrate its benefits with several prototypes.

Put together, these contributions materialize into an ecosystem of building-blocks for

the Web of Things: a world-wide and interoperable network of smart things on which

applications can be easily built, one step closer to bridging the gap between the virtual

and physical worlds.

Kurzfassung

Die Integration von digitalen Artefakten mit der physischen Welt ist ein zentrales Anliegen

des Pervasive Computing. Jüngste Entwicklungen im Bereich der eingebetteten Systeme

haben dazu geführt, dass wir in unserem täglichen Leben immer öfter mit “smarten”

Dingen – vernetzten, digital angereicherten Geräten – interagieren. Unsere Städte werden

durch drahtlose Sensor- und Aktuatornetze intelligenter und ermöglichen kontextsensi-

tives Verhalten. Neue Geräte wie intelligente Fernseher, Wecker, Kühlschränke oder dig-

itale Bilderrahmen machen unsere Wohnungen und Häuser energieeffizienter und unser

Leben angenehmer. Die Industrie profitiert von zunehmend intelligenteren Maschinen und

Robotern. Alltägliche Objekte, die mit Funkchips markiert oder mit Strichcodes verse-

hen sind, werden um virtuelle Informationsquellen erweitert und bieten neue Geschäfts-

möglichkeiten.

Als Folge dieser Entwicklung wird in den letzten Jahren im Rahmen des Internet der

Dinge nach Möglichkeiten gesucht, smarte Dinge miteinander zu vernetzen. Um das

Verbinden von Geräten zu vereinfachen, haben Forschung und Industrie eine Reihe von

Niedrigenergie-Kommunkationsprotokollen konzipiert und standardisiert. Eine Folge dieser

Entwicklungen war jedoch, dass sich auf der Anwendungsebene unter den verbundenen

Geräten immer mehr kleine, unvereinbare Inseln bildeten. Das Erstellen von Anwen-

dungen für smarte Dinge ist heute eine anspruchsvolle Aufgabe, die Fachwissen über

jede einzelne Plattform erfordert. Dies erschwert die Integration von vernetzten Alltags-

gegenständen in geräteübergreifenden Anwendungen. Um dieser Entwicklung entgegen-

zuwirken, erschienen immer mehr Integrationsarchitekturen die zwar zum Teil erfolgreich

eingesetzt werden, jedoch meistens nicht miteinander kompatibel sind. Ihre Komplex-

ität und der Mangel an unterstützenden Werkzeugen führen dazu, dass sie nur von einer

kleinen Gruppe von Experten verwendet werden können und damit ihr Nutzen für die

Erstellung von innovativen Anwendungen bisher eher begrenzt ist.

Das Internet ist ein überzeugendes Beispiel für ein skalierbares weltweites Computer-

netz, in dem heterogene Hardware- und Softwareplattformen ohne Integrationsprobleme

zusammenarbeiten. Des Weiteren zeigt das World Wide Web, wie durch die Nutzung

von vergleichbar einfachen und offenen Standards hochflexible Systeme gebaut werden

können, während die Effizienz und Skalierbarkeit des Internet weiterhin gewährleistet

sind. Aufgrund seiner breiten Verfügbarkeit auf verschiedenen Geräten (z.B. PCs, Lap-

tops, Mobiltelefone, Set-Top-Boxen, Spielkonsolen etc.) und seiner hohen Flexibilität ist

das Web ein hervorragender Kandidat für eine universelle Integrationsplattform. Webseit-

en bieten neben ihrem klassischen Inhalt auch Programmierschnittstellen, die von anderen

Web-Ressourcen verwendet werden können, um innovative Anwendungen in der Cloud zu

erstellen, auf die von Desktops oder mobilen Computern aus zugegriffen werden kann.

In dieser Arbeit schlagen wir das Web of Things als eine vierschichtige Applikationsin-

tegrationsarchitektur vor, die die Entwicklung von Anwendungen mit smarten Dingen

vereinfacht. Zunächst wenden wir uns dem Problem der Zugänglichkeit von Geräten zu

und schlagen die Umsetzung der Prinzipien, die das Herzstück des Web bilden (z.B. Rep-

resentational State Transfer, REST), auf smarten Dingen vor.

Des Weiteren haben wir die REST-Architektur erweitert, um die speziellen Anforderungen

der physischen Welt – etwa die Notwendigkeit für domänenspezifische Proxies oder für

Echtzeit-Kommunikation – zu berücksichtigen. Ausserdem betrachten wir die Frage der

Auffindbarkeit : Wie können in einem Netz von Milliarden von smarten Dingen diejenigen

Geräte, die für eine bestimmte Anwendung benötigte Dienste anbieten, gefunden werden,

und wie kann mit ihnen interagiert werden? Zur Lösung dieser Probleme schlagen wir

ein leichtgewichtiges, für Suchmaschinen lesbares, Metadaten-Format vor, das mit einer

Web-basierten Auffindungs- und Suchinfrastruktur zusammenarbeitet, die den besonderen

Kontext von smarten Dingen berücksichtigt.

Obwohl das Web of Things ein offenes Netz von physischen Objekten unterstützt, ist

es unwahrscheinlich, dass der Zugriff auf smarte Dinge in Zukunft für jedermann un-

eingeschränkt möglich sein wird. Aus diesem Grund bauen wir auf der dritten Ebene eine

Infrastruktur, die soziale Netzwerke verwendet, um das gemeinsame Nutzen von smarten

Dingen zu ermöglichen. Wir zeigen, wie ein solches social Web of Things die kollektive

Verwendung von physischen Artefakten auf benutzerfreundliche Art und Weise ermöglicht.

Das Hauptziel dieser Arbeit ist die Verwendung des Web, um die Integration von smarten

Dingen in kollaborativen Anwendungen zu vereinfachen. Dadurch ermöglichen wir Weben-

twicklern und anderen Personen mit guten Computerkenntnissen, innovative, auf smarten

Alltagsdingen basierende, Anwendungen zu entwickeln – so, wie sie heute Web 2.0-Mashups

(leichtgewichtige, ad hoc aus verschiedenen Web-Diensten zusammengesetzte Applikatio-

nen) erstellen. Um dieses Ziel zu erreichen, stellen wir auf einer weiteren Ebene (Com-

position Layer) das Konzept von physischen Mashups vor. Wir schlagen ausserdem eine

Softwareplattform vor, die als Erweiterung eines quelloffenen Workflow-Systems konzip-

iert wurde und Grundkonstrukte bereitstellt, um Mashup-Umgebungen für das Web of

Things zu erstellen.

Wir verwenden zwei verschiedene Arten von smarten Dingen, um unsere vorgeschlagene

Architektur und die dazugehörigen Werkzeuge zu testen: Zuerst betrachten wir drahtlose

Sensorknoten, insbesondere solche, die für Umwelt- und Energieüberwachung eingesetzt

werden. Wir bewerten die mit dem Einsatz unserer Architektur zusammenhängenden

Effekte empirisch in verschiedenen Prototypen, quantitativ über Leistungsmessungen und

qualitativ mithilfe von mehreren Entwicklern, die unsere Systeme bei der Erstellung von

mobilen Applikationen und Webanwendungen einsetzen. Um ausserdem zu verstehen, wie

das Web of Things die Entwicklung von intelligenten Geschäftsanwendungen vereinfachen

kann, betrachten wir Systeme zur automatischen Identifizierung von Gegenständen und

schlagen ein System vor, mit dem RFID-Daten in das World Wide Web und globale

RFID-Informationssysteme in die Cloud integriert werden können. Wir demonstrieren

das Leistungsverhalten dieses Systems anhand von verschiedenen Prototypen.

Zusammengefasst liefern unsere Beiträge ein Ökosystem von Bausteinen für ein globales

Netz von interoperablen smarten Dingen, die das Erstellen von geräteübergreifenden An-

wendungen vereinfachen, welche die Kluft zwischen der virtuellen und der physischen Welt

überbrücken.

Résumé

L’intégration du digital avec le réel reste l’une des préoccupations principales de l’informa-

tique ubiquitaire et pervasive. De plus, les récents développements en informatique

embarquée ont pour conséquence un déploiement croissant d’objets intelligents. Nous

définissons les objets intelligents (appelés smart things dans cette thèse) comme des objets

du monde réel doués d’une capacité de communication. Parmi les domaines d’application

de ces objets, on peut citer: les réseaux de capteurs déployés dans nos villes modernes,

les rendant plus intelligentes et adaptatives ou la domotique permettant à nos nouveaux

téléviseurs, radio-réveils, frigidaires ou cadres à photos de nous rendre la vie plus facile

et d’optimiser notre communication ou consommation d’énergie. De façon similaire,

l’industrie bénéficie de robots et de machines de plus en plus intelligents et les biens de

consommation sont équipés d’étiquettes électroniques ou de code-barres liés à des sources

d’information virtuelles permettant de nouveaux cas d’utilisation.

Forte de l’engouement pour ces nouveau systèmes, la recherche dans le domaine de

l’Internet des objets explore de nouvelles manières de connecter ces objets ensemble. Afin

de faciliter ces connections, la recherche et l’industrie ont proposé plusieurs protocoles

de communication. Toutefois, bien que ces protocoles facilitent la communication bas-

niveau, les objets intelligents forment encore des ı̂lots isolés les uns des autres au niveau

applicatif. Par conséquent, la création d’applications pour des objets intelligents reste

presque exclusivement accessible à des spécialistes du domaine de l’embarqué tout comme

la création de services composites utilisant des objets intelligents. Pour contrer cette com-

plexité, plusieurs plateformes orientées services proposent une architecture d’intégration.

Toutefois, bien qu’implémentées avec succès sur quelques appareils et machines, ces plate-

formes ne sont souvent pas compatibles entre elles et leur complexité les rend difficiles

d’accès aux novices.

En revanche, l’Internet se présente comme un très bon exemple de réseau global d’ordina-

teurs hétérogènes intégrés avec succès. Au-dessus de l’Internet, le Web quant à lui illustre

comment un petit nombre de standards ouverts et relativement simples facilitent la con-

struction d’applications complexes tout en préservant une certaine efficacité. De plus, la

capacité du Web à supporter la création d’applications composites et interopérables ainsi

que sa disponibilité pour une large palette d’appareils (p.ex., PC, portables, téléphones,

set-top boxes, consoles de jeu, etc.) en font un candidat idéal pour une plateforme

d’intégration universelle. En effet, les sites Web ne sont plus de simples pages mais

de véritables services qui peuvent être réutilisés en combinaison avec d’autres sites afin

de créer dynamiquement de nouvelles applications s’exécutant en ligne et dont les clients

sont de natures diverses.

Dans cette thèse nous utilisons le Web et ses technologies émergentes comme base pour

une plateforme applicative intégrant les objets intelligents. Au sein de l’architecture ap-

plicative du Web des objets, nous proposons quatre couches permettant de simplifier la

création d’applications. La première couche traite de l’accès aux objets intelligents. Nous

y dissertons de l’adaptation et de l’implémentation dans le monde des objets des principes

architecturaux du Web. En particulier nous étudions l’utilisation du “Representational

State Transfer” (REST). Nous étendons l’architecture REST en proposant certaines adap-

tations afin de prendre en compte les contraintes des objets intelligents. A titre d’exemple,

nous étudions l’utilisation de passerelles et proposons des modèles de communication en

temps réel.

Dans la deuxième couche nous étudions la recherche et la localisation des objets. Dans

un Web peuplé de milliards d’objets, comment pouvons-nous retrouver celui fournissant

le service le plus adapté à notre application? Afin de répondre à cette question nous pro-

posons un modèle léger de méta-données que les moteurs de recherche peuvent interpréter.

De plus, nous implémentons un système de registre permettant d’effectuer des recherche

de services en fonction du contexte particulier des clients et des objets intelligents.

Le Web des objets tel que nous le présentons dans cette thèse promouvoit un réseau global

et ouvert d’objets intelligents. Pourtant, il est peu probable que nous souhaitions laisser

l’accès libre à tous nos objets au reste du monde. Dans la troisième couche nous adressons

ce problème en proposant une infrastructure permettant le partage d’objets sur le Web.

Cette infrastructure utilise les réseaux sociaux afin de permettre un protocole de partage

facilement utilisable et basé sur nos connections personnelles, créant ainsi un Web social

des objets.

Notre but principal lorsque nous proposons d’amener les objets au plus proche du Web est

de faciliter leur utilisation dans des applications composites. Tout comme les aficionados

de la technologie et du Web créent facilement des “mashups” (càd. des applications

légères et dynamiques utilisant plusieurs services du Web), ils devraient pouvoir en faire

de même avec les objets intelligents. En conséquence, la troisième couche traite de la

composition de services et introduit la notion de mashups physiques. Nous y proposons

une plateforme logicielle construite comme une extension d’un gestionnaire de processus

et offrant des éléments de langage permettant de créer des éditeurs de mashup pour les

objets intelligents.

Finalement, afin de d’évaluer l’architecture et les outils proposés, nous nous attardons sur

deux types d’objets intelligents. Tout d’abord nous considérons les réseaux de capteurs

environnementaux. Les bénéfices de l’utilisation du Web des objets y sont testés de façon

empirique par le biais de plusieurs prototypes, de façon quantitative à l’aide d’évaluations

de performances, puis de façon qualitative par le biais d’études avec des développeurs

utilisant ces approches. Ensuite, nous étudions le cas des systèmes d’identification par

ondes radio (RFID) et proposons une structure permettant d’amener les données et ap-

pareils RFID sur le Web. Nous évaluons les performances de cette structure et illustrons

ses bénéfices par le biais de plusieurs prototypes.

Mises ensemble, les contributions de cette thèse proposent les fondations du futur Web

des objets: un réseau d’objets et de services global et interopérable au-dessus duquel des

applications peuvent être créées avec aisance. Cette thèse permet donc de diminuer le

fossé qui existe encore entre notre monde de tous les jours et le monde virtuel.

Acknowledgements

Earning a Ph.D. degree would be an impossible journey without the support of professors,

peers and loved ones. Here, I would like to thank a few of the ones that supported me

over the four years of my Ph.D. and beyond. My first and deepest gratitude goes to

Prof. Friedemann Mattern. His pioneering work on the Internet of Things inspired me

profoundly and his guidance, support and interest in my research were great sources of

motivation.

Even if this thesis reflects my views and research, it is the outcome of a collaborative

effort. Instrumental to this thesis were the fruitful collaborations with Erik Wilde at UC

Berkeley and in particular with Vlad Trifa at ETH Zurich. Vlad and I shared the most

creative (and often funniest!) moments. Over the years, he became one of my closest

friends and his support was key to my success. Thanks Vlad!

I had the chance to split my Ph.D. time between research at ETH and SAP Research

Zurich where further collaborations and friendships emerged. At ETH for example, learn-

ing the art of user studies with my office-mate and friend Iulia Ion or working with Simon

Mayer and his unlimited creativity for Web of Things prototypes. I also heartily want

to thank my other colleagues at ETH: Robert Adelmann, Alexander Bernauer, Christian

Beckel, Philipp Bolliger, Steve Hinske, Wilhelm Kleiminger, Matthias Kovatsch, Marc

Langheinrich, Benedikt Ostermaier, Matthias Ringwald, Christof Roduner, Kay Römer,

Silvia Santini, Gábor Sörös and Markus Weiss. I further want to extend my gratitude

to all the students who contributed, piece by piece, to building the Web of Things as we

present it in this thesis: Azu Aguilar, Bettina Dober, Mathias Fischer, Soojung Hong,

David Karam, Mathias Mueller, Lukas Naef and Thomas Pham.

At SAP, I would first like to thank the SOCRADES and SENSEI team-members for

our collaborations: Oliver Bäcker, Markus Eurich, Stefan Haller, Stamatis Karnouskos,

Moritz Köhler, Luciana Moreira Sá de Souza, Frederic Montagut, Patrik Spiess, Domnic

Savio and Claudia Villalonga. I also enjoyed the very spontaneous collaborations with

Ivan Delchev, Felix von Reischach and Andreas Budde. I extend my thank you to all

friends and colleagues from SAP Research and especially to my manager Uli Eisert for

his valuable support.

I found a significant source of inspiration for my thesis in the world of product identifica-

tion and RFID. Hence, I am thankful to Prof. Elgar Fleich and his team for letting me

the chance to work as a research associate of the Auto-ID labs in Zurich for more than

a year. Furthermore, I want to express my deepest gratitude to Prof. Sanjay Sarma and

his team who welcomed me at the MIT Auto-ID labs. They treated me as one of theirs

from day one on and for the following six months of very inspiring discussions and fruitful

collaborations.

I was also lucky enough to be able to count on several mentors. In particular, Christian

Floerkemeier whose guidance first at MIT and then ETH was truly valuable. His constant

motivation, insights in the business of the Internet of Things and pragmatic view of

research helped me to a level he probably does not suspect. Furthermore, I need to thank

my two long-term mentors Olivier Liechti and Patrik Fuhrer whose guidance, sharp advices

and jokes were always a source of pure motivation. I also want to thank Jacques Pasquier,

Hans Gellersen and Beat Hirsbrunner for their very valuable advices and support at several

important steps of my career.

Building a community while working on this thesis was a tremendous experience and I

would like to heartily thank all the contributors, community members and readers of the

Web of Things blog1 as well as all the organizers, PC members and participants of the

WoT workshop series2.

Last but not least I want to express my deepest gratitude to my family: my sister and

best friend Véronique, my brother-in-law Steven, and to the rest of the family for their

tremendous love and support over the years. To Rachel who, thanks to her love, patience

and support, was the best partner a Ph.D. student could dream of. To my mother who

always believed in me and motivated me to study. To my father Jean-Pierre whose

humbleness, patience, dedication and taste for all things computers were and will always

be a model for me. Thank you.

1See www.webofthings.org
2See www.webofthings.org/wot

www.webofthings.org
www.webofthings.org/wot

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contributions . 4

1.2.1 The Web of Things: A Web-Oriented Service Platform for Smart Things 4

1.2.2 Case Studies . 5

1.3 Thesis Outline . 7

2 The Web of Things 9

2.1 Device Accessibility Layer . 12

2.1.1 A Web API for Smart Things . 13

2.1.2 Implementation Strategy: Connecting Things to the Internet 22

2.1.3 Pushing Data from Smart Things and Smart Gateways 26

2.1.4 Summary and Applications . 32

2.2 Findability Layer . 33

2.2.1 Search Engines and the Internet of Things 33

2.2.2 A Web-Oriented Discovery and Lookup Infrastructure 44

2.2.3 Evaluation . 53

2.2.4 Summary and Applications . 59

2.3 Sharing Layer . 60

2.3.1 Requirements for a WoT Sharing Platform 60

2.3.2 Social Access Control: An Architecture for the Social Web of Things . 61

2.3.3 Retrieving the Owners’ Social Graphs 63

2.3.4 Registering and Sharing Smart Things and Smart Gateways 66

2.3.5 Accessing Shared Smart Things . 68

2.3.6 Physical Feeds Aggregation . 70

2.3.7 Software Architecture . 70

2.3.8 Friends and Things: A Social WoT Web Application 74

2.3.9 Summary and Applications . 75

2.4 Composition Layer . 76

2.4.1 Physical Mashups in the Web of Things 76

2.4.2 From Web 2.0 Mashups Editors to Physical Mashup Editors 78

2.4.3 Adapting a Web 2.0 Mashup Editor to the Web of Things 78

2.4.4 Requirements for Physical Mashup Editors 82

2.4.5 A Platform for Physical Mashups Editors 83

2.4.6 System Architecture . 84

2.4.7 Discussion and Summary . 89

2.5 Developers Perspectives on the WS-* Alternative Architecture 90

2.5.1 Methodology . 91

2.5.2 Results . 93

2.6 Discussion and Summary . 98

2.7 Related Work . 99

2.7.1 Device Accessibility Layer . 100

2.7.2 Findability Layer . 101

2.7.3 Sharing Layer . 104

2.7.4 Composition Layer . 105

2.8 Summary . 107

3 Bringing Wireless Sensor and Actuator Networks to the Web 109

3.1 WoT General Purpose Sensing Platform . 110

3.1.1 Device Accessibility Layer with End-to-End HTTP 111

3.1.2 Findability Layer . 120

3.2 WoT Smart Metering . 123

3.2.1 Implementing the Device Accessibility Layer 124

3.2.2 Applications . 128

3.2.3 Qualitative Evaluation . 130

3.3 Sharing Layer . 133

3.3.1 Quantitative Evaluation . 136

3.4 Composition Layer: Cross-Device Physical Mashups 138

3.4.1 The Ambient Meter . 138

3.4.2 With Clickscript . 140

3.4.3 Energy-Aware Mobile Mashup Editor 142

3.5 Related Work . 148

3.6 Discussion and Summary . 149

4 Resource-Oriented RFID Networks 151

4.1 The EPC Network in a Nutshell . 153

4.1.1 Identifying EPC Numbers . 155

4.1.2 Standards for Capturing EPC Events 155

4.1.3 Sharing EPC Events . 156

4.2 A Cloud-Based Virtual Infrastructure for the EPC Network 156

4.2.1 Pain-Point: Complex Backend Deployment and Maintenance 157

4.2.2 Virtualization Blueprint . 158

4.2.3 Cloud Computing: Utility Computing Blueprint 158

4.3 Device Accessibility Layer . 159

4.3.1 Pain-Point: Complicated Applications Developments 160

4.3.2 EPCIS Webadapter . 160

4.3.3 Pushing from Readers to Web Clients 167

4.3.4 Case-Study: EPC Find . 168

4.4 Sharing Layer . 174

4.4.1 Pain-Point: Lack of Access Control 174

4.4.2 System Architecture . 175

4.5 Composition Layer: Auto-ID Physical Mashups 177

4.5.1 Pain-Point: Tedious Business Case Modeling and Cross Systems Inte-

gration . 177

4.5.2 Mobile Tag Pusher . 177

4.5.3 The EPC Dashboard Mashup . 179

4.5.4 RFID Physical Mashup Editor . 182

4.6 Evaluating the EPCIS Webadapter . 185

4.7 Related Work . 187

4.8 Discussion and Summary . 189

5 Conclusions and Outlook 193

5.1 Contributions . 193

5.2 Discussion and Future Challenges . 194

Bibliography 197

Chapter 1
Introduction

Contents

1.1 Motivation . 1

1.2 Contributions . 4

1.2.1 The Web of Things: A Web-Oriented Service Platform for Smart

Things . 4

1.2.2 Case Studies . 5

1.3 Thesis Outline . 7

1.1 Motivation

Pervasive and ubiquitous computing have a long-lasting tradition of looking into inte-

gration of physical objects with the digital world. Recent developments in the field of

embedded devices have led to smart things increasingly populating our daily life, slowly

but steadily forming interconnected networks of physical objects: Sensor nodes are net-

worked together to create environmental monitoring applications, making cities smarter

and dynamically adapting to their context [196]. Home appliances such as TVs, alarm

clocks, digital picture frames and Hi-Fi systems can communicate with each other to

offer integrated services such as cross-devices multimedia experiences, smarter HVAC

(Heating, Ventilating, and Air Conditioning) systems or more energy aware and efficient

homes [113, 91, 196, 133, 134]. RFID-tagged objects in stores and along supply-chains

allow manufacturers, suppliers and service providers to optimizes their operations [16, 55].

Products get digital identities through barcodes or RFID tags and offer unprecedented

business opportunities [56, 57, 16, 133].

To facilitate these connections, research and industry have come up with a number of low-

power physical and transport network protocols such as Zigbee, Bluetooth, IEEE 802.15.4

or, more recently, low-power WiFi and 6LoWPAN [98, 99] [244]. However, while these

2 Introduction

Figure 1.1: Smart things are digitally enhanced objects and devices that have communication
capabilities. They range from machines and home appliances to wireless sensor and actuator
networks as well as tagged every-day objects.

developments help towards integrating smart things at the network layer, at the applica-

tion layer, embedded devices still form multiple, small, incompatible islands: Developing

applications using them remains a challenging task that requires expert knowledge of each

smart things platform [36, 161]. As a consequence, smart things remain hard to integrate

into composite applications.

Several service platforms propose a standardized integrated architecture to facilitate the

cross-integration of smart things. Standards such as UPnP and DNLA, Jini or OSGi

successfully address concerns such as service discovery and registration. However, these

systems are not fully compatible with one another and their complexity and lack of well-

known tools let them only reach a relatively small community of expert developers [35].

Hence their direct usage for innovative applications (e.g., mobile or Web-based applica-

tions) has been rather limited to date.

In the world of enterprise computing, interoperability and loose-coupling at the business

application layer is achieved using WS-* Web services [10]. WS-* Web services, some-

times called “Big Web services” [154], are based on two main XML formalisms: WSDL

and SOAP as well as a set of additional standards (WS-Addressing, WS-Security, WS-

Discovery, etc.). With the goal of facilitating the integration of smart things with appli-

cations, several research initiatives look at adapting these services to the real-world [157,

36, 104, 79, 161]. This research led to lighter forms of WS-* services targeted towards

real-world applications such as DPWS (Device Profile for Web Services) [104] or DNLA,

both direct evolutions of UPnP.

1.1. Motivation 3

The ultimate goal of these initiatives can be summarized as trying to create a loosely-

coupled ecosystem of services for smart things. That is, a widely distributed platform

in which the services provided by smart things can be easily composed to create new

applications and use-cases. As shown in several research projects, the WS-* approach is

an improvement over the proprietary protocols traditionally used in this field [36, 104, 35],

however the approach also has important shortcomings. First, WS-* standards are rather

verbose and heavy in terms of required bandwidth, memory and CPU. This makes them

challenging to implement on devices with limited resources [214, 154]. More importantly,

despite their name, Web services actually use the Web as a transport layer and not as an

application architecture [153] making them harder to use and integrate with the World

Wide Web.

The Internet is a compelling example of a scalable global network of computers that in-

teroperate across heterogeneous hardware and software platforms. On top of the Internet,

the Web illustrates well how a set of relatively simple and open standards (e.g., HTTP,

HTML, XML, JSON, etc.) can be used to build very flexible systems while preserving effi-

ciency and scalability. The cross-integration and developments of composite applications

on the Web, alongside with its ubiquitous availability across a broad range of devices (e.g.,

desktop computers, laptops, mobile phones, set-top boxes, gaming devices, etc.), make

the Web an outstanding candidate for a universal integration platform [81].

Hence, as more and more devices are getting connected to the Internet, the next logical

step is to use the World Wide Web and its associated technologies as a platform for

smart things. In the Web of Things (WoT), we are considering smart things as first-

class citizens of the Web and position the WoT as a refinement of the Internet of Things

(IoT) [133, 134, 170] by integrating smart things not only into the Internet (the network),

but into the Web (the application layer).

To achieve this integration, we propose to reuse and adapt patterns commonly used for

the Web. We embed Web servers [99, 42, 76] on smart things and apply the REST

(Representational State Transfer) architectural style [50, 160] to the physical world. The

essence of REST is to focus on creating loosely coupled services on the Web so that

they can be easily reused [153]. REST is actually core to the Web and uses URIs for

encapsulating and identifying services on the Web. In its Web implementation it also uses

HTTP as a true application protocol. It finally decouples services from their presentation

and provides mechanisms for clients to select the best possible formats. This makes

REST an ideal candidate architecture to build a universal API for smart things. As the

“client-pull” interaction model of HTTP does not fully match the needs of event-driven

IoT applications, we further suggest the use of syndication techniques such as Atom and

some of the recent real-time Web technologies to enable smart things push interactions.

In this thesis, we propose a Web of Things Architecture: a Web-based distributed appli-

cation platform for smart things. As a consequence of the proposed architecture, smart

things and their functionality get transportable URIs that one can exchange, reference

on Web sites and bookmark. Smart things are also linked together enabling discovery

simply by browsing. The interaction with smart things can also almost entirely happen in

4 Introduction

a browser, a tool that is ubiquitously available and that most users are familiar with [110].

Applications can be built upon them using well-known Web languages and technologies.

Furthermore, smart things can benefit from the mechanisms that made the Web scalable

and successful such as caching, load-balancing, indexing and searching.

In this thesis, rather than looking at one particular challenge, we take a holistic view,

looking also at the bigger picture. We propose a number of building-blocks towards

creating a distributed deployment of smart things which fosters serendipitous re-use of

smart things. Our goal is to create a participatory WoT where communities and users can

create opportunistic applications, i.e., composite applications easily created by re-using

existing services or devices. Just as people create Web mashups [90] involving Web 2.0

services, they should be able to create Physical Mashups [81] mixing services from the

real and virtual worlds together.

1.2 Contributions

In this section we outline the main contributions of the thesis towards an Internet of

Things supporting opportunistic applications or physical mashups. First, we present the

Web of Things architecture. We then apply it systematically to two domains: Wireless

Sensor and Actuator Networks and Auto-ID (Automatic Identification) networks.

1.2.1 The Web of Things: A Web-Oriented Service Platform for

Smart Things

Our first contribution is the Web of Things Architecture. For this, we build on top of

network connectivity and focus on the application layer. We take a systematic approach

required to achieve the mashability of smart things with the Web. We identify four

layers: accessibility, findability, sharing and composition. We study how each layer can

be designed and implemented as a service on the Web using Web languages and patterns.

We begin by addressing device accessibility. We propose to use the REST architectural

style [50] and study its applicability to smart things [81]. For this part, we build upon

several projects in the field of ubiquitous computing [110, 39, 126] and look at a system-

atic application of the REST principles and their current Web implementation in HTTP

to adapt the architecture to the needs of smart things. We then discuss two ways of

integrating smart things to the Internet and the Web. Either directly or through the

use of enhanced reverse proxies that we call Smart Gateways [193, 77]. As a result,

smart things become easier to build upon. Popular Web languages (e.g., HTML, Python,

JavaScript, PHP) can be used to easily build applications involving smart things and

users can leverage well-known Web mechanisms (e.g., browsing, searching, bookmarking,

caching, linking) to interact and share these devices. We illustrate this by means of a user

study.

1.2. Contributions 5

We then study the findability [144] of smart things: once they are connected to Web, how

does one find the services they offer to integrate them into composite applications? In

particular, we propose a discovery and lookup infrastructure for the Web of Things and

describe smart things according to a metadata model that we implement using semantic

annotations based on Microformats [254]. Furthermore, we propose, implement and eval-

uate extending user search queries for smart things services based on a new process [70]

using related keywords extracted from services on the Web (e.g., Wikipedia, Yahoo Web

Search, etc.) [77].

Using smart things in composite applications requires a scalable sharing mechanism that

lets owners of smart things manage access control in a convenient and straightforward way.

We introduce the Social Access Controller [71], a platform that relies on social networks

(e.g., Facebook, LinkedIn, Twitter, etc.) and their open APIs (e.g., OpenSocial) to enable

owners to leverage the social structures in place for sharing smart things with others.

Finally, we discuss the composition of smart things on the Web. We introduce the notion

of Physical Mashups where services from the Web are serendipitously composed with

services offered by smart things. We discuss a number of requirements towards a Physical

Mashups Framework upon which Physical Mashup editors can be built and propose an

implementation as an open service on the Web [68].

These four layers form the basis of our Web of Things Architecture. Not every Internet of

Things application that is to be ported to the Web will require the four of them, but they

present a model that can be used towards a looser-coupling, better and easier integration

of the physical and the virtual worlds thanks to Web technologies.

1.2.2 Case Studies

Our second and third contributions are two domains in which we apply the Web of

Things Architecture in three different case studies. We first look at the field of Wireless

Sensor and Actuator Networks and then at Auto-ID networks.

Bringing Wireless Sensors and Actuators Networks to the Web

In the last decade, important progress in the field of embedded systems has given birth to a

myriad of tiny computers to which virtually any type of sensors/actuators can be attached.

By inter-connecting these devices using low-power wireless communication, a whole new

world of possible applications is unveiled. Networks of physically distributed computers,

usually called Wireless Sensor Networks (WSN), are valuable tools for monitoring the

physical world [196]. Likewise the same type of devices can also be used for actuating the

world, such as controlling security systems, traffic lights, etc. These networks are then

called Wireless Sensor and Actuator Networks1

1We will subsequently use the term Wireless Sensor Network (WSN) for both, pure sensor and sen-
sor/actuator networks.

6 Introduction

Unfortunately, most projects using WSNs are based on different – and usually incompat-

ible – software and hardware platforms [36, 104, 35, 6]. Within such an heterogeneous

ecosystem of devices, the development of simple applications still requires special skills

and a substantial amount of time [146]. Moreover, for each new deployment, a large

amount of work must be devoted to re-implement basic functions and application-specific

user interfaces, which is a waste of resources that could be used by developers to focus

on the application logic. Ideally, developers should be able to quickly build applications

only by recombining ready-made building-blocks.

Hence, the world of WSNs is an interesting case-study for the proposed approach as

adopting a simple application architecture for these devices contributes to foster their

wider usage and applicability. Our contribution here is to look at two WSN platforms

and evaluate the validity of our approach by integrating them to the Web based on the

Web of Things Architecture.

Facilitating General Purpose Sensing Applications We first look at an all purposes

WSN platform called Sun SPOTs [273]. We design, implement and evaluate how each

layer of the model can be leveraged to make the developments on top of this platform

as accessible as simple Web development is. With this platform we also evaluate the

performances when using Web protocols directly on WSNs using embedded Web servers.

Facilitating Energy Monitoring and Control Applications Rising global energy de-

mand and the limitation of natural resources has led to increased thoughts on residential

energy consumption. A necessary step towards energy conservation is to provide timely

and fine-grained consumption information. This allows for users to identify energy saving

opportunities and possibly adjust their behavior to conserve energy [135].

Currently available off-the-shelf products that depict the energy consumption in near real-

time are helpful, but do not fully meet the user needs as they have high usage barriers and

often require complex installations [60]. Furthermore, they are not able to provide the

most compelling feedback [53] since they lack the ability to provide an appliance-specific

break down of the energy consumption and are not able to compare the consumption

of individual devices in an appealing manner. Finally, they do not meet the needs of

software developers as they do not offer open APIs, and developing applications on top

of them is rather cumbersome.

Hence, we propose an easy to use, deploy and develop upon device-level energy monitoring

platform called Energie Visible [83, 81, 204]. It is based on an off-the-shelf smart power

outlet that we seamlessly integrate into the Web by systematically applying the Web

of Things Architecture. We demonstrate how this facilitates, on the one hand-side, the

deployment and usage by home users and, on the other hand-side, the development of

novel applications for developers. We present the design and implementation of a Web

user interface. We further evaluate the suitability of our approach with the help of a

pilot deployment and feedback from several developers using our framework in research

1.3. Thesis Outline 7

projects and prototypes such as a mobile phone energy monitoring application.

Facilitating the Development and Deployment of Distributed Auto-ID Applications

The RFID (Radio Frequency IDentification) [169, 52] standards community has developed

a number of communication interfaces and software standards to provide interoperability

across different RFID deployments. This extensive standards framework, known as the

EPC (Electronic Product Code) Network [170], covers aspects such as reader-to-tag com-

munication, reader configuration and monitoring, tag identifier translation, filtering and

aggregation of RFID data, and persistent storage of application events. While there are

in total fifteen standards that make up the EPC Network framework, the air interface

protocol known as EPCglobal UHF Gen2 has seen the most adoption – both in large scale

supply chain applications as well as niche RFID deployments.

The adoption of the software standards within the EPC Network has been significantly

slower [172, 72]. The deployment of RFID applications that implement the EPC Network

standards often remains complex and cost-intensive mostly because they typically involve

the deployment of rather large and heterogeneous distributed systems. As a consequence,

these systems are often only suitable for big corporations and large implementations and

do not fit the limited resources of small to mid-size businesses and small scale applications

both in terms of required skill-set and costs.

While there is most likely no universally available solution to these problems, the success

of the Web in bringing complex, distributed and heterogeneous systems together through

the use of simple design patterns appears as a viable approach to address these challenges.

Thus, our contribution in this context is to study the pain points of RFID applications

and systematically apply the Web of Things model [74, 72].

In particular, we show how Cloud Computing, RESTful interfaces and the real-time web

as well as Physical Mashups can simplify application development, deployments and main-

tenance in a common RFID application. Our analysis also illustrates that RFID/EPC

Network applications are an interesting fit for WoT technologies and that further research

in this field can significantly contribute to making real-world applications in this domain

less complex and cost-intensive.

1.3 Thesis Outline

The remainder of this thesis is structured as follow: Chapter 2 presents the Web of

Things Architecture. We expose the required components for a successful Web-integration

of smart things. We further propose a number of optional components that help to create

a Web ecosystem in which Physical Mashups are made possible. In particular, we discuss

device accessibility, findability, sharing and composition. In this part of the thesis, we

also review an alternative architecture and present a user-study in which we build upon

8 Introduction

the developers’ experience to provide guidelines on making the right architectural decision

for IoT projects.

In Chapter 3 we apply the architecture to the domain of Wireless Sensor Networks. In

the first part we discuss the integration of a general purpose sensing platform. We then

present the benefits of the Web of Things Architecture when applied to smart energy

monitoring and control. Based on our open-sourcing of the platform, we also discuss a

pilot deployment and illustrate the ease of use and integration that the Web of Things

Architecture provides.

In Chapter 4 we show how the architecture can be applied to the Auto-ID and RFID

domain. We apply it to several components of the EPC Network and illustrate, by means

of prototypes and studies, how the Web of Things Architecture has the potential to

simplify and foster developments in the RFID domain.

Finally, in Chapter 5 we provide an summary of our contributions. Taking a step back, we

also discuss some of the open challenges and interesting future directions that we believe

the Internet of Things and Web of Things domains will have to take.

Chapter 2
The Web of Things

”Any sufficiently advanced technology is indistinguishable from magic”

Arthur C. Clarke

Contents

2.1 Device Accessibility Layer . 12

2.1.1 A Web API for Smart Things . 13

2.1.2 Implementation Strategy: Connecting Things to the Internet . . . 22

2.1.3 Pushing Data from Smart Things and Smart Gateways 26

2.1.4 Summary and Applications . 32

2.2 Findability Layer . 33

2.2.1 Search Engines and the Internet of Things 33

2.2.2 A Web-Oriented Discovery and Lookup Infrastructure 44

2.2.3 Evaluation . 53

2.2.4 Summary and Applications . 59

2.3 Sharing Layer . 60

2.3.1 Requirements for a WoT Sharing Platform 60

2.3.2 Social Access Control: An Architecture for the Social Web of Things 61

10 The Web of Things

2.3.3 Retrieving the Owners’ Social Graphs 63

2.3.4 Registering and Sharing Smart Things and Smart Gateways 66

2.3.5 Accessing Shared Smart Things 68

2.3.6 Physical Feeds Aggregation . 70

2.3.7 Software Architecture . 70

2.3.8 Friends and Things: A Social WoT Web Application 74

2.3.9 Summary and Applications . 75

2.4 Composition Layer . 76

2.4.1 Physical Mashups in the Web of Things 76

2.4.2 From Web 2.0 Mashups Editors to Physical Mashup Editors . . . 78

2.4.3 Adapting a Web 2.0 Mashup Editor to the Web of Things 78

2.4.4 Requirements for Physical Mashup Editors 82

2.4.5 A Platform for Physical Mashups Editors 83

2.4.6 System Architecture . 84

2.4.7 Discussion and Summary . 89

2.5 Developers Perspectives on the WS-* Alternative Architecture . . 90

2.5.1 Methodology . 91

2.5.2 Results . 93

2.6 Discussion and Summary . 98

2.7 Related Work . 99

2.7.1 Device Accessibility Layer . 100

2.7.2 Findability Layer . 101

2.7.3 Sharing Layer . 104

2.7.4 Composition Layer . 105

2.8 Summary . 107

In this chapter, we present the Web of Things Architecture. We describe the four layers

it is based on: the Device Accessibility Layer, Findability Layer, Sharing Layer and

Composition Layer as shown in Figure 2.1.

The overall goal of this architecture is to facilitate the integration of smart things with

existing services on the Web and to facilitate the creation of Web applications using smart

things. In particular, we formulate the following general requirements [77, 72] we would

like for our architecture to fulfill:

1. It should lower the entry barrier for developers and foster rapid prototyping. This

allows a wider range of developers, tech-savvy users (technologically skilled people)

or researchers to develop on top of smart things and contributes to fostering third

party (public) innovation using smart things.

11

Figure 2.1: The four layers of the Web of Things architecture: Accessibility, Findability,
Sharing, Composition. Applications can be built on top of each layer, but as we go up the
layers they become more accessible to a broader community of developers and users. The figure
provides an overview of the deliverables of this thesis. On the left-side are the architectural
building-blocks. On the right-side the applications and prototypes.

12 The Web of Things

2. It should offer direct access for users. Users should be able to access and use smart

things without the need for installing additional software. From a Web browser (or

an HTTP library in the case of a software client) they should further have means

to directly extract, save and share smart things data and services. This ensures the

usability of the architecture and minimizes the entry barriers for users.

3. It should offer a lightweight access to smart things data. This enables creating

applications in which real-world data are directly consumed by resource-constrained

devices such as mobile phones or wireless sensor nodes without requiring dedicated

software on these devices.

Unlike traditional layered architectures such as the OSI (Open Systems Interconnection)

model [34], the layers in the presented Web of Things Architecture are not strictly defined

and do not literally hide the previous layers. Rather, the architecture should be seen as

an ecosystem of different services that ease, step by step, the creation of applications

using smart things. The architecture proposes services that address each layer required

to consider smart things as first-class citizen of the Web. However, applications can be

built on top of the services offered by the implementation of each layer or on top of a

combination of them depending on the requirements of a particular use-case.

As illustrated on Figure 2.1 the development of applications using smart things on top

of their native operating systems, protocols and libraries still requires specific skills and

is, for the greater part, only accessible to embedded systems experts [146]. The goal of

each layer of the Web of Things Architecture is first to bring this development closer

to Web developers and technically skilled hobbyists [90]. Then, it brings the usage and

development of Internet of Things applications closer to end-users, enabling them to create

simple applications tailored to their needs.

In this chapter, we describe each layer. Focusing first on the architecture of the com-

ponents in these layers, we then look at the services and APIs they offer and propose

implementations of these services. The proposed components are evaluated in a generic

way in this chapter. These evaluations are complemented by Chapter 3 and Chapter 4,

where we apply the architecture to two specific domains: Wireless Sensor Networks and

RFID tagged-objects and evaluate it within these domains.

2.1 Device Accessibility Layer

In the first layer of our Web of Things Architecture (see Figure 2.1), we address the access

to smart things: How can we, from an application point of view, enable a consistent access

2.1. Device Accessibility Layer 13

to all kinds of connected objects?

Our proposal is to integrate things to the core of the Web, making them first-class citi-

zens just as Web pages are. For this, we use the REST architectural style and its Web

implementation. In the first part of this section, we illustrate how we can model the

functionality and services of smart things using the RESTful principles. Then, we discuss

the integration of devices that are not capable of connecting to the Internet. Finally, we

propose a way for smart things to push data to clients rather than having them constantly

polling data. Parts of this section have been published in [78, 81, 79, 76].

2.1.1 A Web API for Smart Things

We begin by briefly summarizing the principles of RESTful architectures. We then

focus on how a systematic application of the RESTful principles to smart things leads to

an API that can be consumed and understood by a broad number of clients.

REST in a Nutshell

Initially proposed by Roy Fielding in his Ph.D. dissertation [50], REST is an architectural

style that was used as a set of guidelines to implement the second wave of Web standards

and in particular HTTP 1.1 and URIs (Uniform Resource Identifiers). The goal of this

second wave of standards was to move from a Web serving documents as of HTTP 0.9

to a Web as a true application layer wit HTTP 1.1. The REST guidelines where created

to make sure that the new architecture would support “scalability of component inter-

actions, generality of interfaces, the independent deployment of components as well as

intermediary components to reduce interaction latency, enforce security, and encapsulate

legacy systems” [50].

As such, REST is independent from the Web and can be implemented in other systems.

However, in the remainder of this thesis we focus on the Web implementation of REST.

The central idea of REST revolves around the notion of resource as any component of

an application that needs to be used or addressed. Resources can include physical objects

(e.g., a temperature sensors) abstract concepts such as collections of objects, but also

dynamic and transient concepts such as server-side state or transactions.

A system can be basically considered as RESTful if it respects the five following con-

straints [50]:

C1 Resource Identification: the Web relies on Uniform Resource Identifiers (URI) to

identify resources, thus links to resources (C4) can be established using a well-known

identification scheme.

C2 Uniform Interface: Resources should be available through a uniform interface with

well-defined interaction semantics, as is Hypertext Transfer Protocol (HTTP). HTTP

14 The Web of Things

has a very small set of methods with different semantics (safe, idempotent, and oth-

ers), which allows interactions to be effectively optimized. It also allows for a clean

decoupling of the interface (RESTful interface) and the actual service implemen-

tation. Unlike in WS-*, where methods (also known as service operations) take

arbitrary names and semantics, in HTTP, the uniform interface has 5 main meth-

ods:

1. GET is used to retrieve the representation of a resource.

2. PUT is used to update the state of an existing resource or to create a resource

by providing its identifier.

3. DELETE is used to remove a resource.

4. POST creates a new resource.

While these verbs definitely cover very well CRUD (Create Read Update Delete)

types of applications, they are also supposed to explicit every action a client can

execute on a resource, whatever the type of application is.

C3 Self-Describing Messages: Agreed-upon resource representation formats make it

much easier for a decentralized system of clients and servers to interact without the

need for individual negotiations. On the Web, media type support in HTTP and

the Hypertext Markup Language (HTML) allow peers to cooperate without individ-

ual agreements. For machine-oriented services, media types such as the Extensi-

ble Markup Language (XML) and JavaScript Object Notation (JSON) have gained

widespread support across services and client platforms. JSON is a lightweight al-

ternative to XML that is widely used in Web 2.0 applications and directly parsable

to JavaScript objects.

C4 Hypermedia Driving Application State (Connectedness): Clients of RESTful ser-

vices are supposed to follow links they find in resources to interact with services.

This allows clients to “explore” a service without the need for dedicated discovery

formats, and it allows clients to use standardized identifiers (C1) and a well-defined

media type discovery process (C3) for their exploration of services. This constraint

must be backed by resource representations (C3) having well-defined ways in which

they expose links that can be followed.

C5 Stateless Interactions: This requires requests from clients to be self-contained, in the

sense that all information to serve the request must be part of the request. HTTP

implements this constraint because it has no concept beyond the request/response

interaction pattern; there is no concept of HTTP sessions or transactions. It is

important to point out that there might very well be state involved in an interaction,

either in the form of state information embedded in the request (HTTP cookies), or

in the form of server-side state that is linked from within the request content (C3).

Even though these two patterns introduce state into the service, the interaction itself

is completely self-contained (does not depend on the context for interpretation) and

thus is stateless.

2.1. Device Accessibility Layer 15

Figure 2.2: An generic sensor node, offering a number of sensors and actuators.

Tying together C2 and C3, HTTP also supports content negotiation, allowing both clients

and servers to communicate about the requested and provided representations for any

given resource. Since content negotiation is built into the uniform interface, clients and

servers have agreed-upon ways in which they can exchange information about available

resource representations, and the negotiation allows clients and servers to choose the

representation that is the best fit for a given scenario.

The seminal work on REST [50] on which these guidelines are based, presents REST as

a meta-architecture [160]. This offers the advantage of being able to use the thesis as a

set of tools for judging how RESTful systems are but it lacks practical guidelines on how

to actually implement a RESTful system on the Web. In [160], Leonard Richardson and

Sam Ruby propose the concept of ROA or Resource Oriented Architectures, which is a

Web architecture that can be used to create loosely-coupled services on the Web.

The design goals of ROAs and their advantages for a decentralized and large-scale service

architectures align well the field of pervasive computing: millions to billions of available

resources and loosely coupled clients, with potentially millions of concurrent interactions

with one service provider. Based on these observations, we argue that RESTful architec-

tures are the most effective solution for the Web of Things, as they scale better and are

more robust than RPC-based architectures such as WS-* Web services.

In the next sections we illustrate how the 5 constraints of REST as well as the concept

of Resource Oriented Architectures can be applied an adapted to fit the requirements of

a global and distributed ecosystem of smart things offering a comprehensive and interop-

erable service layer.

RESTful Things: A Resource Oriented Architecture for Things

The WoT can be realized by applying principles of Web architecture, so that real-world

objects and embedded devices can blend seamlessly into the Web. Instead of using the

Web as a transport infrastructure we aim at making devices an integral part of the Web

and its infrastructure and tools by using HTTP as an application layer protocol. In

this section, we describe the use of REST as a universal interaction architecture, so that

interactions with smart things can be built around universally supported methods. We

describe the process of Web-enabling smart things into four main steps:

16 The Web of Things

1. Resource Design: identify the functionality or services of a smart thing, organize

the hierarchy of these services and link them together, fulfilling constraints C1 and

C4.

2. Representation Design: decide which representations will be served for each service,

fulfilling constraint C3.

3. Interface Design: decide on the actions allowed for each service, fulfilling constraint

C2 and C5.

4. Implementation Strategy: choose a strategy to integrate the smart things to the

Internet and the Web, either directly or through a Smart Gateway.

In the following, we provide a set of guidelines to Web-enable smart things based on these

four main steps. As case study, we describe how it can be used to bring wireless sensor

nodes to the World Wide Web. The abstract sensor node we use as an illustration is

shown in Figure 2.2.

Resource Design: Modeling Functionality as Linked Resources

As mentioned before, the central idea of REST revolves around the notion of resources.

In our context, a resource is any component of an application that is worth being uniquely

identified and linked to. On the Web, the identification of resources relies on Uniform

Resource Identifiers (URIs), and representations retrieved through resource interactions

contain links to other resources, so that applications can follow links through an intercon-

nected web of resources. Clients of RESTful services are supposed to follow these links,

just like one browses Web pages, in order to find resources to interact with. This allows

clients to explore a service simply by browsing it, and in many cases, services will use a

variety of link types to establish different relationships between resources.

Resource Identification In the Web of Things we have several levels of resources. While

some of them represent physical objects, others are virtual only. Resources on the Web are

often organized in a hierarchy, the hierarchical way of organizing and linking resources

is also very relevant in the physical world and can be used as a basis to identify the

resources of a smart thing. As an example, from the abstract sensor node in Figure 2.2

we can extract resources as shown in Figure 2.3. From this hierarchy we understand that

each node has sensors (light, temperature, etc.), actuators (speakers, LEDs, etc.). Each

of these components is modeled as a resource and assigned a URI which is deduced from

the name of the current resource and its predecessors in the hierarchy. For instance, the

light sensor gets the URI: /generic-nodes/1/sensors/light.

In an HTTP context, these identifiers or URIs are also known as URLs. However, since

the term URL has been officially deprecated we use URI in the remainder of this thesis.

Nevertheless, the widespread use of the term URL lead to a contemporary definition in

which “a URL is a type of URI that identifies a resource via a representation of its primary

2.1. Device Accessibility Layer 17

/genericNodes

/{genericNode-n}

/sensors /actuators

/temperature /light /sensor ... /leds /speakers /actuator ...

/a /b /volume

Figure 2.3: An example of resource hierarchy deduced from the abstract sensor. This hierar-
chy forms a tree where each resource has 0..n child resources.

access mechanism (e.g., its network location), rather than by some other attributes it may

have” [278]. On the Web a URL is a URI beginning with the http: scheme and resolvable

through the HTTP protocol.

We can form the absolute URI (or URL) of a smart thing’s resource by adding a protocol

scheme and root domain to the identifier. An important and powerful consequence of

this is the addressability and portability of resource identifiers: They become unique

(Internet or Intranet-wide, depending on the domain-name or assigned IP address) and

can be resolved by any HTTP library or tool (e.g., a browser), bookmarked, exchanged

in emails, instant messaging tools, encoded in QR-codes (Quick Response), etc.

For instance, typing a URI such as:

http://<DOMAIN>:<PORT>/generic-nodes/1/sensors/light

in a browser requests a representation of the resource light of the resource sensors of

generic-node number 1.

Since there are no rules on the semantics of resources’ identifiers, we cannot deduce a

strict rule for naming physical resources. However, we suggest naming them according to

two simple guidelines:

1. Use descriptive names: as the resource names appear in the URIs using names with

some semantic value can be of great help to developers and users.

2. Use the plural form for aggregate resources: for instance if a smart thing has several

sensors, then there should be a parent resource called sensors from which every

18 The Web of Things

sensor is accessible with hyperlinks.

Linking A resource should also provides links back to its parent and forward to its chil-

dren as well as to any related resource. As an example, the resource generic-nodes/

1/sensors/ provides a list of links to all the sensors offered by generic-node 1. This

interlinking of resources that is established through both, resource links and hierarchical

URI, is not strictly necessary, but well-designed URIs make it easier for developers and

users to “understand” resource relationship and even allow non-link based ad-hoc inter-

actions, such as hacking a URI by removing some structure and still expecting for it to

work somehow. In some browsers this URI hacking is even part of the UI, where a “go

up” function in the browser simply removes anything behind the last slash character in

the current URI and expects that the Web site will serve a useful representation at that

guessed URI.

Links are very important in Resource Oriented Architectures since they help clients to

discover related resources. Using these links the client can discover other related services,

either by browsing in the case of a human client or by crawling in the case of a machine.

Thus, links in resource oriented architectures fulfill the constraint (C4) and enable the

dynamic discovery of resources.

However, as we will see below, resources are not bound to a particular format but can be

served using several formats. When a client requests an HTML representation then rep-

resenting links is very straightforward as HTML has a standard mechanism for specifying

links. With other formats such as JSON, however, there is no single standard format for

providing links.

One could argue that the client can always fall back to an HTML representation when

it is interested in related resources. However, this is inefficient in terms of HTTP calls

required for a request which is especially relevant in resource-constrained environments

such as the Web of Things. A good practice is thus to embed links consistently across all

provided representations. One shortcoming of this approach is that the lack of standard

link representation in formats such as JSON leads to a tighter coupling between the client

and provided services.

Representation Design: Formatting the Resources

Resources are abstract entities and are not bound to any particular representation. Thus,

several formats can be used to represent a service of a smart thing. However, agreed-upon

resource representation formats make it much easier for a decentralized system of clients

and servers to interact without the need for individual negotiations.

On the Web, media type support in HTTP and the Hypertext Markup Language (HTML)

allow peers to cooperate without individual agreements. It further allows clients to nav-

igate amongst the resources using hyperlinks. For machine-to-machine communication,

2.1. Device Accessibility Layer 19

Figure 2.4: HTML representation (as rendered by a Web browser) of the temperature resource
of a sensor node containing links to parent and related resources.

other media types, such as XML and JSON have gained widespread support across ser-

vices and client platforms.

In the case of smart things, we suggest support for at least an HTML representation

to ensure browsability by humans. Note that since HTML is a rather verbose format, it

might not be directly served by the things themselves, but by intermediate reverse proxies,

called Smart Gateways and described in Section 2.1.2.

For machine-to-machine communications, we suggest using JSON. Since JSON is a more

lightweight format compared to XML, both is terms of message size and parsing time [212],

it is better adapted to devices with limited capabilities such as smart things. Furthermore,

it can directly be parsed to JavaScript objects. This makes it an ideal candidate for

integration into Web Mashups and thus for creating physical mashups (see Section 2.4).

In the example of our generic-sensor, each resource provides both, an HTML and a JSON

representation. As an example, Listing 2.1 shows the JSON representation of the tem-

perature resource and Figure 2.4 shows the same resource represented as an HTML page

with links to parents, subresources, and related resources.

1 {" resource ":

2 {" methods ":[" GET"],

3 "name ":" Temperature",

4 "links ":["/ feed", "/rules"],

5 "content ":

6 [{" description ":" Current Temperature",

7 "name ":" Current Ambient Temperature",

8 "value ":"24.0" ,

9 "unit": "celsius "}]}

10 }

Listing 2.1: JSON representation of the temperature resource of a generic node

Interface Design: Servicing Through a Uniform Interface

In REST, interacting with resources and retrieving their representations all happens

through a uniform interface which specifies a service contract between the clients and

20 The Web of Things

servers. The uniform interface is based on the identification of resources, and in case

of the Web, this interface is defined by the HTTP protocol. We focus on three partic-

ular parts of this interface that can be used to model a smart thing’s API: operations,

content-negotiation, and status codes.

Operations on Resources As mentioned before, HTTP provides five main methods to

interact with resources, often also referred to as verbs. Constraining operations to these

methods is one of the keys to enable loose-coupling of services, as clients only need to

support mechanisms to handle these methods [153].

In the Web of Things, these operations map rather naturally, since smart things usually

offer quite simple and atomic services. As an example:

• GET can be used to retrieve the current consumption of a smart meter.

• PUT can be used to turn an LED on or off.

• POST can be used to create a new feed used to trace the location of an RFID tagged

object.

• DELETE can for example be used to delete a threshold on a sensor or to shutdown a

device.

More concretely, as an example, a GET on /generic-nodes/1/sensors/temperature

returns the temperature observed by node 1, i.e., it retrieves the current representa-

tion of the temperature resource. A PUT on /generic-nodes/1/actuators/leds/1

with the updated JSON representation {”status”:”on”} (which was first retrieved with

a GET on /leds/1) switches on the first LED of the node, i.e., it updates the state of

the LED resource. A POST on /generic-nodes/1/temperature/rules with a JSON

representation of the rule as {“threshold“:35} encapsulated in the HTTP body, cre-

ates a rule that will notify the caller whenever the temperature is higher than 35 de-

grees, i.e., it creates a new rule resource without explicitly providing an identifier. Fi-

nally, a DELETE on /generic-nodes/1 is used to shutdown the node, or a DELETE on

/generic-nodes/1/sensors/temperature/rules/1 is used to remove rule number 1.

Additionally, another less-known verb is specified in HTTP and implemented by most

Web servers: OPTIONS can be used to retrieve the operations that are allowed on a re-

source as well as metadata about invocations on this resource. In a programmable Web

of Things, this feature is very useful, since it allows applications to find out at run-

time what operations are allowed for any URI. As an example, an OPTIONS request on

/generic-nodes/1/sensors/humidity/rules returns GET, POST, OPTIONS as shown in

the full HTTP response in Listing 2.2.

1 HTTP /1.1 200 The request has succeeded

2 Content -Length: 0

3 Allow: GET , POST , OPTIONS

4 Date: Tue , 19 Apr 2011 12:17:42 GMT

5 Accept -Ranges: bytes

2.1. Device Accessibility Layer 21

6 Server: Noelios -Restlet -Engine /1.1.7

7 Connection: close

Listing 2.2: HTTP response of an OPTIONS request on a resource. It informs the client about

the operations (GET and POST) available for the resource.

Content Negotiation Since resources are representation agnostic there is a need for

clients and servers to be able to negotiate the right format for the right purpose. As a

consequence, HTTP specifies a mechanism for clients and servers to communicate about

the requested and provided representations for any given resource; this mechanism is

called content negotiation. Since content negotiation is built into the uniform interface of

HTTP, clients and servers have agreed-upon ways in which they can exchange information

about requested and available resource representations, and the negotiation allows clients

and servers to choose the best representation for a given scenario. For the abstract-

node, a content negotiation message exchange looks as follows. The client begins with a

GET request on /generic-nodes/1/temperature/rules. It also sets the Accept header

of the HTTP request to a weighted list of media types it understands, for example to:

“application/json;q=1, application/xml;q=0.5”. The server then tries to serve the

best possible format it knows about and specifies it in the Content-Type of the HTTP

response. In our case, the generic-node cannot offer XML and would thus return a JSON

representation and set the HTTP header to Content-Type: application/json.

While this is the standard way of negotiating a representation in HTTP, it has two

drawbacks when implemented. First, it is unfortunately not implemented evenly by all

the Web servers. More importantly, it encapsulates the required format in the HTTP

packet directly and does not expose it to the users. Since the required format is a key

parameter, we suggest supporting content negotiation directly in the URI as well in order

to make it more natural for everyday users as well as directly testable and bookmarkable.

Thus, requests such as /generic-nodes/1/sensors/temperature.json should be sup-

ported as well and should return the temperature resource in the JSON format as shown

in Listing 2.1. In case the smart thing does not accept this format it should return the

closest possible format (e.g., XML in this case). Furthermore, it should set the appropri-

ate response header: Content-Type: application/json just as with standard content

negotiation.

Status Codes HTTP also offers a way of expressing errors and exceptions. Indeed, the

status of an HTTP response is represented by standardized status codes sent back as

part of the header in the HTTP response message. There exist several dozens of codes

which each have well-known meanings for HTTP clients, these codes and their meanings

are listed in the specification of HTTP 1.1 [51]. Furthermore, in [160] these codes are

analyzed and explained in the context of ROAs with valuable examples.

In the Web of Things, these codes a very valuable since they provide a lightweight but

yet powerful way of notifying abnormal and successful request execution.

22 The Web of Things

Figure 2.5: Web and Internet integration with Smart Gateways (left), direct integration
(right). The Smart Gateways are small software application servers containing: Device Drivers
to understand the low-level smart things, core services to create Web-APIs, pluggable services
to offer additional functionality and a Web server.

As an example, a POST request on /generic-nodes/1/sensors/humidity returns a 405

status code. The client understands the status code as the notification that “the method

specified in the request is not allowed for the resource identified by the request URI”.

A concrete example of mapping domain-specific exceptions to Status Codes is provided

in Chapter 4.3.2 where RFID exceptions are mapped to HTTP status codes.

2.1.2 Implementation Strategy: Connecting Things to the Internet

For a device to be part of the Web of Things, there are two basic requirements:

1. Implementation of the TCP/IP protocols ideally over a IEEE 802 (Ethernet) or

IEEE 802.11 (WiFi) network.

2. Implementation of a Web server supporting the HTTP 1.1 protocol.

While an increasing number of embedded devices are supporting these two requirements

natively, not all of them do, mainly because their computational, memory and communi-

cation bandwidth are too limited. Hence, in this section we propose two alternatives to

integrate smart things to the Internet and the Web.

2.1. Device Accessibility Layer 23

Figure 2.6: The Flyport embedded device offers a low-power WiFi module, full TCP/IP sup-
port and a native Web server supporting HTTP 1.1. (Reproduced with the kind authorization
of OpenPicus, www.openpicus.com)

Native Internet and Web support

Research has shown that TCP/IP stacks can be implemented to meet the constraints of

embedded devices. In [40] Dunkels implemented a full TCP/IP stack for 8 bits embedded

devices with a footprint in the order of 10 kilobytes. More recent developments worked on

adapting the IPv6 protocol to meet the energy constraints of these devices and proposed

the 6LoWPAN [99] architecture. Similarly, an increasing number of sensor nodes and

embedded devices are equipped with native low-power WiFi support (over IEEE 802.11)

modules and embedded HTTP servers. This makes them seamlessly integrated to the

Internet.

Previous work has also shown that embedding Web servers on resource and energy con-

strained devices is feasible [42, 123, 79]. Hence, it is a reasonable assumption that smart

things will increasingly understand and implement the TCP/IP and HTTP 1.1 protocols.

As an example, the off-the-shelve FlyPort shown in Figure 2.6 is an embedded device

from the Openpicus open-source project [258]. It features a low-power WiFi module with

full TCP/IP support and a Web server implementing HTTP 1.1. Similarly, the RN-131

nodes from Roving Networks [269] have TCP/IP over IEEE 802.11 connectivity. With

world-wide consortia of industrial key-players appearing such as the IPSO Alliance [244],

it is very likely that most of the future devices will have all the required elements with no

need to translate HTTP requests from Web clients into the appropriate protocol for the

different devices, as shown in the right part of Figure 2.5.

For these types of smart things to be truly part of the Web, their functionality should be

available through a RESTful interface, i.e., they should implement the Device Accessibility

Layer of the presented Web of Things Architecture.

www.openpicus.com

24 The Web of Things

Reverse Proxies: Smart Gateways

However, not all things can fulfill the requirements for TCP/IP and HTTP support.

Indeed, for a number of smart things, these protocols are too demanding in terms of com-

putation, memory, required bandwidth or battery life. As an example, it will probably

take years until RFID tags will be powerful enough to implement these protocols and

even then, it is unlikely for tags to communicate directly over IEEE 802.11. Similarly,

for some sensor networks, ultra-optimized communication is a requirement and in these

terms, dedicated low-power protocols such as Zigbee (over IEEE 802.15.4) or Bluetooth

(over IEEE 802.15.1) or Ultra-Wideband (UWB, over IEEE 802.15.3) [120] with dedi-

cated transport protocols are a better choice, even if native TCP/IP is increasingly being

supported on some of these platforms, e.g., for IEEE 802.11 through 6LoWPAN [99].

Hence, when native TCP/IP and HTTP support is not possible or not desirable, we

suggest that Web integration takes place using a software bridge. On the Web, similar

bridges are called reverse-proxies. A reverse proxy takes requests from the Internet and

forwards them to servers in an internal network. Reverse proxies have various interesting

features, first they basically hide the internal network to the clients on the Internet. As

a consequence, they can operate on the requests before they actually reach the services

and are used for caching and load-balancing in several service oriented architectures.

For the Web of Things, we suggest taking a similar approach and propose the concept

of Smart Gateways [193, 76, 81, 77] to capture the fact that it is an application level

component that does more than only data forwarding. A smart thing basically hides the

(proprietary) low-level protocols that smart things natively use and make them available

on the Internet through TCP/IP support and on the Web through a Web server. From

the Web clients’ perspective, the actual Web-enabling process is fully transparent, as

interactions are based on HTTP in both cases.

System Architecture As shown in the left-most part of Figure 2.5, a Smart Gateway

is a software component composed of three basic layers. First, core to the concept of

Smart Gateways are Device Drivers. Indeed, a smart thing can support several types of

devices through a driver architecture as shown in Figure 2.5 where the gateway supports

three types of devices and their corresponding communication protocols. To maximize

re-usability, a Device Driver should be composed of two different software components: a

Transport Driver and an Application Driver. The Transport Drivers are responsible for

providing an API to communicate through a particular protocol such as IEEE 802.15.4

or Bluetooth. On top of these, the Application Drivers are responsible for the sometimes

proprietary service protocols of devices. As an example, a Device Driver for an energy

metering sensor node, would be composed of a Bluetooth Transport Driver (that can

be reused for other devices) and an Application Driver that understands the proprietary

service or application protocol of the node.

Application drivers are in charge of mapping the functionality of a device to a RESTful

API. For this, they use a REST Application Framework which provides methods for

2.1. Device Accessibility Layer 25

Figure 2.7: Simplified sequence diagram of the interaction between a client and a smart
thing through a Smart Gateway. The Smart Gateway framework delegates the invocation to
the corresponding Device Driver and takes care of converting the results into the appropriate
format (e.g., JSON) and wrapping them into an HTTP packet returned to the client.

binding URIs to functionalities of the proxied smart things and formatting the responses

using Web representations such as JSON or HTML.

Closely bound with the REST Application Framework, the Embedded Web Server serves

the service requests through the HTTP protocol. Ideally, it should also feature an Atom-

server (or at least Atom representations) and be a non-blocking Web server with support

for HTML5 WebSockets (see Section 2.1.3).

Through these components, clients can use HTTP for requesting services on non-IP

and non-Web devices. As an example, consider a request to an energy sensor node

coming from the Web through the RESTful API to: /energy-nodes/living-room/

consumption.json. The request is captured by the Embedded Web Server of the Smart

Gateway unmarshalled into an object and further sent to the method previously bound to

/living-room/consumption. This method is located in the Device Driver representing

this particular energy sensor node. The Device Driver then translates the request in the

appropriate format (e.g., a Bluetooth service call) to the Transport driver. The response

is then transmitted back to the Device Driver which uses the REST Application Frame-

work to marshal it into a Web format and further transmit it back to the embedded Web

server. This process is summarized in Figure 2.7.

Software Implementation We implemented several Smart Gateways. Our first imple-

mentation was based on a small foot-print C++ software that was used to Web-enabled

sensor nodes capable of measuring electricity consumption [76] (see also Section 3.2).

Based on these implementations we realized that a lot of the written code could be re-

used to Web-enable other smart things. We discuss two important points to foster the

rapid integration of new devices and functionality to the Smart Gateways:

Modular Device/Application Drivers First, modular Device and Application Drivers

prevents smart things integration from becoming too complex and fosters re-using stan-

dard features (e.g., Bluetooth communication or binding a URI to a method). To ensure

26 The Web of Things

a high degree of modularity of these drivers, we implemented them using Java and in

particular the OSGi framework [260]. OSGi is a modularization system built on top of

Java that fosters re-usability through bundles [87]. Particularly interesting, is the concept

of Declarative Services which facilitate the integration of different bundles. One of the big

advantages of these service declarations is the ability to load a new (unknown) Bundle at

run-time and having other components directly using it.

As a consequence, Device Drivers can be injected in a running Smart Gateway. This

enables for instance the dynamic and remote injection of drivers to support new types of

devices in an ad-hoc manner. Alternatively, the concept of Java Enterprise Application

Servers [66], such as for example the Glassfish Application Server [236] can be used to

create component-based Smart Gateways. Indeed, the latest generations of these applica-

tions servers has become more lightweight and components can be injected in a managed

run-time environment that features a Web server.

Automatic Generation of Web Boilerplate Code Furthermore, we realized that a lot of

the code necessary to generate these Drivers (and OSGi) bundles and the mappings from

Web resources to methods in Java code could be automated. Hence, in the AutoWoT

project [138] we propose a toolkit that enables developers to easily create new Device

Drivers compatible with our Smart Gateway architecture. The toolkit was open-sourced

and is available online [224].

An editor let’s developers specify the resources of a smart thing in a visual manner. The

editor then generates an XML description of the resource tree that is used to generate the

interfaces and OSGi-specific code to create a driver. Then, all the developer has to do is

to fill the callback methods triggered whenever a Web resource is invoked, with the smart

things specific code, e.g., implementing the doGetTemperature() method called when a

client invokes a GET request on /temperature in order for it to get the temperature data

from the sensor node.

Deployment Ideally Smart Gateways should have a small memory footprint to be inte-

grated into embedded computers already present in the infrastructure. For instance, when

used to provide access to smart things in a home or office environment, the Smart Gate-

ways can be deployed on devices such as Wireless routers or Network Attached Storage

(NAS). Our implementation of the Smart Gateway OSGi software was tested successfully

on MicroClients SR from Norhtec [257] featuring 500Mhz CPUs and 512 Mo of RAM each

as well as an Asus WL-500gP Wireless router running the OpenWRT embedded Linux

distribution [259].

2.1.3 Pushing Data from Smart Things and Smart Gateways

HTTP was designed as a client-server architecture, where clients can explicitly request

(pull) data and receive it as a response. This makes REST and HTTP well suited for

2.1. Device Accessibility Layer 27

Figure 2.8: Sequence diagram of the communication between a client and a smart thing. On
the left a traditional HTTP client-pull communication is started. The client has to constantly
pull the smart things for updates. On the right a real-time Web approach is taken where the
client is informed about the changes by the smart things.

controlling smart things, but this client-initiated interaction models seems unsuited for

event-based systems, where data must be sent asynchronously to the clients as soon as it

is produced.

This type of interaction is not really natural for some smart things applications and

especially for monitoring applications [41, 191]. Consider for instance a sensor node

used to detect a fire condition. As shown in Figure 2.8, in the protocol proposed by

HTTP 1.1, the client constantly has to request updates (a.k.a. polling). With this

protocol, in the best case most requests end up with empty responses (304 Not Modified)

as the temperature did not change. In the worst case, the server (i.e., smart thing)

transmits the same data after each request. This is sub-optimal for two reasons: First, it

generates a great number of HTTP calls and a great part of these calls are void. Since

reducing the number of HTTP calls to the minimum is key in scaling Web sites [182],

this model raises scalability issues when considering monitoring applications in which

several clients are connecting to a smart thing. Beyond scalability, numerous HTTP calls

have more important consequences in the case of smart things such as their relatively

high energy consumption which is important in the case of embedded devices running on

batteries [214].

Furthermore, although near real-time can be simulated by polling the smart things very

regularly, a protocol in which the smart things could push asynchronously to the client

as soon as a condition is met enables providing real-time information in the WoT. In

this section we discuss three architectural enhancements that contribute to solving these

issues, while making sure that the proposed mechanisms can be integrated with the Web.

28 The Web of Things

Feeds of smart things

1 <feed xmlns="http :// www.w3.org /2005/ Atom">

2 <title type="text">[Title of Aggregation]</title >

3 <author ><name >[Name of the SmartGateway]</name ></author >

4 <link href ="[Parent]" rel=" related" type ="[Type of

representation]"/>

5 <link href ="[Child1]" rel=" related" type ="[Type of

representation]"/>

6 <link href ="[Child2]" rel=" related" type ="[Type of

representation]"/>

7 <id >[uuid]</id >

8 <entry >

9 <title >[Content Description]</title >

10 <id >[Unique ID for this event]</id >

11 <author ><name >[ID of the Smart Thing]</name ></author >

12 <uri >[Root URI of the Smart Thing]</uri >

13 <published >[Date and time of event]</published >

14 <content type ="[text|html|xml |...]" </ content >

15 </entry >

16 <entry >

17 [...]

18 </entry >

19 </feed >

Listing 2.3: Example of usage of the Atom format for providing historical information about

a smart thing.

With Atom1, the Web has a standardized and RESTful model for interacting with collec-

tions, and the Atom Publishing Protocol (AtomPub) extends Atom’s read-only interactions

with methods for write access to collections. Because Atom is RESTful, interactions with

Atom feeds can be based on simple GET operations which can then be cached. While

initially created to aggregate content on the Web, feeds have two interesting features for

the WoT: First, they allow to create aggregates of smart things monitoring information.

As an example a feed could be created to aggregate all information about energy sensors

in a particular location (e.g., a building). Then feeds contain historical information and

can thus be used to get not only the latest value of a sensor but rather its values over a

period of time. Event more advanced scenarios can be based on feeds supporting query

features, but this is an active area of research and there are not yet any standards [210].

Using feeds to contain data provided by smart things is rather straightforward as shown

in Listing 2.3 and thus feeds can be supported (through content-negotiation) as a repre-

sentation for any resource or aggregate of resources of smart things.

More importantly, in the case of the WoT, feeds can also be used to decouple clients from

the actual resources. Indeed, the task of creating feeds can be delegated to completely

1See http://tools.ietf.org/html/rfc4287

2.1. Device Accessibility Layer 29

external AtomPub compliant servers. As an example, it can be outsourced to the Smart

Gateways we introduced before.

However, using Atom feeds as a representation format does not provide a solution to

the fact that Web clients have to poll the data. Instead of polling it directly from the

sensors, they now have to poll Atom servers. It is worth noting, that new mechanisms

such as Pubsubhubbub (PuSH) [264] propose protocols to push feed updates back to the

clients. However, these protocols requires additional infrastructure nodes (called hubs)

and additional libraries on the client-side.

HTTP Callbacks (Web Hooks)

The most straightforward way to allow pushing to clients on the Web is to transform them

into servers. This technique is often referred to as Web Hooks or HTTP Callback and is

a very simple mechanism that can be used to have smart things pushing information to

Web clients.

First, the client has to subscribe to a resource, for instance the energy consumption

resource of a smart meter, it does so by POSTing a message to the /subscribe resource

of the smart meter, alongside with a callback URI and usually a threshold (e.g., > 50

Watts). As a result, the smart things will POST data to the Web client whenever the

threshold is met.

However, a very important issue with such a mechanism is that it places a rather hard

constraint since every client also has to become an HTTP server. This constraint pre-

vents clients such as Web browsers to interact with HTTP Callbacks directly unless some

additional libraries or plugins are used. Furthermore, when clients are behind (corporate)

firewalls traffic coming from the smart things through callbacks will very often be blocked.

WebSockets for the Real-time WoT

As a consequence of this constraint, several techniques appeared in order for servers to

push data back to clients without having clients explicitly requesting it. Since browsers

were not designed with server-sent events in mind, Web application developers have tried

to work around several specification loopholes often referred to a Comet techniques [284].

Comet is an umbrella term for most work-around, two of which are used quite often in

practice: Long Polling and Streaming.

In the first technique, Long Polling, the client issues a request that will end only when

the server is ready to send some data. Directly after the response the client will re-issue a

request and so forth. In the second technique, Streaming, the client issues a request and

the server never signals the end of this request, instead it keeps sending data over the

TCP connection. In the absence of events, some servers will regularly send dummy data

to prevent the connection from being closed.

While these work-around are used in practice they have two drawbacks: First, they gen-

30 The Web of Things

erate unnecessary traffic [125]. More importantly, they are extremely resource demanding

for the vast majority of Web servers. Indeed, most currently deployed Web servers allo-

cate one thread or process for each connected client. Unlike in traditional HTTP requests,

Comet requests do not end and thus quickly overload the memory of servers. To prevent

this, a new generation of Web servers sometimes called non-blocking servers feature rou-

tines that let them suspend connections and manage several of them in a single thread.

Researchers have been implementing such a server for wireless sensor nodes that can

manage up to 256 Comet connections [41].

More recently, WebSockets (part of the HTML5 drafts [282]) were proposed. WebSock-

ets propose duplex communication with a single TCP/IP connection directly accessible

from any compliant browser through a simple JavaScript API. The increasing support

for HTML5 in Web and Mobile Web browsers and makes it a very good candidate for

pushing data in the WoT. Furthermore since WebSockets basically consist of an initial

handshake followed by basic message framing, layered over TCP, they can be implemented

in a straightforward manner on all platforms supporting TCP/IP, not only browsers.

tPusher We propose to add support for WebSockets to the Web of Things Architecture

in order to offer a Web real-time eventing mechanism to communicate with smart things.

Rather than implementing the protocol directly on smart things we propose adding it as

a component of our Smart Gateway architecture as shown in Figure 2.5. We call this new

component tPusher (things pusher) as introduced in [72].

System Architecture tPusher’s integration and usage is summarized by the sequence

diagram Figure 2.9. The sequence of events to enable a real-time communication between

Web clients and smart things is as follow:

Smart Gateway Subscription to the Smart Things First, the Smart Gateway needs

to establish a communication with the smart things. This is done through an HTTP

Callback (Web Hook) subscription. Alternatively, for smart things not supporting

TCP/IP and HTTP communication, this can be done through the synchronization-

based driver approach that we will present in Section 3.1.1 where the Smart Gateway

polls the smart things regularly using its Device Driver. From this point on, the

Smart Gateway will regularly get data either by getting it pushed by the device or

by pulling it.

Client Upgrade to WebSockets The Web client then issues a POST request on the

Smart Gateway (e.g., on /topic/temperature) and asks for a protocol Upgrade to

WebSockets, note that the protocol Upgrade is a standard HTTP mechanism. The

Upgrade is accepted and WebSocket messages can be sent back and forth between

the Smart Gateway and the Web Client.

WebSocket Push From this point on, the Smart Gateway relays (through the tPusher

module) the data to the Web client over the same TCP/IP socket that is being kept

open.

2.1. Device Accessibility Layer 31

Figure 2.9: Sequence diagram of the real-time communication between Web clients and
smart things through Smart Gateways and the tPusher component. tPusher is deployed on
a Smart Gateway where it is used to serve content from smart things through a WebSocket
interface.

32 The Web of Things

The WebSocket specification also offers a JavaScript API that allows creating clients

directly in browsers. The simplicity of this API (that should be supported by most

browsers when HTML5 is finalized) is the power of WebSockets. Indeed, a shown in Listing

2.4 within 6 lines of simple JavaScript code, Web applications can open a WebSocket

connection and thus, in our case, have a standard Web real-time communication with

smart things.

1 var myWebSocket = new WebSocket ("ws://www.webofthings.com");

2

3 myWebSocket.onopen = function(evt) {

4 alert(" Connection open ..."); };

5 myWebSocket.onmessage = function(evt) {

6 alert("Received Message: " + evt.data); };

7 myWebSocket.onclose = function(evt) {

8 alert(" Connection closed ."); };

9

10 myWebSocket.send("Hello Web Sockets !");

11 myWebSocket.close ();

Listing 2.4: WebSockets JavaScript Client API. These lines of code are enough for a Web

page to subscribe to a WebSocket and react on all possible incoming events.

Software Implementation Our implementation is based on Atmosphere [223], a Java

abstraction framework for enabling push support on most Java Web servers. One of the

advantages of this approach is to be able to deploy tPusher on recent Web Servers such as

Grizzly [240], which are highly optimized to push events on the Web because of their usage

of non-blocking threads for each new client. In order to support browsers or other clients

that do not support HTML5 WebSockets yet, we use a client-side abstraction JavaScript

library called Atmosphere JQuery Plugin which falls back to a Comet type of connection

in case WebSockets are not supported by the client.

2.1.4 Summary and Applications

In this section we discussed the integration of smart things to the Internet and the

Web. First, we applied the RESTful principles in a systematic manner. These guideline

are then applied to Web-enable several smart things. In particular in Section 3.1 where

they are applied to Wireless sensor nodes, or in Section 4.3.2 where we apply them to

RFID systems.

Then, we discussed the concept of Smart Gateways to bring non TCP/IP and HTTP

objects to the Web. The generic architecture of the Smart Gateway we described is used

as a basis for the WSN Web-enabling described in Section 3.1.1 as well as a guideline to

implement a Smart Gateway for smart meters described in Section 3.2.1.

Finally, we discussed several ways of adding support for smart things to push events to

Web clients and proposed the tPusher service as an extension of Smart Gateways. The

2.2. Findability Layer 33

tPusher service is evaluated in Section 4.5.2 where is it used to push data from RFID

readers to mobile phones.

2.2 Findability Layer

By applying the architectural design presented in the Device Accessibility Layer, smart

things become seamlessly part of the Web. While this presents several advantages, it also

raises important challenges. Amongst these is searching and finding relevant services:

Given an ecosystem of billions of smart things, how do we find their services to integrate

them into composite applications?

The Web faced similar challenges when it moved from an hypertext of several thousands

of documents to an application platform interconnecting an unprecedented number of

documents, multimedia content and services. Rapidly, search engines such as Altavista,

Yahoo and more recently Google appeared to offer search and indexes services.

The WoT will face similar problems, while finding smart things by browsing HTML pages

with hyperlinks in a home environment is suitable and desirable, on a city, country or

world-wide scale it becomes literally impossible. Hence, the ambient findability [144] of

smart things need to be addressed, we need to make them searcheable and findable.

While we do not pretend providing the ultimate solution to this complex and heavily-

researched problem [187, 166], we report on two aspects that we studied in the context

of the Web of Things. First, we look at the integration of smart things to existing

search engines and propose the use of a description model implemented with semantic

annotations to enable this.

Then, we illustrate the shortcomings of basing the findability of smart things solely on

existing search engines and propose a lookup and registration infrastructure adapted to

the particular needs of the Web of Things and building upon the proposed description

model. The combination of both solutions enables users and developers to run search

queries such as looking for all the nearby temperature sensors or finding a device that can

read video content in a particular building.

2.2.1 Search Engines and the Internet of Things

A Web page really becomes usable on the Web once it has been indexed by search

engines. Thus, the most straightforward way of enabling the search for smart things is

34 The Web of Things

through these search engines. However, searching for things is significantly more compli-

cated than searching for documents.

First, smart things have no obvious easily indexable properties, such as human readable

text in the case of documents. Then, they are tightly bound to contextual information,

such as their absolute location (i.e., latitude and longitude), their abstract location (e.g.,

Room B, Floor 1) or current owner.

A Smart Things Description Model and Microformats for the WoT

Hence, smart things need a mechanism to describe themselves and their services to be

(automatically) discovered and used. Since both humans and machines are going to use the

things, we need a mechanism to describe a smart thing on the Web so that both, humans

and machines, can understand what services it provides. This problem is not inherent

to smart things, but more generally a complex problem of describing services, which has

always been an important challenge to be tackled in the Web research community, usually

in the area of the Semantic Web. For the WoT, the problem has also roots in the notion

of context in Ubiquitous Computing [171, 168].

Here, we propose a model [77] (called Smart Things Metadata model) of the contextual

information and metadata a smart thing should disclose on the Web to be searcheable and

integrable into composite applications. We base our model on several surveys [94, 4, 38]

of existing languages for semantically describing real-world objects and in particular,

sensors [18] and industrial machines [103]. We describe a smart thing along 2 clusters of

information each containing two sub-groups:

• First, static properties, as shown in Figure 2.10 are metadata that will not evolve

over the life-cycle of the object:

1. Product: contains a description of what the smart things is in terms of object.

2. Services: contains a description of the services a smart thing offers (e.g., tem-

perature monitoring, MP3 play-back, etc.)

• Then, dynamic properties, as shown in Figure 2.11 are those changing regularly

depending on the context the object is located in:

1. Location: contains information about the place where the thing is currently

located.

2. QoS (Quality of Service): contains information about how well the thing per-

forms and performed.

This model is not exhaustive but, according to our experience [77], it covers the basic

information required to describe smart things on the Web in order to make them and

their services searcheable. Furthermore, the idea is to use this information as search

engines do, i.e., in a best effort manner where the absence of some metadata does not

2.2. Findability Layer 35

S
m

a
rt

 T
h

in
g

S
ta

ti
c

P
ro

p
e
rt

ie
s

D
y
n

a
m

ic
 P

ro
p
e
rt

ie
s

P
ro

d
u

ct
S

e
rv

ic
e
s

U
n

iq
u

e
 I

D
N

a
m

e
B

ra
n

d
M

a
n

u
fa

ct
u

re
r

D
e
sc

ri
p
ti

o
n

P
ic

tu
re

Ta
g
s

A
u

th
o
ri

ta
ti

v
e
 I

n
fo

 U
R

L
O

w
n

e
r

O
p
e
ra

ti
o
n

s
In

p
u

ts
O

u
p
u

ts
Fo

rm
a
ts

P
a
re

n
t

C
h

ild
re

n
R

e
la

te
d

Figure 2.10: The smart thing metadata model, containing the most important elements of
the description of a smart thing required for their findability on the Web. This graph contains
the static properties of smart things, Figure 2.11 contains the dynamic properties.

36 The Web of Things

mean the smart thing is not indexed. Rather it means that customization of its rendering

or indexed keywords will simply be limited.

The description proposed here can potentially be materialized into several formats such as

WSDL (Web Service Definition Language) files, DPWS Metadata [103] or SensorML [18]

documents. Unfortunately they are not exposed on the Web as Web-browsers and search

engines, for the most part, do not understand them.

To overcome the rather limited descriptive power of resources on the Web, several lan-

guages have been proposed as standards. Two of them, RDFa [265] and microformats [254]

have the interesting feature of being used to semantically enhance the elements of HTML

pages.

Designed for both, human and machines, microformats provide a simple way to add

semantics to Web resources [9]. There is not one single microformat, but rather a number

of them, each one for a particular domain; a geo and adr microformat for describing

places or an hProduct and hReview microformat for describing products and what people

think about them.

Microformats are especially interesting in the Web of Things for three reasons; first, like

RDFa they are directly embedded into Web pages and thus can be used to semantically

annotate the HTML representation of a thing’s RESTful API. Secondly, each microformat

undergoes an open community-driven standardization process. This ensures that the

number of formats stays relatively small and that their content is to be widely understood

and used when accepted. Finally, many microformats are already supported by search

engines, such as Google and Yahoo, where they are used to enhance search results and

render them differently. For example, the geo microformat is used to localize search

results close to a user or hReview is used to rank search results according to the users’

opinion.

As a consequence, we propose the use of microformats to describe smart things in the Web

of Things. Rather than proposing a new microformat encompassing the model described

in Figure 2.10, we can re-use a compound of existing, standardized microformats. This

helps the things to be directly searcheable by humans using existing general purpose

or dedicated search engines, but it also helps them being discovered and understood

by software applications in order to automatically use them and render adapted user

interfaces.

To illustrate this, we show that by using a compound of 5 microformats and by leveraging

the structure of RESTful APIs, we can create a description of a sensor node that fulfills

the model presented in Figure 2.10 and Figure 2.11.

Product Description One of the most important metadata required in order to enable

the search for smart things and their services is a description of what object they are.

Web sites such as e-commerce services, are often based on unstructured product data

which makes it hard for browsers and search engine to render and index useful metadata

2.2. Findability Layer 37

Smart Thing

Static Properties Dynamic Properties

Location QoS

Absolute Relative

Latitude Longitude Address Abstract

Street City Zip Country Building Floor

Performances User feedback

Service health Network latency Review Rating

Figure 2.11: Second part of the smart things metadata model, containing the most important
dynamic properties of the description of a smart thing required for the findability of their
services on the Web. Figure 2.10 contains the static properties of the STM model.

about products. The hProduct [297] microformat was created to give a structure to this

metadata. Through its vast usage, browsers, search engines and other Web applications

have a way to help facilitate the best product choice for consumers. It also gives a way

for manufacturers and retailers to better describe their products. Although it is officially

still a draft microformat [297] at the time of writing, hProduct is already widely used

and implemented on the Web. As an example, the BestBuy e-commerce site uses it for

providing metadata about all its products and Google [290] supports it to better render

the results of product searches.

Interestingly enough, the hProduct microformat provides information about the object

itself and its manufacturer and covers most of the fields required in the Product descrip-

tion of the STM model. As shown in Table 2.1, except for the Owner and Manufacturer,

hProduct covers all the STM model Product related fields. The Owner and Manufac-

turer is implemented using the hCard microformat that we will present below. Listing 2.5

presents an example of how a generic sensor node could be represented using hProduct.

Note that the microformats’ attributes are directly embedded into the HTML representa-

tion of the smart thing. As a results, browsers, search engines and applications discovering

the generic node by browsing will be able to render its UI and visualization in a metadata

enhanced manner.

In Listing 2.5, the smart thing unique identifier is implemented using an EPC number.

Using Electronic Product Code numbers [169] has the advantage of offering a world-wide,

static way of identifying objects which is very valuable in the Web of Things where objects

might move from one domain to the other, thus changing their absolute URI over time.

We will discuss the properties of EPC numbers in greater details in Chapter 4.

38 The Web of Things

STM element Microformat MF Attribute Meaning

Unique ID hProduct identifier (type, value) unique identifier for this
object

Name hProduct fn human-friendly name of
the smart thing

Brand hProduct brand company name

Description hProduct description human-friendly descrip-
tion

Picture hProduct picture image of the product

Authoritative URL hProduct url manufacturer’s Web
page containing in-
formation about the
product

Tags hProduct and rel-tag category (rel-tag) tags describing the
smart thing

Owner hCard see Table 2.2 name and address of the
owner

Manufacturer hCard see Table 2.2 name and address of the
manufacturer

Table 2.1: Elements of the STM model for the Product cluster that can be implemented in
a Web-oriented way using standard microformats.

1 <html >

2 <head >

3 <title ></title >

4 <meta http -equiv ="Content -Type" content ="text/html;

charset=UTF -8">

5 </head >

6 <body >

7

8 Generic Sensor Node

9 ,

10 epc unique

identifier

11 urn:epc:id:gid

:2808.64085.88828 </ span >

12

13 <a href="http :// www.

webofthings.com/tags/wsn" rel="tag">

Wireless Sensor Nodes

14 Generic Electronics

Company

15 This is a Web -

enabled sensor node that can

16 help you monitor your energy consumption </

span >

17 <img alt=" photo of the generic sensor node"

2.2. Findability Layer 39

18 src="http ://www.webofthings.com/wp -

content/themes/paperpunch/images/logo.

png" class=" photo"/>

19 <a href="http :// www.webofthings.com/?s=wsn"

class ="URL">More information about this

device.

20 20$

21

22 </body >

23 </html >

Listing 2.5: Describing a smart thing using hProduct.

Location One of the most important differences between virtual and physical objects is

that the latter have a location in a physical context. This information is very valuable

and should be leveraged when providing metadata for smart things.

Initially created to represent people, companies and organizations, the hCard microfor-

mat [294] is a also simple and Web interoperable way of representing places. It is based

on the vCard specification [296] and has reached the status of standard microformat. As

a consequence, it is widely implemented on sites across the Web and used for adapted

rendering and context extraction by several Web resources and applications. As an ex-

ample, it is used by Google both to render special results for businesses, showing their

location on a Map, as well as to enable their customers to “export places” from Google

Maps [300]. Similarly, the Yahoo Local Search engine uses hCards to render the location

of businesses and organizations [289].

In addition to hCard, the geo microformat [292] makes it possible to embed absolute

location information in Web pages in the form of geographic coordinates.

In the context of smart things, we use hCards and geo to implement three parts of the

STM model. First, for the static properties, hCards are used to describe the owner

and manufacturer of an object. Then, for dynamic properties, we use hCard and geo to

describe the location of a smart thing. The mapping of the STM model location properties

to hCards attributes is quite natural and shown in Table 2.2.

STM element Microformat MF Attribute Meaning

Latitude geo latitude current latitude of the smart
thing, owner or manufacturer

Longitude geo longitude current longitude

Address hCard adr (street-
address, locality,
postal-code,
country-name)

comprehensive postal address

Table 2.2: Elements of the STM model for the Location cluster that can be implemented in
a Web-oriented way using the hCard and Geo standard microformats.

40 The Web of Things

It is worth noting that these microformats do not cover relative abstract locations. The

reason behind this is that this part of a location cannot be leveraged globally in a standard

way (e.g., by a search engine) as it requires a specific knowledge of the current environ-

ment. In Section 2.2.2 we propose a way to implement this part of the STM model using

a lookup infrastructure.

Quality of Service In a Web of Things populated by billions of smart things quality

of service information can be of great help to choose the right smart thing for the right

application. Parameters such as bandwidth, up-time, average response time help taking

the right decision. These data can be based on monitoring service [77] or provided by the

smart thing manufacturer.

However, with the advent of the Web 2.0, we increasingly rely on external user experi-

ences when choosing our products and services. The strong influence of recommendation

systems on the way people pick Web sites or buy products online has been extensively

studied [175] and demonstrated [200]. For smart things we can take a similar approach

and offer a standard way for providing user-generated reviews as well as performance

information.

hReview is a microformat for embedding reviews of products, services, businesses and

events in Web representations and especially in HTML [293]. Several Web sites already

implement hReview for their reviews. As an example, the New York Times Web site [275]

and Yahoo Local search use it to rate listed venues such as restaurants and businesses.

In the Web of Things context, we can use hReview to implement both QoS properties listed

in the STM model. Indeed, as shown in Table 2.3 the standard attributes of hReview

cover the metadata related to performances and user feedback. Listing 2.6 shows how

STM element Microformat MF Attribute Meaning

Review hReview description &
type (product)

feedback from the owner/user
of the smart thing

Rating hReview rating (value,
worst, best)

owner/user rating between
worst and best or 1.0 to 5.0
if scale is omitted

Address hCard adr (street-
address, locality,
postal-code,
country-name)

comprehensive postal address

Service health hReview & rel-tag tag (rel-tag) specifies that a review is a ser-
vice health parameter

Network latency hReview & rel-tag tag (rel-tag) specifies that a review is a ser-
vice health parameter

Table 2.3: Elements of the STM model for the QoS cluster that can be implemented in a
Web-oriented way using the hReview standard microformat.

the QoS properties of the STM model can be implemented using hReview. The listing

2.2. Findability Layer 41

contains two QoS elements: First, the owner of the smart thing published a user feedback.

Then, the smart thing generated a service health review.

1 <div class=" hReview">

2 4 out of 5 stars

3 <h4 class =" summary">Good all purpose sensor node </h4 >

4 Added by owner: <span class="fn

">Dominique Guinard

5 <div class =" description item">I use this generic sensor node

for monitoring the temperature inside my house. It is

quite reliable but I turn it off on weekends.

6 </div >

7 </div >

8 <div class=" hReview">

9

10 <a href="http :// www.webofthings.com/tags/serviceHealth"

rel="tag">Service Health:

11 70/

12 100

13

14

15 <h4 class=" summary">Service health is good </h4 >

16 Added by manufacturer:

17 Generic Electronics Company

18

19 <div class=" description item">The service health of this

node is good , this means that most requests will

succeed within less than 1 second.

20 </div >

21 </div >

Listing 2.6: Quality of service for a smart thing described using the hReview microformat.

Service Description: Discovery by Crawling The last part of the STM model does

not necessarily need to be supported by an explicit semantic description. Indeed, if we

consider that the Device Accessibility Layer was implemented as described, we can assume

that all the smart things will serve their functionality through a RESTful interface.

A direct consequence of respecting the constraints of REST is that useful meta information

can be extracted simply by crawling their HTML representation [138, 7] and leveraging

the HTTP protocol.

From the root HTML page of the smart thing, a crawler typically is able to find a number

of the service properties suggested in the STM model. First, to satisfy constraint C4

(Hypermedia Driving Application State, see Section 2.1.1), the HTML representation of

a smart thing should contains links to related and descendant resources. Hence, from this

42 The Web of Things

constraint a crawler can extract the Children, Parents and related URIs as specified in

the STM model.

With these URIs, the crawler can then use the HTTP OPTION method to retrieve all verbs

supported for a particular resource, e.g., PUT, POST, GET, implementing the Operations

property of the STM model. Finally, with content-negotiation as described in Section

2.1.1, the crawler gets information about the Service Format, Input and Output properties.

We implemented and empirically tested the described crawling algorithm in [71, 138]. The

pseudo code of this algorithm is shown in Listing 2.7.

1 crawl(Link currentLink) {

2 new Resource () r;

3 r.setUri = currentLink.getURI ();

4 r.setShortDescription = currentLink.text();

5 r.setLongDescription = currentLink.invokeVerb(GET).

extractDescriptionFromResults ();

6 r.setOperations = currentLink.invokeVerb(OPTIONS).getVerbs ()

;

7 foreach (Format formats: currentFormat) {

8 r.setAcceptedFormats = currentLink.invokeVerb(GET).

setAcceptHeader(currentFormat);

9 }

10 if (currentLink.hasNext ()) crawl(currentLink.getNext ());

11 }

12 foreach (Link currentPage.extractLinks (): currentLink);

Listing 2.7: The smart things Service Description Crawling Algorithm.

The crawling approach to extract service metadata is interesting because it does not re-

quire the semantics of services to be represented in an additional format. As a consequence

valuable information can be extracted even if the smart thing to index implements the

Device Accessibility Layer only. In fact the information that can be extracted by crawling

is rich enough to index a smart thing, a few keywords and to locate all its resources.

Hence, the smart thing already becomes searcheable.

However, the crawling approach has two main limitations. First, the approach strongly

relies on the respect of the REST constraints. As a consequence, for some smart things’

APIs such as those based on hybrid architectures [160] not fully respecting the constraints

of REST, the service metadata might be only partially extracted [7].

Furthermore, the crawling approach requires many HTTP calls to extract a metadata pro-

file that matches the service properties of the SDT model. This is problematic since HTTP

calls are the most costly parts of the communication between clients and services [182]. As

a consequence, a single HTTP call returning a significant amount of data is more efficient

than several calls returning the same total amount of data. This is especially important

in the context of the Web of Things where clients will interact with services deployed on

resource constrained devices such as Smart Gateways or smart things.

2.2. Findability Layer 43

Several solutions exist to provide service metadata for RESTful APIs. The most well

known one is called WADL (Web Application Description Language [160]). This language,

directly inspired from the WSDL (Web Service Description Language), provides a way of

describing HTTP based Web applications. A WADL document is an external document

describing, from a client point of view, how to interact with a given HTTP based service.

The main drawback of the approach in our context is that it requires clients to understand

a new format. Furthermore, when compared to microformats, the rather low adoption

rate of the WADL format [160] does not enable applications to leverage existing search

engines.

hRESTs is a microformat [111] sharing similar goals with WADL, with the advantage

of being directly embedded in the HTML representations of services. Because most of

the metadata it offers is implicitly available in a well designed RESTful API, hRESTS

is sometimes criticized by the Web community. More importantly, hREST is the work

of three researchers and, at the date of writing it is not yet an official community-driven

microformat which severely hinders its support by services such as search engines.

However, in practice hRESTs offers the advantage of providing the service metadata

without crawling the resources. As a consequence, the metadata is more strictly organized

and easier to extract which reduces the number of required HTTP calls. To benefit from

this, hRESTs should be used to annotate a global description of the smart thing’s services,

for example accessible at the root HTML page of the smart thing.

Understanding the Benefits of Microformats Following our guidelines, a smart thing

is best described by a compound of five microformats covering the STM model: hProduct,

hCard, hReview, rel-tag and possibly hRESTs.

The benefits of this approach are manifolds. First, smart things become directly searcheable

with traditional search engines such as Google or Yahoo. Moreover, these search engines

can use the metadata to provide contextual search results. As an example, searching for

a temperature sensor nearby from a mobile phone can use the geo microformat of the

smart things to match the GPS coordinates of the mobile phone. Search engines will also

be able to render the search results differently based on the metadata of smart things.

Similarly, based on this metadata, clients such as Web browsers or mobile phone ap-

plications are able to render the user interfaces to smart things in a customized way,

we illustrate this with examples of dynamically rendered UIs and mashup modules for

Wireless Sensor Nodes in Chapter 3.

Towards an STM Translation Service While we suggest implementing the STM model

using the proposed compound microformat for the best current integration experience, it

is clear that this is not a one-size-fits-all format. From the history of metadata formats

such as DPWS, WSDL, WADL, SensorML [18] or SA-REST [177] it is quite clear that

no metadata language can impose itself up to a point where others vanish, because there

44 The Web of Things

is no single best way of describing a smart thing. Hence, smart things will most likely be

and already are described using other metadata formats.

However, the format should not matter, what should is the metadata. Hence, the idea

is to introduce a level of indirection in order to support a broad spectrum of metadata

formats. As introduced in a common work with Simon Mayer [138] as well as in [77, 4],

we implement a STM Translation Service that acts as a converter. On the one hand-side

it can extract (or crawl) information from several metadata formats and on the other

end, through a RESTful Web API, it offers to clients to retrieved the extracted metadata

using the representation they wish (if supported).

2.2.2 A Web-Oriented Discovery and Lookup Infrastructure

Relying on search engines to enable searching for smart things is interesting because

it uses existing, well-known and widely adopted services. However, the approach has

a number of limitations. First, because of their mobile nature, smart things tend to

be moved from one context to another on a regular basis: sensors attached to shipments

move from the factory to a warehouse. Mobile phones entirely change their context several

times per day. Environmental monitoring systems are moved from one observation area

to the other. While improving support for real-time search (e.g., through integration with

real-time information services such as Twitter), search engines still largely function based

on scheduled indexing and might not reflect the latest context of registered smart things.

Thus, the need for local search engines and lookup services for smart things.

Moreover, the bootstrapping of smart things is a problem: How does a smart thing an-

nounce its existence in a particular context? Currently, search engines discover new

resources by following links. For the Web of Things, we need to be able to access smart

things as soon as they connect thus the need for a discovery service for the Web of Things.

We present a distributed and Web-oriented registration and lookup infrastructure for the

WoT federating our joint work in [137, 192] as well as our work on defining a search

and discovery process for real-world services running on smart things [77]2. We begin by

demonstrating how the infrastructure offers a discovery protocol for smart things. We

then show how this infrastructure can be used to perform local search queries.

Distributed Infrastructure

Our Discovery and Lookup infrastructure is composed of several Local Lookup and Discov-

ery Units (LLDUs) [77, 137]. These software components allow smart things to announce

themselves and clients to search for specific (local) services offered by connected smart

things. The internal structure of an LLDU is shown in Figure 2.16 and will be described

in details in the next sections.

2Parts of the described process were patented in [70].

2.2. Findability Layer 45

/ethz

/ifw/ /cab /cnb

/floor-h

/office-107.2 /office-107.1

/abstractNode1

 /smart-things

/appliance1

 /smart-things

/actuators /sensors

/leds /speakers /actuator ...

/a /b /volume

/temperature /light /sensor ...

Virtual LLDU

Physical LLDU
 & Smart Gateway

Smart Thing

Figure 2.12: Hierarchical organization of the Local Lookup and and Discover Units (LLDU).
Virtual LLDUs are can be located anywhere whereas Physical LLDUs are coupled with Smart
Gateways.

Based on common work with Trifa et al. [190] we suggest than rather than having a flat

structure for LLDUs, we deploy them in a hierarchical way, reflecting the abstract loca-

tions of the current context in the resources’ URIs. Using abstract location information

in URIs has a great value since it facilitates browsing for smart things in a particular

context. For instance it lets you navigate through all the smart things in a building,

floor or room simply by pointing to the correct URI of following the provided hyperlinks

structure.

A typical hierarchy is shown in Figure 2.12. The first three levels are virtual LLDUs.

Virtual LLDUs can be deployed on any machine anywhere in the world and one physical

machine can host several virtual LLDUs. Smart things do not directly communicate with

them as their purpose is only to encapsulate the hierarchy of abstract locations and to

serve search queries for these locations. As an example, in Figure 2.12 the ethz, ifw,

cab and floor-h are virtual LLDUs all hosted on the same physical machine.

Like virtual LLDUs, physical LLDUs serve search queries for the abstract locations they

represent, however physical LLDUs also serve as Discovery Services for smart things. A

physical LLDU is a software component that can be loaded in a Smart Gateway. As shown

in Figure 2.12 the office-107.1 LLDU node covers the abstract location encapsulated

in the following URI: /ethz/cab/floor-h/office-107.1/. Directly below this node are

attached the resource trees (see Section 2.1.1) formed by smart things managed by the

smart gateway in office-107.1.

Concretely, the LLDUs can be deployed and configured using a PUT request to the root

URI of a running LLDU with a payload specifying its configuration and context. As

46 The Web of Things

Figure 2.13: Sequence diagram of the discovery process. The LLDU Discovery Service uses
a STM Translation Service to extract metadata for the smart thing. The returned information
is sent to the LLDU Registry Service which indexes and stores the metadata of the discovered
smart thing.

an example Listing 2.8 is a JSON document that configures a new LLDU located at

/eth. The rest of the specified contextual information (e.g., latitude, longitude) will be

inherited by smart things connected to this LLDU that cannot deliver a full STM model,

for instance because they do not have a GPS module.

1 {

2 "resourceUrl ": "http :// webofthings.com :2401" ,

3 "uuids ": [{" uuidType ": "infraWoT", "uuidValue ": "eth"}],

4 "name": "LLDU for ETH",

5 "context ": {

6 "hierachical ": {" hierarchyString ": "eth/", "

hierarchyDelimiter ": "/"},

7 "postal ": "Universitaetsstrasse 6, CH -8092 Zurich ,

Switzerland",

8 "geographical ": {" longitude ": 8.550003 , "latitude ":

47.367347}

9 }

10 }

Listing 2.8: JSON document that configures a LLDU called “LLDU for ETH” and located

at ETH.

Discovery Services

To solve the bootstrapping problem of smart things, physical LLDUs offer a Discovery

Service. The discovery process is started by a smart thing wanting to be part of the Web

of Things infrastructure.

As shown in Figure 2.13, once connected to the local network, the smart thing or gateway

issues a POST request to the /resources end-point of the physical LLDU. As a payload

of the request, the smart thing can either send its root URI or a payload describing its

resources. The Discovery Service sends this to the STM Translation Service which will

extract semantic metadata based on a best-effort principle, supporting several types of

2.2. Findability Layer 47

metadata formats. The STM Translation Service returns a JSON representation of the

extracted data.

The Discovery Service then binds the smart thing to the physical LLDU’s absolute URI.

As an example, after the discovery process, the abstractNode1 in Figure 2.13 gets bound

to /ethz/cab/floor-h/office-107.1/smart-things/abstractNode1. Then, the re-

sources tree of the abstractNode1 itself is also accessible through the LLDU as shown in

Figure 2.12 below the abstractNode1 resource.

Furthermore, to enable keywords-based search, the Discovery Service passes the STM

model to a Registry Service. The role of this latter is to store the representation of the

model as well as to extract two inverted indexes from it. Inverted indexes are a central

component of search engines algorithms and are well suited for keywords-based textual

searches [218]. For each resource the Registry Service creates three different entries, as

show on Listing 2.9. First, it store the JSON string corresponding to the metadata of

the resource in a file. It then adds entries into two inverted indexes. In the first index,

it adds all the keywords that could be extracted from the resource’s metadata. In the

second index, it adds keywords extracted from the metadata related to the output of the

resource.

1 // Store resource in table

2 writeStringToFile(resource.toJSONObject ().toString (),

databaseCoreTable);

3

4 // Get keywords for the resource and add inverted index

entries

5 for (String keyword : resource.getKeywords ())

writeReverseEntryToFile(keyword.toLowerCase (), resource.

toJSONObject ().toString (), keywordReverseTable);

6

7 // Get REST Output from entity and add inverted index entries

8 for (String restOutput : entity.getRESTOutput ())

writeReverseEntryToFile(restOutput.toLowerCase (), entity.

toJSONObject ().toString (), restOutputReverseTable);

Listing 2.9: Indexing the resources in two inverted indexes based on extracted keywords of

the STM model.

Lookup Services

One of the benefits of deploying an infrastructure of LLDUs is the ability to perform

localized search queries. The lookup service offers a query interface for clients such as

developers looking for real-world services to integrate into their composite applications,

end-users wanting to discover the registered services for a particular place or applications

dynamically looking for simple services.

48 The Web of Things

Types of Parameters The Query Service of LLDUs is built on top of the Registry

Service. Clients can access it by sending a POST request to the <LLDU-URI>/query re-

source on an LLDU. The actual query should be specified either through application/

x-www-form-urlencoded parameters or as a JSON payload. Since queries will be dis-

tributed amongst the infrastructure of the LLDUs (traveling down or up the resources

tree), LLDUs also pass queries to each-other using the same mechanism.

Queries can be formulated according to the following parameters basically corresponding

to most relevant fields of the STM model that were extracted by the STM Translation

Service during the discovery process:

Keywords A number of free-text, unstructured keywords can be provided. The matching

algorithm is a traditional keywords search process iterating through the following

properties that were extracted from the device’s representation of the STM model:

name, category, brand, description and user provided tags. These keywords can then

be extended by the system using external services as explained in Section 2.2.2.

Name As several smart things support user provided names, searching for these might

be really valuable to users and thus is offered by the API.

Unique ID Queries by universal unique identifiers e.g., Bluetooth IDs, Zigbee MAC ad-

dresses, IPs, Electronic Product Codes (EPC, see Section 4.1), are a straightforward

way for applications to search for a particular smart thing.

Ratings Clients can use user generated or smart things provided quality of service ratings

as specified in the STM model. For instance this type of query parameters can be

used to find the most reliable wireless sensor node of a certain type as in practice it

is often the case that one node is more reliable than the other.

REST Service The matching algorithm activated by this parameter leverages the meta-

data enhanced description of RESTful APIs based on the hRESTs microformat.

When performing a search, the results sets for each type of parameter are fetched and

the intersection of all the sets is returned to the client through the RESTful Web query

interface.

Types of Queries Parameters define the keywords of a query but thanks to the tree-

structure formed by all LLDUs the locality of searches or scope can also be leveraged.

This concept is encapsulated in the queryType parameter that has to be provided by

clients when using the querying API.

We consider three types of queries that can be performed on the LLDU infrastructure and

illustrate their particular interest when looking for services provided by smart things:

Exhaustive Queries These queries start at the LLDU where the request originated and

are pushed to all children LLDU nodes, eventually returning all the resources that

matched within the subtree. Thus, such a query will go down to the leafs and up

again through every node until the originator is reached again. As an example such

2.2. Findability Layer 49

a query can be used to retrieve all the temperature sensors in a city in order to

compute an average temperature.

Cardinality Queries These queries are used to find exactly n resources corresponding

to the query parameters. The query process is launched on the children LLDU nodes

and will be stopped as soon as n services are found in the result set. However, since

the process is distributed amongst several subtrees in its current implementation the

process may retrieve more than n services, hence the result set is eventually filtered

to keep only n results, giving more weight to LLDUs located higher in the subtree.

Such a query could be used for instance to find pairs of smart meters that monitor

a certain type of device (e.g., a fridge) to compare their actual energy consumption.

Best Effort Queries Such a query is in fact a Cardinality Query with a stopping con-

dition of n = 1. It is used to find the first resource that fits the user needs. As an

example it can be used to find a usable printer in a facility.

Located Queries Since the other types of queries will start their tree-traversal only from

the location of the originator LLDU, there is a need to support an arbitrary starting

point. Located Queries implement this feature. When a hierarchical location is

specified in a query, a Located Query is triggered and sent to the corresponding

LLDU in the hierarchy where the query is started. Such a query can be used for

instance in the case a user is located in a particular room (bound to the physical

LLDU in this room) but wants to query for the energy consumption of the whole

department he is located in.

Query Augmentation Service To provide better results without requiring additional

semantics on the smart things side, the Query Service can be extended with a query with

a Query Augmentation Service we proposed in [77].

In conventional service discovery applications, the keywords entered by the user are sent

to a service repository to find types of services corresponding to the keywords. The prob-

lem with this simple keyword matching mechanism is that it lacks flexibility required in

the special case of real-world objects. As an example lets assume a developer or a user

who wants to find services offered by a smart meter, a term often used to describe a de-

vice that can measure the energy consumption of other devices and possibly control them

depending on built-in logic. Typing “smart meter” only, will likely not lead to finding all

the corresponding services, because services dealing with energy consumption monitoring

might not be tagged with the smart meter keywords but simply with electronic power-

meter. However, since we want to avoid the construction of domain specific ontologies,

and to minimize the amount of data that smart things need to provide upon network

discovery and service registration, we propose a system that uses services on the Web

to extend queries without involving communication with the smart things or requiring

domain specific service descriptions from them.

The basic idea is to use existing knowledge repositories such as Web encyclopedias (e.g.,

Wikipedia), search engines (e.g. Google, Yahoo! Web Search) or domain-specific portals

50 The Web of Things

(e.g., the Metering portal [253]), in order to extract lightweight ontologies [93] or vocabu-

laries of terms from the Web resources’ semi-structured results. The basic concept of the

Query Augmentation is to call 1..n Web search engines or encyclopedias with the search

terms provided by the user, for instance “smart meter”. The HTML result page from

each Web resource is then automatically downloaded and analyzed. The result is a list

of keywords, which frequently appeared on pages related to “smart meter”. A number

of the resulting keywords are thus related to the initial keyword i.e., “smart meter” and

therefore can be used when searching for types of services corresponding to the initial

input.

Software Architecture An invocable Web-resource together with several filters and

analysis applied to the results is called a Query Strategy. The structure is based on

the Strategy Pattern [62], which enables us to encapsulate algorithms into entirely in-

dependent and interchangeable classes. This eases the implementation of new strategies

based on Web resources containing relevant terms for a particular domain. A simplified

class diagram of the Query Strategy framework is depicted on Figure 2.14. Any Query

Strategy has to implement the AbstractStrategy class which provides the general defi-

nition of the algorithm. As an example the YahooStrategy is a concrete implementation

of this algorithm using the Yahoo! Search service. Furthermore, strategies can have ex-

tensions, adding more specific functionality to a concrete instance of a Query Strategy.

As an example the WikipediaStrategy can be extended with the WikipediaBacklinks

class. This particular extension is using the backlinks operation offered by Wikipedia in

order to know what pages are linking to the currently analyzed page similarly to what the

well-known PageRank used to rank websites [21]. This information is then used by the

WikipediaStrategy to browse to related pages and gather relevant keywords. As such,

our approach builds on top of existing ranking and connectivity approaches on the Web.

Furthermore, Query Strategies can be combined in order to get a final result that reflects

the successive results of calling a number of Web-resources. The resulting list of related

keywords is then returned to the user, where he can (optionally) remove keywords that

are not relevant. The implementation of the Query Strategy architecture makes it easy to

test combinations of several strategies together with their extensions. We implemented a

number of these, and their evaluation is presented in Section 2.2.3.

Context Extractor One of the main differences between services provided by smart

things and virtual services is that smart things services are directly linked to the physical

world. As a consequence, the context in which a service exists as well as the context in

which the user or user initiates the discovery of a service are highly relevant. Context is

information that qualifies the physical world, and it can help in both reducing the number

of services returned to the user, as well as in finding the most appropriate services for the

current environment [11].

To satisfy the requirements of real-world service discovery, we propose modeling the con-

text into two distinct parts inspired from [171]: the Digital Environment, which we define

2.2. Findability Layer 51

Figure 2.14: Architectural overview of the Query Strategies based on the Strategy and
Template software design patterns.

as everything that is related to the virtual world the user is using, and the Physical Envi-

ronment, which refers to properties of the physical situation the user currently is located

in or wants to discover services about.

The Digital Environment is composed of Application Context and Quality of Service.

The Application Context describes the business application the user uses when trying to

discover services, e.g., the type of application he is currently developing or the language

currently set as default. Such information co-determines the services a user or developer

is looking for and can reduce the discovery scope. The QoS Information reflects the

expectations of the user (or of the application he is currently using) in terms of how

the discovered service is expected to perform. Our current implementation supports

service health and network latency, i.e., the current status of the service and the network

transmission delay usually measured when calling it.

The Physical Environment is mainly composed of information about location. Developers

are likely to be looking for real-world services located at a particular place, unlike when

searching most virtual services. We decompose the location into two sub-parts following

the Location API for Mobile Devices (as defined in Java Specification Request JSR-179).

The Address encapsulates the virtual description of the current location, with information

such as building name, floor, street, country, etc. and the Coordinates are GPS coordi-

nates. In our implementation the location can either be automatically extracted e.g., if

the user looks for a real-world service close to his location, or it can be explicitly specified

if he wants a service located close to a particular location e.g., in a form of radius.

Extraction of the context on the user side is done when starting the query in the smart

52 The Web of Things

things lookup service Web user interface, the user can also influence these parameters by

setting up preferences. It is worth noting that the context on the user side is meant to

reflect the expectations or requirements with regard to the services that are going to be

returned. As an example, during this phase the user can express the wish for a service to

be physically close to his current location, or he can quantify the importance of context

parameters such as Quality of Service.

This user-quality information is then going to be compared with the context stored on the

LLDUs’ indexes extracted by the STM Translation Service when discovering the smart

things. This is done by the Service Ranking component in order to select and rank the

most relevant resources.

Context of Smart Things The Digital Environment context parameters such as the

device description or Quality of Service, are extracted upon discovery by the Discovery

Service based on the microformat implementation of the STM model.

Getting the context parameters related to the Physical Environment of a service instance

is slightly more complicated. Indeed, as an example it can not be expected from each

smart things to know its location. Thus, we suggest taking a best effort strategy, where

each actor of the discovery process is trying to further fill-in the context object. As an

example, consider a mobile sensor node without a coordinates-resolving module (e.g., a

GPS).

Upon discovery by a LLDU, the sensor node does not know its location and thus can

not fill-in the Address and Coordinates fields of the STM model. The LLDU however,

is a usually immobile component and is configured at setup time with its location and

current address as explained in Section 2.2.2. As a consequence the LLDU can provided

the Address and Coordinate information of the sensor node based on its own location

(within a specific radius). While not entirely accurate with respect to the sensor’s exact

location, this information will already provide a useful approximation. Similarly, since

we can not expect every LLDU to provide a full contextual profile, the LLDUs can also

share their contextual information to complement one another.

Ranking Service Lookup Results The Service Ranking component is responsible for

sorting the resources according to their compliance with the context specified by the user

or extracted from his machine. This component receives a number of service lookup

results alongside with their context profiles. It then uses a Ranking Strategy to sort the

list of results. For instance, a Ranking Strategy can use the network latency so that the

services are listed sorted according to their network latency; another could rank instances

according to their compliance with the current location of a user or the target location

he provided.

As for Query Strategies, Ranking strategies can be well modeled using the Strategy pat-

tern. In this way, new strategies can be easily implemented and integrated. Furthermore,

we extend the pattern to support chained ranking strategies, in order for the resulting

2.2. Findability Layer 53

ranking to reflect a multi-criteria evaluation. Each ranking criterion can use both the con-

text information of the instances gathered during the discovery process, and the context

information extracted on the user side. Thus, instances can be ranked against each other

and/or against the context of the user (e.g., his location). The output of the ranking

process is an ordered list of running services offered by resources on smart things cor-

responding both to the extended keywords and to the requirements in terms of context

expressed by the user either implicitly or explicitly.

Lookup Process Summary

A simplified summary of the complete lookup process is provided in Figure 2.15. First

the client (e.g., a user or client application) sends a query request to the LLDU of his

choice. Then, the LLDU can contact the Query Extension service which will enrich the

user query with a number of related keywords extracted from relevant Web services.

Then, these keywords are packed with the query and sent to the relevant LLDUs, which

LLDUs are relevant is determined by the type of query. This initiates a recursive tree

exploration. Eventually, a result set is returned to the LLDU where the query started.

There, the LLDU can use the Ranking service which will sort the results based on a

chained list of ranking strategies and on the user specified (or extracted) context. A

ranked list of resources (and their provided services) is returned to the client.

Software Implementation

To facilitate integration with Smart Gateway framework presented in Chapter 2, Section

2.1.2, the Lookup and Discovery infrastructure is implemented as several OSGi bundles

that communicate with each other via OSGi declarative services (OSGi DS). The inte-

gration of these services to the Smart Gateway framework is shown in Figure 2.16.

Basically, an LLDU can run on any machine. As mentioned before, physical LLDUs are

coupled with Smart Gateways to simplify the deployment virtual LLDUs, that do not

need physical access to the devices can be deployed anywhere.

The implementation is based on 5 internal services (Registry Service, Lookup Service,

Infrastructure Service, Discovery Service) that are to be deployed with each LLDU (virtual

or physical). The two other services (Query Augmentation Service and the STM Model

Translation Service) are ideally deployed outside (e.g., on the Web) because there is no

benefit to run them locally as all LLDUs can use the same instance of these services.

2.2.3 Evaluation

We structure the evaluation into two parts. First, in a quantitative evaluation we

analyze the response time when querying the lookup infrastructure. Then, we evaluate the

54 The Web of Things

Figure 2.15: Sequence diagram of the lookup process. Clients contact the /query resource
on an LLDU, the keywords of the query can then be extended using the QueryExtension

service. Once a lightweight ontology of keywords has been extracted, the query is distributed
along the LLDU tree and results are aggregated and ranked before sending them back to the
clients.

2.2. Findability Layer 55

Figure 2.16: The modules of the Lookup and Discovery Infrastructure are integrated in the
Smart Gateway framework through OGSi bundles. A LLDU is formed of 5 main services that are
implemented as OSGi bundles running locally. Two additional services (Query Augmentation
and Translation Service) can run outside the local environment (e.g., on the Web) as they can
be used by several LLDUs.

Query Extensions mechanism with real-world data generated by 17 experienced developers

during a user-study [77].

Evaluation of the Lookup Service A scenario was implemented in order to assess the

feasibility of running service lookup queries on top of proposed distributed infrastructure

of LLDUs.

The tree structure of the implemented scenario is shown in Figure 2.17. Each node

in this three represents an instance of an LLDU. However, all instances were deployed

on the same machine located in the cnb building at ETH Zurich. A Smart Gateway

is deployed in this LLDU and connected to two sensor nodes (Sun SPOTs nodes, see

Chapter 3). One sensor node binds itself to the europe/ch/ethz/cnb LLDU and one

to the europe/ch/ethz/cnb/h/107-2/ LLDU. As a consequence, their resources trees

becomes part of the overall resource tree of the infrastructure as show in Figure 2.17.

However, the depth of the tree used in a lookup comprises only the hierarchy of LLDUs

and thus has a maximal depth of 6 because the rest of the actual smart things resources

trees where already indexed upon discovery by LLDUs. To generate some noise, a total

of 61 virtual resources were attached to the virtual and physical LLDUs.

The machine on which the LLDU resources tree is deployed is a Linux Ubuntu Intel dual-

core PC 2.4 GHz with 2 GB of RAM. The Web server used for this implementation is

56 The Web of Things

/europe

/ch /be

/ethz /uzh

/cab /cnb

/h /sunspots

/107-2

/sunspots

/koh /kol

/kortrijk

/testSpot1 /testSpot2

/actuators /sensors

[...] /light /temperature [...]

/actuators /sensors

[...] /light /temperature [...]/testSpot3

/actuators /sensors

[...] /light /temperature [...]

Virtual LLDU

Physical LLDU
 & Smart Gateway

Smart Thing

Figure 2.17: Tree representation of the LLDU infrastructure deployed for the evaluation. The
/cnb node is a physical LLDU to which two concrete wireless sensor nodes are connected.

2.2. Findability Layer 57

0

100

200

300

400

500

600

700

800

900

1000
#

of
R

eq
ue

st
s

0 500 1000 1500 2000 2500 3000 3500

Response Time [ms]

Distribution of LLDUs Response Time for a Keyword Query

Min: 12 [ms]
Max: 3735 [ms]
Avg: 619 [ms]

Figure 2.18: Response times when running a keyword query on the test deployment. Most
queries get answered within 250 to 750 milliseconds.

based on the Noelios Restlet Engine 1.1.7 [268].

We perform 10000 keywords queries looking for services matching the light keyword. With

this setup, the minimal observed response time is 12 ms, the maximum 3753 ms with an

average response time of 619 ms as detailed in Figure 2.18.

The aim of this evaluation is not to prove that our implementation is performing best but

rather to illustrate that the response times are reasonable. It is worth noting however, that

in this scenario all LLDUs were run by the same machine and network latency between

the LLDUs of an infrastructure would have to be taken into account in a real-world

deployment.

Evaluation of Types Query and Candidate Search In this second part we evaluate the

impact of the proposed query extensions mechanisms on the search for services provided

by smart things.

In order to have a neutral base of smart things and their services on which to perform

the evaluation we selected seventeen experienced developers and asked them to write the

description of a selected device and of at least two services it could offer. The developers

were given the documentation of a concrete device according to the projects they were

currently working on. Based on these descriptions we generated thirty types of services

offered by sixteen different smart things ranging from RFID readers to robots and sensor

boards. Out of these, 1000 devices were simulated on a host PC.

It is worth noting that the STM model based service descriptions were generated as DPWS

metadata [77]. However, as the expressive power of the microformat implementation of the

STM model is greater than what can be expressed with DPWS metadata and as a STM

58 The Web of Things

Figure 2.19: Results for the Query Augmentation with Yahoo! and Wikipedia, the Query
Augmentation has a positive impact on the number of services found but it also generates
more false positives.

Translation Service translates all metadata formats into a single internal representation,

the results are applicable to any implementation of the STM model.

The main idea of the evaluation was to find out whether:

1. Augmenting users’ input with related keywords could help in finding more services

on smart things.

2. What type of combination of query strategies is the most suitable.

Two types of strategies were used. In the first we used a human generated index (i.e.,

Wikipedia), and in the second a robot generated index (i.e., Yahoo! Web Search). The in-

put keywords were selected by seven volunteers, all working in IT. They provided seventy-

one search terms (composed of one to two words) reflecting what they would use if they

were to search for services provided by the seventeen smart things when wanting to de-

velop new applications with these smart things. These terms were entered one by one

and all the results were logged.

The trends extracted from these experiments is shown in Figure 2.19. Two results can

be drawn. First the Query Augmentation process does help in finding more smart things

services. Without augmentation 75% (plain gray line in Figure 2.19) of the resources

corresponding to the queries were found and using the Query Augmentation up to a

100%.

However, the Query Augmentation generates a number of false positives, i.e., resources

that are returned even if they are not related to the provided keywords (depicted by the

two lines at the bottom of Figure 2.19). Thus we need to restrict the number of keywords

added to the initial ones. The observed optimum is between 5 and 10 added keywords,

2.2. Findability Layer 59

leading to less than 20% false positives out of 95% services found. The second result can

be seen in Figure 2.19 which reveals that using Yahoo!, the approach performs slightly

better than when using Wikipedia.

Looking more at the details we see that approximately 50% of the keywords used against

Wikipedia did not lead to any page, simply because they do not have yet dedicated

articles, even if Wikipedia is growing at a rate of more than 1000 articles per day (as

of 2011) [272]. However, when results where extracted from Wikipedia pages they were

actually more relevant for the searched real-world services. Thus, a good solution would

be to chain the strategies so that first human generated indexes are called and then robot

generated ones, in case the first part did not lead to any results.

The Ranking Service Lookup was evaluated based on a proof of concept implementation.

We tested two chained ranking strategies for the generated services; one comparing service

health and given weight of 30% as well as one comparing network latency and given a

weight of 50%. They performed as expected, sorting the lists of retrieved service instances

according to the ranking strategies which, we believe helps users finding their way across

the results, but would need to be tested with neutral volunteers.

We implemented the sorting using the merge sort algorithm which has a complexity of

O(n log n), and since the strategies can be chained we have an overhead for the rank-

ing of O(mn log n) where m is the number of strategies and n the number of resource

descriptions.

2.2.4 Summary and Applications

In this section we proposed a metadata model for describing smart things and their ser-

vices. Furthermore, we proposed an implementation of the model based on microformats

that are well understood on the Web for example by search engines. In Chapter 3 (see

Section 3.1.2) we apply this model and its implementation to the description of a general

purpose wireless sensor platform and illustrate how it can be leveraged to dynamically

render UIs for interacting with smart things or to make them searcheable on the Web and

in our lookup infrastructure. Furthermore, we will see the benefits of such a model in the

next layers, the Sharing Layer and the Composition Layer.

We also presented an infrastructure that can be deployed together with Smart Gateways

in order to encapsulate the abstract location of smart things as well as to offer a localized

discovery and lookup infrastructure. A concrete usage of this infrastructure is evaluated

in Section 3.1.2 as well.

60 The Web of Things

2.3 Sharing Layer

With the Device Accessibility Layer of the Web of Things Architecture we ensure that

digitally augmented everyday objects are seamlessly integrated to the Web. With the

Findability Layer we enable humans and applications to find the smart thing’s services

they look for directly from the Web and leveraging contextual information.

Enabling this model for the Web of Things requires a sharing mechanism for smart things,

by allowing access to services offered by devices as Web resources. An implementation

of the two previous layers fulfills this requirement as devices become openly available to

the world directly from the Web and without restrictions. For example, one could share

the energy consumption sensors in his house with the community. However, since these

devices are part of our everyday lives, their unrestricted public sharing might result in

serious privacy violations [139, 118]. In this section we propose a Web architecture that

tackles these challenges.

2.3.1 Requirements for a WoT Sharing Platform

HTTP already provides authentication mechanisms for securely sharing resources. The

HTTP Basic Access Authentication [102] is a method that allows Web clients (and in

particular Web browsers) to provide credentials (user names and passwords) when making

an HTTP request on a server. In practice, HTTP Basic Access Authentication [102] is

coupled with SSL/TLS in order to make sure that the user names and passwords are not

transmitted in clear text over the wire. HTTP Digest Authentication on the other hand,

ensures that the credentials are always encrypted.

While these two solutions are already available on (embedded) Web servers they present

a number of drawbacks. First, when considering a large number of smart things it be-

comes quite unmanageable to create and share credentials for each of them and for each

contact one wants to share with. Then, the credentials used in these systems are often

impersonal and do not reflect any social or trust structures already in place. Then, as the

shared resources are not advertised anywhere, sharing also requires the use of (unsecured)

secondary channels such as sending emails containing credentials to people. Looking at

pitfalls of the existing solutions we propose three requirements for a sharing platform for

the WoT:

Security The most basic requirement for a WoT sharing platform is to be secure in order

to make sure that access to smart things is not granted to attackers.

Ease of Use People are concerned with the security of their private data, for example

2.3. Sharing Layer 61

in home environments [139]. However, it has been shown that the ease of use of

a secure sharing system has a significant influence on its adoption and effective

usage [101]. Hence, a WoT sharing platform should be straightforward and easy to

use.

Reflect existing trust models The sharing platform should also reflect mental models

users are already familiar with [139]. In particular it should as much as possible

reflect the existing trust and social models of users.

Interoperability In order not to hinder the benefits of adopting an interoperable Web ar-

chitecture, as for the Device Accessibility Layer and Findability Layer, the protocols

used by the sharing platforms should be interoperable with the Web and understood

by most Web tools and clients. Furthermore, the sharing platform should not be

bound to a specific social model but should be able to adapt to several systems.

Integrated Advertisement A WoT sharing platform should also support advertising

the shared things directly on the Web. In order to reduce the load for users and

improve security, sharing a smart thing and advertising the fact that it was shared

should occur on the same channel without explicitly disclosing credentials.

First meant for creating groups of people and enabling communication amongst these

groups, social networks rapidly evolved into data sharing hubs [19]. Social networks

make it very easy to share data (e.g., pictures) with groups of people such as family and

friends [141]. The social network takes care of the authentication of these individuals and

manages access control lists for the users’ data.

We propose leveraging social networks as sharing hubs for smart things. In the Sharing

Layer we introduce an architecture and its implementation in a platform that enables the

selective sharing of smart things. It uses social networks and their social graphs already

in place for sharing smart things with people relevant to smart things owners, creating a

Social Web of Things.

Furthermore we illustrate how social networks can be used as service advertising platforms

and how they support the implementation of the physical feeds aggregators components

of the Web of Things Architecture.

2.3.2 Social Access Control: An Architecture for the Social Web of

Things

A promising solution to the problem of sharing smart things is to leverage existing social

structures and build upon social networks (e.g. Facebook, Linkedin, Twitter, etc.) and in

particular their social graphs accessible through data access APIs (e.g., OpenSocial) and

their authorization APIs (e.g., OAuth).

Using social networks enables users to share things with people they know and trust such

as relatives, friends, colleagues, fellow researchers, etc. This is achieved without the need

62 The Web of Things

Figure 2.20: Simplified components architecture of the Social Access Controller. SAC serves
as authentication proxy between clients and embedded devices. It holds the credentials for
accessing smart things and provides access to selected trusted connections of the owners’
social networks. It further offers an API upon which applications can be built.

2.3. Sharing Layer 63

to recreate yet another social network or user database from scratch on a new online

service. Additionally, it enables advertising and sharing through a unique channel: users

can tell their friends about the sensors they shared with them by automatically posting

messages to their profile or newsfeeds.

We propose a system to share things and facilitate access to real-world services offering a

RESTful Web API. Our core contribution is a Web architecture and its implementation

called Social Access Controller [71, 131] (SAC) which offers the following functionality:

Authentication Proxy A SAC identifies users based on existing credentials rather than

requiring the creation of new, impersonal credentials for each smart thing or Smart

Gateway.

Authorization Proxy A SAC is an authorization proxy that sits between clients and

smart things and authorizes clients applications (e.g., browsers) to access the smart

things.

Access Control Manager A SAC helps users to fine-tune the nature of interactions

they want to allow for their objects (e.g., read-only, read-write, etc.) and manages

access control based on existing social graphs.

Advertisement Channel A SAC can advertise shared smart things using the notifica-

tion services of social networks such as user newsfeeds or walls.

Overall, the architecture enables owners of Web-enabled smart things to easily share

them on the Web. Consider for example an smart meter that implements the Device

Accessibility Layer. Sharing the energy consumption recorded by all these smart meters

on the Web, enables the creation of very interesting applications. For instance a mashup

on a map can show the the consumption of each individual in a group of friends. Similarly,

a Web-enabled Hi-Fi system can enable songs to be played remotely through a RESTful

interface. Sharing it with close friends enables them to remotely play songs for you.

You can also use the system to inform all your friends, on their favorite target device

(e.g., mobile phone, laptop, TV, etc.) that you will be a little late. The global system

architecture shown in Figure 2.20 addresses these use-cases. It is composed of a central

Web application, the SAC server, which creates the link between social networks and

smart things.

In this section, we define owners as people owing or administrating smart things (e.g., a

Web-enabled sensor node) and trusted connections as the people owners share their smart

things with (e.g., friends, colleagues or relatives). It is worth noting, however, that owners

and trusted connections can also be applications.

2.3.3 Retrieving the Owners’ Social Graphs

The process of sharing smart things with trusted connections occurs in three phases. In

the first phase, the owner accesses the SAC server by logging in using one or several of his

social networks credentials as shown in the step 1 of Figure 2.22. Then, the owner’s lists of

64 The Web of Things

SAC Server

Owner

4

Social Network

2 7 9

1

5

3 8 10

6

Figure 2.21: Using OAuth for a SAC to retrieve an owners’ trusted connections: 1) Click on
social network button 2) RequestToken? 3) OK, RequestToken + RequestSecret 4) Redirect
to social network with RequestToken 5) Login + Grant permission to SAC 6) OK, Redirect to
SAC Server 7) Exchange RequestToken to AccessToken? 8) Owner login OK, AccessToken +
AccessSecret 9) List of Friends? 10) AccessToken + ConsumerKey OK, List of Friends

trusted connections (i.e., social graphs) need to be retrieved using delegated authorization

on the social networks as shown in step 2 of Figure 2.22.

Leveraging Web Authorization Protocols: OAuth

As mentioned before a SAC is an authorization and authentication proxy between clients

(e.g., Web browsers) and the smart things. Rather than maintaining its own database or

list of trusted connections and credentials – as it would be done with Basic or Digest HTTP

Authentication – it connects to a number of social networks to extract all potential users

and groups one could share with. As a consequence owners need to be authenticated

to their social networks and a SAC need to be authorized to retrieve lists of trusted

connections.

To achieve this first step, we use the OAuth 1.0 protocol [48]. OAuth is a delegated

authorization protocol that enables users to allow client applications to access their data

without revealing the users credentials [8]. OAuth has the advantage of fulfilling our

requirements for a Social Access Controller. First, it is supported by a vast majority

of social networks. Secondly, as an open standard it is backed by a large community of

developers and security experts and is being monitored for security breaches which makes

it a rather secure option. Thirdly, it is built on top of HTTP and thus is well integrated

to the Web and interoperable. Finally, since the user-facing part of the protocol is relying

on the existing login systems of social networks, users are familiar with them and thus

the system can be considered as relatively easy to use.

The OAuth protocol is based on a so called three-legged scheme because there are three

parties involved in the protocol [8]. The client, the service provider and a user. In

2.3. Sharing Layer 65

the context of a SAC, the client is the SAC server, the user is the owner of a smart

thing and the service providers are the social networks the owner has an account with.

The communication to authenticate the user and authorize a SAC to access the trusted

connections of the owner is shown in Figure 2.21 and detailed here:

1. The SAC server gets a ConsumerKey and ConsumerSecret from the social network.

2. The owner selects a social network by clicking on its corresponding button on the

SAC server login page.

3. The SAC server asks the selected social network for a RequestToken.

4. The RequestToken is granted together with a RequestSecret.

5. The owner is redirected to the social network where he logs in and grants the

permissions to the SAC server.

6. The login was successful and the owner is redirected to the SAC server.

7. The SAC server asks to exchange its RequestToken for an AccessToken.

8. Since the owner login was successful the AccessToken is granted by the social net-

work.

9. The SAC server can now request owner related data from the social network.

10. The data is granted since the SAC has a valid AccessToken and ConsumerKey.

Ensuring Statelessness It is worth noting that in order to respect the constraint of

Stateless Interactions of RESTful architecture described in Section 2.1, a SAC should

not store the access tokens and secrets given by the social networks upon successful

authentication and authorization. Indeed, this ensures that requests to a SAC can be

cached and proxied [160]. Hence, the SAC requires clients to store this information. This

is best achieved by storing it in the form of cookies [114]. These cookies are then sent

in the header of each subsequent request to a SAC. As a consequence, the transmission

of this information should occur over an encrypted channel (e.g., HTTPS) as an attacker

could use the unencrypted tokens to impersonate a user.

However, an attacker could not use these tokens to compromise and use the user’s social

data. Indeed, access to the data is only granted to particular server application here, a

SAC server. This is ensured through signing the request with an API secret key only

known to the SAC server.

Leveraging Social Network APIs

OAuth is meant to authorize applications to access, on users’ behalves, other applications

such as social networks. However, the specification does not propose a standard way of

accessing the social network data once authorized and authenticated, it does not stan-

dardize the reads/writes API of a social network. Nevertheless, providing an open Web

66 The Web of Things

API is one of the success factors of social networks themselves. Indeed, these APIs allow

third-parties Web applications to be built using partial data extracted from the social

networks and thus to enhance the functionality and value of the social networks.

OpenSocial The OpenSocial [88] specification was created to fulfill the need for standard

social network APIs. It defines a common API for application to access data across

several social networks. OpenSocial uses OAuth for authorizing an application to access

the social network. Then, the access to the standard social API is using a REST or RPC

architecture.

When building a Social Access Controller, this type of standard is central as it enables to

retrieve lists of trusted connections from any compliant social network and thus keeps to

architecture open for integrating new and existing social networks. Once authorized to

access the social data with OAuth, a SAC server has a standard way of accessing trusted

connections. As an example, the OpenSocial RESTful API [299] call for downloading all

the contacts of a user is a GET request on: /people/{USER_ID}/@all.

Unfortunately, some major social networks such as Facebook or Twitter do not comply

with OpenSocial. For these networks, proprietary APIs such as the Facebook (Connect)

API have to be used. While similar to OpenSocial in terms of functionality, the APIs

significantly differ, making it impossible to access the data of these networks in a uniform

manner.

Thus, we suggest for SAC servers to support access to social network data using a plugin

architecture, enabling the support of both OpenSocial based and proprietary APIs. We

further describe this plugin architecture in Section 2.3.7.

For each social network a user is currently logged in with, the SAC server uses the Web

API of the social networks (through an OAuth authorization) and queries them for lists

of friends and other connections as shown in Figure 2.22. All these connections are then

compiled into a global list of potential connections that the owner can share with.

2.3.4 Registering and Sharing Smart Things and Smart Gateways

In the second phase of the sharing process, the owner registers the smart things and

Smart Gateways he owns. The prerequisites for a smart thing to be shared with a SAC

are based on a relaxed subset of the Device Accessibility Layer presented in Section 2.1

that can be summarized as follow:

• Addressability: All the shareable functions offered by smart things should be

modeled as resources [50] which are addressable and identified by resolvable URIs.

• Uniform Interface: The actions available on resources should comply with the

HTTP verbs (e.g., a GET on a resource retrieves a representation of that resource).

2.3. Sharing Layer 67

Figure 2.22: Process for registering and sharing a smart thing using a SAC server. The owner
authenticates himself using a social network (1,2). He then provides his credentials to access
the smart thing (3). The smart thing is crawled for resources (4) that the owner can share
(5). The shared resources are advertised on social networks (6).

• Resource Description: The embedded Web servers on smart things (or Smart

Gateway) should support one of the service metadata description methods proposed

in Section 2.2.1. It is worth noting that the only real requirement is to respect the

connectedness constraint as the core information required to share smart things

with a SAC can be obtained simply by crawling the RESTful Web API. Additional

metadata can be used to provide owners and trusted connections with more detailed

descriptions of the resources thus improving the system’s usability.

Additionally, to ensure that the smart things are secured, their direct access should be

restricted as shown in the rightmost part of Figure 2.20 using a standard HTTP method

(e.g., HTTP Basic Authentication with SSL/TLS or HTTP Digest Authentication). If not

provided “out-of-the-box”, this can be done by setting up the Web server at the device

level or at the gateway level to accept only authenticated HTTPS traffic and require

credentials for any incoming request.

The actual registration and sharing process is depicted in Figure 2.22. First, the owner

logs in to one or more of his social networks using the SAC cross-network OAuth client.

He can start registering the smart things and Smart Gateways that belong to him and

sharing them with the trusted connections retrieved by the SAC server (step 2 in Figure

2.22). To do so, he provides the credentials to access a smart thing or the credentials of

a Smart Gateway that manages several smart things as shown on step 3 of Figure 2.22.

68 The Web of Things

Using these credentials, the SAC server accesses the smart things and crawls them (step

4 of Figure 2.22). This is done by using an STM Translation Service (see Section 2.2.1).

Using this service, the SAC server is able to identify the available services and expose

them for sharing in a user-friendly manner as show in Figure 2.28.

The owner can then share the discovered services of smart things with trusted connections

such as friends, relatives, or colleagues (step 5 of Figure 2.22). He can either share com-

plete smart things (e.g., a sensor node) or their sub-resources only (e.g., the temperature

sensor of the sensor node only). Furthermore, he can choose to share resources in read-

only (i.e., allowing the GET verb only) or read-write (i.e., giving access to all the available

HTTP methods). Figure 2.28 shows a user interface to share smart things implemented

on top of a SAC server.

Finally, for each shared resource of a smart thing, the SAC server uses the correspond-

ing social network messaging system to post a notification to the trusted connection

the resource was shared with as shown in step 6 of Figure 2.22. As for retrieving

lists of trusted connections, this is done through the social network API. In the case

of an OpenSocial compliant social network, this is done simply with a POST request on:

/messages/{USER-ID}.

In the case of other social networks, the SAC server has to use the proprietary API for

sending notifications through the network. In our implementation, for Facebook, the

SAC server publishes a message to the newsfeed of the trusted connection. In the case

of Twitter it simply tweets a message to the trusted connection. Note that the posted

message does not contain any credentials but a link pointing back to the SAC server

where the data of the shared resource can be fetched by the trusted connection once

authenticated.

2.3.5 Accessing Shared Smart Things

Once a trusted connection gets notified of the fact that resources of a smart thing were

shared with him, he uses the provided URI to access it as shown in step 1 of Figure 2.23.

The shared URI points back to an instance of a SAC. When receiving the HTTP request,

the SAC server prompts the trusted connection for log in if no cookie corresponding to a

successful authentication on one of the SAC recognized social network is found. Indeed,

just as smart thing owners need to be authenticated and to grant access to their social

network data, trusted connections wanting to access the shared smart things need to get

authenticated. Because it authorizes applications in the name of users, OAuth can also

be used to authenticate trusted connections. However, as trusted connections simply use

the system as a proxy there is no need for a complete delegated authorization process.

In this case, the SAC server simply needs to confirm that the trusted connection is the

person it pretends to be as shown in step 2 of Figure 2.23. A simple, user-friendly manner

to ensure this on the Web is through delegated authentication.

2.3. Sharing Layer 69

Figure 2.23: Accessing shared objects using delegated authentication through the Social
Access Controller. The trusted connection requests the shared resource’s URI (1). If not
logged in with the corresponding social network, the SAC server asks the trusted connection
to login (2). The SAC server then access the smart thing and redirects the results to the
trusted connection’s client (3, 4).

Leveraging Delegated Authentication A delegated authentication for a SAC presents

two advantages. First, trusted connections do not need special credentials or a dedicated

registration for accessing the shared resources, as they can use the credentials of any social

network or service on the Web that supports delegated authentication. Second, the SAC

does not need to hold profile information about the users (a user ID is enough) and can

support several social networks for a single trusted connection.

OpenId is the dominating protocol for delegated authentication on the Web. Its core idea

is to offer Web users a mechanism for transporting their identity from site to site, avoiding

for them to have to go through a registration process for each site. Unlike OAuth, which

is both a user authentication and an application authorization protocol, OpenId does not

grant data access to the client Web site beyond a limited user profile.

After the SAC server successfully confirmed the identity of the trusted connection using

a delegated authentication client (OpenId or OAuth), it internally checks whether this

person also has access to the requested resource. If it is the case the SAC server logs

on the shared resource using the credentials provided by the owner when registering the

resource. It then redirects the HTTP request of the trusted connection to the shared

resource as shown in step 3 of Figure 2.23. Finally, it redirects the result directly to the

HTTP client of the trusted connection (step 4), e.g., to a Web browser.

70 The Web of Things

2.3.6 Physical Feeds Aggregation

While direct access to a single device might be interesting for control scenarios, as for

instance playing a song on a Hi-Fi system or turning off a device remotely, monitoring

use-cases require a system that allows to group several events coming from smart things

together and publish them to a messaging or feeds server on the Web.

Thus, SAC provides a syndication mechanism that can be used to monitor several smart

things at once. It consists of an Updater component which periodically polls the smart

things for updates and sends the updates to a syndication server (e.g., an Atom server).

Updaters can be parameterized by specifying the amount (number of characters or per-

centage of change) of content that should be changed in order to generate a new event.

A regular expression which should be satisfied can also be specified. Finally, another

regular expression can be used to reformat the content of the event before publishing it.

The new events are then published by the Publisher components which are abstraction

of Web publishing mechanisms. Similarly to the NetworkConnectors, Publishers rely

on an extensible architecture to be able to quickly add support for new services.

An example scenario for this system is a friend who can be informed when you leave

work. By monitoring the energy consumption of your computer, a notification will be

generated and transmitted when your computer is turned off. Another scenario is a friend

who creates a simple physical mashup with Google Maps that shows friends available in

the neighborhood. This mashup could be simply based on an Atom feed to which the

Publisher Component sends update events whenever a friend leaves his workplace.

2.3.7 Software Architecture

In this section, we present the software architecture of our SAC implementation, based

on a Resource Oriented Architecture implemented using the Object Oriented paradigm.

Our architecture further uses the EJB (Enterprise Java Beans) patterns [143] and thus is

organized around a data model describing the actors, or entities of the system, managed

by a number of managers implementing the business logic. We first present the data

model and then the most important manager components.

Data Model A SAC server is implemented around a relatively small set of data classes,

also called Entities in the Object Oriented terminology, that we briefly describe here.

Administrators and Gateways The primary purpose of SAC is to enforce rules for

accessing WoT devices. Hence, the Gateways data classes represent either actual

Smart Gateways or smart things since they both expose the same type of Device

Accessibility Layer. Owners of smart things i.e., users who registered the smart

things, are called Administrators.

2.3. Sharing Layer 71

Figure 2.24: Overview of the SAC software architecture. At the core of the architecture,
the AuthenticationManager is responsible for managing a list of the connected users. The
NetworkConnectors are used to authenticate and authorize users with all supported social
networks. The GatewayManager manages the Smart Gateways and the ProxyRedirector

fetches resources from the Smart Gateways in the name of trusted connections. Finally,
Updaters and Publishers manage the feeds.

Social Networks and Accounts SocialNetwork entities represent social networks that

can be used for authentication and authorization. These entities are linked to users

through the Account classes. Account classes represent all the social network a user

(owner or trusted connection) logged in successfully with using the SAC OAuth

client.

Resources and Shares These entities represent the smart things. A Resource is a

shareable functionality on a smart thing (e.g., the temperature resource of a sensor

node). Once shared, a Resource is linked to a Share entity which is turn is linked

to Permission entities representing whether the resource is shared in read-only or

read-write mode.

Publish Systems and Updater Publishsystems represent Web services where updates

of a resource can be published. A RegisteredFeed is a scheduled periodic task that

takes care of posting an update to a PublishSystem if the new state of the Share

it monitors meets the specified conditions.

The entities are stored and loaded through a PersistenceLayer as shown in Figure 2.24

which is a simplified overview of the software architecture of our SAC implementation.

Following the EJB patterns [143], entities are managed by a number of Manager compo-

nents that can be seen in Figure 2.24.

72 The Web of Things

Figure 2.25: Simplified class diagram of the network connectors architecture of SAC. Thanks
to the modular architecture new connectors can be easily added to the system.

Business Logic Just as smart things in the Web of Things are accessible through REST-

ful APIs, access to SAC functionality is done through a REST architecture. As shown

in Figure 2.24, incoming HTTP requests reach the ResourceRouter. This component

is based on a REST framework enclosing an HTTP 1.1 compliant Web server and is in

charge of forwarding the incoming requests to the matching components which can be a

resource, another router or a guard. A resource component simply corresponds to the

implementation of a REST resource. Guards are used to protect sensitive components of

the architecture and authorize their access only to authenticated and authorized requests.

At the core of the platform lies the components which implement the business logic of

the SAC and use the entities of our data model. We briefly describe the most important

business logic components of the SAC architecture:

Proxies and Gateways Managers The ProxyRedirector is a central component of

SAC as it implements the access to shared smart things as described in Section 2.3.5.

The ResourceRouter redirects all requests from trusted connections to access smart

things to the ProxyRedirector. The ProxyRedirector then adds the required

credentials to the request and forwards it to the secured smart things. It finally

returns the results back to the client of the trusted connection. When an owner

shares a resource with a trusted connection he also, by default, allows access to all

resources below the shared one. As a consequence, the ProxyRedirector must also

parse the responses and replace all the absolute links (as well as Location headers)

pointing directly to the smart things in order for them to point to the smart things

proxy.

The GatewayManager is in charge of securely holding the credentials to access the

smart things as well as discovering the services they provide. To do so, it either

uses the internal CrawlingModule or uses an external STM Translation Service (see

Section 2.2.1).

Network Connectors The NetworkConnectors are the SAC link to social networks:

They encapsulate the necessary logic to login to a social networks using delegated au-

thentication as well as to extract data from it using delegated authorization. While

OAuth and OpenSocial compliant networks can be accessed using a generic Network

Connector, other networks need dedicated connectors that understand their specific

2.3. Sharing Layer 73

Figure 2.26: Simplified class diagram of the publishers architecture of SAC.

/sac

/authentication /friendsandthings /permissions /networkconnectors /publishsystems /users /gateways

/{userId}

/friends /admins/shares

/{adminId}/{shareId}

/feeds /usage

/{feedId}

/{gatewayBaseUrl}

/resources/index

/{resourcesSubUrl}

Figure 2.27: Tree visualization of the SAC RESTful Web API.

(non-standard) API. The NetworkConnector architecture of SAC is presented in

Figure 2.25. It features an abstract NetworkConnector which can be extended to

created dedicated connectors with OAuth, OpenSocial support or with proprietary

authentication and authorization protocols (e.g., FacebookConnect).

Authentication Manager The AuthenticationManager works between the proxies

and the network connectors. It manages a list of the connected users and their

respective social networks. As mentioned before, SAC does not store the access

tokens and secrets returned by each social network. These are rather sent along by

clients in the HTTP header of each request. As a consequence, the authentication

manager is responsible for extracting the information from the cookie and using it on

the corresponding NetworkConnector to ensure that the user is still authenticated.

Updaters and Publishers In order to enable the aggregation of physical feeds from

shared smart things, SAC uses an Updater which is in charge of monitoring a

resource and pushing their updates to a Publisher. As shown in Figure 2.26,

Publisher is an abstract component that can be extended to support a concrete

publishing mechanism. We implemented an AtomPublisher supporting any Atom-

Pub compliant server and a TwitterPublisher to publish notifications through the

Twitter service.

74 The Web of Things

Figure 2.28: Screenshot of the FAT (Friends and Things) application built on top of SAC.
The owner can select the smart things he wants to share with some of his trusted connections.

RESTful API In order for applications to leverage it, a SAC server should implement a

RESTful Web API. Our implementation of the SAC server offers an API that can be used

to: share, add, manage, syndicate, and interact with shared smart things. This makes

SAC an integral part of the WoT since its API is accessible on the Web and can be used

to further build applications. For example, a new Smart Gateway or smart thing can be

added to SAC for sharing by sending a POST request to /gateways alongside with the

data of the new element (URI, name, description, etc.) as payload.

All the resources available in the API are shown in Figure 2.27. Each resource can be

delivered as an HTML, JSON or XML representation.

2.3.8 Friends and Things: A Social WoT Web Application

To exemplify how applications can be built on top of the implementation of SAC, we

developed the Friends and Things (FAT) application. FAT is a Web application that

allows users to share and use shared smart things in a user-friendly manner. FAT is

written in JavaScript and HTML and uses the SAC RESTful Web API. It basically

provides a user interface to access the main functionality of the SAC server. It helps

owners to login with several social networks in parallel, lets them manage smart things

and Smart Gateways and share them with trusted connections (see Figure 2.28). Finally,

it provides owners with usage statistics (see Section 4.4 for a concrete example).

Furthermore, FAT helps trusted connections leveraging smart things that were shared

with them. Upon login, trusted connections find a list of smart things that were shared

with them. As shown in Figure 2.29, using the RESTful Invocation Tool, they can directly

test all the authorized HTTP methods (e.g., PUT, POST, GET) and add HTTP payloads

to their requests. Finally, trusted connections can create feeds combining different smart

things that were shared with them and have these feeds automatically updated according

to rules specified using regular expressions.

/gateways

2.3. Sharing Layer 75

Figure 2.29: Using the RESTful Invocation Tool, a trusted connection can directly test all
the HTTP methods available to him and add HTTP payloads.

2.3.9 Summary and Applications

Bringing devices to the Web paves the way for a new breed of applications that seam-

lessly blend the physical world with existing services on the Web. SAC and FAT are

simple examples of the possibilities revealed by Web-enabling physical objects.

In this section we have presented a system for sharing and controlling access to resources

in the Web of Things. The core idea is to leverage existing online social structures rather

than relying on closed databases of credentials. Thus, the SAC architecture provides

a framework which builds upon fast growing social networks such as Facebook, Twit-

ter or LinkedIn to allow users to share physical objects with actual friends, relatives or

colleagues.

SAC also provides a programmable basis upon which composite Web applications can

built. Thanks to the RESTful API of SAC, physical mashups and other Web applications

can use the SAC functionality to share and use shared smart things. To illustrate this we

introduced the Friends and Things Web application which directly builds upon the API

for our implementation of a SAC server.

The architecture described in this section and its implementation are evaluated with

Wireless Sensor Networks in Chapter 3 (see Section 3.3) where the overhead of using the

architecture and its underlying protocol is assessed. Finally, it is used to share access to

traces of RFID-tagged objects in Chapter 4 (see Section 4.4).

76 The Web of Things

2.4 Composition Layer

At large, the Web of Things materializes into an open ecosystem of digitally augmented

objects on top of which applications can be created using standard Web languages and

tools. With the previous layers, we allowed developers to access and search for Web-

enabled smart things and owners to have a simple and scalable mechanism to share them.

Much is to gain from Web integration as it drastically eases the usually rather tedious

development of applications on top of smart things.

In this last layer, we would like to push further the boundaries of the WoT so that from

getting close to developers, it also gets closer to end-users and enables them to create

simple composite applications on top of smart things. Indeed, the previous layers also

deliver more flexibility and customization possibilities for end-users.

2.4.1 Physical Mashups in the Web of Things

In this section we look at the concepts of Web 2.0 Mashups and further define the notion

of Physical Mashups. We then discuss the special requirements of the Web of Things and

propose a Physical Mashups architecture based on these requirements.

Web 2.0 Mashups

Web Mashups are defined as: “Web applications generated by combining content, presen-

tation, or application functionality from disparate Web sources. They aim at combining

these sources to create useful new applications or services” by Yu et al. [216].

Yee [215] characterizes mashups along the combinations of three actions or patterns:

1. Data is extracted from a source web site.

2. The data is translated into a form meaningful to the destination web site.

3. The repackaged data is sent to the destination site.

Following this pattern, Housingmaps [241] is one of the most well-known Web mashups.

It extracts the list of apartments, rooms or flats that are available for rent or sale on

the Craigslist Web site [226] and displays them on Google Maps [237] according to their

location [215]. The result is a new service which helps people visually and geographically

identifying real estate listings.

2.4. Composition Layer 77

Mashup creators often also share their mashups on the Web (sometimes through directo-

ries such as the Programmable Web API directory [263]) and expose them through open

APIs as well, making the ecosystem grow with each application and mashup.

The creation of composite applications is key in the idea of mashups. However, according

to the literature [216, 154, 90, 20], there are several differences between Web mashups and

traditional composite applications:

Lightweightness and Simplicity The technologies used for mashups mainly involve

Web standards (e.g., HTML, HTTP, Atom, RSS, Microformats), scripting languages

(e.g., JavaScript) and Web programming languages (e.g., PHP, Ruby, Python,

etc.) [215, 216]. As a consequence mashups are rather lightweight applications that

can be brought to several clients through Web (and mobile Web) browsers.

Accessibility to a Larger Public A direct consequence of the simplicity of mashups is

their accessibility to a larger public than traditional composite applications. Manual

mashups [216], i.e., mashups that are created without the use of dedicated tools are

still mostly targeted towards (Web) developers. However, through the use of mashup

editors, lightweight Web composition is brought closer to tech-savvies thanks to the

use of visual metaphors and wizard assistants.

Prototypical and Opportunistic Nature Traditional composite applications in the

enterprise software business are often achieved either using proprietary programming

solutions or WS-* services with composition standards such as BPEL (Business

Process Execution Language) [97, 154]. On the contrary mashups are often used

for more ad-hoc applications such as rapid prototypes or to create applications that

fits the needs of individuals or a handful of people with more relaxed quality of

service and security requirements [154, 20]. However, in the last few years, mashups

have evolved to be also considered as a valid development technique for the world

of enterprise applications [97].

Physical Mashups

We propose a unified view of the Web of today and tomorrow’s Web of Things in applica-

tions called Physical Mashups [209, 79, 81]. Tech-savvies, i.e., end-users at ease with new

technologies, can create Physical Mashups by composing virtual and physical services.

Following the trend of Web 2.0 participatory services and in particular Web mashups,

users can create applications mixing real-world devices such as home appliances or sen-

sors with virtual services on the Web. As an example, a Hi-Fi system could be connected

to Facebook or Twitter in order to post the songs one listens to the most.

We distinguish three mashup development approaches for Physical Mashups and relate

them to their main target groups:

Manual Mashup Development Introduced in [216], we refine this type of development

in a WoT context as: development of composite applications that involve smart

78 The Web of Things

things by means of Web technologies such as HTML, HTTP, Atom and JavaScript

but without requiring the use of specific mashup tools. This type of development

is meant to be undertaken by actual developers. However, thanks to the previously

presented layers and approaches, smart things are brought to Web developers rather

than embedded systems specialists [146]. We used this type of development approach

for instance to realize the Energie Visible mashup presented in Section 3.2.2.

Widget Based Mashup Development In this type of development a software frame-

work, sometimes called portal communicates with the smart things and makes their

data available through a black-board [216] approach where the data are constantly

written to variables in memory. The developers then simply have to create wid-

gets (or portlets) that read and write to these variables. These widgets are usually

written using a combination of HTML and JavaScript code. Since it fully abstracts

the communication with smart things this model is a higher abstraction level. A

direct consequence of this development model is that domain experts (e.g., experts

in supply chain management) with IT skills can build composite applications for

their domain without having to learn the subtleties of embedded systems. This

development approach was used to create the EPC Dashboard Mashup presented in

Section 4.5.3.

End-User Development with Mashup Editors This development approach enables

end-users to create their own composite applications. In the case of Web 2.0 Mash-

ups this type of application is usually developed through a mashup editor, e.g.,

Yahoo Pipes [287], which is a Web platform that enables people to visually create

simple rules to compose Web sites and data sources. A similar approach can be

applied to empower users to create small applications tailored to their needs on top

of their smart things. In the next section we discuss the specific requirements of

Physical Mashup Editors and describe the architecture of a platform for building

these editors.

2.4.2 From Web 2.0 Mashups Editors to Physical Mashup Editors

While Web 2.0 Mashup techniques and tools can be largely re-used for the Web of

Things, the physical world has some special constraints that need to be addressed when

designing Physical Mashups editors. We deduce these constraints based on a case-study

in which we adapted an existing Web 2.0 Mashup Editor to be used as a Physical Mashups

editor. Then, for the identified constraints we propose a number of requirements [68].

2.4.3 Adapting a Web 2.0 Mashup Editor to the Web of Things

To better understand the requirements of a Physical Mashups editor, we adapted an

existing Web 2.0 Mashup Editor to include building-blocks featuring access to smart

things. Our case-study is based on the Clickscript project [149]. Clickscript if a Web

2.4. Composition Layer 79

Figure 2.30: A Physical Mashup with a modified version of the Clickscript Mashup editor.
The mashup turns a lamp on whenever the light level observed by a real-world sensor is above
a threshold.

80 The Web of Things

platform [298] written in JavaScript and HTML on top of two popular JavaScript libraries

(Dojo [277] and JQuery [250]). Clickscript allows people to visually create Web 2.0

Mashups by connecting building-blocks of resources (e.g., Web pages, strings, etc.) and

operations (e.g., greater than, if/then, loops, etc.).

We decided to use Clickscript for two main reasons: First, since the editor was created only

with client-side Web technologies its deployment and extension is very straightforward and

can illustrate well the integration of smart things to pure Web scripting languages. Then,

Clickscript was created with the aim of teaching young children the basics of programming.

As a consequence, its usage is very simple and accessible even to non-technical people [149].

Since Clickscript is written in JavaScript and running in the browser, it cannot use re-

sources based on low-level protocols such as Bluetooth or Zigbee. However, it offers full

HTTP support and hence can easily access RESTful services. As WoT devices imple-

mented using the architecture described in the Device Accessibility Layer, Findability

Layer and Sharing Layer are fully accessible through a RESTful Web API, it is straight-

forward to create Clickscript building-blocks supporting smart things.

We used this approach to create Clickscript building-blocks for all the devices we present

in the case-studies of this thesis (see Chapter 3 and Chapter 4). The generic JavaScript

code required to integrate a smart thing as a ClickScript building-block is shown in Listing

2.10. This concise snippet of code is a template of all that is required to integrate any

smart things that implements, at least, the Device Accessibility Layer of the Web of

Things Architecture.

The result of this script is a new ClickScript building-block that can be used by end-users

to create simple Physical Mashups. As an example, the mashup shown in Chapter 3

(Figure 3.22) gets the light level in a room by GETting the light resource of a sensor. If it

is bigger than a given threshold, it turns the light off by sending it a PUT request.

1 // This creates a temperature sensor building block.

2 csComponentContainer.push({

3 name : "cs.web.things .[Name_of_Smart_Thing]",

4 description : "[Description]",

5 inputs :

6 [

7 {

8 name: "URL", // The Smart Things ’ resource URL

9 type: "cs.type.String"

10 }, [...] // additional parameters

11],

12 outputs:

13 [

14 {

15 name: "[Result provided by the Smart Thing]",

16 type: "cs.type.[Number | String]"

17 }

18],

2.4. Composition Layer 81

19 image: "web/things /[Icon]",

20 exec : function(state){

21 this.setAsync ();

22 var component = this;

23 $.ajax({

24 // Content negotiation , alternatively a .json

could simply

25 // be added to the request URL.

26 beforeSend: function(xhrObj){

27 xhrObj.setRequestHeader (" Accept"," application/

json");

28 },

29 //Read the URL provided as parameter

30 url: state.inputs.item (0).getValue (),

31 type: ["GET" | "PUT" | "POST" | "DELETE"],

32 success: function(result){

33 // Triggered when the HTTP response arrives

34 // Process the response if required

35 // Write it to the output of the building block

36 state.outputs.item (0).setValue(result.resource.

getters [0]. value);

37 component.finishAsync ();

38 },

39 error: function(msg){

40 alert(" Error on: "+aurl);

41 }

42 });

43 }

44 });

Listing 2.10: Generic JavaScript code required to integrate a new smart thing to the

Clickscript mashup editor as a Clickscript building-block

This readily illustrates the simplicity of adapting an existing mashup editor to WoT

devices thanks to their Web integration. However, it also illustrates the shortcomings

of the approach. First, while creating mashups can be done by end-users, creating new

building-blocks is still only accessible to the community of Web developers. To prevent

this, a smart things discovery mechanism should be implemented in order to automate

the creation of the corresponding building-blocks.

Second, for the mashup shown in Figure 3.22, the mashup editor has to constantly pull

the temperature from the device which is sub-optimal. Hence the need to support push

mechanisms as described in Section 2.1.3. This lack of push support is a common charac-

teristic of client-side mashup editors since an HTTP Callback (Web Hook) approach is not

possible in this case. However, we adapted Clickscript to support HTML5 WebSockets.

The original version of Clickscript offers two ways of executing mashups: First, the end-

user can manually start the mashup by pressing a Run button triggering the execution

82 The Web of Things

Figure 2.31: Sequence diagram of a typical Web-push triggered execution in the extended
version of the Clickscript mashup editor. The editor subscribes to a WebSocket (or Comet)
topic and writes the incoming messages to a black-board variable which is then read by building-
blocks.

process. Alternatively, he can use a Repeated-Run button which runs the mashup in an

infinite loop. We added an asynchronous, push-based execution model. The extended

execution method using WebSockets is shown in Figure 2.31. When using this option, the

user is prompted for the URI of an HTML5 WebSocket enabled server, e.g., an instance

of the tPusher service running on a Smart Gateway (see Section 2.1.3). This URI is used

to register the Clickscript client to the WebSocket server.

Each incoming HTML5 WebSocket message triggers the execution process. Furthermore,

following a black-board approach [216], the payload of each incoming HTML5 message is

extracted and written to a variable accessible to all building-blocks. A concrete Physical

Mashups prototype based on this Web-push enabled version of Clickscript is described in

Chapter 4, Section 4.5.4.

2.4.4 Requirements for Physical Mashup Editors

As a result of the prototype built on top of the Clickscript Web 2.0 Mashup editor, we

propose a number of requirements for editors of Physical Mashups [68]:

Support for event-based mashups The current Web, and thus the vast majority of

Web 2.0 mashup editors, are based on the concept of clients pulling information

from servers [216]. Several studies [41, 191] have shown that while this model

matches the requirements for controlling smart things, it is inefficient for real-world

2.4. Composition Layer 83

monitoring applications. Hence, the need for Physical Mashups editors to offer core

support for event-based interactions, where parts of the workflows of mashups can

be triggered based on events pushed from smart things to the editors using Web

push mechanisms.

Support for dynamic building-blocks Manually creating building-blocks for each thing

does not scale with the heterogeneity of objects in the physical world. Thus, the

need for the mashup editors to support partially automated integration through

service discovery techniques leveraging the Findability Layer.

Support for non-desktop platforms Web 2.0 mashup editors are for the large part

meant to run in Web browsers of desktop computers. However, in the case of the

Web of Things, the in situ development of Physical Mashups e.g., on mobile phones

or tablets should be fostered as virtual interactions with the physical world can

really benefit from occurring beyond the desktop metaphor [22, 194].

Support application specific editors Due to the heterogeneity of use-cases in the

Web of Things, a “one-size-fits-all” mashup editor is very unlikely to use adapted

metaphors and tools for a particular domain. Hence, rather than creating a mashup

editor, the architecture should be a mashup platform exposing an API that can

be used to develop specific mashup editors (e.g., a mashup editor for supply chain

related or home automation use-cases). This also lets users create their mashups

locally, e.g., on a mobile phone, and export them to a more robust framework for

execution.

2.4.5 A Platform for Physical Mashups Editors

The goal of the Physical Mashups Framework [4, 68, 113] is to offer a platform that

fulfills the requirements discussed before. Rather than providing a generic mashup editor,

the Physical Mashups Framework is a mashup engine, i.e., a Web service capable of

running mashups [216].

As shown in Figure 2.32, the framework is a composition environment between Web-

enabled smart things and virtual services such as messaging or visualization services. It

features a RESTful Web API using which actual mashup editors can be built. These

editors use the framework for managing the life-cycles of mashups, from the definition of

mashups to the discovery of virtual and smart things’ services and the actual execution

of the mashups.

The Physical Mashups Framework is not a mashup editor itself. Indeed, the idea is

for the framework to support the creation of domain-domain specific mashup editors.

For instance, in Section 3.4 we build a mobile mashup editor dedicated to create simple

applications that optimize the energy consumption of household appliances. The mobile

application uses the Physical Mashups Framework RESTful Web API to create and run

the mashups in the framework’s engine.

84 The Web of Things

Figure 2.32: Overview of the Physical Mashups Framework. The framework is the mediator
between smart things, virtual services and clients (domain-specific mashup editors).

2.4.6 System Architecture

In this section we further describe the functionality of the Physical Mashups Framework

by focusing on the most important components of the architecture as shown in Figure

2.33.

Discovery Component

The DiscoveryComponent implements the requirement for supporting dynamic mashup

building-blocks. It is an implementation of the STM Translation Service described in

Section 2.2.1 that uses semantic annotations crawled from the smart things HTML rep-

resentation to generate an internal representation of the Smart Thing Description model.

Mashup editors can then retrieve a serialized version of this description (in the form of

a WADL file) that they can use to dynamically generate relevant user interfaces for the

building-blocks corresponding to the newly discovered smart thing.

Workflow Engine

Core to the Physical Mashups Framework is a mashup engine. This engine is responsible

for the life-cycle of Physical Mashups Framework. It compiles the mashups into a runnable

workflow composed of several building-blocks and runs it.

Rather than creating an engine from scratch, the Physical Mashups Framework is based

2.4. Composition Layer 85

on the Ruote workflow engine [270]. Ruote is an open-source lightweight workflow engine

that is well suited to manage workflows that call several services on the Web, especially

when these services are HTTP-based and RESTful.

A Domain Specific Language for Workflows To create workflows, Ruote provides a

Domain Specific Language [270] that we reuse in the workflow engine of the Physical

Mashups Framework. We briefly describe the most important language construct of the

workflow DSL:

Expression A Ruote-based workflow describes a process composed of Expressions.

Each step in the process is represented as an Expression.

Workitem Expressions communicate with each other based on a message passing mech-

anism. The message is initialized at the beginning of the process and modified by

each Expression. In the Ruote DSL, such a message is called Workitem.

Participant are the most important form of Expressions, they perform the business

logic of the workflow at each step of the process. The engine manages the orchestra-

tion among Participants by sending and receiving the Workitems. Ruote provides

a large set of predefined Participants but new ones can be added very easily by im-

plementing two methods: initialize and consume. The former is called whenever

a participants is added to a workflow whereas the latter is called when a Workitem

is applied by the engine to the Participant.

Further constructs of the workflow DSL are common language elements such as process-

definition constructs, sequences, conditional expressions, loops, subprocesses and listeners.

Listing 2.11 presents a simple process (i.e., workflow) definition in XML. Ruote supports

such definitions in XML, Ruby or JSON.

1 <process -definition name="my_workflow">

2 <sequence >

3 <participant ref="getTemperatureFromSensor"/>

4 <participant ref="applyRules"/>

5 </sequence >

6 </process -definition >

Listing 2.11: A typical process (workflow) definition using an XML representation of the

Ruote Workflow DSL language.

Physical Mashups Building-Blocks Library

To adapt it to Physical Mashups, we extend the Ruote DSL with WoT specific building-

blocks. These blocks complement the existing DSL in the form of Participants con-

structs.

The interesting aspect is that rather than specifying them using a programming language,

these blocks can be specified through the RESTful API of the Physical Mashups Frame-

86 The Web of Things

Figure 2.33: Most important components of the Physical Mashups Framework. The Work-
flow Engine manages the life-cycle of mashups and runs them as workflows. The Discovery
Component supports the dynamic integration of new metadata-annotated smart things. The
Building-Blocks Library provides the building-blocks for creating Physical Mashups and the
Repositories are used to store mashups, building-blocks and data coming from smart things.

work using either XML or JSON representations sent as payloads of HTTP messages. As

a consequence, clients (i.e., mashup editors) can build mashups online, block by block

using the framework API.

As shown in Figure 2.33, we created three types of building-blocks, source, processing and

target blocks. We describe each of these tasks below.

Source Blocks These building-blocks correspond to the inputs of the mashups, i.e.,

smart things or virtual services on the Web. Four types of source blocks are defined and

implemented:

REST Blocks Are the most important building-blocks from a WoT perspective. They

encapsulate HTTP interactions with resources. They can be used to add smart

things, that were previously discovered by the DiscoveryComponent, to the work-

flows. Similarly, they can be used to interact with RESTful virtual services on the

Web. Listing 2.12 shows an example of RESTBlock used to retrieve the temperature

value of a Web-enabled sensor node.

SOAP Blocks In order to support WS-* services, a SOAP building-block is imple-

mented. Since the workflow engine takes care of the invocation, this component is

especially interesting in the case of mashup editors running on resource-constrained

devices such as mobile phones as these might not be able to invoke WS-* services

directly.

Repository Blocks In more complex Physical Mashups, a solution to persist data is

2.4. Composition Layer 87

often required. As an example reacting on the power consumption of a particular

device might require to store the measurements over time and perform analysis on

aggregated data. For this purpose, a RepositoryBlock allows to create persistent

collections of data that can be queried later using processing blocks.

Subscription Blocks As we have seen before, smart things might provide their function-

ality asynchronously, pushing it back to the clients whenever it becomes relevant,

hence the need to support event-based mashups. The SubscriptionBlocks im-

plement this requirement using an HTTP Callback approach (see Section 2.1.3).

These blocks can be used to subscribe to events and clients can specify which

building-block of the workflow will be the recipient of incoming events. Internally, a

SubscriptionBlock generates a callback URI containing the name of the recipient

block that will be caught by the Mashup Entry Point component and routed to the

correct block.

1 <process -definition name=’x’ revision=’y’>

2 <sequence >

3 <participant ref=’RestBuildingBlock ’ name=’

temperature ’ method=’get’ site=’http: // DOMAIN ’ path

=’/generic -nodes /1/ sensors/temperature.json’ args=’

{}’ />

4 </sequence >

5 </process -definition >

Listing 2.12: XML definition of a REST building-block retrieving the temperature value from

a WoT sensor node.

Processing Blocks As shown in Figure 2.33, Processing Blocks represent the logic (e.g.,

mathematical operations, filtering, querying, etc.) between inputs and outputs. As de-

fined by Yee [215] a common operation in mashups is to translate the data into a form

meaningful to the destination service. Part of the translation process is the extraction of

the relevant data. QueryBlocks offer a simple language construct to perform the most

frequent data extraction operations.

The basic input of a QueryBlock is a data source or a set of data sources. Data sources

can be either XML or JSON representations specified by URIs pointing either to actual

resources on the Web or to internal resources stored using a RepositoryBlock.

A QueryBlock can be configured by means of several parameters:

• Select allows to configure which attributes should be extracted as outputs of the

query. This parameter is functionally similar to a SQL select.

• First allows limiting the number of returned attributes (e.g., the first 10 attributes).

• Filter allows to do some simple filtering on the data. It supports logical operators,

comparison operators as well as simple regular expressions.

• Sort is similar to the SQL order by operator.

88 The Web of Things

• GroupBy allows to get a summarized view of the queried data. Similarly to the SQL

group by statement it aggregates the data. The supported aggregation functions

are max, min, sum, count and average.

Listing 2.13 provides an example of the definition of a QueryBlock. The output of the

block is a JSON document that contains the values of the last trace recorded by a GPS

sensor (e.g., a mobile phone).

1 <process -definition name="getLastLocation">

2 <sequence >

3 <participant ref="json_query" name="LastLocation"

4 user_collection="locationsFromMobile"

5 user="rachel" source="notification"

6 first="1" sort="notification.time desc"/>

7 </sequence >

8 ...

9 </process -definition >

Listing 2.13: XML definition of a Query building-block. This block extracts, from a repository,

the latest location sent by a GPS sensor.

Target Blocks As shown in Figure 2.33, TargetBlocks are the outputs of compositions.

They represent services that can be actuated as a result of processing the input data.

Four types of TargetBlocks are supported by the framework:

AtomPub Blocks These components supports publishing JSON, XML or HTML data

to any server complying with the AtomPub protocol described in Section 2.1.3.

Twitter Blocks These components encapsulate the Twitter API, letting data coming

from smart things being pushed to Twitter.

XMPP Blocks These components support the XMPP messaging protocol used in sev-

eral Web messaging clients such as Google Chat and sometimes used to provide

real-time data from smart things [96, 95].

Visualization Blocks These blocks offer a set of visualization methods such as graphs

that are implemented using the Google Visualization API [238].

Additionally, the RESTBlocks and RepositoryBlocks can be used as TargetBlocks as

well. RESTBlocks enable, for instance, smart things to smart things communication and

actuation through the Physical Mashups Framework. RepositoryBlocks, allows to use

the framework as a database for smart things, where the real-world data can be prepro-

cessed using QueryBlocks before storage.

Repositories

The Physical Mashups Framework offers two repositories. The Collection Repository

is used by RepositoryBlocks to store JSON or XML data. The Resource Repository

2.4. Composition Layer 89

/users /{user-id}

/mashups

/smart-things

/{mashup-id} /instances /{instance-id} /blocks /{block-id} /schema

/{smart-thing-id}

Figure 2.34: Tree-representation of the RESTful API of the Physical Mashups Framework.

mainly provides a persistent storage for mashups as well as extracted instances of the

Smart Things Description model. Through this repository parts of or complete workflows

can be referenced and used in other mashups, allowing for a reuse and sharing mechanism.

RESTful API

As with every component of the Web of Things Architecture, the Physical Mashups

Framework is based on a RESTful architecture and features a RESTful API as shown in

Figure 2.34. Mashup editors and other clients can use it to build the mashups using an

XML or JSON representation of the building-blocks. Furthermore, the API allows client

applications to retrieve existing mashups and manage running instances.

The API is centered around the notion of a user where mashup definitions, discovered

smart things and collections are associated with a specific user of the framework but can

be shared amongst users.

2.4.7 Discussion and Summary

In this chapter we introduced the idea of Physical Mashups. We defined three categories

of development approaches for Physical Mashups: First, Manual Mashup Development

which helps developers building upon smart things by streamlining the development pro-

cess to simple Web development. In Section 3.2.2 we demonstrate how this development

approach made it easy to realize the Energie Visible mashup for energy-awareness. Simi-

larly, in Section 4.3.4 we illustrate how it made possible to create the EPCFind prototype

that leverages real-world RFID data to track and trace someone’s belongings. Further-

more, with the Ambient Meter prototype presented in Section 3.4.1, we illustrate how the

approach can also help smart things to smart things communication.

Then, with the Widget Based Mashup Development the actual communication with smart

things is transparent to the developer who simply has to use the incoming data (in a black-

board approach) to create new applications encapsulated in JavaScript and HTML Wid-

gets. We will demonstrate this development approach with the EPC Dashboard Mashup

presented in Section 4.5.3.

Finally, with the End-User Development with Mashup Editors we explain how visual me-

taphors and simple editors can be used to enable end-users to create simple compositions.

90 The Web of Things

We illustrate this a straightforward adaptation of an existing mashup editor to WoT de-

vices. We further introduce the Physical Mashups Framework architecture that allows to

build domain and device specific Physical Mashups editors and run the created mashups

in the cloud. In Section 3.4.3 we propose a mashup editor that can be used to create

simple applications on top of Web-enabled home appliances in order to make homes more

energy aware and efficient.

2.5 Developers Perspectives on the WS-* Alternative Ar-

chitecture

The application architecture proposed in this chapter is definitely not the only way to

create a uniform integration layer for smart things and we will discuss several alternatives

in the related work section (see Section 2.7).

However, in this section we consider WS-* services as an important alternative3. Out of

the possible alternatives, WS-* services stand out for two reasons: First their current mar-

ket penetration, especially in the field of enterprise software business is significant [301].

Second, rather than proposing a simple network layer integration, the WS-* galaxy of

standards forms an ecosystem that addresses, in a standard way, several layers of a Web

of Things Architecture.

WS-* services declare their functionality and interfaces in a Web Services Description Lan-

guage (WSDL) file. Client requests and service responses objects are encapsulated using

the Simple Object Access Protocol (SOAP) and transmitted over the network, usually

using the HTTP protocol. Further WS-* standards define concepts such as addressing,

security, discovery or service composition. Although WS-* was initially created to achieve

interoperability of enterprise applications, work has been done to adapt it to the needs

of resource-constrained devices [92, 157, 214, 183]. Furthermore, lighter forms of WS-*

services, such as the Devices Profile for Web Services (DPWS) [286], were proposed [103].

While they share similar goals, REST and WS-* are not compatible; they tackle loose

coupling and interoperability differently. Consequently, work has been done to evaluate

these two approaches. In [153, 154], REST and WS-* are compared in terms of re-

usability and loose coupling for business applications. The authors suggest that WS-*

services should be preferred for “professional enterprise application integration scenarios”

and RESTful services for tactical, ad-hoc integration over the Web.

Internet of Things applications pose novel requirements and challenges as neither WS-*

nor RESTful Web services were primarily designed to run and be used on smart things,

but rather on business or Web servers. This development thus necessitates assessing the

suitability of the two approaches for devices with limited capabilities. Yazar et al. [214]

3An introduction to WS-* services is outside the scope of this thesis and we invited the reader to refer
to books such as [10] or [49] for an exhaustive overview of the underlying technologies.

2.5. Developers Perspectives on the WS-* Alternative Architecture 91

analyze the performance of WS-* and RESTful applications when deployed on wireless

sensor nodes with limited resources and conclude that REST performs better.

However, evaluating the performance of a system when deployed on a particular platform

is not enough to make the architectural decision that will foster adoption and third-party

(public) innovation. Indeed, studies like the Technology Acceptance Model [32] and more

recent extensions [63, 132] show that the perceived ease of use of an IT system is key to

its adoption. As many manufacturers of smart things are moving from providing devices

with a few applications to building devices as platforms with APIs, they increasingly rely

on external communities of developers to build innovative services for their hardware (e.g.,

the Apple App Store or Android Marketplace). An easy to learn API is, therefore, key in

fostering a broad community of developers for smart things. Hence, choosing the service

architecture that provides the best developer experience is instrumental to the success of

the Internet of Things and the Web of Things on a larger scale.

In this section we complement the decision framework that can be used when picking the

right architecture for IoT applications and platforms. We supplement previous work [153,

154, 214] by evaluating, in a structured way, the actual developers’ experience when using

each architecture in an IoT context. We analyze the perceived ease of use and suitability

of WS-* and RESTful Web service architectures for IoT applications. We base our study

on the qualitative feedback and quantitative results from 69 computer science students

who developed two applications that accesses temperature and light measurements from

wireless sensor nodes. For the one of the applications, the participants used a sensor node

implementing the Device Accessibility Layer and Findability Layer of the Web of Things

Architecture, thus offering a semantically annotated RESTful Web API. In the second

case, they were accessing a WS-* (WSDL + SOAP based) sensor node.

Our results show that participants almost unanimously found RESTful Web services easier

to learn, more intuitive and more suitable for programming IoT applications than WS-*.

The main advantages of REST as reported by the participants are, intuitiveness, flexibility,

and the fact that it is lightweight. WS-* is perceived to support more advanced security

requirements and benefits from a clearer standardization process.

The following sections are structured as follows. Section 2.5.1 describes the study method-

ology. Section 2.5.2 presents and analyses the results. Finally, Section 2.6 discusses the

implications of our findings and devises guidelines. The results of the presented study

were published in [73].

2.5.1 Methodology

Our study is based on a programming exercise and the feedback received from a group

of 69 computer science students who had to learn RESTful and WS-* Web service ar-

chitecture and implement, in teams, mobile phone applications that accessed sensor data

from different sensor nodes using both approaches as shown in Figure 2.35. The exercise

92 The Web of Things

Figure 2.35: Setup of the user study. Two Sun SPOTs sensor nodes are connected to a Smart
Gateway through a sync-based Device Driver (left). Their functionality is exposed through a
RESTful Web API. Two other Sun SPOTs are accessible through a WS-*, SOAP + WSDL
interface deployed in an application server (right).

was part of an assignment in the Distributed Systems course at ETH Zurich4.

To get and parse the RESTful sensor response, participants used the HTTP and JSON

libraries, which are already available on Android phones. To perform the WS-* request,

the external kSoap2 library [252] was used. Averaging over the submissions, the programs

had 105 lines of code for the WS-* implementation (SD = 50.19, where SD is the Standard

Deviation), opposed to 98 lines of code for the REST implementation (SD = 48.31).

The two coding tasks were solved in teams of two or three members who were able to

freely decide how to split up the tasks amongst team members, which models industry

practice. The coding tasks were successfully completed by all teams within two weeks.

To ensure that every team member had understood the solution of each task, individual

reports describing the design and architecture choices had to be submitted. Additionally,

every student had to submit a structured questionnaire about both technologies and a

voluntary feedback form on the learning process. Students were informed that answers in

the feedback form were not part of the assignment, and that responses would be used in

a research study. To encourage them to give honest answers about the amount of effort

invested in solving both coding tasks, perception, and attitudes towards both technologies,

entries in the feedback form were made anonymously. Table 2.4 summarizes the data

collection sources.

Demographics: The participants were from ETH Zurich, in their third or fourth year

of Bachelor studies. Teams were formed of two or three members. They were taught

both technologies for the first time, in a short introduction during the tutorial class. 89%

reported not having had any previous knowledge of WS-* and 62% none of REST. From

the 35% that had already used REST before the course, half reported that they had

4The assignment is available online: guinard.org/phd/study-assignment.pdf

guinard.org/phd/study-assignment.pdf

2.5. Developers Perspectives on the WS-* Alternative Architecture 93

previously been unaware that the technology they used actually was based on the REST

architecture. 5% (2 students) had programmed WS-* applications.

Additional Tasks: Subsequent tasks involved creating visualization mechanisms for the

retrieved data, both locally and through cloud visualization solutions.

Data Source Type N
RESTful and WS-* Applications Team 25
Structured Questionnaire Individual 69
Feedback Questionnaire Anonymous 37

Table 2.4: Data was collected from different programming tasks and questionnaires.

2.5.2 Results

Here, we present our results on the perceived differences, learning curve, and suitability

of the technologies for smart things related use-cases.

Perceived Differences

Using the structured questionnaire, we collected qualitative data on the perceived advan-

tages of both technologies with respect to each other (see Table 2.5). While REST was

perceived to be “very easy to understand, learn, and implement,” “lightweight and scal-

able”, WS-* “allows for more complex operations,” provides higher security, and a better

level of abstraction.

REST (N = 69) #
Easy to understand, learn, and implement 36
Lightweight 27
Easy to use for clients 25
More scalable 21
No libraries required 17
Accessible in browser and bookmarkable 14
Reuses HTTP functionality (e.g., caching) 10

WS-* (N = 69) #
WSDL allows to publish a WS-* interface 31
Allows for more complex operations 24
Offers better security 19
Provides higher level of abstraction 11
Has more features 10

Table 2.5: Participants felt that WS-* provides better abstraction, but REST is easy to learn
and use.

94 The Web of Things

0

5

10

15

20

25

30

35

40

45
P

er
ce

nt
ag

e
of

P
ar

tic
ip

an
ts

Not fast at all (Not fast) (Average) (Fast) Very fast

Speed of Learning

Perceived Learning Accessibility

REST
WS-*

Figure 2.36: A majority of participants reported that REST as fast or very fast to learn and
WS-* as not fast or average.

Learning Curve

In the feedback form, we asked participants to rate on a 5 point Likert scale how easy

and how fast it was to learn each technology (1=not easy at all, ..., 5=very easy). As

shown in Figure 2.37, 70% rated REST “easy” or “very easy” to learn. WS-* services,

on the other hand, were perceived to be more complex: only 11% respondents rated

them easy to learn. Event if all participants were required to learn and explain the

concepts of both technologies, compare their advantages, analyze their suitability and

explain design decisions, we restricted the sample to participants who reported to have

worked on programming both REST and WS-* assignments within their teams (N=19)

to avoid bias. We then applied a paired two sample t-test to compare the learning curve

for REST and WS-*. Our results show that REST (with an average M = 3.85 and a

Standard Deviation SD = 1.09) was reported to be significantly easier to learn than WS-*

(M = 2.50, SD = 1.10, t(19) = 4.23, p < 0.001. Similarly, REST (M = 3.43, SD = 1.09)

was perceived to be significantly faster to learn than WS-* (M = 2.21, SD = 0.80, t(13) =

−3.46, p = 0.002).

Furthermore, in the feedback form, we collected qualitative data on the challenges of

learning both technologies, asking the participants: “What were the challenges you en-

countered in learning each of the technologies? Which one was faster and easier to learn?”.

Nine participants explained that REST was easier and faster to learn because RESTful

Web services are based on technologies, such as HTTP and HTML, which are well-known

to most tech-savvy people: “Everybody who is using a browser already knows a little about

[REST].”

WS-* was perceived to be overly complicated: “REST is easy and WS-* is just a compli-

cated mess.” Reasons for such strong statements were the complexity of extracting useful

information out of the WSDL and SOAP files (mentioned by 8), as well as the number

and poor documentation of parameters for a SOAP call. The lack of clear documentation

was perceived as a problem for REST as well: Seven participants said that further request

2.5. Developers Perspectives on the WS-* Alternative Architecture 95

0

5

10

15

20

25

30

35

40

45

P
er

ce
nt

ag
e

of
P

ar
tic

ip
an

ts

Not easy at all (Not easy) (Average) (Easy) Very Easy

Level of Easiness

Perceived Easiness of Learning

REST
WS-*

Figure 2.37: Participants reported REST as easier to learn than WS-*.

examples, alongside with the traditional documentation (e.g., Javadoc) for both REST

and WS-*, would be very useful. Eight participants explicitly mentioned that they had

had previous experience with REST during their spare time. This illustrates the accessi-

bility and appeal of RESTful Web services, and it positions them as an ideal candidate

for smart things APIs in terms of lowering the entry barrier for creating applications. In

the feedback form, 25 participants said that REST made it easier to understand what

services the sensor nodes offered. Eight participants explained this by the fact that, for

REST, an HTML interface was provided. This emphasizes that RESTful smart things

should offer an HTML representation by default. Seven participants found WS-* easier

for this matter. They noted that a WSDL file was not necessarily easy to read, but they

liked the fact that it was “standard”.

Suitability for Use-Cases

In the feedback form, we asked participants to rate on a Likert scale (1=WS-*, ...,

5=REST) which one of the two technologies they would recommend in specific scenar-

ios. REST was considered more suitable than WS-* for IoT applications running on

embedded devices and mobile phones (see Figure 2.38). The one sample t-test confirmed

that the sample average was statistically higher than the neutral 3, and therefore in-

clined towards REST. This was the case both for embedded devices (M = 3.86, SD =

1.03, t(36) = 5.10, p < 0.001), and for mobile phone applications (M = 3.51, SD =

1.12, t(36) = 2.79, p = 0.004). For business applications, however, a higher preference

for WS-* was stated but the preference was not emphasized enough to be statistically

significant (M = 2.67, SD = 1.33, t(36) = −1.48, p = 0.07).

General Use-Cases We asked our participants to discuss the general use-cases for which

each technology appeared suitable. When asked: “For what kind of applications is REST

suitable?”, 23 people mentioned that REST was well adapted for simple applications offer-

96 The Web of Things

ing limited and atomic functionality: “for applications where you only need create/read-

/update and delete [operations]”. 8 participants also advised the use of REST when

security is not a core requirement of the application: “Applications where no higher se-

curity level than the one of HTTP[s] is needed”. This is supported by the fact that the

WS-* security specification offers more levels of security than the use of HTTPS and SSL

in REST [160, 116]. 6 participants suggested that REST was more adapted for user-

targeted applications: “[...] for applications that present received content directly to the

user”. Along these lines, 14 users said that REST was more adapted for Web applications

or applications requiring to integrate Web content: “[for] Web Mashups, REST services

compose easily”.

We then asked: “For what kind of applications is WS-* more suitable?”. Twenty partici-

pants mentioned that WS-* was more adapted for secure applications: “applications that

require extended security features, where SSL is not enough”. 16 participants suggested to

use WS-* when strong contracts on the message formats were required, often referring to

the use of WSDL files: “with WS-* [...] specifications can easily be written in a standard

machine-readable format (WSDL, XSD)”.

REST (N=37) #
For simple applications, with atomic functionality 23
For Web applications and Mashups 14
If security is not a core requirement 8
For user-centered applications 6
For heterogeneous environments 6

WS-* (N=37) #
For secure applications 20
When contracts on message formats are needed 16

Table 2.6: REST was perceived to be more suited for simple applications, and WS-* for
applications where security is important.

For smart things Both WS-* and RESTful Web Services were not primarily designed

to run on embedded devices and mobile phones but rather on business or Web servers.

Thus, assessing the suitability of the two approaches for devices with limited capabilities

is relevant.

As shown in the first part of Figure 2.38, for providing services on embedded devices,

66% of the participants suggested that REST was either “adapted” to “very-adapted”.

When asked to elaborate on their answers, 6 participants suggested that for heterogeneous

environments REST was more suitable: “for simple application, running on several clients

(PC, iPhone, Android) [...]”. 7 participants said that REST was adapted for embedded

and mobile devices because it was more lightweight and better suited for such devices

in general: “the mapping of a sensor network to the REST verbs is natural [...]”. To

confirm this, we investigated the size of the application packages for both approaches.

The average footprint of the REST application was 17.46 kB while the WS-* application

2.5. Developers Perspectives on the WS-* Alternative Architecture 97

had a size of 83.27 kB on average. The difference here is mainly due to the necessity to

include the kSoap2 library with every WS-* application. These results confirm earlier

performance and footprint evaluations [39, 214, 81].

Smart Home Applications We then went into more specific use-cases, asking: “Imagine

you want to deploy a sensor network in your home. Which technology would you use and

why?”. Sixty-two respondents recommended REST to deploy a sensor network in the

home, 5 recommended WS-*, and 2 were undecided. Twenty-four participants justified

the choice of REST by invoking its simplicity both in terms of use and development:

“REST [...] requires less effort to be set up”, “Easier to use REST, especially in con-

nection with a Web interface”. Eight participants said that REST is more lightweight,

which is important in a home environment populated by heterogeneous home appliances.

Interestingly enough, 14 participants mentioned that in home environments there are very

little concerns about security and thus, the advanced security features of WS-* were not

required: “I would not care if my neighbor can read these values”, “The information isn’t

really sensitive”.

For Mobile Phones Since the mobile phone is a key interaction device for creating

IoT applications, we asked the participants to assess the suitability of each platform for

creating mobile phone clients to smart things. As shown in the second part of Figure 2.38,

53% of the participants would use REST, 16% would use WS-* and 32% were undecided.

They explained these contrasted results by the fact that mobile phones are getting very

powerful. 7 participants explained that the amount of data to be processed was smaller

with REST which was perceived as an important fact for mobile clients. Interestingly

enough, some participants considered the customers of mobile platforms to have different

requirements: “I would use REST, since customers prefer speed and fun over security for

smaller devices”. The lack of native WS-* support on Android (which natively supports

HTTP) and the required use of external libraries was also mentioned as a decision factor

as REST calls can be simply implemented only using the native HTTP libraries.

For Business Applications The results are much more inclined towards WS-* when con-

sidering “business” applications. As shown in the third part of Figure 2.38, the majority

of our participants (52%) would choose WS-* and 24% REST for servicing business appli-

cations. Twenty-one (out of 69, see Table 2.4) justify their decision by the security needs

of enterprise applications: “I would rely on the more secure WS-* technology”. Eighteen

participants talk about the better described service contracts when using WS-*: “I pro-

pose WS-* because we could use WSDL and XSD to agree on a well-specified interface

early on [...]”. Amongst the participants suggesting the use of REST, 10 justify their

decision for its simplicity and 10 for its better scalability.

98 The Web of Things

0

5

10

15

20

25

30

35

40
P

er
ce

nt
ag

e
of

P
ar

tic
ip

an
ts

Embedded Devices Mobile Phone Business Apps

Suitable Architecture for...

Suitability for Application Progamming by Domain

1=WS-*
2=More WS-*
3=Neutral
4=More REST
5=REST

Figure 2.38: Participants reported that REST is better suited for Internet of Things ap-
plications, involving mobile and embedded devices and WS-* fit better to the constraints of
business applications.

2.6 Discussion and Summary

A central concern in the Internet of Things and thus in the Web of Things is the inter-

operability between smart objects and existing standards and applications. Two service-

oriented approaches are currently at the center of research and development: REST and

WS-*. Decisions on which approach to adopt have important consequences for an IoT

system and should be made carefully. In this section, we complement existing studies on

performance metrics with an evaluation of the developers’ preferences, and IoT program-

ming experiences with REST and WS-*. In the context of the presented study, the results

show that REST stands out as the favorite service architecture for IoT applications. Fu-

ture studies should conduct a long-term assessment of the developers’ experience, beyond

the initial phase of getting started with the technologies. Furthermore, work could be

done to compare the experience of advanced, not just novice developers, possibly within

industry projects. However, the more experienced the developers are, the more they are

likely to develop a bias towards one or the other technology. We summarize the decision

criteria used by developers in our study and devise guidelines in Table 2.7.

Requirement REST WS-* Justification
Mobile & Embedded + - Lightweight, IP/HTTP support
Ease of use ++ - Easy to learn
Foster third-party adoption ++ - Easy to prototype
Scalability ++ + Web mechanisms
Web integration +++ + Web is RESTful
Business + ++ QoS & security
Service contracts + ++ WSDL
Adv. security - +++ WS-Security

Table 2.7: Guidelines for choosing a service architecture for IoT platforms.

2.7. Related Work 99

While our results confirm several other research projects that take a more performance-

centric approach [39, 214, 81], they contradict several industry trends. In home and

industrial automation, standards such as UPnP, DLNA or DPWS expose their services

using WS-* standards. One of the reasons for this, also noted by participants, is the lack

of formal service contracts (such as WSDL and SOAP) for RESTful services. This is

an arguable point as Web experts [160] already illustrated how a well-designed RESTful

interface combined with HTTP content negotiation results in a service contract similar

to what WS-* offers [160, 116], with no overhead and more adapted to services of smart

things [81]. Yet, this illustrates an important weakness of RESTful Web services identified

by participants: RESTful Web services are a relatively fuzzy concept. Even if the basics

of REST are very simple, the lack of a clear stakeholder managing “standard” RESTful

architectures is subject to many (wrong) interpretations of the concept. Until this is

improved, resources such as [50, 160] profile themselves as de-facto standards.

In cases with strong security requirements, WS-* has a competitive advantage [160, 116].

The WS-Security standard offers a greater number of options than HTTPS (TLS/SSL)

such as encryption and authentication beyond the communication channel, endpoint-to-

endpoint. In theory, these could also be implemented for RESTful Web services. However,

the lack of standard Web support of these techniques would result in tight coupling

between the secured things and their clients. Nevertheless, in the context of smart things,

it is also important to realize that WS-Security standards are much more resource intensive

than those of HTTPS and, thus, rarely fit resource-constrained devices.

Furthermore it is important to consider how accessible smart things should be. Partici-

pants identified that RESTful Web services represent the most straightforward and simple

way of achieving a global network of smart things because RESTful Web services seam-

lessly integrate with the Web. This goes along the lines of recent developments, such

as 6LoWPAN [148] and the IPSO alliance [244], CoRE [242] and CoAP [176], or the

Web of Things Architecture presented in this thesis, where smart things are increasingly

becoming part and leveraging the infrastructure of the Internet and the Web.

Lastly, it is worth noting that while the decision of adopting a WS-* or RESTful archi-

tecture for a smart things platform is important, bridges between the two architectures

can be created with some efforts [43, 75, 108], for instance through the use of application

layer gateways or Smart Gateways drivers (see Section 2.1.2) as we suggested in [77].

2.7 Related Work

In this section we discuss previous research related to the Web of Things Architecture.

It is structured according to the layers of Web of Things Architecture beginning with

work related to creating a global network of smart things (Device Accessibility Layer)

and ending with ways of composing the services of smart things in an easy and accessible

manner (Composition Layer).

100 The Web of Things

2.7.1 Device Accessibility Layer

Linking the Web and physical objects is an attractive idea that has already been in

the mind of researchers for years. Early approaches started by attaching physical tokens

(such as barcodes) to objects to direct the user to pages on the Web containing infor-

mation about the objects [202]. These pages were first served by static Web Servers on

mainframes, then by early gateway system that enabled low-power devices to be part of

wider networks [174]. The Cooltown project pioneered this area of the physical Web by

associating pages and URIs to people, places and things [110] and implementing scenarios

where this information could by physically discovered by scanning infrared tags in the

environment. Similarly, the SPREAD physical/spatial computing model [30] consisted in

spreading, with the help of wireless technologies, information that could then be retrieved

by mobile users, pointing them to contextually related Web resources. The key idea of

these works was to provide a virtual counterpart of the physical objects on the Web.

URIs to Web pages were scanned by users e.g., using mobile devices and directed them

to online representations of real things (e.g., containing status of appliances on HTML

pages or user manuals).

A number of projects proposed solutions to expose the functionality of smart things

through APIs in order to build applications upon real-world devices. Among them, JINI,

UPnP, DNLA, etc. The advent of WS-* Web Services (SOAP, WSDL, etc.) led to a

number of works towards deploying them on embedded devices and sensor networks [157,

36, 129]. DPWS is a subset of the WS-* standards that allows minimal interaction

with web services running on embedded devices. DPWS specifies a protocol for seamless

interaction with the services offered by different embedded devices. DPWS is aligned

(and for the most part compatible) with WS-* technologies. The various specifications

DPWS include support for messaging, service discovery, service description, and eventing

for resource-constrained devices.

We joined this research and proposed a middleware that bridges the gap between DPWS

embedded-devices and enterprise applications, taking care of cross-cutting concerns such

as search, service composition, dynamic provisioning of services and data storage [183, 36].

However, in Section 2.5 we discussed the shortcomings of the approach in the case of the

WoT.

Several systems (or middleware) for integration of smart things with the Web have been

proposed such as SenseWeb [67, 127], the Global Sensor Network (GSN) [1], Pachube [266],

ThingSpeak [243], Sen.se [233], ThingWorx [274] or Sensor.Network [84]. These offer

platforms for people to share their sensory readings using Web services to transmit data

onto a central server and thus cover several layers of the Web of Things Architecture.

However, these approaches are focused on building central repositories on top of which

services can be built.

The idea to push the Web and the Internet as close as possible to smart things was

explored early on in the Internet0 project [65]. Gershenfeld and Cohen understood early

on the importance of having a single protocol for smart things and proposed adapting

2.7. Related Work 101

Internet protocols to embedded devices.

With advances in computing technology, tiny Web servers can be embedded in most

devices [40, 99, 41] and thus not only Internet but also Web technologies can be pushed

to smart things. Hence, in the Device Accessibility Layer, we propose using the Web

and its technologies as the integration backbone of smart things. We build upon works

towards the Web integration of wireless sensor networks such as [126, 39, 37] and extend

them by systematically applying the constrains of RESTful architectures to smart things

and discussing the concept of Smart Gateways to integrate non-IP enabled devices [78].

Furthermore, we complement this work by proposing the three other layers that streamline

the development of applications using smart things to what can be done today with Web

2.0 mashups.

2.7.2 Findability Layer

Search has become such a central commodity that it is hard to imagine the Web without

search engines. The findability of information [144], people and places has become a

central concern of most information architectures [145]. However, while search in the

Web of documents is already significantly advanced, searching the real-world remains one

of the biggest open challenges for the Web of Things to materialize.

When considering the Web of Things beyond micro use-cases such as home or factory au-

tomation, focusing on macro use-cases where billions of things are available and connected

to the Web, then discovery simply by browsing HTML pages with hyperlinks becomes

difficult. Searching for things is significantly more complicated than searching for doc-

uments [166], as things are tightly bound to contextual information such as location,

are often moving from one context to another and their HTML representations are less

keywords-rich than traditional Web pages.

As a consequence, several researchers have been looking at specific ways of describing

smart things and domain-specific standards have been proposed: SensorML [18] is a

standard XML language that can be used to describe sensor network applications and

devices. Similarly, the Extended Environments Markup Language (EEML) [232] is a

language for describing sensor data in digitally enhanced environments.

Not specific to Wireless Sensor Networks and thus closer to the concerns of this thesis,

DPWS [103] proposes a device metadata language [227] which offers a semantic description

of what a real-world device is, by what company it was produced and what it has to offer

in terms of functionality. DPWS metadata is often embedded in a WSDL (Webservice

Description Language) file which in turns contains the interface description or API of the

offered WS-* Webservices. Based on DPWS we proposed the SOCRADES Lookup and

Search Infrastructure [80].

The metadata offered by these languages is the basis of our proposed STM model. How-

ever, these formats are not well supported and understood on the Web and for some parts

102 The Web of Things

overlap what HTTP already has to offer. As a consequence, they do not leverage the

search infrastructure already in place on the Web (e.g., existing search engines).

Closer to Web languages, researchers have been proposing the use of domain-specific on-

tologies to support semi-automated mashups of smart things [199, 109]. Vermeulen et

al. used this approach to implement mashups of tagged physical objects with services on

the Web [198]. While the expressive power of these approaches is significant so is their

complexity. Our goal is to enable users to search the real-world and machines to under-

stand the basics of smart things (e.g., in order to generate building-blocks of mashups).

As a consequence we would like to consider descriptions that can be implemented in a

lightweight manner with a constrained but sufficient descriptive power so that they can

be understood by a vast number of existing infrastructure services.

SA-REST [119] proposes a lightweight alternative language that can be used to describe

RESTful services sharing similarities to what the WSDL language can describe for WS-*

services. This is also the proposal of the WADL (Web Applications Description Lan-

guage) [86] or of some extensions in the WSDL 2.0 language. However, SA-REST goes

beyond these languages as it proposes to also support the composition of these services

in semi-automatic mashups [177]. Unfortunately, languages like SA-REST are not widely

understood on the Web, for instance they are not processed by search engines. The im-

portance of relying on mechanisms that can be well-understood by search engines for a

realistic deployment of a service lookup service was discussed by Song et al. [181].

Kopecky et al. propose to make descriptions of RESTful Web services directly embedded

in HTML representations [111]. They propose the hRESTs microformat. Note that it

is sometimes criticized by the Web community because most of the data the hRESTs

microformat encapsulate can also be retrieved by crawling Web architectures that respect

the REST constraints (and in particular the connecteness constraint). However, when

deploying services directly on smart things (without Smart Gateways) this format can be

interesting as it avoids the great number of HTTP calls required by crawlers. Researchers

such as Alarcon et al. discuss ways and languages to gather more valuable information

when crawling RESTful services [7].

Our approach is to propose the STM model inspired by these description languages but we

focus on a small set of properties that are sufficient to allow the findability of smart things

and their integration into tools such as Physical Mashups editors. We further implement

the model using a set of standard microformats as these are well supported and broadly

understood by search engines. Yet, relying on existing search engines does not fully

leverage smart things and does not really take into account their specific requirements

such as mobility or their strong ties with physical locations. As a consequence a body of

research is related to real-time search engines for the Internet and the Web of Things.

As explained in the previous section, several platforms such as SenseWeb [67, 127],

Pachube or Sensor.Network [84] were proposed. Building on top of Pachube, Kamilaris et

al. propose “bridging the Mobile Web and the WoT in Urban Environments” [107] and

offer a mobile search engine using location information to retrieve nearby data services.

2.7. Related Work 103

Similarly, we explored using the concept of proximity to dynamically search for services

offered by smart things [64]. However, these approaches are based on a centralized data

lookup infrastructure and do not fully leverage the distributed nature of smart things.

In the world of business services, a crucial challenge for SOA developers and process de-

signers is to find adequate services for solving a particular task [31]. Discovering enterprise

services often implies manually querying a number of registries, such as Universal Descrip-

tion and Discovery and Integration (UDDI) registries, and the results depend largely on

the quality of the data within that registry. While such an approach is adequate for a

rarely changing set of large-scale services, the same is insufficient for the requirements

of the service offered by smart things. Registering a service with one or more UDDIs is

rather complex (which is also why UDDIs are rarely used in practice), and does not com-

ply with the usage minimization of the devices’ limited resources. Furthermore extensive

description information is necessary [142], while the smart things can only report basic

information about themselves and the services they host. Trying to reduce the complexity

of registration and discovery, different research directions have been followed in order to

provide alternatives or extensions of the UDDI standard [31, 181]. However, also these

do not take into account the particular requirements of real-world services.

Römer et al. survey search engines for the real-world [166] and present their own engine

in [151] to search for real-world dynamic conditions such as “finding the most quiet place

in a city”. In their approach, probabilistic models are used to determine which actual

sensors to contact for a particular query. Frank et al. study the use of a distributed

query infrastructure composed of mobile nodes that can be used to search for the location

of real-world objects [58, 59]. A concept that inspired us to implement an application

with RFID enabled mobile phones on top of the EPC network infrastructure as published

in [69] and described in Section 4.3.4.

These engines and applications focus on leveraging the dynamic conditions of smart things

which is a very promising approach to create real-world computational engines. Our

target with the Findability Layer, however, is slightly different. Indeed, we enable the

search not for particular real-world situations but for services provided by smart things

corresponding to user queries. This supports developers, tech-savvies and end-users in

finding the services required to create composite applications such as Physical Mashups.

Haodong et al. took such an approach and propose Snoogle [89]. This search engine can

be used to find a particular mobile object or a list of objects that are likely to serve the

requested service. It uses information retrieval techniques to maintain indexes of keywords

corresponding to smart things. These indexes are managed by so called Index Points that

are local to the smart things (e.g., one Index Point per room). On top of these local

Index Points, a single mediator is maintaining an aggregate view of the whole network. A

similar approach is taken by Yap et al. in MAX [213]. However, unlike in Snoogle where

the smart things push information to the Index Point, in MAX metadata (keywords) are

pulled from the infrastructure and the nodes upon queries. These approaches represent

powerful real-world search engines but their integration to global networks such as the

World Wide Web was not addressed.

104 The Web of Things

Closer to our work, in a theoretical paper, Stirbu proposes leveraging the distributed

infrastructure of smart things to achieve a discovery system on the Web [185]. The author

considers the idea of devices registering themselves to a Registry Service through a simple

HTTP POST call. However, the device has to post its full description to the Registry

Service that publishes it in an Atom feed. This is a rather strong coupling between the

device and the Registry. We avoid this by proposing an architecture inspired from Stirbu’s

proposal but rather consider the smart things as passive actors that just submit their root

URIs either directly or through users. The actual semantic metadata extraction process is

handled by the infrastructure. Just as search engines crawl pages of information without

hard constraints on those pages, our LLDUs (with the help of a STM Translation Service)

crawl the smart things to extract relevant metadata. While we clearly do not pretend

offering a comprehensive way to describe and search for all types of smart things on the

Web, our approach leverages the lightweight infrastructure put in place at the Device

Accessibility Layer of the Web of Things Architecture and extends it with LLDUs that

are used to retrieve metadata and offer localized service lookup queries. Furthermore,

thanks to the combination of RESTful Web APIs respecting the REST constraints and

different implementations of the STM model (e.g., microformats or RDFa[4]), we have a

flexible and rather loosely-coupled way of crawling metadata without strong requirements

on the smart things themselves.

2.7.3 Sharing Layer

In recent years, the world experiences a renewed trend towards sharing physical re-

sources in all kinds of domains [17]. More specifically, in the Internet of Things domain,

data sharing was identified as one of the key enablers [197, 15]. As a consequence several

research platforms such as SenseWeb [67, 127], the Global Sensor Networks (GSN) [1],

the SOCRADES Integration Infrastructure [36] or SensorBase [28] appeared. These early

approaches inspired research in the field but did not use Web standards which requires

additional bridges to re-use the data they hold on the Web.

The recent trend to adopt Web technologies and in particular RESTful architectures has

influenced platforms such as Pachube or Sensor.Network [84] which propose a solution

by providing a central platform for people to share their sensor data. However, these

approaches are based on a centralized data repository to which the data is pushed and do

not allow authorized and authenticated direct interaction with smart things as we enable

it with the Social Access Controller architecture. More importantly, unlike SAC, these

platforms are based on their own access control lists which are hard to scale, maintain

and manage.

Vasquez [197] introduced the notion collaboration between social networks and smart

objects. Furthermore, several research projects have been focusing on leveraging the value

of social graphs from existing social networks to share smart things. In [15] Blackstock et

al. provide a survey of Social Web of Things projects. Several projects explore the use of

Twitter as a publishing and sharing mechanism for smart things [295]. As an example, the

2.7. Related Work 105

S-Sensors project [13] specifically looks at the use of Twitter as a messaging and sharing

mechanism for Wireless Sensor Networks. The SenseShare [188] project allows users to

share sensor data with their friends. It also allows owners to apply different filters to the

data before sharing it.

While SenseShare was a source of inspiration for the SAC architecture, it presents some

shortcomings. Similarly to Pachube or Sensor.Network, SenseShare acts as a data store

between the sensors and the clients. SenseShare and S-Sensors further allow sharing the

data coming from sensors but do not support direct interactions with the sensors. As an

example, one can’t enable switching on/off devices by close relatives. Similarly, a Web-

enabled Hi-Fi system couldn’t enable songs to be played remotely through a RESTful

interface which access is managed by the sharing system.

Furthermore, SenseShare or S-Sensors require the use of Facebook, respectively Twitter.

Such a tight coupling with a single external service whose contract (API and allowed

accesses) is subject to change over time, is problematic. It is also restrictive as it prevents

from using a more adapted social network for a specific use-case. As an example, LinkedIn

might be more adapted for a B2C (Business to Consumer) or B2B (Business to Business)

sharing of smart things. This led us to the interoperability requirement of SAC, which

supports different social networks, and enables users to control which one to use for each

smart thing.

Recent work, published after the SAC project [71], also leverages recent standards such

as OAuth, OpenID and OpenSocial to offer an interoperable solution to real-world data

sharing. The SENSE-ATION [178] project enables sharing sensory data coming from

mobile phones. Its focus, however, is to offer this information to the developers of appli-

cations hosted on social networks (e.g., OpenSocial Gadgets). Similarly, Parimpu [156]

offers a platform inside which applications based on sensor streams can be created and

shared with Twitter contacts.

2.7.4 Composition Layer

The idea of physical devices that can be composed together and with their environment

to create new applications has been long dreamed of by pioneers such as Mark Weiser [203]

and often refined since then for instance in the vision of heterogeneous homes [5].

Key in these vision is the notion of end-users being able to create these simple composite

applications on their own. Implementations of this vision appeared thanks the evolu-

tion of opportunistic programming in which developers have access to tool-chains and

programming languages helping them to iterate more rapidly, creating small prototypes

with a very limited amount of code [20, 90]. This evolution was further fostered by the

developments of Web technologies and languages considered as relatively easy to use and

develop upon [163].

Following these developments, the idea of enabling opportunistic applications by mix-

ing the physical world (i.e., smart things) and the Web appeared [110]. Later, these

106 The Web of Things

opportunistic applications were influenced by the concepts of Web 2.0 mashups studied

for instance in [215, 216], where end-users are empowered to create simple composite

applications on the Web. Wilde proposed the notion of Physical Mashups as “[...] new

applications using this unified view of the Web of today and tomorrows Web of Things”.

In [76] we proposed an experimentation and implementation of Physical Mashups and

refined the notion together with Trifa and Wilde in [81].

Furthermore, in [163], Roelands et al. discuss the notion of “Do-it-Yourself” in the space

of the Internet of Things. They define the concept of “Smart Composables Internet of

Things” and explain how physical mashups can contribute to end-user re-usability of

smart things.

Several researchers explored ways of easily combining physical objects and Web technolo-

gies to create ad-hoc applications. Vermeulen et al. proposed to let users link physical

object to composite services on the Web using RFID tags [198]. Similarly, Vasquez and

Lopez-de-Inpina explored several simple applications where end-users could combine phys-

ical devices with services on the Web [197].

Rather than considering single use-case, we propose an architecture that supports sev-

eral types of mashups. In this space, researchers identified the mobile phone as being

a key platform for Physical Mashups [136], thanks to its ubiquitous Web access. Brodt

and Nicklas [22] present an architecture for creating mashups on mobile phones using

JavaScript and HTML as well as a mashup server where wrappers for each service are

implemented. Mikkonen et al. propose a mashup framework running on embedded de-

vices [140]. The architecture of these solutions targets the use of mobile devices as smart

things, in our approach we would like to support other types of smart things and enable

their dynamic discovery.

Several projects explore more generic solutions where different smart objects can be com-

posed to create new applications. Vermeulen et al. propose the use of Semantic Web

Technologies to enable for semi-automated mashups between the physical and digital

world [199]. This approach is promising but taking an automated approach slightly dif-

fers from the level of flexibility envisioned in Physical Mashups were people can re-wire

the physical world [90] themselves, using simple compositions and rules.

Carboni and Zanarini propose the concept of Hyperpipes inspired from the Unix pipes [27].

Hyperpipes are defined using a relatively simple Domain Specific Language based on the

concept of sink and source objects that can be connected together. As an example,

hyperpipes can be used to redirect the screen output of a laptop to a board. The authors

further create a mobile application from which the smart things can be piped together.

We take a similar approach by proposing an extended language set (DSL) for Physical

Mashups offering more possibilities and slightly more complex mashups. Furthermore,

rather than proposing a single mashup editor we build the framework as a service featuring

a RESTful API that can be used to create and run Physical Mashups and Physical Mashup

editors.

2.8. Summary 107

2.8 Summary

In this chapter, we presented our Web of Things Architecture and its four layers. Rather

than being a strictly layered architecture we suggest it should be taken as a set of archi-

tectural guidelines that help facilitate, brick by brick, the integration of smart things into

Web applications.

In the Device Accessibility Layer, we propose to push the Internet and the Web down to

the smart things themselves. We explain how a Resource Oriented architectural approach

can be used to model the services smart things have to offer and provide them through

a uniform API for the real-world based on REST. Furthermore, we discuss the need for

smart things to push events rather than being constantly polled and propose a solution

based on the upcoming developments of the Web such as HTML5 WebSockets.

For devices that cannot connect to the Internet and offer their services through a Web

server, we propose the concept of Smart Gateways which act as reverse proxies that can

be dynamically extended to support new kinds of smart things and proprietary or lower-

level protocols. We also provide an evaluation of the differences in terms of performance

between an end-to-end HTTP approach and a synchronization-based Smart Gateway me-

diated approach. With this, we illustrate how a Smart Gateway helps scaling deployments

and applications.

In the Findability Layer we propose a set of metadata that covers the most important

data required to enable searching for smart things on the Web and to automate processes

such as simple UI rendering or the automatic generating of mashup building-blocks for

smart things. We implement this model by using microformats combined with the crawl-

ing of RESTful APIs. We also extend the network of Web-enabled smart things and

Smart Gateway with the concept of Local Lookup and Discovery Units that enable the

registration and indexing of smart things. Furthermore, they allow mashup developers

and users to formulate several types of local and contextual queries that help them finding

the right services offered by smart things.

In the Sharing Layer we emphasize on the importance of having an authentication and

sharing mechanism for smart things. Instead of creating anonymous access control lists

we leverage social networks and create a proxy called Social Access Controller that bridges

social networks and the WoT, implementing a Social Web of Things in which owners of

smart things can share their devices with friends, colleagues or relatives. This proxy can

be deployed at several places in the network and manages both the access to things and

the authentication on social networks through their Web connectors.

In the Composition Layer we adapt an existing mashup framework to Web-enabled smart

things and illustrate how this process is made straightforward thanks to the use of Web

standards. We further introduce the Physical Mashups Framework that was specifically

designed to manage the life-cycle of Physical Mashups.

Finally, we consider a WS-* alternative architecture. We analyze the body of research

comparing WS-* and RESTful architecture for smart things and complement these eval-

108 The Web of Things

uations by a qualitative evaluation describing the experience of developers implementing

a prototype using both technologies. We conclude that WS-* services have advantages

for applications requiring complex service contracts or with high security requirements.

However, when considering ease of use, ease of learning, Web integration and fostering

public innovation, the RESTful approach seems more adapted.

In the next two chapters, the presented architecture is applied and evaluated in two

concrete domains, Wireless Sensor Networks and automatic identification networks.

Chapter 3
Bringing Wireless Sensor and Actuator

Networks to the Web

Contents

3.1 WoT General Purpose Sensing Platform 110

3.1.1 Device Accessibility Layer with End-to-End HTTP 111

3.1.2 Findability Layer . 120

3.2 WoT Smart Metering . 123

3.2.1 Implementing the Device Accessibility Layer 124

3.2.2 Applications . 128

3.2.3 Qualitative Evaluation . 130

3.3 Sharing Layer . 133

3.3.1 Quantitative Evaluation . 136

3.4 Composition Layer: Cross-Device Physical Mashups 138

3.4.1 The Ambient Meter . 138

3.4.2 With Clickscript . 140

3.4.3 Energy-Aware Mobile Mashup Editor 142

3.5 Related Work . 148

3.6 Discussion and Summary . 149

In the last decade, a tremendous progress in the field of embedded systems has given

birth to a myriad of tiny computers, to which all kinds of environmental sensors (e.g.,

temperature, humidity, vibration, radioactivity, electricity, etc.) can be attached. By

interconnecting these devices using low-power wireless communication, a whole new world

of possible applications is unveiled. Networks of physically distributed computers, usually

called Wireless Sensor Networks (WSN), are valuable tools for monitoring or sensing the

physical world [6]. Unfortunately, due to the lack of standards most projects in this field

110 Bringing Wireless Sensor and Actuator Networks to the Web

are based on different software and hardware platforms [161] and a common application

layer is still lacking [6]. Within such an heterogeneous ecosystem of devices, application

development still requires skills and time [146]. Moreover, for each new deployment a large

amount of work must be devoted to re-implement basic functions and application-specific

user interfaces, which is a waste of resources that could be used by developers to focus on

the application logic. Ideally, developers should be able to quickly build applications on

top of WSNs.

Several researchers are actively working towards this goal. The advent of IP technologies

for WSNs [40, 99] combined with the creation of global consortia such as the IPSO are

showing a trend towards using the Internet and its TCP/IP (v4 and/or v6) protocols as

the transport protocol of choice for WSNs.

On top of the Internet layer, we join other researchers [41, 214, 33, 39, 126] and propose

the use of Web protocols and RESTful architectures as the application layer of WSNs [79].

In this chapter we systematically apply the Web of Things Architecture to two sensing

platforms: a general purpose sensing platform and an energy sensing platform. Our aim

is to illustrate how adopting a Web approach can enable access to a set of tools that allow

creating applications on top of WSNs by recombining ready-made building-blocks, just

like with LEGO bricks.

This chapter is structured as follows. We begin by describing our experiments with

Web-enabling the Sun SPOT platform. Similarly, we then describe how we Web-enabled

an off-the-shelf energy monitoring platform [83, 76, 204]. We describe an open-source

Smart Gateway designed to accommodate most smart meters nodes. We further propose

applications on top of this platforms and discuss a pilot deployment.

Finally, we demonstrate how, thanks to the other layers, the Composition Layer of the

Web of Things Architecture can be leveraged to easily enable the creation of applications

on top of WSNs.

3.1 WoT General Purpose Sensing Platform

The Sun SPOT platform [273] is particularly suited for the rapid prototyping of WSN

applications because it features a full Java Mobile Edition stack. The version of the Sun

SPOT we used for the presented implementation and evaluation has the following main

hardware characteristics1 :

• ARM920T 32 bits CPU with 180 MHz

• 512 kB of RAM

• 4 MB of flash storage

1It is worth noting that this is a rather powerful WSN platform when compared to traditional 8 bits
platforms. However, it depicts the current trend towards more powerful low-power sensor nodes such as
the RN-131 from Roving Networks [269] or the open-source Fly-Port from Openpicus [258].

3.1. WoT General Purpose Sensing Platform 111

• an IEEE 802.15.4 radio communication module

• a mini USB connector

The Sun SPOT kits feature a base-station node which is a USB module that has IEEE

802.15.4 transport capabilities and can be attached to a computer that will act as a proxy

for incoming, non-IEEE 802.15.4 communication.

In this section we describe our two implementations of the Device Accessibility Layer

for this platform, once using Smart Gateways [137] and once with end-to-end HTTP

connectivity [79, 155] and compare both approaches in an evaluation [81]. We further

illustrate how implementing the Findability Layer for the Sun SPOTs allows for searching

for them and can be leveraged to create dynamic user interfaces [94] and to allow dynamic

WSN integration into mashup tools [4].

3.1.1 Device Accessibility Layer with End-to-End HTTP

In order to empirically test the potential advantages of the Web and HTTP principles,

we implemented a RESTful architecture on the Sun SPOT Java sensor nodes. The archi-

tecture is composed of two components: an embedded software stack directly deployed on

the sensor nodes that implements the HTTP protocol and a transport Protocol Transla-

tion component used to forward the incoming HTTP request to the right node over the

IEEE 802.15.4 transport protocol supported by the Sun SPOTs.

Embedded Software Stack

Integration at a lower-level is also facilitated by using RESTful interactions with de-

vices [173, 79]. Based upon this, we implemented an embedded HTTP server2 directly

on the Sun SPOT nodes as shown in Figure 3.1. The embedded Web server natively

supports the four main operations of the HTTP protocol: GET, POST, PUT, DELETE. The

HTTP server is deployed on each sensor node, making it an independent and autonomous

device. Each Sun SPOT offers a number of sensors (light, temperature, acceleration,

etc.), a number of actuators (digital outputs, leds, etc.) and a number of internal compo-

nents (radio, battery). These, including the Sun SPOTs themselves, are the resources of

our RESTful architecture. Resources are organized in a tree hierarchy and each of them

implements or inherits the four verbs.

Requests for services (i.e., verbs on resources) are formulated using a standard URI. For

instance, typing a URI such as /spot1/sensors/temperature in a browser requests the

resource temperature of the resource sensor of spot1 with the verb GET. The request is

routed by the RequestDispatcher to the correct resource as shown in Figure 3.1 on which

it invokes the doGet() operation. The resource then reads the current temperature using

the native Sun SPOT API and sends it to the Formatter. While this component can

2Based on the NanoHTTPD project: http://elonen.iki.fi/code/nanohttpd.

http://elonen.iki.fi/code/nanohttpd

112 Bringing Wireless Sensor and Actuator Networks to the Web

Figure 3.1: Embedded software stack directly deployed on the Sun SPOTs in order for
them to natively understand the HTTP protocol. Incoming requests go through the Stream
Connection Manager via the Protocol Translation component and are then sent to the Request
Dispatcher. This component reads the URI and redirects the request to implementation of
the corresponding resource. The resource calls the native API and sends the returned data to
the JSON Formatter. The data is converted to JSON and sent back to clients.

support various formats, we decided to use JSON since it is more adapted (than XML for

instance) to devices with limited capabilities both because the amount of data transfered

is reduced and the parsers require less resources [212]. The JSON data resulting from the

call for temperature is shown in Figure 3.3. This data is finally wrapped into an HTTP

packet and sent further to the protocol translation component. Alternatively the results

can be distributed asynchronously to a URI (Web-hooks) when the values overcome a

certain threshold configurable through the RESTful API as well.

HTTP Callbacks (Web Hooks) As mentioned in Chapter 2, for monitoring applications

the polling model is sub-optimal. Thus, the nodes can be controlled (e.g., turning LEDs

on, enabling the digital outputs, etc.) using synchronous HTTP calls (client pull) as

explained before, but can also be monitored by subscribing to notification over an HTTP

Callback. For example, a subscription to a feed is done by creating a new rule on a sensor

resource and POSTing a threshold (e.g., > 100) to /spot1/sensors/light/rules together

with an HTTP callback.

In response, every time the threshold is reached, the node POSTs a JSON message to the

callback URI. Alternatively, the same mechanism can be used to publish data as an Atom

feed to an external AtomPub server. This allows for thousands of clients to monitor a

single sensor by outsourcing the data delivery to an intermediate, more powerful server.

3.1. WoT General Purpose Sensing Platform 113

Figure 3.2: Sequence diagram of a protocol translation for the Sun SPOTs. The incoming
HTTP over TCP/IP request is routed to the correct node as an HTTP request over the Sun
SPOT GCF radiostream protocol (using IEEE 802.15.4).

Protocol Translation Component Since the Sun SPOTs do not natively support WiFi

or Ethernet communication, a translation component that forwards requests from tra-

ditional Web requests over TCP/IP to the correct Sun SPOT over the IEEE 802.15.4

stream connection protocol is needed.

As shown in Figure 3.2, when receiving an HTTP request from the Internet/Intranet, the

translation component reads the request URI and maps it to one of the registered nodes.

In case the node is busy, it also serves as a buffer by queuing requests and resubmitting

them later.

To allow flexible mashups, we wanted the nodes to be mobile, traveling from base-station

to base-station, which requires a dynamic discovery process to find new nodes and register

their basic information (the MAC address, a short description, their URI). This process is

carried out by a DiscoveryComponent, which broadcasts invitation messages on a regular

basis on a dedicated port. On their side, the nodes listen to this port and can decide

to subscribe to the broadcasting gateway. Then, the ProtocolTranslationComponent

registers the node’s address and is ready to redirect them to the newly registered node.

Management User Interface The Sun SPOT embedded HTTP server we created only

offers JSON representations of the resources. While the served JSON messages provide

links to related resources and thus holds the connectedness constraint of RESTful archi-

tectures, JSON messages are not the best way for human clients to discover the resources.

In the Device Accessibility Layer of the Web of Things Architecture we suggested system-

atically providing HTML representations of resources to allow user-friendly browsability.

Hence, the ResourceExplorer component offers to users (e.g., mashup builders) a Web

user interface to browse the available services as shown in Figure 3.3. Just as they would

navigate on Web sites, they can explore the device hierarchy and test services by clicking

on the link structure reflecting the hierarchy of the physical world (e.g., a temperature

sensor is the child of a sensor node). The explorer dynamically adapts its content to the

available devices and is implemented as an AJAX (HTML and JavaScript) application

designed to minimizes the connections to the nodes while looking for a service.

114 Bringing Wireless Sensor and Actuator Networks to the Web

Figure 3.3: Using the AJAX ResourceExplorer, users can explore directly the resources
provided by the device. This example shows how users can get the current temperature
resource values and the formalism of the JSON response.

Device Accessibility Layer with Smart Gateway

In order to be able to asses the differences between end-to-end HTTP communication and

communication managed by a Smart Gateway, we implemented a Sun SPOT DeviceDriver.

There are basically two differences between the Sun SPOT DeviceDriver and the end-

to-end HTTP stack proposed before.

First, rather than using HTTP end-to-end, the DeviceDriver uses the Sun SPOT native

communication API (over an IEEE 802.15.4 physical link) and acts an application layer

gateway. From a Web client point of view there is no real difference since requests are

still formulated with HTTP. Indeed, the DeviceDriver takes care of the unmarshalling

and marshaling of requests from one application protocol (HTTP) to the other (JSON

over IEEE 802.15.4 using the native Sun SPOT Java communication API).

Secondly, rather than relaying every incoming request to the Sun SPOTs, the DeviceDriver

is based on a caching architecture explained below.

System Overview The Sun SPOT DeviceDriver is a software component that can

be deployed in the Smart Gateway framework described in Section 2.1.2. To offer a

RESTful Web API for the Sun SPOTs functionality, the DeviceDriver uses a Web server

component provided by the Smart Gateway framework. The resources of the API are

shown in Figure 3.4.

The DeviceDriver takes care of the operations related to the Sun SPOT specific com-

3.1. WoT General Purpose Sensing Platform 115

/{spotname}

/management /actuators /sensors

/syncinterval /spothostport /status /unblock /block /leds

/{ledNumber}

/switch /red /green /blue

/light /acceleration /tilt /temperature /buttons /analogin

/a /b /1 /2 /3 /4

Figure 3.4: Resources of the Sun SPOT RESTful API as offered by the DeviceDriver

through the Smart Gateway.

munication protocol and API. It further manages the synchronization of the Sun SPOT

resources’ representations. Indeed, the Smart Gateway has a local copy of the devices’

resources and minimizes the actual communication between devices and the Web by lo-

cally caching the status of devices. The details of the caching and request process are

shown in Figure 3.5. First, a synchronization thread is started by the DeviceDriver.

After an initial synchronization request, this thread will issue a new request after each

reply. A direct consequence of this architecture is that, unlike in the case of the HTTP

end-to-end architecture, clients communicate with a DeviceDriver (through the Smart

Gateway Web server) and not with the Sun SPOT itself.

This has the advantage of fully decoupling the Sun SPOTs from the outside world. Indeed,

the device only needs to send an update packet to the Smart Gateway with a frequency

short enough to ensure the validity of data. These data are then made available by the

Smart Gateway to clients either as HTML or JSON representations. Moreover, the Smart

Gateway also offers an Atom representation of the data that can be used to fetch historic

data or aggregates of several smart things into a single feed.

On the other hand, unlike the end-to-end HTTP architecture which has the advantage of

always returning the most recent sensor readings, the staleness of the retrieved data in

the case of the synchronization-scheme will depend on the frequency of updates that can

be retrieved from the Sun SPOT.

Software Architecture The Sun SPOT DeviceDriver is implemented as an OSGi bun-

dle [137] which allows to dynamically load it in the Smart Gateway framework presented

in the Device Accessibility Layer. Here, we provide a summary of the most important

classes of the bundle in order to better understand the design of a typical Web of Things

DeviceDriver. The relationships between these classes is show in Figure 3.6.

SpotManager This class manages the discovered sensor nodes. It launches a thread

that will discover the nodes and assign them to communication ports. It further

manages the life-cycle of these nodes makes sure that Sun SPOTs to which contact

hasn’t been successfully established during the last few synchronization rounds get

removed.

116 Bringing Wireless Sensor and Actuator Networks to the Web

Figure 3.5: Sequence diagram of a request for the temperature of Sun SPOT 1 when using
the Smart Gateway synchronization-based architecture. The Smart Gateway serves data to
the clients that was cached by the DeviceDriver during the last synchronization round.

SpotRepresentation An instance of this class represent the current state of a Sun

SPOT, including the state of all its sensors and actuators. It is provisioned and

refreshed after each synchronization round through the SpotManager class.

SpotCommunicationBackend This class is the proxy between the Sun SPOTs and the

DeviceDriver. It listens to incoming communication and informs the SpotManager

about newly discovered nodes. Furthermore, an SpotSynchronizerThread instance

is started for each new node and manages the initial handshake between the device

and the DeviceDriver.

SpotSynchronizerThread This is the core of the DeviceDriver. Each instance of

this thread is in charge of synchronizing a Sun SPOT data on a regular basis, and

provisioning the corresponding SpotRepresentation.

Quantitative Evaluation

In Section 2.5 we evaluated in qualitative terms what the experience of developing ap-

plications on top of the RESTful Web-enabled Sun SPOTs was like for developers. We

compared this experience with developing on top of WS-* enabled Sun SPOTs and came

to the conclusion that REST was easier to use. Here, we would like to assess the technical

feasibility of the approach, evaluating if the RESTful Web-enabled Sun SPOTs perform

well enough to implement concrete use-cases. Furthermore, we compare the end-to-end

HTTP with the Smart Gateway mediated approach to better quantify the differences and

measure the benefits of adding a Smart Gateway to the architecture.

3.1. WoT General Purpose Sensing Platform 117

Figure 3.6: Simplified class diagram of the Sun SPOT DeviceDriver architecture. The
SpotManager is the link between the discovery of new Sun SPOTs (handled by the
SpotCommunicationBackend) and the SpotRepresentation regularly synchronized by the
SpotSynchronizerThread .

0

50

100

150

200

250

300

350

R
ou

nd
-T

rip
-T

im
e

2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500

Request #

Round-Trip-Time Depending on the Access Strategy

End-to-end HTTP, RTT
Sync-based Smart Gateway, RTT

Figure 3.7: Round-trip time for 500 consecutive GET requests on a Sun SPOT node when us-
ing the end-to-end HTTP implementation and the sync-based Smart Gateway implementation
(detailed in Figure 3.8).

118 Bringing Wireless Sensor and Actuator Networks to the Web

0

5

10

15

20

25

R
ou

nd
-T

rip
-T

im
e

2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500

Request #

Round-Trip-Time for the Sync-based Smart Gateways

Figure 3.8: Details of the Round-trip time for 500 consecutive GET requests on a Sun SPOT
node when using the sync-based Smart Gateway implementation.

End-to-End HTTP vs Sync-based Smart Gateway We implemented a simple scenario

where a user issues a GET request to read the current light sensor value of a Sun SPOT

located one radio hop away from a Smart Gateway. We compare the two different archi-

tectures described before and show the round-trip time (RTT) for each request in Figure

3.7 and Figure 3.8.

First, each request is routed through the Protocol Translation component to the embed-

ded HTTP server running on the remote Sun SPOT and executed there. For this case,

the average round-trip time for 7’000 consecutive requests is 205 milliseconds (SD =

127.8ms,min = 96ms,max = 8500ms). The upper graph in Figure 3.7 shows the results

for request 2000 to request 2500.

In the second case, we use the DeviceDriver on a Smart Gateway and the synchronization-

based architecture. The Smart Gateway software is running on a Linux Ubuntu Intel dual-

core PC 2.4 GHz with 2 GB of RAM. In this case the average round-trip time was 4.2 ms

(SD = 3.7ms,min = 2ms,max = 111ms). The results for 500 consecutive requests are

shown in Figure 3.8.

The results for both approaches are summarized in Figure 3.7. The fact that these results

are far better than the evaluation of the HTTP end-to-end architecture is not surprising.

Indeed, in this case each request is served from the cache on the Smart Gateway without

direct communication between the client and the Sun SPOT.

However, the trade-off of the sync-based approach is the staleness of the retrieved data

which will depend on the frequency of updates sent by the Sun SPOT. Figure 3.9 shows

the data age for requests 2000 to 2500. In the case of the HTTP end-to-end architecture

this corresponds to the processing and propagation time. In the case of the sync-based

Smart Gateway the age will grow until a successful synchronization.

3.1. WoT General Purpose Sensing Platform 119

100

150

200

250

300

350
A

ge
of

D
at

a
[m

s]

2000 2050 2100 2150 2200 2250 2300 2350 2400 2450 2500

Request #

Age of Data Depending on the Access Strategy

End-to-End HTTP, Age of retrieved Data
Sync-based Smart Gateway, Age of retrieved Data

Figure 3.9: Age of the data for each request. In the HTTP end-to-end architecture the data
age equals the message processing and propagation time. In the sync-based Smart Gateway
the data age grows until a synchronization successfully happened.

Evaluating Concurrency One of the most prevalent advantages of taking the sync-based

Smart Gateway approach is to decouple the clients and the actual sensors which greatly

improves the scalability of the architecture in terms of concurrency. This is an important

point since in the Web of Things vision, smart things are openly accessible on the Web

and thus accessed by multiple clients building all kinds of applications.

In this last quantitative evaluation, we want to asses the difference between both ap-

proaches in terms of concurrent requests. Similarly to the case exposed before, the Smart

Gateway software is running on a Linux Ubuntu Intel dual-core PC 2.4 GHz with 2 GB

of RAM. The Web server used for this implementation is based on the Noelios Restlet

Engine of Restlet 1.1.7 [268].

Figure 3.10 shows the results when having up to 100 concurrent clients running 100

requests. Not surprisingly, the sync-based Smart Gateway approach scales much better

as the success rate of the end-to-end HTTP version drops as soon as the number of

concurrent clients is reaching 30.

While the success rate of the sync-based Smart Gateway also drops to 50% as soon

as we are reaching 40 concurrent clients, it remains stable and requests are still being

served. Furthermore, this strongly depends on the Web server that is being used and high-

performance caches that can easily scale with a really important number of concurrent

HTTP requests are common nowadays. This means that using a synchronization-based

mechanism, thousands of HTTP clients can retrieve simultaneously sensor data from a

single device with low response times, while still preserving the freshness of the data

collected under a reasonable bound for many applications. This will not hold true for

non-cacheable (write) requests that must be sent to devices (e.g., turn on LEDs, change

120 Bringing Wireless Sensor and Actuator Networks to the Web

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
uc

ce
ss

R
at

e
of

R
eq

ue
st

s
[%

]

0 10 20 30 40 50 60 70 80 90 100

Concurrent Clients (100 Requests / Client)

Scalability Test with Concurrent Clients

End-to-End HTTP, Success Rate
Sync-based Smart Gateway, Success Rate

Figure 3.10: Comparing the scalability in terms of concurrent requests for the end-to-end
HTTP and the syn-based Smart Gateway version. Each client runs a 100 requests and the
clients are concurrently started. The Smart Gateway version scales much better.

application state). As many distributed monitoring applications are usually read-only

during their operation (sensors collect data, but users cannot change their status), our

architecture exhibits a good scalability level. This enables new types of applications where

physical sensors can be shared with thousands of users with little impact on the latency

and data staleness.

3.1.2 Findability Layer

To demonstrate the suitability of the Findability Layer presented in Section 2.2, we

apply the STM Model to describe the metadata of the Sun SPOTs using microformats.

Then, we illustrate the benefits of the approach with two use-cases of the metadata.

Microformats

First, the HTML representation of the Sun SPOTs is modified to embed metadata using

the compound of microformats described in Section 2.2.1.

In particular, the hProduct microformat is used to describe the static product properties

of the STM model as shown in Listing 3.1. The hCard microformat is used to describe

the manufacturer and owner of the object. The static services properties are described

using the hRESTs microformat.

For the dynamic properties, these are described with hCard which covers the relative

location properties. We add the optional geo microformat to hCard in order to support

the absolute location properties (i.e., latitude and longitude). Finally, the QoS dynamic

3.1. WoT General Purpose Sensing Platform 121

properties are expressed using the hReview microformat. As mentioned before, since these

properties are not provided by the Sun SPOT itself they are inherited from the LLDU to

which the device is bound. This also allows for dynamic updates of the properties.

1

2 Sun SPOT Embedded Development Platform </

span >

3 ,

4 epc assigned EPC number:

5 urn:epc:id:gid :2808.64085.88828 </ span >

6

7 <a href="http :// www.webofthings.com/

tags/wsn" rel="tag">

8 Wireless Sensor Nodes

9 Oracle Corp.

10

11 This is a Sun SPOT Embedded Development sensor node ,

offering a RESTful Web API through the Web of Things

Smart Gateways.

12

13 <img alt="photo of the Sun SPOT"

14 src="http ://www.sunspotworld.com/images/spot -reflect.png"

class ="photo"/>

15

16 More information about this device.

17 400$

18

Listing 3.1: Snippet of the hProduct microformat used to describe the product metadata of

the Sun SPOTs.

Integration with InfraWoT

The first benefit of the metadata is the fact that search engines such as Google understand

them and thus will render adapted results when searching for a smart thing.

Moreover, upon the discovery of a Sun SPOT by a LLDU, the metadata can also be used

for indexing purposes and richer keywords are extracted to serve future queries. The data

can also be used to render more adapted pages when browsing Sun SPOT on the LLDU.

Figure 3.11 shows the results of discovering a Sun SPOT when using the LLDU Query

Web User Interface. The metadata is used to render detailed lists of offered resources

and services, a map of where the smart things are located and QoS information about the

services.

122 Bringing Wireless Sensor and Actuator Networks to the Web

Figure 3.11: Result of discovering a metadata annotated Sun SPOT as seen in the LLDU
Query Web User Interface. The Sun SPOT description page is rendered with a map and
detailed information about the device and its status.

Figure 3.12: Result of discovering a metadata annotated Sun SPOT using the Android WoT
Browser. The view on the left gives access to all the resources. As an example, the view on
the right can be used to turn the Sun SPOT LED2 on or off.

3.2. WoT Smart Metering 123

Figure 3.13: This graph depicts the cumulated electricity consumption in the European
Union, split by sectors. The proportion of energy consumed by households has been constantly
increasing since 1990. (Original source: www.eea.europa.eu/data-and-maps)

Rendering Mobile UIs for the Spots

Finally, we created the Android WoT Browser [94], an mobile application that scans QR

codes containing the root URI of a smart thing from which it fetches the metadata and

can dynamically create UIs for operating the smart thing. As an example, Figure 3.12 is

the UI generated for the Sun SPOT. It offers a native application from which the main

functionality of the Sun SPOT can be called and used. It is worth noting however, that

the UIs that can be generated are limited to simple interactions with resources as they

rely on the metadata available in the microformats which are not covering fully automated

machine to machine interactions for more complex services.

3.2 WoT Smart Metering

A major burden for people, who want to save energy at home, is for them to iden-

tify how much energy is consumed by different appliances. How much does a computer

consume in operation / when it is powered off? Is the consumption of an energy-saving

lamp significantly lower in the long run than a standard lightbulb? Such questions are

key to understand where energy can be saved by individuals. Studies have shown that

the lack of feedback about their consumption is a major barrier for individuals to save

www.eea.europa.eu/data-and-maps

124 Bringing Wireless Sensor and Actuator Networks to the Web

energy [29]. This is especially important since residential and commercial buildings are

major consumers of energetic resources. In the European union, the residential sector ac-

counts for 29% of the overall electricity consumption, a number that has been constantly

increasing since 1990 as shown in Figure 3.13 [231]. A similar pattern can be observed

in the consumption of households in the U.S. [220]. Hence, to help users identify how

their electricity usage relates to difference devices or action, there is a need for systems

that give them instantaneous feedback about their consumption [53, 2]. Studies have em-

pirically shown [152] that introducing instantaneous consumption feedback in households

helps them to reduce their consumption by 5% to 10%.

Currently available off-the-shelf products that depict the energy consumption in near real

time are helpful, but do not fully meet the user needs as they have a high usage barrier and

often require complex installations [60]. Furthermore, they are not able to offer the most

promising feedback since they lack the ability to provide an appliance-specific break down

of the energy consumption and are not able to compare the consumption of individual

devices in an appealing manner on a central screen [53]. More importantly in the context

of this thesis, they do not offer open APIs, which makes developing applications on top of

them highly complex and does not foster public innovation [206].

In this section, we present and discuss a system for increasing energy awareness in domestic

and office environments built using commercially available smart power outlets named

Plogg [262]. We illustrate how adopting the approaches presented in the Web of Things

Architecture can help to overcome the above-described limitations. Compared to other

solutions, the resulting system is simple to install and does not require any modifications

of the wiring, which in many houses in Europe is difficult to access. By providing a

Smart Gateway taking care of the network communication and configuration we simplify

the deployments such systems in real-world environments. Furthermore, RESTful Web

API enables easy interoperability with other applications that can be built on top of

the system. Moreover, we present a Web user interface that allow for users to monitor,

compare, and control the electricity consumption of devices at home.

This section is organized as follow: First, we briefly describe the sensor nodes that we

used for our implementation. Then, we describe the way these nodes were made part

of the Web taking the Smart Gateway approach described in the Device Accessibility

Layer. Finally, in the evaluation section we present a pilot deployment of the system

and discuss the results. Parts of this section are joint work with Markus Weiss published

in [83, 76, 205, 204].

3.2.1 Implementing the Device Accessibility Layer

The overall architecture of the system is shown in Figure 3.14 and is composed of 5

main levels. First, at the device level are the appliances we want to monitor and control

through the system (e.g., a fridge, a TV). At the second level each of these appliances

is then plugged into a sensor node. Then, a Smart Gateway discovers the sensor nodes

3.2. WoT Smart Metering 125

Figure 3.14: Appliances connected to Ploggs communicate with a Smart Gateway offering
the Ploggs’ functionality as a RESTful Web API. Physical Mashups are then built on top of
the API.

126 Bringing Wireless Sensor and Actuator Networks to the Web

and makes them available on the Web through a RESTful API. At the mashup level the

sensor nodes’ services are composed together to create an energy monitoring and control

application, using Web scripting languages or composition tools. Finally, this application

is made available through a Web User Interface in a Web browser (e.g., on a mobile phone,

a desktop computer, a tablet PC, etc.)

Energy Sensor Nodes

Our system is based on the off-the-shelf commercial Plogg sensor nodes. The Ploggs

are a combination of an electricity meter plug and a data logger. Furthermore, they

offer a Bluetooth and Zigbee interface to retrieve the current or logged consumption.

These factors make them especially suited for appliance level monitoring. Unfortunately,

the provided software is limited and does not offer active monitoring. For developing

applications on top of the Ploggs a Windows DLL can be purchased. As a consequence,

the platforms that can communicate with the Ploggs are limited to the Microsoft Windows

platforms and integrating them in other environments (e.g., with mobile phones) requires

a lot of expertise.

To overcome these limitations, we apply the architecture described in the Device Accessi-

bility Layer. Since the Ploggs do not have TCP/IP communication capabilities, we built

a Smart Gateway for the Ploggs as shown in Figure 3.14.

A Smart Gateway for Smart Meters

As described in the Device Accessibility Layer, a Smart Gateway is a component that

abstracts smart things specific protocols and makes the functionality of the smart things

available through a Web RESTful API.

Our first experience designing a Smart Gateway for the Plogg is based on the Windows

DLL for Bluetooth Ploggs [76]. This C++ gateway first discovers the Ploggs by scanning

the environment for Bluetooth devices. The next step is to make their functionality

available as RESTful resources. A small footprint Web server (Mongoose [256]) is used to

enable access to the Ploggs’ functionalities over the Web. This is done by mapping URIs

to native requests of the Plogg Bluetooth API through the DLL.

While it worked as expected, we identified a number of shortcomings of this approach:

First, by using the Windows DLL we require the Smart Gateway to run in a Microsoft

Windows environment. This is a rather important issue. Indeed, in order to simplify its

deployment, we envision the Smart Gateway software to be deployed on existing infras-

tructure nodes such as Wireless routers or Network Attached Storage devices and the vast

majority of these devices does not run a Windows operating system but rather variations

of Linux/Unix.

Furthermore, building the Smart Gateway on top of a vendor-specific DLL prevents the

framework from being used for other types of smart meters. As a consequence, we designed

3.2. WoT Smart Metering 127

Figure 3.15: Simplified class diagram of the Webnergy framework. Concrete smart meters
(e.g., Ploggs) have to extend the SmartMeterManager class. The Web representation of the
smart meter data is taken care of by the SmartMeterResource.

and implemented a second Smart Gateway framework for smart meters that does not

require a specific OS and that can be easily extended to support other types of smart

meters.

This Smart Gateway framework dedicated to smart meters has been open-sourced as the

Webnergy project and, to date, is used in a dozen of external research projects [281].

System Architecture The Webnergy framework is a software that acts as a reverse proxy

between Web clients and smart meters. A simplified view of framework’s architecture is

shown in Figure 3.15. It is mainly composed of the following classes:

SmartMeterManager This class abstracts the functionality of most smart meters, it has

to be extended to meet the constraints of each particular smart meter platform. We

implemented a version of the SmartMeterManager for the Ploggs. Note that this

class represents a group of smart meters rather than a single node. For instance the

PloggManager manages all the Ploggs sensor nodes that are within reach.

SmartMeter This represents a single instance of a sensor node of a particular smart meter

platform.

ConsumptionData This is an abstraction of the data a smart meter can return. It is the

data clients will retrieve through the Web API.

SmartMeterSyncThread As for the Sun SPOTs, the Webnergy framework is based on

128 Bringing Wireless Sensor and Actuator Networks to the Web

/webnergy

/smartmeters

/{smartmeter-id} /*

/name /status

Figure 3.16: RESTful Web API of the Webnergy framework. The functionality of these
resources is listed in Table 3.1.

a synchronization strategy. The framework uses the SmartMeterSyncThread to

synchronize each sensor node of each smart meter platform on a regular basis. As

a consequence, the data being served to the clients through the Web API is cached

data. The synchronization time depends on the smart meter platform and can be

set in the framework.

SmartMeterResource This class is in charge of managing the Web API of the supported

smart meter platforms. It binds URIs to the resources of the SmartMeters and

SmartMeter Managers and is in charge of translating the ConsumptionData into the

correct representation format.

RESTful Web API The API of the Webnergy framework is relatively simple as shown

in Figure 3.16. It is worth noting that all SmartMeters platforms are represented in the

same way. All resources can be represented in three formats: JSON, XML and HTML.

The description of the functionality the resources encapsulate is shown in Table 3.1. Note

that the smart meters identifiers are unique identifiers generated by the framework based

on the hardware address of a particular meter node (e.g., Bluetooth or Zigbee ID).

Implementation To facilitate its portability, the Webnergy framework was implemented

as a Java application. As direct consequence is that it can be easily bundled as an

OSGi component in order to be integrated to the Smart Gateway architecture we de-

scribed in Section 2.1.2. When added to the Smart Gateway architecture, it serves as a

DeviceDriver framework for the integration of smart meters.

3.2.2 Applications

Thanks to the RESTful API offered for the Ploggs through the Webnergy Smart Gate-

way, creating a compelling user interface (UI) becomes quite easy: all the interface needs

to support is an HTTP client library. Since there is ubiquitous support for HTTP across

3.2. WoT Smart Metering 129

URI HTTP Method Description
/webnergy GET Index page
/smartmeters GET Lists all the available smart-

meters with IDs and names
/smartmeters/* GET Shows the consumptions of

all smart meters
/smartmeters/smartmeter-id GET Lists the consumption data

for a particular meter node
/smartmeters/smartmeter-id/name GET Gets the human-readable

name of a meter node
/smartmeters/smartmeter-id/name PUT Sets the human-readable

name of a meter node
/smartmeters/smartmeter-id/status GET Displays the current sta-

tus of the meter node and
thus of the attached device
(on/off)

/smartmeters/smartmeter-id/status PUT on/off Switches device on or off

Table 3.1: Resources of the Webnergy RESTful Web API.

Figure 3.17: The monitoring and control Web user interface for the Ploggs shows the con-
sumption of each connected appliance. The switch icons can be used to power on / off the
devices. It is implemented as a simple JavaScript + HTML page calling the Ploggs’ RESTful
Web API.

130 Bringing Wireless Sensor and Actuator Networks to the Web

all programming and scripting languages, this allows developers to choose literally any

language to build applications on top of the smart metering infrastructure. Thanks also

to the abstraction of devices behind Smart Gateways, there is no need for the chosen

language to support Bluetooth, Zigbee or the protocol a particular smart meter uses.

We illustrate this with a JavaScript Web UI that allows users to monitor and control the

consumption of the attached devices from a standard web browser.

Web User Interface

The Web UI was designed to be attractive, easily-accessible, and to display real-time

data rather than snapshots. It is a dynamic Web site which was easily built on top of the

RESTful API offered by the Smart Gateway. The implementation was made in JavaScript

using the Google Web Toolkit (GWT) [239]. To get the consumption data, the UI simply

calls the gateway URL every few seconds and feeds the JSON Ploggs’ results to interactive

JavaScript graph widgets. As shown in Figure 3.17, the resulting interface offers six

real-time and interactive visualization widgets. It is dynamically created depending on

the number and names of the discovered Ploggs. The four graphs on the right side

provide detailed information about the current consumption of all the appliances in the

vicinity of the gateway. The two remaining graphs show the total consumption (kWh)

and respectively a comparison (on the same scale) of all the running appliances. A switch

icon next to the graphs enables users to switch on and power off the devices via their

Plogg directly from the Web. Finally, the lower part of the UI provides guidance that

shows users effective measures to decrease their energy consumption.

It is worth noting that creating such an interface by directly connecting to the Ploggs

would not have been feasible. Indeed, widely popular web languages such as JavaScript

do not offer support for Personal Area Network (PAN) protocols such as Bluetooth or

Zigbee. However, thanks to the RESTful API, connecting to the smart meters is reduced

to being able to call a URI and parse JSON messages, which Web languages can do

out-of-the-box.

3.2.3 Qualitative Evaluation

The Web UI and the Smart Gateway were released for public use as a packaged project

named Energie Visible and are available on the Web for free [228]. The software is a

download and run application. At the time of writing, it was being used by a dozen

of (mostly tech-savvy) people around the globe to monitor the energy consumption of

their households. In order to evaluate the suitability of the system to provide feedback in

a real-world environment, Energie Visible was permanently deployed at the Cudrefin02

headquarters as described next. Then, we report on formative feedbacks on the usability

of the system and the measures people applied due to the increased energy consumption

awareness. However, since there existed no fine-grained data on the energy consumption

3.2. WoT Smart Metering 131

before our deployment, we cannot quantify the energy savings that were achieved with

our system. Furthermore, it is in general difficult to quantify savings as direct effect of a

system, since such real world deployments contain numerous side effects that cannot be

controlled or kept constant. Thereafter, we provide insights from the developer perspective

gathered from experts who developed on top of our RESTful system after we released the

open-source code.

Pilot Deployment at Cudrefin02 The prototype was deployed at Cudrefin02, a private

swiss foundation active in the field of sustainability and has been running reliably since

November 2009. Regarding the given setting and the goal to raise consumption awareness,

our prototype had to fulfill certain requirements. Due to the fixed setting in the office,

the fact that continuous operation should be ensured and users were not technological

affine, the prototype had to be easy to install and simple to use. Hence, the UI had to be

developed in an attractive and easily accessible way (no additional software to learn or

install) that allows both, staff and visitors, to become aware of the electricity consumption

of appliances running at the headquarters.

From a feedback perspective, the breakdown of the entire energy consumption, e.g., for

specific rooms, appliances, or times of the day, is a powerful way of establishing a direct

link between action and effect. This considerably improves the intensity of reflection and

interpretation of a measure or omission [53]. However, besides providing this possibility

to apportion the entire consumption to single devices, it is important to enable users

gathering feedback frequently and in real-time. This allows for users to relate feedback to

a certain behavior or device usage [2] and thus take effective measures regarding the energy

consumption. Continuous feedback has thereby been proven to be most effective [195]. In

addition, only feedback that is at hand when needed is able to satisfy users’ spontaneous

curiosity.

The system is deployed in the ground-floor office of the headquarters. There, the Ploggs

are used to monitor the energy consumption of various devices such as a fridge, a kettle,

two printers, a file-server, and computers including their screens. The Smart Gateway

software is deployed on a small embedded computer consuming about 20 Watts, but also

used as a file-server and multimedia station. At startup, the Smart Gateway discovers

all Ploggs within communication distance and queries their consumption values every 20

seconds. The frequency of calls is the observed time needed to establish the Bluetooth

communication with each plogg and get the data returned to the Smart Gateway. As

a consequence, the system achieves only near real-time measurements. However, in case

of a direct request the corresponding Plogg is queried right away and the value can be

gathered in about 2 seconds. It is worth noting that according to further experiments

this relatively slow communication time is due to the Bluetooth stack used by the Ploggs

and can be improved at the firmware level.

During the whole time a large display in the shop-window of the office encouraged people

passing by to experiment with the system. The staff used the system to monitor the

consumption and remotely control the appliances by browsing to the web UI on their

132 Bringing Wireless Sensor and Actuator Networks to the Web

desktop computer.

User Formative Feedback

An exhaustive analysis of the system’s impact on the electricity consumption of the users

is outside of the scope of this thesis and is discussed in [204, 135]. Nevertheless, to better

understand the usage of the system and the feasibility of real-world Web-based smart

meters, here we report on user feedback. This section is based on guided interviews with

the foundation staff after eight month of operation and verified based on the logged data.

The aim of the deployment was to raise consumption transparency to help visitors as well

as members of the staff to better understand how much energy different devices throughout

the office consume in operation and in standby. At the beginning, staff members had to

get used to the system and started exploring the energy consumption of different devices.

By experimenting with the kettle and the different printers, for example, they learned

that the amount of water heated up as well as the type of printer being used has a high

impact on the energy consumption. Staff members also started instantly comparing how

much energy their office desks consumed. After an initial period of about a month, the

staff members’ initial curiosity was satisfied and they thus reported they started using the

system less. However, they then looked more into details such as the standby consumption

of different devices, the accumulated consumption over time, and once identified where

electricity was wasted, took effective measures to conserve energy. For instance, they

identified that the computer screens, even when completely turned off, still consumed a

considerable amount of energy and that even when not used for several consecutive days,

the file-server kept consuming about 30 Watts. To prevent this waste of energy, concrete

technical and behavioral measures were implemented. In order to avoid residual electricity

usage such as with the computer screens, all the appliances within the headquarters except

for the fridge are now connected to a central power switch. As a policy, the last person

leaving the office is now in charge of turning off the central power switch. Moreover,

the computers and the file-server are now shutdown every evening. The information

item at the bottom of the Web UI, which displays contextual hints, was also seen as

very helpful. However, the staff reported that it would be better if the hints related to

the current consumption. During the whole time the system has been demonstrated to

visitors. They especially liked to remotely turn devices on or off and the possibility to see

the accumulated consumption together with the monetary cost caused by the device.

Our formative evaluation hints that the prototypes’ functionality is well suited to increase

the consumption transparency and helps users to save energy. We realized that in the

exploratory phase people like to interact with the system and are looking for a simple

and fun way to identify the electricity consumption of different devices. Later, it becomes

important to provide functionality that constitutes added value to keep users motivated.

Therefore, it is not sufficient to provide feedback on the current consumption on appliance

level, but also account for how much energy has been consumed over time. Thus, the

system allowed users to identify sinks where energy was wasted. In addition, we identified

3.2. WoT Smart Metering 133

it is important to relate the consumed energy to the incurred cost to draw conclusions

and take effective measures. Furthermore, the suitability of a Web UI was confirmed as

none of the users had problems understanding and using the Web page.

The Developer Perspective

The main goal for offering a Web layer on top of the Ploggs is to illustrate the ease

development of applications on top of an otherwise closed system. The Web-enabled

smart power outlets thus offer a platform for the fast prototyping of energy awareness-

related demonstrations and applications.

Since the release of Energie Visible on the web, several development teams have asked for

using our software to build new prototypes upon. As a consequence, the Webnergy project

was open-sourced [281] and the Smart Gateways used in several projects, ranging from

personal applications to commercial demonstrators. We followed two students (external

to the project) who built applications on top of the Ploggs Smart Gateway and report

on their feedback here. This, unstructured data complements the structured developers-

evaluation presented in Section 2.5.

For the first developer, the idea was to build a new mobile energy monitoring application

based on the iPhone and communicating with the Ploggs. The final application is shown

in Figure 3.18. The application offers three main functionalities. First it lets users get an

aggregation of the consumption of all monitored devices in their environment. Then, a

summary of the consumption of each discovered device (i.e., discovered Plogg) is presented

in a list view. From this list, users can access the detailed information for each Plogg

such as the consumption of the connected device over time and its expected electricity

cost per year.

In the second case, the goal was to demonstrate the use of a browser-based JavaScript

Mashup editor with real-world services [149]. According to interviews we conducted with

the students, they in particular highlighted the ease of use of a Web “API” versus a

custom “API”. For the iPhone application a native API to Bluetooth did not exist at

that time, but like for almost any platform an HTTP (and JSON) library was available.

One of the developer mentioned a learning curve for REST, but emphasized the fact that

it was still rather simple and that once it was learned the same principles could be used

to interact with a large number of services, languages, and possibly soon also with smart

things. The students finally outlined the direct integration to HTML and Web browsers

as one of the most prevalent benefits.

They explained how this significantly eases the development on the vendor’s side, since

applications can be built on languages for which a plethora of libraries and frameworks

are available. Furthermore, the use of popular languages makes it easier to find adequate

developers. This also unveils the possibility for external developers to create small web

applications and plug-ins on top of smart meters.

134 Bringing Wireless Sensor and Actuator Networks to the Web

Figure 3.18: The mobile user interface built using the Ploggs RESTful API. First, the aggre-
gated consumption is displayed. Then, from a list of connected devices the user can select a
particular device and get details about its consumption over time. (Source [204])

3.3 Sharing Layer

Thanks to the implementation of the Device Accessibility Layer and the Findability

Layer for the Sun SPOTs and the Ploggs, they can be shared using the SAC architecture

described in Chapter 2.3.

We demonstrate this by sharing the Sun SPOTs Smart Gateway: First, the Smart Gate-

way needs to be registered with the SAC server. This is done through the SAC API (see

Section 2.3) with a POST on <SAC-BASE-URI>/gateways with the following parameters

(as a URL-encoded form):

gatewayBaseUri The base URI of the Smart Gateway.

subUri The sub-URI from which the sharing should be enabled, here /sunspots. This

can be useful to share just one type of smart things on a Smart Gateway that

manages several (e.g., sharing just a particular Sun SPOT).

description A human-readable description of the Smart Gateway.

username The username part of the credentials that should be used to get access to the

Smart Gateway.

password The password part of the credentials that should be used to get access to the

Smart Gateway.

userId A list of SAC internal users (they need to be currently authenticated) that should

be able to share resources managed by this Smart Gateway. The list of currently

authenticated users and their identifiers can be retrieved using the /users/loggedIn

resource.

Once added, resources from the Smart Gateway can be shared with trusted connections

using the API. For instance, sharing the temperature resource of a Sun SPOT requires

3.3. Sharing Layer 135

a POST on /gateways/{gatewayBaseUrl}/shares and the following parameters:

resourceSubUri URI of the resource that should be shared, here

/sunspots/spot1/temperature.

userId SAC user sharing the resource (needs to be currently authenticated).

networkUserId SAC identifier of a trusted connection on a social network which can be

retrieved using the /users/{userId}/friends resource.

networkUserName Social network identifier of the trusted connection to share with.

Once the sharing process is finished, a message will be posted directly to the trusted

connection through the social network connector. The message contains a URI that can be

used to access the shared smart thing resource through SAC. In the case of our example,

the URI looks like http://vswot.inf.ethz.ch:8091/gateways/vswot.inf.ethz.ch:

8081/resources/sunspots/Spot1/sensors/temperature where vswot.inf.ethz.ch:

8081 is the Smart Gateway base-URI and /sunspots/Spot1/sensors/temperature the

relative URI of the shared temperature sensor. Finally, it is worth noting that SAC will

grant access to this resource to the trusted connection if and only if she was successfully

authenticated on her social network.

One of the very interesting advantages of modeling the Sun SPOTs and Ploggs with a

RESTful architecture and in particular of the connectedness constraint, is that is allows

the SAC to discover the resources and sub-resources the owner can share for a given

Smart Gateway. This is achieved using the crawling algorithm introduced in Section 2.2.1

where the the resource and sub-resources are extracted by following links in the HTML

representation. Furthermore, the operations one can execute on resources are identified by

calling the HTTP method OPTION for each resource. This returns the methods supported

for a particular URI, e.g., PUT, POST, GET, etc.

To illustrate this process, consider an owner who wants to share the RESTful Ploggs.

The user gives the credentials to the Ploggs Smart Gateway alongside with its base URI,

i.e., <BASE-URI>/smartmeter. The crawling engine will browse that page and detect the

links to the sub-resources of the Ploggs such as: /smartmeters/lamp and /smartmeters/

lamp/status.

For each resource, the crawler will also retrieves the HTTP methods it supports. For

example, the lamp resource only supports GET whereas the status resource also supports

PUT to switch on or off the device. The result of this process is a list of resources that can

be shared. Figure 3.19 shows the example of such a list after crawling the Sun SPOTs

Smart Gateway with the Friends and Things Web application.

This approach is valuable because it only requires for smart things to be based on a

truly RESTful architecture with no additional constraints on the embedded metadata.

However, from the figure, it appears clearly that this is not the most intuitive type of

representation that can be brought to users. More tailored representations, with better

descriptions of the resources, can be extracted from implementations of the STM model

136 Bringing Wireless Sensor and Actuator Networks to the Web

Figure 3.19: Screenshot of the Friends and Things Web user interface (built on top of the
SAC API) after crawling the resources of a Sun SPOTs Smart Gateway. All resources are
extracted and ready to be shared with trusted connections.

as explained in Section 3.1.2.

3.3.1 Quantitative Evaluation

To quantify the overhead of using a Social Access Controller we evaluated our im-

plementation when sharing the Sun SPOTs. We setup a scenario with two computers.

Similarly to the evaluations proposed before, the Smart Gateway software is running on

a server featuring Linux Ubuntu with an Intel dual-core PC 2.4 GHz with 2 GB of RAM

and the Noelios Restlet Engine Web server (Restlet 1.1.7 [268]). The Sun SPOTs sync-

based Device Driver is deployed in the Smart Gateway and a Sun SPOT node is bound

to this driver through an IEEE 802.15.4 wireless link.

Additionally, a laptop client is located one hop away from the server and both are con-

nected through a Gigabit Ethernet link. The laptop client runs a Linux Ubuntu OS and

is an Intel dual-core PC 2.67 GHz with 4 GB of RAM.

After sharing the Sun SPOT as described before, we test the overhead of accessing it

through SAC. The authentication and authorization process is using Facebook based on

our FacebookConnector and accessing the URI shown in the first line of Listing 3.2,

i.e., requesting the light sensor of the Sun SPOT through the SAC authentication and

authorization proxy. An extract of the actual HTTP request is shown in Listing 3.2. It is

worth noting that in order to be able to monitor the requests and results from an external

3.3. Sharing Layer 137

tool, we do not use an encrypted channel. However, when deploying a SAC, encrypted

HTTP communication should be systematically used to avoid attackers intercepting the

social network authentication keys.

1 GET /gateways/vswot.inf.ethz.ch :8081/ resources/sunspots/Spot1/

sensors/light HTTP /1.1

2 Host: vswot.inf.ethz.ch :8091

3 [...]

4 Keep -Alive: 115

5 Cookie: FacebookConnect.sessionKey =2. AQA7DlNqyVIhqZWE

.3600.1311098400.0 -1417076934;

6 FacebookConnect.userId =1417076934; FacebookConnect.loggedIn =1

Listing 3.2: HTTP request used to access the light sensor of a Sun SPOT through SAC. The

request contains a cookie with the Facebook session keys that will be used to check whether

the user is authenticated and authorized to access the resource.

We run 1000 sequential requests and back our data with several iterations of the 1000

test runs. An extract of results can be seen in Figure 3.20 where they are compared

with the same requests when directly requesting the Sun SPOT resource, without going

through SAC. Going through SAC, the requests have an average RTT of 218 ms (min =

204,max = 830, SD = 24). Without SAC we observed an average RTT of 9 ms (min =

6,max = 40, SD = 2). As a consequence we can conclude that in this setup SAC generates

an overhead of about 200 ms.

The overhead is reasonable for most applications we envision. However, these results

can easily be explained since most of the RTT is due to the latency while contacting

Facebook (located 14 hops away from the SAC server) to authenticate the user using

OAuth. Indeed, in our implementation SAC will contact the social network and check

the authentication before each request. Hence, the overhead could be greatly reduced by

caching the authentication keys on the SAC server side. Rather than storing them by

session (which does not respect the Stateless Interactions constraint of REST), these keys

could be stored for each user and invalidated after a certain time (sometimes specified by

the social network). However, such a cache is a trade-off since systematically controlling

the keys offers a better level of security.

For requests intensive applications (e.g., real-time monitoring applications) where the

latency might play a role, the SAC server can be used for the initial subscription after

which the content can be delivered by the sensor or Smart Gateway directly to the client

through a secure Web push channel such as the one implemented by the tPusher service

over secure WebSockets [125] (see Section 2.1.3) or simply through a secure (HTTPS)

HTTP Callback mechanism.

138 Bringing Wireless Sensor and Actuator Networks to the Web

0

50

100

150

200

250

300

350

400

450

500

R
ou

nd
-T

rip
-T

im
e

300 350 400 450 500 550 600

Request #

Round-Trip-Times With/Without SAC

Access and authentication, SAC, RTT
Direct access, Sync-based Smart Gateway, RTT

Figure 3.20: Round-trip time for 300 consecutive requests for the light resource of a Sun
SPOT with or without authentication through the SAC server. The authentication process
has an overhead of a about 200 ms per request.

3.4 Composition Layer: Cross-Device Physical Mashups

This section applies the idea of Physical Mashups as described in the Composition Layer

to wireless sensor networks. Following the three levels of mashability introduced in the

Composition Layer: Manual Mashup Development, Widget Based Mashup Development

and End-User Development with Mashup Editors, we propose, design and implement three

Physical Mashups combining the RESTful Sun SPOTs, the RESTful Ploggs and virtual

services.

3.4.1 The Ambient Meter

This first prototype is joint work with Vlad Trifa and was published in [76, 190]. It

demonstrates how real-world services provided by physical devices can be combined to-

gether thanks to their RESTful Web APIs. Hence, it can be classified as a Manual

Mashup Development. However, it further illustrates how the smart things themselves

can communicate with one another to create new applications thanks to the ubiquitous

availability of the HTTP protocol.

The Ambient Meter is a mobile device that displays the level of energy consumption of

the place it is currently located in by changing its color. It can be taken from one place

to the other and adapts to the place it monitors automatically, without the need for

human intervention. Depending on the total amount of energy consumed in the room it

is located in, the Ambient Meter changes its color from very green (i.e., the amount of

energy consumed in the room is low) to very red (i.e., a lot of energy is currently consumed

3.4. Composition Layer: Cross-Device Physical Mashups 139

Figure 3.21: Demonstration settings of the Ambient Meter. Every 5 seconds the Ambient
Meter (implemented with a RESTful Sun SPOT) polls a URI for an assessment of the energy
consumption observed by all the Ploggs the Smart Gateways discovered.

140 Bringing Wireless Sensor and Actuator Networks to the Web

in this place).

The Ambient Meter is built with our implementation of the end-to-end HTTP Sun SPOT

and it uses the Ploggs for energy monitoring as well as the Ploggs Smart Gateway deployed

alongside with an LLDU (Local Lookup and Discovery Unit) for resolution of its current

location. Every 5 seconds, the Ambient Meter will poll the following URI using the

GET method on http://localhost/webnergy/smartmeters/*.json. When the meter

is located in Room 1, as shown in Figure 3.21 (step 1) it is bound to the Smart Gateway 1,

meaning that localhost in this context is bound to the address of Smart Gateway 1. Thus,

the result of the call is going to be the JSON representation of the energy consumption

of all the Ploggs discovered by the Ploggs’ Smart Gateway 1. Placed in the hallway, the

Ambient Meter binds itself to Smart Gateway 2. Using the same URI as before it will get

the energy consumption of all the devices monitored. Again, the same process occurs in

Room 2, where the Ambient Meter gets the load of the desktop computer and the lamp.

Integrating all the real-world devices of this prototype would have been rather time con-

suming if the Smart Gateway, the Ploggs and the Sun SPOTs were only offering their

native (proprietary) APIs. Thanks to the RESTful approach the integration work was

reduced to building a simple Web mashup, where all the services are invoked by means

of simple and lightweight HTTP requests.

3.4.2 With Clickscript

This second prototype illustrates how physical mashups can be created by end-users as

well. In this use-case we use a RESTful Sun SPOT to actuate a RESTful Plogg when

reaching a certain temperature. To implement this use-case we use the ClickScript Mash-

ups Editor [149]. As shown in Figure 3.22 we use the adapted version of the Clickscript

presented in Section 2.4.3.

In this simple Physical Mashup, the room temperature is obtained through the Sun

SPOTs. This can be either obtained by regularly polling /spot1/sensors/temperature

which requires an additional loop building-block or by subscribing, through WebSockets

and the tPusher service, to a new rule on the Sun SPOT. If this temperature exceeds 35

degrees, the Ploggs will be actuated and the attached fan will be turned on.

Since Clickscript was written using purely Web languages (JavaScript and HTML) it can-

not use resources based on the low-level proprietary service protocols of the Ploggs and the

Sun SPOTs. However, it can easily access RESTful services. Thus, it is straightforward

to create Clickscript building-blocks representing the two devices. This is done by adding

a small JavaScript snippet to the Clickscript environment. The snippet used to integrate

the temperature sensor of the Sun SPOTs is shown in Listing 3.3. The simplicity of this

code illustrates well the ease of integration of smart things to Web tools and languages

once they offer their services through a Web API.

1 /**

2 * This is the Sun Spot temperature component

3.4. Composition Layer: Cross-Device Physical Mashups 141

Figure 3.22: A simple Physical Mashup using the adapted version of the Clickscript Mashup
Editor. The temperature sensor of the RESTful Sun SPOTs is used to actuate a RESTful
Plogg.

3 */

4 csComponentContainer.push({

5 name : "cs.web.things.temperature",

6 description : "Get the temperature from a RESTful Sun SPOT

",

7 inputs :

8 [

9 {

10 name: "IP",

11 type: "cs.type.String"

12 },

13 {

14 name: "Name",

15 type: "cs.type.String"

16 }

17],

18 outputs:

19 [

20 {

21 name: "Temperature",

22 type: "cs.type.Number"

23 }

142 Bringing Wireless Sensor and Actuator Networks to the Web

24],

25 image: "web/things/temperature.png",

26 exec : function(state){

27 this.setAsync ();

28 var ip = state.inputs.item (0).getValue ();

29 var name = state.inputs.item (1).getValue ();

30 var aurl = "http ://" + ip + "/ sunspots /" + name + "/

sensors/temperature ";

31 var component = this;

32 $.ajax({

33 beforeSend: function(xhrObj){

34 xhrObj.setRequestHeader (" Accept"," application/

json");

35 },

36 url: aurl ,

37 type: "GET",

38 dataType: "json",

39 success: function(result){

40 var temp = result.resource.getters [0]. value

41 // write this to output socket , expecting a

number

42 state.outputs.item (0).setValue(temp)

43 component.finishAsync ();

44 },

45 error: function(msg){

46 alert ("Error on: "+aurl);

47 }

48 });

49 }

50 });

Listing 3.3: JavaScript code required to integrate temperature sensor of a RESTful Sun

SPOT as a Clickscript building-block.

3.4.3 Energy-Aware Mobile Mashup Editor

In this second prototype, we use the API of the Physical Mashups Framework presented

in Section 2.4.5 to build a mashup editor that helps people managing their home devices

and create simple rules to optimize their energy consumption. It further allows them to

automate their homes in an ad-hoc, flexible manner.

Rather than creating a desktop tool such as the editor presented before, we wanted the

mashup editor to be able to run on mobile phones and tablet PCs. Indeed, several

studies [112] over the past few years illustrated a clear trend for people to favor the use

of their mobile devices while at home, a trend that was intensified thanks to the advent

of tablet PCs such as the iPad or the Android Tablets.

3.4. Composition Layer: Cross-Device Physical Mashups 143

Figure 3.23: (Left) Home view of the Energy Mashup Editor. Users can choose three different
wizards to create simple rules to automate their home. (Right) User interface for a smart thing
once discovered by the Energy Mashup Editor through the Physical Mashups Framework. The
smart thing can then be used in mashups.

In particular, mobile devices have been increasingly used to control smart home envi-

ronments because of their portability and ubiquity [112]. Furthermore, by implementing

the Device Accessibility Layer as described in [4] a mobile phone becomes both a control

device and a RESTful smart thing offering sensing capabilities (e.g., location sensing).

Hence, we propose a mashup editor that allows managing smart homes implementing

the Web of Things Architecture by creating simple rules and offering direct access to

the appliances through a mobile phone interface. We present the Energy Mashup Editor

which focuses on creating simple rules that help users optimize their home environment

towards a better energy usage. We illustrate this by showing how the RESTful Sun SPOTs

and RESTful Ploggs can be easily discovered by the framework and integrated in user-

customized home automation rules. Parts of this section were published in [4, 68, 113].

Functional Overview

The home user interface of the Energy Mashup Editor is shown in Figure 3.23. The upper

part offers access to three sub-interfaces: Wizards, Mashups and Things that we describe

here.

144 Bringing Wireless Sensor and Actuator Networks to the Web

Things: Discovery and Registration A click on Things provides access to the smart

things management and discovery interface. One of the most important feature of the

Energy Mashup Editor is the ability to discover and register smart things based on their

description metadata. The application supports smart things that are described according

to the STM model proposed in Section 2.2.1.

The application offers two ways of registering smart things. First, a user can manually

type the root URI of a smart thing, e.g., /spot1 for a RESTful Sun SPOT. However, since

typing URIs is rather cumbersome on most mobile devices, the Energy Mashup Editor

also features a QR-code recognition module that can be used to extract a smart things’

root URI from a barcode.

Once recognized, the URI is sent from the mobile phone to the Physical Mashups Frame-

work where a STM Translation Service is used to extract resources and services from the

retrieved smart things’ description. The Physical Mashups Framework then returns the

results to the mobile application where the extracted data is used to generate a new smart

thing directly usable in mashups. The processed description metadata are then cached

by the mobile application and accessible through the Things menu.

Figure 3.23 (right) shows the results of discovering an Android mobile phone implementing

the Device Accessibility Layer and the Findability Layer of the Web of Things Architecture

that we will call RESTful phone hereafter. In particular, this screen-shot shows the

discovered sensor resource /gps which has three sub-resources. First (/location), it

allows to retrieve the current location (mesurand) of the mobile phone using a polling

approach. Then, two events can be subscribed to: /change and /proximity providing

clients with changes, respectively proximity alerts through an HTTP Callback mechanism.

Wizards: Creating Mashups Rather than offering a box-and-pointer type of user inter-

face which is challenging to use on devices with limited screen-size, the Energy Mashup

Editor is based on the notion of wizards or assistants. In these wizards, the users are

guided through a number of steps that help them creating simple rules.

The application features three types of wizards as shown in Figure 3.23 (left):

Wire Up Things Events This wizard can be used to create mashups triggered by real-

world events. Once the users discovered a smart thing that offers event-based ser-

vices, they can use it to create a mashup that will be activated by a push from the

smart thing in question. As an example, a mashup can be triggered when a certain

temperature level is recorded by a RESTful Sun SPOT. Figure 3.24 (left) shows

the wizard when selecting a subscription to the proximity event of the RESTful

phone. The form is generated dynamically based on the JSON message returned

by the phone location resource. Note that the Callback URL parameter cannot

be edited since the Physical Mashups Framework generates and manages callbacks

automatically. Once subscribed to an event, the wizard will ask for selecting a

triggered action, i.e., for specifying a building-block that should be used when re-

acting to the event. TargetBlocks (including previously discovered smart things)

3.4. Composition Layer: Cross-Device Physical Mashups 145

Figure 3.24: Wizard to create a mashup based on information pushed by smart things (left).
The form represents the parameters that have to be provided in order to subscribe to the
RESTful phone GPS proximity event (right).

or ProcessingBlocks can be triggered. As an example, the status resource of a

RESTful Plogg could be updated so that the device attached to the Plogg is turned

off or on when the event is triggered.

Monitoring Things This wizard is used to pull information from a smart thing. This

is especially suitable for smart things that do not support push mechanisms. The

wizard first guides the user to selecting a previously discovered smart thing and

selecting one of its resources. Once selected, the user is asked to specify a condition

to be met to in order to trigger the execution of the next building-block as well

as the polling frequency. As an example, Figure 3.24 (right) shows the form for

selecting a condition on the /gps/location resource of the RESTful phone. Again,

this form is dynamically generated using reflection [285] based on JSON message

retrieved when requesting a GET on the resource URI. Finally, the user has to provide

a TargetBlock or ProcessingBlock that should be triggered when the condition

is met.

Collections of Things In order to create more complex mashups, the last wizard allows

users to use collections of smart things (i.e., RepositoryBlocks) previously created

with the Physical Mashups Framework. First, queries on these collections can be

specified using the wizard. Then, the user is prompted to fill in the parameters of a

VisualizationBlock where the queried data will be dynamically visualized using

the Google Visualization API [238] (see Section 2.4.6).

146 Bringing Wireless Sensor and Actuator Networks to the Web

Use-Cases

The Energy Mashup Editor was tested in a formative evaluation. While these tests clearly

do not demonstrate the usability of the system in real home environments and with end-

users, their purpose is to illustrate the typical use-cases that we envisioned when creating

the editor. Furthermore, it gave us feedback and ideas for future directions for home

automation mashups.

Methodology The evaluation was conducted in a laboratory at ETH. Five participants,

4 of them computer-science students, gave about 40 minutes of their time to build physical

mashups. Five smart things were provided:

1. An Android-based mobile phone (HTC Hero) running the Energy Mashup Editor

and used to create the physical mashups.

2. A virtual mobile phone which resources where accessible through a RESTful Web

API and which location could be updated manually during the study, in a Wizard-

of-Oz manner.

3. A fan table heater attached to a Plogg and Web-enabled through the Ploggs Smart

Gateway.

4. A desktop lamp attached to another Plogg, Web-enabled through the same gateway

as the heater.

5. A RESTful Sun SPOT implemented using the Sun SPOTs Smart Gateway.

Each of these devices was attached a QR-code containing the root URI of the device it

was attached to. The five participants were given a small introduction on how to use the

mobile application and were provided with four use-cases they should implement.

Tasks The exhaustive description of the use-cases is provided in [4]. Here we describe

two of them to illustrate a concrete use of the Energy Mashup Editor.

The first use-case was testing the use of event-based mashups. The participants were

asked to create a mashup that would save energy by starting the heater only when they

were approaching home.

The task was solved by going through the following steps:

1. Use the Things menu and scan the QR-code of the mobile phone to discover it.

2. Similarly, scan the heater (connected to a Plogg).

3. Use the Wire Up Things Events wizard:

(a) Select the discovered mobile phone

(b) Browse to the GPS → Proximity → Subscription resource

3.4. Composition Layer: Cross-Device Physical Mashups 147

(c) Subscribe to the resource and specify a radius (see Figure 3.24)

(d) Select the heater as the target building-block

(e) Browse to the Power Status → Status resources

(f) Select the desired value (on)

(g) Save and run the mashup (which exports it and runs it on the Physical Mashups

Framework)

Technically, this mashup subscribes the Physical Mashups Framework to the proximity

resource of the phone GPS. Whenever the phone is located within a certain radius (i.e.,

coming home) an HTTP POST request is sent to the Physical Mashups Framework. This

event triggers the mashup which POSTs “on” to the Plogg Smart Gateway, resulting in

starting the attached heater.

In the second task, participants were asked to create another energy-saving rule that turns

off the lights when the natural light level is high enough. The task was solved by going

through the following steps:

1. Use the Things menu and scan the QR-code of the Sun SPOT

2. Similarly, scan the lamp (connected to a Plogg)

3. Select the Monitoring Things wizard:

(a) Select the discovered Sun SPOT

(b) Browse to the TestSpot → Light sensor resource

(c) Provide a monitoring condition (e.g., light value > 200)

(d) Select the lamp as the target building-block

(e) Browse to the Power Status → Status resources

(f) Select the desired value (off)

(g) Save and run the mashup (which exports it and runs it on the Physical Mashups

Framework)

In this case the Physical Mashups Framework will poll (GET) the light resource of the Sun

SPOT on a regular basis and trigger a PUT “status=on” on the lamp (connected to a

Plogg), resulting in cutting the power of the attached lamp.

The participants built two other use-cases in which the goal was to create a visualization

of energy consumption data as well as to send an XMPP or Twitter message whenever

the home temperature was reaching 30 degrees Celsius.

Formative Users Feedback Overall the users liked the idea of being able to re-wire

their physical environment. For the 5 participants the idea of using a mobile phone was

appealing because they always have it with them and are used to its interface. They

148 Bringing Wireless Sensor and Actuator Networks to the Web

liked being able to scan objects but had some difficulties getting them recognized and

suggested the use of other types of tags, more straightforward to read with a mobile

phone such as NFC (Near Field Communication) tags. This confirms our study [201]

where we evaluated several object identification techniques and concluded that NFC was

the fastest and easiest to operate for end-users.

Besides a number of UI improvements [4], they suggested concrete use-cases. Two exam-

ples are the creation of an energy monitor that can compute and present the energy costs

for a particular device. Another use-case was the control, configuration and visualization

of data from laboratory instruments such as scales, preventing work-interrupts for getting

this data from a desktop computer.

3.5 Related Work

Because of their ubiquity, Wireless Sensor and Actuator Networks are a the center of

many recent Internet of Things applications. Hence, reducing the complexity of devel-

oping applications on these platforms [6] has interested several researchers over the last

decade [65, 110].

However, WSN application development still requires specific skills and are time consum-

ing [146]. Moreover, for each new deployment, a large amount of work must be devoted

to re-implement basic functions and application-specific user interfaces, which is a waste

of resources that could be used by developers to focus on the application logic. Ideally,

developers should be able to quickly build applications on top of WSNs.

The advent of IP technologies for WSNs [40, 99] combined with the creation of global

consortia such as the IPSO alliance fostered the idea of using the Internet as an integra-

tion bus to facilitate application development. In this space, researchers proposed and

evaluated the use of WS-* services [92, 157, 103], in the SOCRADES project, we joined

this research and explored the integration of WSNs to enterprise applications [36, 77].

Further researchers questioned the suitability of WS-* services because of their important

needs in terms of network, processing and storage resources [214]. We shared these con-

cerns and further argued that from a functional point of view an integration to true Web

protocols would be highly relevant [79]. The idea of using Web protocols and in partic-

ular RESTful architectures specifically for WSNs had been proposed by Drytkiewicz et

al. [39] and further explored by Luckenbach et al. [126] building upon early conceptual

work from Kindberg, Barton et al. [110, 14]. These pioneering projects were showing the

way towards Web integration of WSNs but they implemented the constraints of RESTful

architectures only partially: They do not implement the connectedness constraint nor do

they leverage mechanisms such as content-negotiation. This can be explained by the very

prototypical state of the embedded Web in these early years.

Recent research benefits from the new perspectives of IPv6 for WSNs over IEEE 802.15.4

(also known as 6loWPAN) [99] and the development of very small-footprint Web servers

3.6. Discussion and Summary 149

implementing full HTTP 1.1 stacks [42]. As conceptually suggested in [209, 185] we joined

further recent projects in exploring a systematic implementation of REST as presented in

this chapter and published in [79, 76, 81]. Building upon our work, Schor et al. proposed

a native, application-gateway less, implementation of a RESTful architecture on WSN

nodes [173].

While we share with these works the lower layers of the Web of Things Architecture (i.e.,

closely related to the Device Accessibility Layer we proposed), we take a more holistic

approach and look at the integration issues from an application layer point of view. We

are interested in the overall picture of integrating WSNs to the Web. We focus on the

developer view-point and illustrate the benefits and architectures that can be leveraged

once the sensor nodes are part of the Web. In this space, the sMAP [33] project, conducted

in parallel to our work, looks at the bigger picture of WSN Web integration but does not

address cross-cutting layers such as the Composition Layer or Sharing Layer.

WSNs have been used to monitor energy consumption in several projects [122, 179].

Similarly, the results of projects cited above could also be applied to the specifics of

energy-aware WSNs. However, specifically looking at the use-case of smart meters, several

research projects proposed the use of the Internet to facilitate their integration. Jiang et

al. [105] looked at integrating custom smart meters directly to IP networks. In [173] the

authors propose a user interface for creating simple energy-awareness rules on top of their

RESTful architecture (e.g., switch off the light automatically). Our contribution here

differs since we took the approach of adapting an off-the-shelf smart meter WSN platform

(through the use of a Smart Gateway) and demonstrated the benefits by building Web

applications that help end-users monitor and control their electricity consumption.

3.6 Discussion and Summary

In this chapter, we presented an implementation of the Web of Things Architecture for

two different sensor networking platforms. First, with the Sun SPOTs, we illustrated how

the Web of Things Architecture can be leveraged as a valid candidate for a WSN common

application platform. Certainly, the presented approach is not the universal solution for

every problem. Scenarios with specific requirements such as high performance real-time

communication still benefit from tightly coupled systems based on traditional RPC-based

approaches. However, for less constrained applications that are more oriented towards

end-users and prototyping where ad-hoc interaction and serendipitous reuse are required,

Web standards can simplify integration of WSN data and functionality.

In applications where the raw performance and battery life-time are critical, for example

when nodes run on battery in large-scale and long-lived deployments, optimized protocols

that minimize network connection and latency will remain the best option. However, when

devices are connected to a power source and when sub-second latency can be tolerated,

then the advantages of HTTP clearly outweigh the loss in performance and latency.

150 Bringing Wireless Sensor and Actuator Networks to the Web

Based on our experience, we suggest that for many applications the drawbacks of Web

architectures are largely offset by the simplification of the design, integration, and deploy-

ment processes [81]. Although HTTP introduces a communication overhead and increases

average response latency, recent research has shown that this overhead is still small enough

to enable most WSN scenarios [214, 157, 193]. Our study of end-to-end HTTP and Smart

Gateway mediated implementation of the Sun SPOTs confirm these results and suggests

that for sub-seconds WSN use-cases both approaches are useable.

Furthermore, we presented an easy to use WSN-based system for energy savings in home

and office environments based on the Web of Things Architecture. Our contribution on

the architecture level is twofold. Firstly, we extended the capabilities of the Ploggs by

providing a Smart Gateway that discovers and integrates the available physical devices,

and that provides a RESTful Web API that can be exploited by third-party applica-

tions. Secondly, we demonstrated how the approach eases application development and

fosters interoperability of the system by showing how it was used for developing energy

applications on Web-based and Mobile platforms.

Finally, beyond integration at the device level, we demonstrated how WSNs can directly

benefit from the other layers of the Web of Things Architecture: the Findability Layer

helps searching for WSN nodes directly on the Web, the Sharing Layer architecture offers

an easy and straightforward mechanism to share all kinds of sensor related resources. With

the Composition Layer we show that similarly to how Web 2.0 mashups have significantly

lowered the entry barrier for the development of Web applications, these techniques and

protocols can be used to lower the entry barrier for creating end-user applications that

are using WSNs.

Chapter 4
Resource-Oriented RFID Networks

Contents

4.1 The EPC Network in a Nutshell 153

4.1.1 Identifying EPC Numbers . 155

4.1.2 Standards for Capturing EPC Events 155

4.1.3 Sharing EPC Events . 156

4.2 A Cloud-Based Virtual Infrastructure for the EPC Network 156

4.2.1 Pain-Point: Complex Backend Deployment and Maintenance . . . 157

4.2.2 Virtualization Blueprint . 158

4.2.3 Cloud Computing: Utility Computing Blueprint 158

4.3 Device Accessibility Layer . 159

4.3.1 Pain-Point: Complicated Applications Developments 160

4.3.2 EPCIS Webadapter . 160

4.3.3 Pushing from Readers to Web Clients 167

4.3.4 Case-Study: EPC Find . 168

4.4 Sharing Layer . 174

4.4.1 Pain-Point: Lack of Access Control 174

4.4.2 System Architecture . 175

4.5 Composition Layer: Auto-ID Physical Mashups 177

4.5.1 Pain-Point: Tedious Business Case Modeling and Cross Systems

Integration . 177

4.5.2 Mobile Tag Pusher . 177

4.5.3 The EPC Dashboard Mashup . 179

4.5.4 RFID Physical Mashup Editor . 182

4.6 Evaluating the EPCIS Webadapter 185

4.7 Related Work . 187

152 Resource-Oriented RFID Networks

4.8 Discussion and Summary . 189

In Chapter 3, we introduced how wireless sensor networks and embedded computers can

be integrated to the Web of Things. In this chapter, we look at the integration of every-

day objects through Auto-ID (Automatic IDentification) [150]. Swartz identified 6 types

of core Auto-ID techniques [186]: one and two-dimensional barcodes, OCR (Optical Char-

acter Recognition), magnetic stripes, automatic speech identification and RFID (Radio

Frequency IDentification). More recently, new techniques such as image recognition have

been added to the available technologies [158, 100].

Auto-ID technologies have long been used in ubiquitous computing to create a link be-

tween the physical and the digital world [203]. As an example researchers have been using

one dimensional [3] or two dimensional barcodes [164, 23, 167] to create a link between

every-day objects and mobile phones.

Amongst the Auto-ID technologies, RFID is particular since it allows to make every-day

objects, that do not have intrinsic computing and communication capabilities, part of a

wireless network. Moreover, in the EPC Network (Electronic Product Code) [169], tagged

objects become part of an Internet of Things. Indeed, the RFID standards community has

developed a number of wireless interfaces and software standards to provide interoperabil-

ity across RFID deployments. The EPC Network is a set of standards [229] established

by industrial key players as well as research institutions towards a uniform platform for

tracking and discovering RFID tagged objects and goods [54, 55]. Fourteen standards are

currently forming the EPC Network, addressing every step required from encoding data

on RFID tags to reading them and sharing their traces.

From an industrial and real-world view-point, the EPC Network is an ideal IoT system.

Indeed, most of its components, from the tags to the IT backend, are standardized which

should considerably facilitate deployments. However, the EPC Network, as many other

IoT infrastructures [161, 25], is hard and expensive to deploy, maintain and develop upon.

Hence, the adoption of the software standards within the EPC Network has been slower

than projected (e.g., [124]). Indeed, the deployment of RFID applications that implement

the EPC Network standards often remains complex and cost-intensive mostly because

they involve rather large and heterogeneous distributed systems. As a consequence, these

systems are often only suitable for big corporations and large implementations and do not

fit the limited resources of small to mid-size businesses and small scale applications both

in terms of required skill-set and costs [172].

While there is most likely no universal solution to these problems, the success of the Web

in bringing complex, distributed and heterogeneous systems together through the use of

simple design patterns appears as a viable approach to address these challenges. Hence, in

this chapter, we design and implement a Web of Things Architecture for the EPC Network.

We discuss the pain-points of RFID applications that have made deployments challenging

and describe how they can be addressed using solutions inspired from the Web and the

Web of Things Architecture. The resulting component architecture is shown in Figure

4.1. It basically offers a cloud infrastructure featuring a number of adapters that make

4.1. The EPC Network in a Nutshell 153

Figure 4.1: Overview of the EPC Cloud component architecture. Web components are
added to the existing EPC Network components and packaged into virtual machines that can
be deployed in public or private clouds. Web and mobile applications can be built on top of
the new components’ Web APIs.

standard EPC Network components integrated to the Web. On top of this infrastructure

RFID applications can be easily created using standard Web languages and tools as shown

in the leftmost part of Figure 4.1. This illustrates how, using RFID and leveraging our

Web implementation of the EPC Network, objects without computing or communication

capabilities can become part of the Web of Things simply by attaching or embedding

RFID tags into them.

This chapter is based on work published in [74, 72, 75, 147] and is structured as follows.

We begin by briefly describing the EPC Network, focusing on the standards that are

especially important for our use-cases. We then look at three important pain points of

EPC Network deployments. Then, for each pain point we propose a solution using the Web

of Things Architecture and its components. First, we illustrate how cloud computing can

foster the adoption of software implementations of the EPC standards. Then, we discuss

how the Device Accessibility Layer and a REST architecture can be used to enable an easy

access to EPC information systems and RFID readers. Finally, we demonstrate how the

Web of Things Architecture enables developers and end-users to create physical mashups

using data and devices of the EPC Network.

4.1 The EPC Network in a Nutshell

The EPC Network is an architectural framework for RFID applications based on 14

standards as show in Figure 4.3. These standards are used by several actors at several

steps of the product life-cycle as illustrated in Figure 4.2. A comprehensive description

154 Resource-Oriented RFID Networks

Figure 4.2: Simplified overview of the EPC Network. The standards help tracking and tracing
a product through its life-cycle.

4.1. The EPC Network in a Nutshell 155

of how these standards are put together to create a track and trace network is provided

in [55] or [189]. Here, we focus on a short description of the most relevant standards in

the context of this chapter.

4.1.1 Identifying EPC Numbers

The Tag Data Standard [46] defines what an EPC number is and how it is encoded on

the tags themselves. An EPC is a world wide unique number. The TDS supports nine

encoding schemes for EPC numbers and addresses compatibility issues between them.

These encodings specify numbers of a size between 96 and 202 bits which means that

they offer at least 296 unique identifiers. As a consequence, rather than identifying a

product class, like the common barcode standards (UPC and EAN-13) do, it can be used

to identify the instance of a product. An EPC number basically encodes three types of

information: the manufacturer, the product class and a serial number. As an example in

the following tag (represented in its URI form):

urn:epc:id:gid:2808.64085.88828

2808 is the manufacturer ID, 64085 represents the type of product and 88828 an instance

of the product.

EPC numbers can be potentially written onto any support. However, in the EPC Net-

work, these number are commonly written on RFID tags, called EPC tags. The wireless

communication used by these EPC tags is specified in the Tag Protocol standards. In

particular the Class 1 Generation 2 UHF Air Interface Protocol Standard (also known

as EPC Gen 2) [189] defines the current state of the art wireless protocol for tags to

communicate over the 860 - 960 MHz frequency range.

4.1.2 Standards for Capturing EPC Events

The LLRP (Low Level Reader Protocol) standard [47] specifies how to communicate

and configure standard RFID readers. Through the LLRP protocol clients can configure

basic filtering and gather raw RFID data directly from the readers.

On top of the LLRP protocol, the ALE (Application Level Events) standard [45] specifies

an interface that can be used by applications to obtain processed EPC events. The ALE

offers processing in terms of filtering and aggregation capabilities.

On top of the ALE lies a custom components called Capturing Application [189]. Such

an application has to be designed specifically for each deployment and basically maps

the EPC events coming out of the ALE to events that are relevant in a business context,

adding for instance the business steps or locations to events.

156 Resource-Oriented RFID Networks

4.1.3 Sharing EPC Events

One of the primary goals of the EPC Network is to allow sharing observed EPC events.

Thus, the network specifies a standardized server-side EPCIS [44], in charge of managing

and offering access to traces of EPC events. Once added a business context by the

Capturing Application, events are stored in an EPCIS together with contextual data. In

particular, these data deliver information about:

• The what : what tagged products (EPCs) were read.

• The when: at what time the products were read.

• The where: where the products were read, in terms of Business Location (e.g.,

“Floor B”).

• The who: what readers (Read Point) recorded this trace.

• The which: what was the business context (Business Step) recording the trace (e.g.,

“Shipping”).

The goal of the EPCIS is to store these data to allow creating a global network where

participants can gain a shared view of these EPC traces. As such, the EPCIS deals with

historical data, allowing, for example, participants in a supply chain to share the business

data produced by their EPC-tagged objects.

Technically speaking, a standard EPCIS is an application that offers three core features

to client applications:

1. First it offers a way to capture, i.e., persist, EPC events.

2. Then, it offers an interface to query for EPC events.

3. Finally, it allows to subscribe to queries so that client applications can be informed

whenever the result of a query changes.

There exist several concrete implementations of EPCISs on the market. Most of them

are delivered by big software vendors such as IBM or SAP. However, the Fosstrak [56, 57]

project offers a comprehensive, Java-based, open-source implementation of the EPCIS

standard.

4.2 A Cloud-Based Virtual Infrastructure for the EPC

Network

Bringing real-world data and smart things closer to the Web also facilitate the use of

modern distributed architectures. In this section, we illustrate how virtualization and

in particular cloud computing can greatly simplify the deployment and maintenance of

standard-based RFID networks.

4.2. A Cloud-Based Virtual Infrastructure for the EPC Network 157

Figure 4.3: EPC Network Architectural framework composed of 14 standards (Source [189]).

4.2.1 Pain-Point: Complex Backend Deployment and Maintenance

Real-world, industrial IoT systems often encompass several relatively complex stan-

dards and their respective implementation is often scattered amongst a number of dif-

ferent software components [161, 25]. The EPC Network is no exception. Across all

vendors of EPC Network stacks, the standards are implemented in several different soft-

ware components often sold separately to form an EPC software stack. As an example

the Fosstrak [57] open-source project [234] is implementing most of the EPC standards

and requires the installation of 9 different software components in order to be able to run

a end-to-end use-case from RFID tags to an IT system.

Additionally, a full Fosstrak installation also requires a compatible Java SDK, Apache

Maven, a full MySQL database and an Apache Tomcat server, summing up the number

of required software components to 13. As a consequence, a full EPC software stack is

rather complex to install and deploy and often requires software experts, which becomes

problematic especially when considering businesses for which IT is not a core concern

(e.g., actors of the supply chain) or smaller businesses. The complexity is further in-

creased by the maintenance work required by a number of different components and their

respective updates and patches cycles. Hence, deploying and maintaining IoT systems

is time consuming and accounts for a greater part of the system’s overall software costs

similarly to other IT systems [12].

Furthermore, the software components often need to be deployed on application servers

running on dedicated hardware. For the Fosstrak stack, a Java Application Server (or

158 Resource-Oriented RFID Networks

a least a servlet container such as Tomcat) is required and needs to be configured on a

hardware server to handle the appropriate load and accesses. Similarly, the IoT embedded

devices (e.g., RFID readers, sensor nodes, etc.) need to be deployed, maintained and

configured. This induces significant hardware costs and the need for hardware experts.

4.2.2 Virtualization Blueprint

Reducing complex software installation is one value propositions [115] of virtualization

platforms such as VMWare [280] or the open-source Virtual Box [279]. With these plat-

forms, software stack can be installed once in a virtualized OS (operating system) called

virtual machine or guest OS, and then shared to be deployed within minutes on any sup-

ported host machine running the virtualization platform. This significantly reduces the

installation costs and required-skills.

In the IoT space, this benefit has been identified and is increasingly used in platforms

such as the Instant Contiki virtual machine [225] which offers a complete development

environment for WSNs (Wireless Sensor and Actuator Networks) ready to use within min-

utes [162]. However, the EPC Network still lacks such solutions. Hence, we virtualized an

EPC software stack. The EPC Dev Virtual machine combines a Linux Ubuntu Operating

System, with an Eclipse IDE (Integrated Development Environment), a source repository

(Maven), as well as an Apache Tomcat container in which we deployed and configured the

9 remaining software components of Fosstrak. This means that the virtual machine can

be used both as a development environment or as as a test server instance of the EPC

software stack if installed on an appropriate server machine.

This cuts down the installation time of a full EPC software stack from several hours or

days to a few minutes. It further fosters quick evaluation of a complete EPC software

stack which can be of great help when assessing different implementations, developing

proof of concept prototypes or enhancements of the EPC software stack.

4.2.3 Cloud Computing: Utility Computing Blueprint

While Virtualization significantly reduces the installation time, it does not solve the

other issues of IoT deployments: software and hardware maintenance costs. However,

recent developments in the Web 2.0 and especially the trend towards providing services

on the Web rather than simply Web-pages, have materialized into a convergence of vir-

tualization technologies and the distributed Web, leading to Cloud Computing.

Cloud Computing can take several forms under the umbrella of two big groups. Private

Clouds are basically virtualized environments running locally as described in the previous

section. Public Clouds are, on the other hand, virtualized environments running on remote

machines. A Public Cloud can take many forms [217], in its Utility Computing form it

basically proposes to further push the notion of virtualization by making the hardware

4.3. Device Accessibility Layer 159

on which virtual machines run available as a virtual resource pool fully accessible, on-

demand, on the Web. Amazon Web Services (AWS) [219] pioneered the space of Utility

Computing followed by many others such as IBM, Microsoft, Rackspace and VMWare.

Recently, Cloud Computing has been increasingly used in conjunction with WSNs [25] as

a way to reduce operative complexity. One of the important benefits of Cloud Computing

is the fact that it allows businesses with limited resources (both financial and in terms of

staff) to run an IT infrastructure corresponding to their needs and scale [184].

We experimentally applied the Utility Computing blueprint to the EPC software stack

using the AWS platform and in particular the EC2 service. Amazon EC2 allows the

creation and management of virtual machines (Amazon Machine Images, or AMIs) that

can then be deployed on demand onto a pool of machines hosted, managed and configured

by Amazon. We created a server-side AMI called EPC Cloud Appliance, based on Linux

Ubuntu Public Cloud edition [276] and containing the 13 software components required

by a full installation of Fosstrak as well as the three additional Web adapters we designed

and will present in the following sections. A component view of the full appliance is shown

in the upper-right part of Figure 4.1.

This concretely means that any company or research institution willing to deploy an EPC

software stack can simply log onto AWS, look for the EPC Cloud AMI and select the

type and number of remote servers it should be deployed on. Once the virtual servers are

running (which typically takes less than 5 minutes), an RFID reader can be connected.

If the reader does not offer a Web-management interface or a default configuration, the

Fosstrak LLRP Commander and its Eclipse-based UI are available in the EPC Dev Virtual

machine and can be used for configuring it. Then, the readers are described by accessing

the configuration offered in the Web UI of the EPC Cloud Appliance. Once this is done,

the cloud instance will contact the reader and start recording the EPC events.

A direct benefit of the approach is that the server-side hardware maintenance is delegated

to the cloud provider which is often more cost-efficient for smaller businesses [217]. Fur-

thermore it also offers better scaling capabilities as the company using the EPC Cloud

AMI can deploy additional and more powerful instances within a few clicks from the Web

front-end (or Web API) of AWS and will be charged only for the resources it actually

uses.

4.3 Device Accessibility Layer

In this section we illustrate how the architecture and patterns proposed in the Device

Accessibility Layer can be applied to the EPC Network and explain how this approach

helps reducing the complexity of developing applications on top of the EPC Network.

160 Resource-Oriented RFID Networks

4.3.1 Pain-Point: Complicated Applications Developments

The idea behind most commercial IoT deployments is the integration of real-world

data to business systems or end-consumer applications. This requires to interface existing

or new applications with the IoT infrastructure. Thanks to the recent advent of smart

phones, companies are also increasingly willing to create mobile applications using IoT

deployments.

In the case of the EPC network, the application integration point is the EPCIS standard.

While the EPCIS provides a simple and lightweight HTTP interface for recording EPC

events, its query interface is a standardized WS-* interface. In Section 2.5 we discussed

and evaluated the importance of creating simples and easy to use APIs in order to fos-

ter public innovation. We concluded that WS-* applications have advantages such as

sophisticated security features but are also complex systems with high entry barriers and

require developer expertise in the domain which is often an issue when considering small

to mid-size businesses [172]. Moreover, we showed that WS-* are often not well adapted

to more light-weight and ad-hoc application scenarios such as mobile or Web applications.

This currently limits the scope of applications that can be built using EPC data. Indeed,

track and trace applications are also relevant beyond the desktop. As an example, pro-

viding an out-of-the-box mobile access to EPC events is beneficial for many users such

as mobile workers. Similarly, providing direct access to RFID traces to sensor and actu-

ator networks enables those to react to RFID events. Finally, allowing light-weight Web

applications (e.g., HTML, JavaScript, PHP, etc.) to directly access these data would en-

able the vast community of Web developers to create innovative applications using RFID

traces.

To enable this type of applications, we propose to transform the EPC Network into a

RESTful architecture and further introduce the notion of real-time Web, as described in

the Device Accessibility Layer of the Web of Things Architecture. We first propose a

RESTful architecture that offers a Web API complementing the standard WS-* interface

of the EPCIS. Finally, we illustrate how the real-time Web can be used to push RFID

events from RFID readers to the Web.

4.3.2 EPCIS Webadapter

In this section we describe the core architecture supporting a large-scale Web-enabling

of the EPCIS features taking a top-down approach [74].

System Architecture

As mentioned before, in the EPCIS standard, most features are accessible through a

WS-* interface. To specify the architecture of the EPCIS Webadapter we systematically

4.3. Device Accessibility Layer 161

took the WS-* features listed in the standard [44] and applied the properties of Resource

Oriented Architectures as described in the Device Accessibility Layer.

Addressability and Connectedness We first identify the resources an EPCIS should be

composed of, i.e., we identify the actors of the system which are worth being uniquely

addressed and linked to. We then make them addressable and inter-link the resources.

Looking at the EPCIS standard, we can extract a dozen resources. We focus here on the

four main types:

1. Locations (called Business locations in the EPCIS standard): those are locations

where events can occur, e.g.,:“C Floor, Building B72”.

2. Readers, called ReadPoints in the standard: which are RFID readers registered in

the EPCIS. Just as Business Locations, readers are usually represented as URIs:

e.g., urn:br:maxhavelaar:natal:shipyear:incoming but can also be represented

using free-form strings, e.g.,: Reader Store Checkout

3. Events: which are observations of RFID tags, at a Business Location by a specific

reader at a particular time.

4. EPCs: which are Electronic Product Codes identifying products (e.g., urn:epc:id:

sgtin:618018.820712.2001), types of products (e.g., urn:epc:id:sgtin:618018.

820712.*) or companies (e.g., urn:epc:id:sgtin:618018.*).

We first define a hierarchical clustering of resources based on the following URI template:

/location/{businessLocation}/reader/{readPoint}/time/{eventTime}/event.

More concretely, this means that the users begin by accessing the Location resources. Ac-

cessing the URI /location with the GET method retrieves a list of all Locations currently

registered in the EPCIS. From there, clients can navigate to a particular Location where

they will find a list of all Readers at this place. From the Readers clients get access to

Time resources which root is listing all the Times at which Events occurred. By selecting

a Time the client finally accesses a list of Events.

Each event contains information like its type, event time, Business Location, EPCs, etc. If

a client is only interested about one specific field of an Event, he can get this information

by adding the desired information name as sub-path of the Event URI. For example

<EVENT-URI>/epcs lists only all the EPCs that were part of that Event. The resulting

tree structure is shown in Figure 4.4, and a sample Event in Figure 4.5.

Furthermore, to fulfill the connectedness constraint of REST architectures, all resources

should be discoverable by browsing to facilitate the integration with the Web. Just as one

can browse Web pages, one should be able to find RFID tagged objects and their traces

by browsing. Each representation of resources should contain links to relevant resources

such as parents, descendants or simply related resources.

Hence, to ensure the connectedness of the EPCIS Webadapter, each resource in the tree

links to the resources below or to related resources. The links allow users to browse

162 Resource-Oriented RFID Networks

/locations /{biz-location} /readers /{read-point} /times /{event-time} /event

/epc

/action

/step

Figure 4.4: Hierarchical representation of the most important browsable EPCIS resources.

completely through the EPCIS Webadapter where links act as the motor. Every available

action is deduced by the set of links included. This way, people can directly explore the

EPCIS from any Web browser, simply by clicking on hyperlinks and without requiring

any prior knowledge of the EPCIS standard.

To ensure that the browsable EPCIS interface does not become too complicated, we

limit the number of available resources and parameters. For more complex queries

we provide a second interface for which we map the EPCIS WS-* query interface to

uniquely identifiable URIs. Each query parameter can be encoded and combined as a

URI query parameter according to the following template /eventquery/result?param1=

value1&...¶mN=valueN. Query parameters restrict the deduced result set of match-

ing RFID events. The EPCIS Webadapter supports the building of such URIs with

the help of an HTML form. If for example a product manager from Max Havelaar

is interested in the events that were produced in Palmas, the following URI lists all

events that occurred at this business location: /eventquery/result?location=urn:

br:maxhavelaar:palmas:productionsite. To further limit possibly very long search

results, the query URI can be more specific. The manager might be interested only

about what happened on that production site on December 18th 2011, which corresponds

to the following URI: /eventquery/result?location=urn:br:maxhavelaar:palmas:

productionsite&time=2009-11-04T00:00:00.000Z,2011-18-12T23:59:59.000Z Fig-

ure 4.5 illustrates the HTML representation of this resource.

To keep the full connectedness of the EPCIS Webadapter, both the browsable and the

query interface are inter-linked. For example, the EPC

urn:epc:id:sgtin:0057000.123430.2025

included in the event of Figure 4.5, is also a link to the query which asks the EPCIS for

all events that contain this EPC.

By implementing the addressability property we allow greater interaction with EPCIS

data on the Web. As an example, since queries are now encapsulated in URIs, we can

simply bookmark them, exchange them in emails and consume them from JavaScript

applications. Furthermore, by implementing the connectedness property we enable users

to discover the EPCIS content in a simple but yet powerful manner.

4.3. Device Accessibility Layer 163

Figure 4.5: HTML representation of an EPC event as rendered by a Web browser. Every
entry is also a link to the sub-resources.

Uniform Interface Finally, in a ROA, the resources and their services should be acces-

sible using a standard interface defining the mechanisms of interaction. We particularly

focus on two aspects of the uniform interface here: the representation of resources, and

the communication of errors.

Multiple Representation Formats A resource is representation agnostic and hence

should offer several representations. The EPCIS Webadapter supports multiple output

formats to represent a resource. Each resource first offers an HTML representation as

shown in Figure 4.5 which is used by default for Web browser clients.

In addition to the HTML representation, each resource has also an XML and a JSON

representation, which all contain the same information. The XML representation complies

with the EPCIS standard and is intended to be used mainly for business integration. The

JSON representation can be directly translated to JavaScript objects and is thus intended

for mashups, mobile applications or embedded computers.

As introduced in the Device Accessibility Layer, the choice of what representation to use

is left to clients who can request it through the HTTP content negotiation mechanism.

Since content negotiation is built into the uniform interface, clients and servers have

agreed-upon ways to exchange information about available resource representations, and

the negotiation allows clients and servers to choose the representation that is the best fit

for a given scenario.

A typical content-negotiation interaction with the EPCIS Webadapter looks as follows:

the client begins with a GET request on http://.../location. It also sets the Accept

header of the HTTP request to a weighted list of media types it can understand, for

164 Resource-Oriented RFID Networks

Figure 4.6: Customized HTML representation of an EPC event as appearing in the mobile
Web browser of an Android Mobile phone.

example to: application/json, application/xml;q=0.5. The EPCIS Webadapter then

tries to serve the best possible format it knows about and describes it in the Content-Type

of the HTTP response. In this case it will serve the results in the JSON format as the

client prefers it over XML (q=0.5).

Representations are also a very straightforward and powerful way of providing variations

of formats that are adapted to the clients’ platforms. As an example, Figure 4.6 is the

HTML Web page a mobile user of the EPCIS Webadapter is served. Although it has

the look and feel of a native mobile application, it is actually a simple HTML Web page

featuring special CSS style-sheets and JavaScript code (based on the iUI framework [245])

that dynamically adapts the content to fit the form factor and interaction paradigms of

a mobile phone.

When a client negotiates an HTML representation, the EPCIS Webadapter also detects

whether the client should be served an HTML representation adapted to a mobile screen

or simply to a desktop screen. For this, it uses the User-Agent standard HTTP header

which contains a string describing the browser (or any other client) that was used for the

request.

Error Codes The EPCIS standard [44] defines a number of exceptions that can occur

while interacting with an EPCIS. HTTP offers a standard and universal way of commu-

nicating errors to clients by means of status codes. Thus, to enable clients and especially

applications to make use of the exceptions defined in the EPCIS specification, the EPCIS

4.3. Device Accessibility Layer 165

EPCIS Standard Exception HTTP Status Code HTTP Semantics
SecurityException 401 Unauthorized
QueryParameter 400 Bad request
QueryTooLarge 400 Bad request
QueryTooComplex 400 Bad request
InvalidURI 416 Requested range not

satisfiable
SubscriptionControls 400 Bad request
NoSuchName 400 Bad request
NoSuchSubscription 400 Bad request
DuplicateSubscription 409 Conflict
SubscribeNotPermitted 401 Unauthorized
ImplementationException 501 Not Implemented

Table 4.1: Mapping EPCIS standard exceptions to standard HTTP status code. All other
exceptions are mapped to 500: Internal Server Error.

Webadapter maps the exceptions to HTTP status codes. As an example, the EPCIS ex-

ception: SecurityException is mapped to the HTTP status code: 401, which semantics

is Unauthorized, and returned to the client alongside with a message that describes what

happened in a user-friendly textual way. Table 4.1 provides an overview of the exceptions

to status-codes mappings.

Web-Enabling the Subscriptions

As mentioned before, standard EPCISs also offers an interface to subscribe to RFID

events. Through a WS-* operation, clients can send a query along with an endpoint

(i.e., a URI) and subscribe for updates. Every time the result of the query changes, an

XML packet containing the new results is sent to the endpoint. While this mechanism is

practical, it requires for clients to run a server with a tailored Web applications that listens

to the endpoint and thus cannot be used by all users or cannot be directly integrated to

a Web browser. To improve this, the EPCIS Webadapter offers a RESTful subscription

interface and a Web feed of the updates.

For this, in the Device Accessibility Layer, we suggested the use of the Atom Syndica-

tion Format. Hence, in the EPCIS Webadapter, we propose an alternative interface for

subscribing to RFID events using Atom as shown in the leftmost side of Figure 4.7. This

way, end-users can formulate queries by browsing the EPCIS Webadapter and get up-

dates in the Atom format which most browsers can understand and directly subscribe

to. As an example a product manager can create a feed in order to be automatically

notified in his browser or any feed reader whenever one of his products is ready to be

shipped from the warehouse. More concretely, this results in sending an HTTP PUT

request to /eventquery/subscription?reader=urn:ch:migros:stgallen:warehouse:

expedition&epc=urn:epc:id:sgtin:0057000.123430.*, or, for a human client, click-

ing on the subscribe link present at the top of each HTML representation of query results.

166 Resource-Oriented RFID Networks

Figure 4.7: Architecture of the EPCIS Webadapter based on the Jersey RESTful framework
and deployed on top of the Fosstrak EPCIS.

A product manager can then use the URI of the feed in order to send it to his most

important customers for them to follow the goods progress as well. A simple but very

useful interaction which would require a dedicated client to be developed and installed by

each customer in the case of the WS-* based EPCIS.

From WS-* to REST: Integration Architecture

There are two ways of adding RESTful capabilities to a WS-* system. First, the RESTful

architecture can be directly woven into the existing WS-* system. This may seems like

a trivial solution at first, however the implementation of this solution is not entirely

straightforward. While sharing a common goal, WS-* and REST are rooted on very

different paradigms. Thus, cleanly weaving a REST architecture into the core of the

WS-* system quite often requires the implementation of an alternate data model [75].

Having two data models for the same services ends up in architectures that are complex

to maintain and evolve.

Smart Gateway An alternative integration pattern is to implement the concept of Smart

Gateways presented in the Device Accessibility Layer of the Web of Things Architecture.

In this case, a Smart Gateway is a software module that implements an external REST

adapter making use of the WS-* interface. In this integration architecture, the Smart

Gateway is used to translate RESTful requests into WS-* requests.

This allows for a cleaner, REST centric architecture and preserves the legacy WS-* system

entirely intact. On the downside it hinders the performances of the RESTful Web API

but the overhead can be minimized to a level acceptable for most applications as we will

show in Section 4.6.

4.3. Device Accessibility Layer 167

For the EPCIS Webadapter, we create an independent dedicated Smart Gateway, as it

delivers a clear advantage in this case: it allows the EPCIS Webadapter to work on top

of any standard EPCIS implementation.

The resulting architecture is shown in Figure 4.7. The EPCIS Webadapter is a module

which core is using the EPCIS WS-* standard interface. Just as a Smart Gateway, it

translates the incoming RESTful request into WS-* requests and returns results complying

with the constraints of RESTful architectures. As shown on the left of the picture, the

typical clients of the EPCIS Webadapter are different from the business applications

traditionally connected to the EPCIS. The browser is the most prevalent of these clients.

It can either directly access the data by browsing URIs or indirectly using scripting

languages in Web pages.

Software Implementation

As shown in Figure 4.7, the core of the EPCIS Webadapter is based on the Jersey [249]

framework. Jersey is a software framework for building RESTful applications. It is

especially interesting since it complies with the JAX-RS [248] (JSR 311) standard for

building RESTful Web services.

Jersey is responsible for managing the resources’ representations and dispatching HTTP

requests to the right resource depending on the request URI. When correctly dispatched

to the EPCIS Webadapter Core, every request on the querying or browsing interface is

translated to a WS-* request on the EPCIS. This makes the EPCIS Webadapter entirely

decoupled from any particular implementation of an EPCIS. However, for our tests we

used the Fosstrak EPCIS.

For the subscription interface we use Apache Abdera [221], an open-source implementation

of an Atom-Pub server. Thus, every time a client subscribes to a query, the EPCIS

Webadapter checks whether this feed already exists by checking the query parameters, in

any order. If it is not the case it creates a query on the WS-* EPCIS and specifies the

address of the newly created feed. As a consequence every update of the query is directly

POSTed to the feed resource which creates a new entry using Abdera and stores it in an

embedded SQLite database.

The EPCIS Webadapter core is packaged in a WAR (Web Application Archive) alongside

with Jersey, Abdera and SQLite. As a consequence, like the Fosstrak EPCIS, it can

be deployed to any Java compliant Web or Application Server. We tested it on both

Glassfish [236] and Apache Tomcat [222].

4.3.3 Pushing from Readers to Web Clients

The second RESTful API meets the need for mobile or Web clients to access the raw

data directly pushed by RFID readers through the LLRP and ALE protocols. The chal-

lenge here is that Web was mainly designed as a client-pull architecture, where clients

168 Resource-Oriented RFID Networks

can explicitly request (pull) data and receive it as a response. This make the implemen-

tation of uses-cases where near real-time communication is required sub-optimal. As an

example, a typical use-case is to push events that are being recorded by an RFID reader

directly to a mobile browser application for monitoring purposes (see Section 4.5.2 for an

implementation of this use-case).

For the EPC Network, we created two components as shown in Figure 4.1. The Capture

App Webadapter acts as a multiplexer. It is a modular Web application which gets events

from the ALE and redirects them to a number of RESTful Services (e.g., to the EPCIS

Webadapter) for further processing. The services the application sends the events to can

be configured through a RESTful interface on the Web as well, which allows to flexibly

decide where RFID events should be routed to.

The second component is based on tPusher as presented in Section 2.1.3, which combines

a RESTful API with a WebSocket and Comet server. Using a RESTful API, clients can

subscribe to RFID event notifications for a particular reader by sending a POST request to

a URI such as: /t-pusher/reader/<READER-ID>. This initiates a WebSocket connection

with the server on which RFID events recorded by READER-ID will be pushed through the

Capture App Webadapter.

4.3.4 Case-Study: EPC Find

To illustrate how implementing a Device Accessibility Layer for the EPC Network

unveils new applications we describe and implement a mobile infrastructure on top of

the EPCIS Webadapter as presented in [69]. The proposed infrastructure can be used to

track and trace belongings.

Motivation

Losing something of great emotional or intrinsic (money or data!) value is often a shock.

In this kind of situations we currently rely on lost property offices implemented and run

by the travel business (airlines, train companies, coach services, etc.) or governmen-

tal organizations. In [128] it was identified that more than 400’000 items were lost in

Switzerland in 2006. Amongst these less than 40% were recovered. In an era of high mo-

bility, the solutions we rely on suffer from a number of problems. On the one hand, they

lack dynamic information and compatibilities amongst the systems; on the other hand,

they involve many intermediates and have high costs and no revenues for the institutions

running them.

As for a number of systems, the existence of intermediates in the traditional approach

decreases the efficiency and increases the costs. This fact was confirmed by interviews

with experts at the Swiss National Railways (SBB), which run a large share of the Swiss

lost property offices. Ideally, when Alice finds Bob’s laptop, she should be able to report

it directly to Bob. Of course this approach is not new and people have been enabling

4.3. Device Accessibility Layer 169

this direct link for years using address tags providing contact details. This idea is rather

straightforward however, we identify three main problems:

1. It reveals the owner’s identity to everyone able to read the tag.

2. It requires manual updates: every time you change your address you need to change

every name tag.

3. It denatures the object you tag by adding a relatively big label to it.

4. Besides his goodwill, there is no true incentive for the finder to return the found

object.

Hence, the traditional approach to retrieve lost items can be enhanced by reducing the

intermediates making it a more community-oriented process where finders are directly

linked to owners. This improves the chances of recovery, simplifies the system and lowers

costs. Combined with the use of mobile phones, RFID tags and EPC events, this can

improve the dynamic information available to the owner of a lost item. For example, a

consultant can know whether he simply left his laptop at home or whether it is lost and

the incident needs to be reported to his company.

In our lost and found system, called EPCFind, we propose the prototype of a network for

personal objects, that builds upon the EPCIS Webadapter.

Concept

With this prototype users interact using mobile devices to help them tracing and recov-

ering users’ belongings while on the run. In more concrete terms, with the Distributed

Tracing approach, we can help an owner (Bob) getting dynamic information about where

laptop might be located and in the Community-Based Reporting we help the finder (Alice)

easily reporting the recovery of Bob’s laptop while being on the move and without the

need for intermediates.

Community-Based Reporting We propose to support a community of mobile phone

users, which are able to communicate directly with the owners whenever they find an

object. For this purpose, we use the EPCFind mobile software and wireless technologies.

When Alice finds Bob’s laptop, she can easily and quickly report the recovery by scanning

the tag on the object. In order to do so, she uses the Report application of EPCFind,

which connects to a central server and finds out about the object’s owner. If Alice accepts

it, the mobile application creates a trace of the recovery and reports it to Bob. Note that

the system does not have to reveal Bob’s identity. Instead, Bob uses the application

shown in Figure 4.8 to directly contact Alice and arranges a way of sending the laptop

back.

170 Resource-Oriented RFID Networks

Figure 4.8: Mobile user interface of the owner. The screens offer: a list of the owner’s
belongings, the traces of the objects in the forms of EPC events, location details of the EPC
events.

Distributed Track and Trace Community-based reporting fulfills the need for eliminat-

ing intermediates and eases the reporting process: Alice does not need to find the next

lost property office and she can directly report the recovery to Bob using the EPCFind

system. Yet, the system in this state does not resolve Bob’s need for dynamic information:

what if Bob’s laptop was still at home? What if it got stolen and not simply lost? What

if no one found it? To solve this issue, we extend our system with a distributed network

of readers made available by the community. As proposed by Frank et al. [58, 59], we

assume a network of readers formed by static (e.g. readers already in place in stores)

and mobile devices (e.g. an RFID-enabled mobile phone). These distributed readers can

silently (i.e., without explicit human interaction) register tagged objects in their vicinity.

With EPCFind, Bob can use the application on his mobile phone to locate where his

laptop was last seen by the distributed readers and make an appropriate decision based

on this information (e.g., call the police, call his home, report the loss of his laptop to the

company, etc.)

Similarly, the silent reporting can be used in order for Bob to register the presence of its

own objects next to his mobile phone on a regular basis (e.g., while the phone and the

laptop are on his desk at home, etc.). This approach reduces the privacy concerns inherent

to the Distributed Tracing approach while not filtering the most valuable information in

our case: when was the object last seen next to Bob?

Identifying Objects Core to the system is the notion of selecting or scanning physical

objects using a mobile phone. The subject has been explored by several researchers

already [201, 167]. As an example, Rukzio et al. identified touch using NFC tags as being a

well-received interaction technique [167]. Hence, using NFC (Near Field Communication)

seems quite natural for our application. However, because of its very limited range (i.e.,

touch), NFC needs a visible tag or zone of interaction. Beyond denaturing the object, it

also concentrates the interaction metaphor on the tag rather than on the object.

4.3. Device Accessibility Layer 171

Figure 4.9: Prototype of a mobile phone extended with a UHF EPC Gen2 RFID reader. This
device can read RFID tags from a distance of about 30-50cm.

We change the interaction paradigm from identifying a tag representing the object, to

identifying the object itself. This, we believe, can make the system rather easy and

straightforward to use. Thus, we propose the use of EPC tags that can be read from a

distance and without line of sight, thanks to the EPC Gen2 standard.

Leveraging the EPC Network The potential of the EPCFind system is relying on

the size and contribution of the community. In more technical terms, a critical mass

of mobile phones with RFID readers and tagged objects is required. Furthermore, the

tagged objects need to disclose a number, which enables the unique identification of the

object, unlike barcodes, which identify a type of product. Finally, as mentioned before,

the reading range of the mobile readers needs to be greater than touch distance (ideally 20-

30 cm). We propose using UHF tags, implementing the EPC Gen2 (Electronic Product

Code tags, second generation) standard. These RF transponders fulfill both the need

for a world-wide unique, instance-level ID and a greater read range. Furthermore, the

planned deployment of the code on retail products would prevent from having to put

tags on objects manually as they would already be tagged. It also permits to assign the

ownership of an object at purchase time: freeing Bob from both having to tag his objects

and registering them as his belongings. Indeed, by matching the EPC on the laptop with

a unique number identifying Bob (e.g. his phone number, loyalty / credit card number,

etc.), we can assign the ownership at the store, when Bob buys his laptop. The only

drawback of this approach is the lack of UHF readers embedded in commercial mobile

phones [208]. In order to overcome this problem for the implementation of EPCFind, we

use three prototypes of Nokia E61i mobile phones as show in Figure 4.9. These phones

are equipped with an UHF EPC RFID reader as a functional cover (i.e., the reader is

integrated into the phone battery cover) potentially capable of reading up to 30-50 cm.

From an human-computer-interaction viewpoint this is quite interesting improvement over

172 Resource-Oriented RFID Networks

NFC mobile phones, since it slightly changes the way objects are identified, allowing users

to identify objects as a whole rather than having to touch NFC tags [201].

Besides leveraging the unique numbers on tags (EPC Tag Standard), and the standardized

reading of UHF tags (Reader Standard), the core of the EPCFind system is based on the

EPCIS Webadapter used to hold information and traces of the tagged objects.

Implementation

The EPCFind software consists of two parts as shown in Figure 4.10: a mobile user

interface and the backend built on top of the EPCIS Webadapter.

Mobile Application The mobile user interface is implemented using Java Mobile Edi-

tion [247] and needs to be installed on the mobile device of every member of the com-

munity. It is composed of three distinct MIDlets, each representing one part of the

application. The Report MIDlet is used by Alice to report the recovery of Bob’s laptop.

It activates the UHF RFID reader on the mobile phone and asks Alice to approach the

phone to the object in order to identify it. It then reports the recovery to the EPCFind

backend using either a WiFi or a GPRS connection. The AutoReport MIDlet is a pro-

cess, which can run in the background in order to implement the distributed tracing. It

activates the reader and reports an RFID event to the EPCIS Webadapter each time a

(new) tag is in the scope of the reader. The Find MIDlet is the counterpart of the Report

and AutoReport MIDlets. It enables Bob to retrieve information about his belongings as

shown in Figure 4.8. Using a unified interface, it offers access to two types of informa-

tion: traces and recoveries. Traces are the events generated silently by the AutoReport

MIDlet. They provide information about where an object was last seen, and thus allow

deducing where it might be located. Recoveries are generated whenever a member of the

community uses the Report MIDlet to signal the recovery of an object to its owner.

EPCFind Backend Traces of objects reported by the mobile software (Report and

AutoReport MIDlets) are stored in the Fosstrak EPCIS through the EPCIS Webadapter.

The mobile software (Find MIDlet) also uses the RESTful Web API of the EPCIS We-

badapter for queries of objects’ traces.

The EPCFind backend software is used to implement and manage ownership of objects,

i.e., it needs to know what belongs to Bob and control the information Bob and Alice can

access.

Discussion on Privacy

As for a number of applications involving automated and pervasive tracking of objects

or people, EPCFind raises some privacy issues. While, we do not pretend solving all of

4.3. Device Accessibility Layer 173

Figure 4.10: Architecture of the EPCFind prototype. Mobile phones in the environment
communicate with the EPCIS Webadapter deployed on top of the Fosstrak EPCIS and record
traces of tagged objects. Through the mobile EPCFind application communicating with the
EPCFind backend and the EPCIS Webadapter, Bob can trace his lost laptop. It is eventually
found by Alice who communicates it to the EPCFind backend and the EPCIS Webadapter.

174 Resource-Oriented RFID Networks

them with our current implementation let us briefly identify flaws and discuss solutions

based on other works in the area.

First of all, because of the distributed tracing, the EPCIS Webadapter and EPCFind

backend contain location information about ones belongings. This could potentially enable

Alice to track Bob by querying the system for the location of his laptop. We take a rather

simple approach and prevent this from happening by selectively giving access to object

traces as hinted in [3]: A user can only query the system for traces of items he owns.

Note that this method is not fail-proof and restricts quite a lot the possible usage of the

precious data EPCFind collects. Kriplean et al. extensively discuss the general issue of

protecting Auto-ID information servers in [3]. The other privacy concern is driven by

the fact that users carry tagged objects, which can be read in a silent manner and from

a distance. This introduces two major problems: Firstly, the EPC mobile phones could

be used to x-ray bags or suitcases and detect items one does not want to publicly show.

Secondly, the tags one carries on a regular basis could be used to profile the user (e.g., by

stores) and possibly identify him using inference techniques and information leaks. These

two flaws are not inherent to the EPCFind system, but rather to wireless identification

and communication systems (and beyond) and thus are explored extensively in literature.

Partial solutions for RFID range from encrypting the tags to providing means for killing

a tag, a solution supported by the EPC Gen2 tags [106].

4.4 Sharing Layer

This section demonstrates how the Sharing Layer of the Web of Things Architecture

can be leveraged to implement a simple and secure sharing mechanism for EPC events.

It builds on top of the EPCIS Webadapter and leverages its Web API.

4.4.1 Pain-Point: Lack of Access Control

Core to the vision of the EPC Network is the notion of companies sharing their EPC

traces openly or at least with partners [189]. However, this requires a change of strategy

for several actors of the supply chain since they currently use the information opacity as

a means to negotiate better deals.

For these important actors, a complete data openness is not really an option and was

identified as one of the important barriers towards the adoption of the EPCIS as a data

sharing standard [172, 72, 26]. Thus, a realistic global deployment of the EPC Network

requires a more comprehensive and flexible access control and sharing framework that

allows a thinner-grained selection of the partners the data are shared with. This topic is

being researched on actively [117, 26, 211] and a standard at least partially addressing

this issue is currently under development by EPC Global1. Rather than purely focusing

1As of June 23, 2011 according to the EPCglobal Web page [230].

4.4. Sharing Layer 175

Figure 4.11: The Social Access Controller is managing the access control to the EPC events.
In this case access to all products from the manufacturer 181280 is granted to the data
consumer, through his social network credentials.

on access control, this new standard, currently called Discovery Services is also expected

to solve another important problem to enable global sharing: the need for a discovery

service that allows looking for product traces across several EPCIS instances.

While it does not solve all the open issues (see Section 4.8), the Sharing Layer of the Web

of Things Architecture can easily be leveraged to provide a simple and secure mechanism

for sharing data and managing access control on top of the EPCIS Webadapter.

4.4.2 System Architecture

The key idea is to secure the resources of the EPCIS Webadapter using a standard

HTTP authentication method (e.g., HTTP Basic Authentication with SSL/TLS or HTTP

Digest Authentication). Then, the Social Access Controller is used as an authentication

and authorization proxy for accessing EPC traces. An overview of the system architecture

is shown in Figure 4.11.

Registering and Sharing EPC Events The EPCIS Webadapter is registered with the

Social Access Controller by the Data Provider at Company A. This is done either through

the Friends and Things Web front-end or using the SAC API, by providing its root URI

and access credentials (step 0 on Figure 4.11). Thanks to the fact that the EPCIS We-

badapter respects the REST constraints, it can be easily crawled by the STM Translation

Service used by SAC. As a result, the resources offered by the EPCIS Webadapter (e.g.,

products, readers, locations, etc.) are identified and can be shared.

The Data Provider then shares all (past and future) EPC events in which the manufac-

turer is 181280 which corresponds to the following URI: <WEB-ADAPTER-URI>/rest/1/

eventquery/result?epc=urn:epc:id:sgtin:181280.*. He shares it with a particular

176 Resource-Oriented RFID Networks

Figure 4.12: Friends and Things user interface for monitoring the resources’ usage. Usage
statistics for several resources are available on this page. For instance, traces of all the products
from manufacturer 0057000 can be accessed by user Tset Webofthings. The displayed graph
shows that user Vlad Trifa accessed the resource location twice on May 6, 2011.

Data Consumer at Company B. The Data Consumer is selected from a list of trusted

connections amongst the social networks SAC has access to for the Data Provider. Once

the resource is shared, SAC posts a message directly to the social network of the Data

Consumer to inform him about the newly shared resource and its SAC-URI.

Accessing Shared EPC Events As shown in step 2 of Figure 4.11, once the Data

Consumer at Company B received notification of the shared EPC resource he can access

it simply by using the provided SAC-URI: <SAC-URI>/gateways/<WEB-ADAPTER-URI>

/resources/rest/1/eventquery/result?epc=urn:epc:id:sgtin:181280.*.

In this URI, SAC considers the EPCIS Webadapter as a gateway which offers a number

of resources. The URI is resolved by the corresponding SAC instance which checks

whether the Data Consumer is allowed to access this EPC resource (or a resource located

at an upper level in the hierarchy). If it is the case connects to the EPCIS Webadapter

using HTTP Digest Authentication and redirects the results to the Data Consumer.

Since SAC acts as a proxy, it can keep a trace of each requests from Data Consumers. This

data is made available to the Data Provider through the SAC API or visually through

the Friends and Things Web front-end. This can be used to monitor the consumption

4.5. Composition Layer: Auto-ID Physical Mashups 177

of shared data. As an example, Figure 4.12 shows that the resource location was used

twice by Data Consumer Vlad Trifa on May 6, 2011. These logs can then be used to limit

the number of accesses or to charge a fee for data access and facilitate the creation of an

RFID data market place.

4.5 Composition Layer: Auto-ID Physical Mashups

As mentioned before, bringing RFID data closer to the Web creates opportunities for

new applications. In this section we describe how the Composition Layer of the Web of

Things Architecture can be leveraged to build these applications. We illustrate how we

can create physical mashups for RFID applications on top of the the Device Accessibility

Layer and the Sharing Layer.

4.5.1 Pain-Point: Tedious Business Case Modeling and Cross Sys-

tems Integration

RFID use-cases generally do not involve RFID readers and tags only, they are most of

the time combined with sensors and actuators. These combinations of RFID, sensors and

actuators often occur at a low level, sometimes even at the wiring level. This mainly has

two drawbacks. First it requires to combine the complicated and often not homogeneous

low-level APIs of devices which requires expert knowledge. Then, once installed, these

compositions of devices are static and cannot be flexibly reconfigured to integrate new

sensors or actuators.

In this section we illustrate how the architecture and approaches introduced in the Com-

position Layer can be leveraged to create physical mashups for RFID use-cases. We

distinguish three levels of mashability as introduced in the Composition Layer: Manual

Mashup Development, Widget Based Mashup Development and End-User Development

with Mashup Editors.

We present three concrete prototypes illustrating these levels of mashability. The Mobile

Tag Pusher prototype is an illustration of Manual Mashup Development. The EPC Dash-

board Mashup demonstrates how Widget Based Mashup Development can be enabled.

Finally, the RFID Physical Mashup Editor illustrates how End-User Development with

Mashup Editors can be used by end-users to create simple applications.

4.5.2 Mobile Tag Pusher

When setting up RFID readers or maintaining existing deployments it is valuable to

have a direct feedback of the tags observed by a particular reader in order to monitor the

manufacturing process or to debug the readers. In the current implementations of the

EPC software stack this would require to use and configure a monitoring tool such as the

178 Resource-Oriented RFID Networks

Figure 4.13: The Mobile Tag Pusher is built as a mobile Web application using the WebSocket
API of the tPusher component. RFID events are routed by the Capture App Webadapter to
the tPusher application where they are sent to all subscribed mobile Web browsers.

Fosstrak LLRP Commander on a desktop computer. Thanks to the RESTful interface of

the Capture App Webadapter as well as the Real-Time Web capability of tPusher, the

tags observed by any reader can now be directly pushed to any browser or HTTP library.

Because these events are of interest in-situ, we developed a Mobile Web mashup that

can display them in a user-friendly manner. The Mobile Tag Pusher is a Web applica-

tion that uses the tPusher service to subscribe to events coming from RFID readers, as

shown in Figure 4.13. As a consequence, EPC events are pushed to the application after

being filtered by the LLRP and routed by the Capture App Webadapter to the tPusher

WebSocket service.

This enables users of the application to get near real-time feedback about the events an

RFID reader is currently recording.

Implementation The Web application is a pure HTML5 and JavaScript Web application

built using the Sencha Touch library [255]. Furthermore, it is based on an abstraction of

push mechanisms using the Atmosphere JQuery Plugin described before. This basically

means that it can be used, without installation, on most recent mobile browsers such as

Safari (iOS) or Chrome (Android).

All code required for the mobile application to subscribe to events pushed by readers

through the Capture App Webadapter and display them fits within 5 lines of JavaScript

4.5. Composition Layer: Auto-ID Physical Mashups 179

Figure 4.14: The data read by the RFID LLRP Gate reader is sent via real-time Web (Web-
Sockets) to a mobile phone application running in the mobile browser. The Web application
is accessed simply by scanning a QR-code.

as shown below:

1 // called whenever an event is pushed:

2 function callback(response) {alert(response.responseBody +

response.transport);}

3 //subs. to the events of reader "exit1"

4 $.atmosphere.subscribe(

5 "http :// EPC_CLOUD_APPLIANCE/t-pusher/reader/exit1",

6 callback , $.atmosphere.request = { transport: ’websocket ’ }

7);

As shown in Figure 4.14, we deployed this prototype in a lab environment. Each reader

features a QR-Code containing its unique URI in the EPC Cloud. When scanning this

tag with a mobile phone it redirects the user to the HTML5 Web page shown in Figure

4.13. As tags are read by the readers, the Web page automatically receives and displays

new events.

4.5.3 The EPC Dashboard Mashup

The EPC Dashboard Mashup is a Widget Based Mashup that helps product, supply

chain and store managers to have a live overview of their business at a glance. It can

further help consumers to better understand where the goods are coming from and what

other people think of them. The EPC Dashboard is based on the concept of widgets in

180 Resource-Oriented RFID Networks

Figure 4.15: The Stock History widget allows for looking at the flows of goods through
the supply chain. Here the manager can see that all the available Lindt chocolate has been
transfered to the shop, leaving an empty stock.

which the event data are visualized in a relational, spacial or temporal manner. Widgets

can be easily extended by developers using a simple framework.

The EPC Dashboard consumes data from the EPCIS Webadapter optionally shared

through the Sharing Layer. Usually these data are hard to interpret and integrate. The

dashboard makes it simple to browse and visualize the EPC data. Furthermore, it in-

tegrates the data with multiple sources on the Web such as Google Maps, Wikipedia,

Twitter, etc. To better understand the use of such a tool, let us first introduce two

use-cases before looking at the applications’ architecture.

Use-Cases

Rachel, a customer, just bought Max Havelaar Bananas and Lindt Chocolate from a

retail store M in Switzerland. She wants to know more about the Bananas. For that

purpose, she opens the EPC Dashboard in her preferred browser. She activates the

Product Description Widget and enters the EPC of the article. The EPC Dashboard now

shows her a description of bananas and Max Havelaar extracted from Wikipedia. Likewise,

the Product Video Widget provides her with video about planting of these bananas. She

is further interested to know about where this particular banana has grown. Rachel

activates the Map Widget and she can see on the map in Figure 4.16 where her banana

originates from. In addition she also sees the route that the banana has taken from its

origin to the M retail shop. She finally prepares a Banana Split with the chocolate she

just bought and shares the recipe on Twitter through the Product Buzz Widget. In the

M store in Zurich, Andy, the product manager of chocolate products wants to check the

recent inventory levels of the Lindt Chocolate. He also browses to the EPC Dashboard

Mashup and opens the Stock History Widget with the corresponding inventory RFID

4.5. Composition Layer: Auto-ID Physical Mashups 181

Figure 4.16: The Maps widget is following the route of the banana tagged with the EPC
urn:epc:id:sgtin:0057000.123430.2025.

reader. According to Figure 4.15, he discovers that there had been an increase demand

for Lindt Chocolate and that the chocolate has almost entirely been transfered from the

stock to the shop. He directly orders larger shipping contingents. He also subscribes to

the feed listing the arrival of Lindt products in the stock using the entry gate reader. This

way, a feed reader on his mobile phone and in his favorite browser will inform him when

the ordered products have arrived. He is further interested in knowing why the Lindt

products are so popular recently. Andy activates the Product Buzz Widget and sees the

current Twitter messages related to Lindt Chocolates as shown in Figure 4.17, including

Rachel’s recipe. He can use this information for marketing analysis.

Mashup Architecture

The EPC Dashboard integrates several information sources. This information is encap-

sulated in small windows called widgets. The widgets combine services on the Web with

traces coming from the EPCIS Webadapter. The EPC Dashboard Mashup currently of-

fers 12 widgets using different APIs and services. As an example, the Map Widget is

built using the Google Maps Web API (see Figure 4.16), the Product Buzz Widget uses

the Twitter RESTful API (Figure 4.17) and the Stock History Widget uses the Google

Visualization API (Figure 4.15).

All widgets are connected to each other which means that actions on a given one can

propagate the selection to the other widgets and changes their view accordingly. As such,

widgets listen to selections and can make selections. This interaction is implemented using

the observer pattern [62] where consumers (i.e., the widgets) register to asynchronous

updates of the currently selected Locations, Readers, Time or EPCs. This architecture

allows the creation and integration of other Web widgets with very little effort. The EPC

182 Resource-Oriented RFID Networks

Figure 4.17: Screenshot of the EPC Dashboard Mashup Web page. On the left the user
can select the widgets he wants to activate. The widget in the middle is used to browse
the EPCIS data. The first widget (upper-left) is the Product Buzz Widget which extracts
live opinions and information about the product (here Lindt Chocolate) from Twitter. The
Product description widget queries Wikipedia for information, the Calendar Widget provides
an overview of the EPC events by date and finally, the Map Widget show the location of the
product.

Dashboard itself is a JavaScript application built using the Google Web Toolkit [239], a

framework to develop rich Web clients. This type of development is possible thanks to

the RESTful Web Interface of the EPCIS Webadapter.

4.5.4 RFID Physical Mashup Editor

Applications of RFID technologies are at strongly influenced by business processes

within a company. Hence, it is relevant to give the power to create simple applications

not only to developers but also to end-users, more aware of the process in their business.

As introduced in the Composition Layer, end-user mashability is usually enabled through

simple drag-and-drop visual tools called Mashup Editors. In the following sections, we

describe a typical use-case of business process in the RFID domain and then present a

mashup editor tailored to RFID use-cases.

4.5. Composition Layer: Auto-ID Physical Mashups 183

Use-case: Electronic Article Surveillance with RFID

Here, we describe a common RFID application, RFID as an Electronic Article Surveillance

(EAS) technology, and illustrate how the EPC Network framework can be used to realize

this application. This example illustrates the challenges in RFID application development

and deployments.

In many clothing stores, RFID technology is set to replace existing Electronic Article

Surveillance technology because of its many advantages. The two most important issues

include knowledge about the product being stolen and the reduction in the number of

false alarms. Today, retail stores have little information about which particular product

is actually being stolen. As a result, the stores cannot replenish the shelves appropriately

resulting in a possible lost sale to a consumer who is willing to pay for the item. There is

also no way to prevent frequent false alarms where products with active EAS tags from

another retailer trigger the alarm.

Using RFID technology as an EAS system relies on RFID tags on the individual clothing

items as well as RFID readers at the back-room door to the store, where clothing enters

the store, at the checkout and at the exit. When products are placed on the shop floor, the

RFID tags are read as they pass the reader at the back-room store entry. The applications

registers the tags and marks the IDs as ’on sale’. If a consumer decides to purchase an

item, the RFID tag is read again at the checkout and flagged as ’sold’. If the user leaves

the store with the product, the RFID readers at the exit report the RFID tag to the

application, but no alarm is triggered because the product is marked as sold. If the

consumer decides to leave the store without paying, the RFID tag is identified by the

readers at the exit and an alarm is triggered because the product is still not paid for.

To realize the above example, the RFID readers need to be mounted in the store and

connected to a local area (wireless) network. After discovery of the readers on the net-

work, each RFID reader needs to be configured to read RFID tags and report RFID tag

read reports via the binary EPCglobal LLRP reader protocol. To prevent RFID readers

running continuously, the back-room reader is often triggered via a motion sensor. There

is also an alarm connected to the network that can be triggered by the RFID readers at

the exit. Following the configuration of the readers, an application server needs to be

set up on a server in the clothing store that runs the RFID middleware. In the case of

the EPC Network, such an application server would run an instance of an Application-

Level-Events (ALE) compliant middleware that filters and aggregates the RFID data.

Using the ALE WS-* API, the developer would need to group the RFID readers at the

various locations (entry, exit, and checkout) and also define time filter and aggregators

that eliminate redundant RFID reads. In a typical RFID deployment, the appearance of

an RFID tag in the read range of an RFID reader can result in numerous tag reads of

the same tag. To process the filtered and aggregated RFID data, custom business logic

needs to be implemented. The business logic of the EAS application needs to deserialize

the incoming ALE SOAP messages containing the tag reads, send off web service EPCIS

(EPC Information Services) query interface to check the state of the particular tag (“on

184 Resource-Oriented RFID Networks

Building Block Inputs Outputs
RFIDReader URI, Reader ID (e.g., exit-reader) EPCs
EPCIS URI, EPC, Business step (e.g., checkout) true/false (EPC seen at

Business step)
VideoCamera URI URI of (stored) snap-

shot
tPusher URI, String to push, topic name true/false (success/fail-

ure)

Table 4.2: Additional building-blocks for implementing the EAS use-case.

sale”, “sold”), and create a new EPCIS event that triggers a state change and possibly

sound an alarm. To store and access these EPCIS events, the developer needs to set

up a database on the application server and deploy an EPCIS repository that supports

the EPCIS capture and query protocols. The developer might also decide to develop a

custom applications that queries the EPCIS repositories across multiple stores to provide

analytics capabilities. The retailer might for example want to identify the products most

stolen and locations of stores with the most stores.

A direct consequence of the complexity of installing and implementing the use-case we

described here is that many smaller businesses decide to adopt very basic solutions where

non-standard tags simply trigger an alarm every time they pass the gate.

Use-Case Implementation

Thanks to the deployment of the EPC software stack in the cloud and the implementation

of the Device Accessibility Layer and Sharing Layer, we can now implement physical

mashup editors for enabling users to flexibly model variations of use-cases such as the

EAS presented before. For this use-case, we design new building-blocks as shown in Table

4.2.

These modules were implemented as building-blocks of our modified version of the Click-

script (see Section 2.4.3) mashup editor. Reducing interfaces of the EPC Network to

Web interfaces enables each building block to be implemented with a small amount of

JavaScript code. Note that using a comprehensive Findability Layer for the EPC Network

can enable the automatic generation of such building blocks as described in Chapter 2.2.

Using these building-blocks and other basic blocks, we can implement the EAS use-case

we introduced before. As shown in Figure 4.18, the building-blocks of the RFID mashup

editor communicate with several components of the EPC Cloud. First, the RFIDReader

block subscribes to the tPusher service using a particular reader ID (e.g., exit-gate). As

a consequence, it gets pushed (through LLRP, ALE and the Capture App Webadapter)

all the EPC events for this reader. The EPCIS block is then used to check whether the

pushed EPCs represent goods that were already sold. To check this, the block uses the

EPCIS Webadapter.

4.6. Evaluating the EPCIS Webadapter 185

Figure 4.18: The RFID Mashup editor is used to model the EAS use-case. The created
mashup can then be run from the Physical Mashups Framework. Thefts are reported to a
mobile phone.

If it is the case, nothing happens. If it isn’t the case (i.e., the goods were stolen), the

VideoCamera block is triggered. This components represents a Web-enabled video camera

that can be used to take snapshots through a RESTful API. The URI of the snapshot

is then sent to all subscribers of a particular topic (i.e., URI) through tPusher. As an

example we developed a small mobile Web application, similar to the Mobile Tag Pusher

application, which subscribes to the topic and loads the corresponding image alongside

with the EPC number of the stolen good (see mobile phone in Figure 4.18). Such an

application can be used to push information about the theft to all staff members in a

store. Once a mashup has been successfully created and tested locally using a mashup

editor, it can be deployed to a mashup engine such as the Physical Mashups Framework

(see Section 2.4.5) where is it going to be deployed remotely executed.

The full use-case was tested in a lab deployment at MIT featuring a gate LLRP reader

and an off-the-shelf Webcam as shown in Figure 4.14. The average observed RTT (from

the reader, to the Amazon Cloud instance, through the mashup engine and finally to

the mobile Web application) was around 1 second. However, it is worth noting that this

RTT strongly depends on factors such as the available connection bandwidth, the type

of instances used on Amazon EC2, the current load of the cloud appliance. Since these

factors cannot all be controlled this is a real challenge for this type of applications that

we further discuss in Section 4.8.

4.6 Evaluating the EPCIS Webadapter

186 Resource-Oriented RFID Networks

0

50

100

150

200

250

300

350

A
ve

ra
ge

R
T

T
+

P
ro

ce
ss

in
g

[m
s]

Q1: Many Results Q2: Few Results Q3: Complex Query

Type of Query

Performance Average REST and WS-* Interface for Different Queries

REST
WS-*

Figure 4.19: Average RTT and processing time when using the WS-* interface and the REST
interface for three types of requests each run 100 times. Standard deviations are as follow:
49, 77, 39, 11, 38, 12 ms.

As mentioned before, the EPCIS Webadapter is an add-on to the standard EPCIS

where each REST request is eventually translated to a (local) WS-* request. This results

in an overhead that we evaluate here.

The experimental setup is composed of a Linux Ubuntu Intel dual-core PC 2.4 GHz with

2 GB of ram. We deploy Fosstrak and the EPCIS Webadapter on the same instance

of Apache Tomcat with a heap-size of 512 MB. We evaluate three types of queries all

returning the standard EPCIS XML representation.

The first query (Q1, Many Results in Figure 4.19) is a small request returning a relatively

large set of results of about 30 KB (22 events each composed of about 10 EPCs). In the

second test (Q2, Few Results), is a query returning 2.2 KB of data with only two results.

The last test (Q3, Complex Query) is a query containing a lot of parameters and returning

10 events. We test each of these queries asking for the standard XML representation. All

queries are repeated in 10 runs of 100 requests from a client located on a machine one

hop away from the server with a Gigabit Ethernet connectivity. The client application is

programmed in Java and uses a reference JAX-WS client implementation for the WS-*

calls and the standard Apache HTTP Client and DOM (Document Object Model) library

for the REST calls.

As shown in Figure 4.19, for Q1 the EPCIS Webadapter has an average overhead of 30 ms

due to the computational power required to translate the requests from REST to WS-* and

vice-versa. For Q2 and Q3 the REST requests are executed slightly faster (about 20 ms)

than the WS-*. This is explained by three factors. First, since there are fewer results,

the local WS-* request from the EPCIS Webadapter is executed faster. Then, REST

packets are slightly smaller as there is no SOAP envelope [214]. Finally, unmarshalling

4.7. Related Work 187

WS-* packets (using JAXB) on the client-side takes significantly longer than for REST

packets with DOM. For Q3, similar results are observed. Overall, we can observe that the

EPCIS Webadapter creates a limited overhead of about 10% which is (over) compensated

in most cases by the relatively longer processing times of WS-* replies. This becomes a

particularly important point when considering devices with limited capabilities such as

mobile phones or sensor nodes as well as for client-side (e.g., JavaScript) Web applications.

It is worth mentioning that the WS-* protocol can be optimized in several ways to better

perform, for example by compressing the SOAP packets and optimizing JAXB. However

as the content of HTTP packets can also be compressed this is unlikely to drastically

change the results. Furthermore, because they encapsulate requests with HTTP POST,

WS-* services cannot be cached on the Web using standard mechanisms. For the EPCIS

Webadapter however, all queries are formulated as HTTP GET requests and are fully

contained in the request URI. This allows to directly leverage from standard Web caching

mechanisms which would importantly reduce response time [214].

4.7 Related Work

Researchers in the fields of Ubiquitous and Pervasive Computing have long been us-

ing RFID as a means to enhance real-world objects in order for these to become smart

things. In the DataTiles [159] project, Rekimoto et al. proposed a tangible user inter-

face composed of acrylic tiles. These physical tiles represented virtual data and were

identified thanks to an embedded RFID tag that was read by an array of reader. In the

MouseField [130] project presented by Masui et al., a small RFID reader featuring motion

sensors was used to identify RFID-tagged real-world objects such as compact discs.

These pioneer projects raised the awareness on the possibility to use RFID as an interface

for interacting with virtual data. However, they did not yet propose a systematic solution

to link them to an information network. In the Cooltown project [110] Kindberg et al.

proposed to use the Internet and the Web as the information network of choice for smart

things. Exploring this idea of merging RFID enhanced objects and the Web, Welbourne et

al. [207] create an RFID-based microcosm for the Internet of Things deployed throughout

the University of Washington. They further developed a suite of Web-based tools to help

users manage their personal RFID data and triggers. Römer et al. looked at extending

every-day objects such as playing cards or tool-boxes [165] and proposed the use of WS-*

services to facilitate the real-world integration. In [61] we explored the use of pub/sub

mechanisms to facilitate the integration of RFID-tagged objects with the backend systems

of hospitals. Broll et al. looked at linking RFID tagged-objects to services on the Web.

They proposed to use NFC tags on physical objects (e.g., posters) as a bootstrap for

mobile interaction with WS-* services [23]. To be able to technically achieve this, in [24]

the same authors proposed a system based on an Interaction Proxy that sits between

the mobile phones and the WS-* services and renders adapted mobile content. Similarly,

Vermeulen et al. [198] looked at creating mashups based on RFID tagged objects. For

188 Resource-Oriented RFID Networks

instance, tagged pictures can be combined with a tagged physical map to create a Google

Maps mashup where the pictures appear at the right position on the map. To achieve

this they proposed a framework based on a Phidget RFID reader [261] communicating

through a PC with WS-* services representing the virtual mashup building blocks.

These projects emphasize the potential of enabling the connectivity (or identification)

of real-world objects on the Web through RFID. Our approach here differs in the sense

that rather than looking at a macro, prototypical level, we look at an existing global

network of RFID-tagged objects and propose Web APIs and technologies so that this

network can be leveraged to build large-scale Web and mobile applications consuming

RFID data. The great potential of the EPC network [169, 170] for researchers in the

ubiquitous computing field has led to a number of initiatives trying to make it more

accessible and open for building prototypes and disruptive applications. Floerkemeier et

al. initiated the Fosstrak project [56], which is to date the most comprehensive open-

source implementation of the EPC standards. The idea of the Fosstrak project was to be

a reference implementation of the standards. Thus, it offers interfaces for applications as

described in the standard, using WS-* interfaces. As an example, the Fosstrak EPCIS is

an open-source implementation of a fully-featured standard EPCIS [57] which features a

WS-* interface as an application integration end-point. A direct consequence is that it

prevents the Fosstrak EPCIS to be used in a straightforward manner from Web languages

such as JavaScript. Furthermore, resource constrained devices have difficulties accessing

this type of interfaces [214] (see Section 2.5). This make it difficult for sensor nodes,

embedded computers or even current mobile phones to access EPC traces and data.

To overcome these limitations, researchers started to create translation proxies between

the EPCIS and their applications. In the REST Binding project [267] a translation proxy

is implemented. The proxy offers URIs for accessing the EPCIS data but these data are

provided using the XML format specified in the standard. While this is an important

improvement, the proposed protocol does not respect the REST constraints but imple-

ments what is sometimes referred to as a REST-RPC style [160]. As the connectedness

and uniform interface properties do not held, an EPCIS using this interface is not truly

integrated to the Web [153, 160]. For instance, it does not offer alternative representations

(e.g., JSON) and resources cannot be browsed for.

In [82] we presented an implementation of such a translation proxy. The Mobile IoT

Toolkit offers a Java servlet based solution that allows to request some EPCIS data using

URIs which are then translated by a proxy into WS-* calls. This solution is a step towards

our goal as it enables resource-constrained clients such as mobile phones to access some

data without the need for using WS-* libraries. Nevertheless, the proxy is directly built

in the core of the Fosstrak EPCIS and thus does not offer a generic solution for all EPCIS

compliant systems. Furthermore, the protocol used in this implementation as well as the

data format is proprietary which requires developers to first learn it.

The EPCIS Webadapter builds upon this research. It offers an EPCIS vendor-independent

module that implements a comprehensive Resource Oriented Architecture for the EPCIS

and hence offers a RESTful API. It is further complemented by the tPusher service

4.8. Discussion and Summary 189

and the Capture App Webadapter module that offers additional interfacing points for

creating applications with the EPCIS. Finally, we illustrate how the Sharing Layer and

the Composition Layer can be implemented to enable data sharing and physical mashups

to leverage the potential of the EPC Network.

4.8 Discussion and Summary

In this chapter, we apply the Web of Things Architecture to the EPC Network with

the goal of simplifying application development on top of this network. While working on

the proposed approach we identified a number of real-world challenges and discuss three

of them here.

Dealing with Firewalls and NATs First, while some standard LLRP readers offer a

reader-initiated scheme, most operate on a server-initiated scheme. This means that the

EPC Cloud server has to contact the RFID readers in order to start the reading process.

While this works fine in places where a direct access to the Internet and the Web is

available, it is problematic in industrial environments where RFID readers sit behind

firewalls or NATs (Network Address Translation) and do not feature public IP addresses.

This issue is not inherent to RFID readers but is a general issue when deploying WoT

systems in the real-world and in particular in corporate environments.

A common practical solution to these problems is the use of the Reverse HTTP proto-

col [121] where a service on the Internet acts as a public proxy for devices behind firewalls

and/or NATs on a private network [85]. In essence, the device has to initiate the con-

nection with a POST to an Reverse HTTP proxy which will initiate a protocol switch to

PTTH (Reverse HTTP). The proxy will then assign a URI within its domain to the device

and forward the incoming requests directly to the device through a (device-initiated) kept

alive channel. As an example, the open-source Yaler [288] project is providing a service

implementing the Reverse HTTP protocol.

More specifically, in the case of the EPC Network, an option in the LLRP protocol

called reader-initiated connection solves the problem if the readers manufacturers are

implementing it consequently. Indeed, in this model, like in the Reverse HTTP model,

the reader initiates the connection with the server (e.g., the EPC Cloud) upon startup

and the connection is kept open until the reader shuts down again.

Leveraging the Cloud Furthermore, to optimize data access, most cloud infrastructures

offer highly optimized storage services that can be easily distributed and load balanced

within the infrastructure. In the Java world, the implementations of these services is

compliant with the Java Persistence API (JPA) [251] or more recently with the Java Data

Object (JDO) API [246] which abstract from the actual storage service being used and

also allows to easily switch the service. Unfortunately, the current Fosstrak EPCIS is

190 Resource-Oriented RFID Networks

not JDO or JPA compliant but uses JDBC and is rather tightly coupled with a MySQL

database. Porting the EPCIS to JDO would allow to better leverage the scalability that

cloud solutions and recent data stores (e.g., NoSQL databases) have to offer.

Moreover, for real-world applications, network delays might be a serious issue as events

and actions are sent and triggered in the cloud. While it is unlikely that an EPC Cloud so-

lution will support sub-second use-cases in the very near future, our average measurements

have shown typical delays of about a second on average for the described EAS Mashup,

from the reader, to the cloud and then to the mobile phone. While this is acceptable

for most envisioned applications it strongly depends on the network configurations and

infrastructure of real-world deployments. Hence, exhaustive evaluations of cloud solutions

and their variations as well as models ensuring Quality of Service (QoS) requirements in

smart things-to-cloud applications is an important part of the furture work.

Sharing RFID Data As illustrated in this chapter, the Sharing Layer of the Web of

Things Architecture can be used to share EPC resources and feeds of events in a simple

manner, based on social graphs instead of traditional access control lists which are hard to

create, maintain and manage. However, the presented approach implies that companies

use social networks for maintaining business to business relationships with other compa-

nies. It further implies that companies trust the social networks. While this is unlikely

to happen with social networks like Facebook or Twitter, specialized networks such as

LinkedIn will certainly play an important role as future platforms for Business to Business

communication [180]. Hence, using the SAC architecture to manage access to EPC events

through networks such as LinkedIn might be a viable future solution. It would, however,

require for these networks to not only allow individuals to be connected together but also

companies, a model that some social networks are moving forward to adopt [283].

Summary In this chapter we have shown how the Web of Things Architecture can be

beneficial to the EPC Network and explained how virtualization, cloud computing, REST

and the real-time Web, Social Networks as well as the concept of Physical Mashups can

contribute to a wider adoption of the EPC Network standards and tools. Virtualization

allows to package all the development tools into a single virtual machine that can be

run virtually anywhere. Cloud computing simplifies deployment and maintenance of the

EPC software stack. Thus, it pushes the standardized EPC Network closer to small and

mid-size businesses that could benefit from it. By implementing the Device Accessibility

Layer, we can offer more lightweight interfaces and allow innovative mobile, Web and

WSN applications to directly use the EPC Network. We illustrated this with several

mobile and Web prototypes. Furthermore, on top of this, the Sharing Layer can be used

to share data amongst business partners. Finally, with the Composition Layer we offer a

mashup editor and engine that allows more flexible real-world use-cases, where existing

sensors and actuators can be directly integrated with RFID hardware from the Web and

by end-users.

In order for the community to benefit from the novel applications this architecture enables,

4.8. Discussion and Summary 191

the EPCIS Webadapter was added early 2011 as a module of the Fosstrak open-source

project [235]. It already used in several projects, for instance to enable Android mobile

phones to access EPCIS data.

192 Resource-Oriented RFID Networks

Chapter 5
Conclusions and Outlook

In this last chapter we summarize the contribution of this thesis and discuss open issues

and future challenges for the Web of Things.

5.1 Contributions

In this thesis we presented an architecture focusing on enabling a participatory WoT

in which opportunistic applications can be easily created not only by embedded systems

specialists but also by Web developers, tech-savvies and end-users. First, we described

the Web of Things Architecture and its four layers:

• In the Device Accessibility Layer we addressed the application interfaces that smart

things should expose to realize a seamless Web integration. We proposed taking a

Resource Oriented approach (with extensions such as push support) and described

a methodology to implement RESTful Web APIs on smart things either directly or

through small modular software applications called Smart Gateways.

• In the Findability Layer we proposed a simple model to describe smart things using

metadata implemented by re-using widespread standards such as microformats. We

further described a discovery and lookup infrastructure that can, for example, be

deployed alongside with Smart Gateways. This infrastructure discovers smart things

at a Web layer and allows users to run distributed search queries to find adequate

services to integrate in their composite applications. We further proposed extensions

to the lookup infrastructure making searching for real-world services more efficient.

• In the Sharing Layer we proposed an innovative architecture for sharing smart things

and their services by leveraging social networks as well as Web authentication and

authorization protocols. The architecture also acts as a federation of social networks

accessible through a single API that can be used by end-users, applications or smart

things to access resources in a uniform and secure manner.

194 Conclusions and Outlook

• In the Composition Layer we contributed to making Physical Mashups possible by

showing how a simple mashup editor could be adapted to support smart things. We

further proposed an architecture enabling the implementation of domain specific

Physical Mashups.

The architecture was implemented in several independent but interoperable services and

frameworks. Furthermore, we evaluated the implementations in two domains:

• We first studied Wireless Sensor Network platforms and applied the Web of Things

Architecture to two of them: an energy sensing platform and a general purpose

sensing platform.

• In a second phase, we applied the architecture to RFID and in particular to the

EPC Network.

For each domain, we evaluated the implementation first empirically by means of several

prototypes and applications, then in quantitative terms with performance studies. Finally

in qualitative terms in a user-study of the development experience as well as reports of

experience from external developers who used our open-source software. Overall the

results demonstrate that the Web of Things Architecture can significantly simplify the

development of applications for these platforms.

5.2 Discussion and Future Challenges

This thesis takes an exploratory approach to the Web integration of smart things.

Rather than focusing on one particular problem we looked at the bigger picture of this

integration and tried to understand and experience its implications. As a consequence,

the thesis provides a holistic view of this emerging domain but also emphasizes on several

challenges instrumental to the realization of the Web of Things.

Pushing Web and Internet Standards Forward First, although this thesis illustrates

the suitability of Web standards and protocols for communicating real-world objects it

also reveals their shortcomings. HTTP was designed as an architecture where clients

initiate interactions and this model works fine for control-oriented WoT applications.

However, monitoring-oriented applications are often event-based and thus smart things

should also be able to push data to clients (rather than being continuously polled). Using

syndication protocols such as Atom and AtomPub improves the model for monitoring

applications, since devices can publish asynchronously data using AtomPub on an inter-

mediate server. Nevertheless clients still have to pull data from Atom servers. Adapting

the client-server architecture of the Web to more real-time use-cases is now a core research

topic. A domain in which Internet and Web of Things researchers take an increasingly

more important place. As a consequence, standards such as HTML5 are moving towards

asynchronous bi-directional communication, e.g., with the Server Sent Events draft [271]

or HTML5 WebSockets [282] upon which we proposed a solution for the real-time WoT.

5.2. Discussion and Future Challenges 195

These initiatives emphasize on how relevant it is to further work on lightweight Web-based

messaging systems.

Furthermore, while the presented Smart Gateway and LLDU approach for the integration

of highly constrained devices has a number of advantages (e.g., scalability, caching, dis-

covery and lookup services, device management, etc.), it also introduces application level

(software) gateways which complexifies WoT deployments. Hence, research on optimizing

Internet and Web protocols for resource constrained devices is highly relevant. Projects

such as 6LoWPAN, which adapt the IPv6 protocols to low power small footprint radio

networks [148, 99] are important research efforts towards this direction. Closer to the

application layer, initiatives such as CoAP (Constrained Application Protocol) [176] pro-

pose a new application protocol borrowing the core concepts of the Web (e.g., REST and

HTTP) to better meet the needs of very constrained devices. While taking the approach

of building alternative (Web) architectures to achieve fine-tuned optimizations might not

be required anymore in a couple of years, these initiatives push forward the efforts towards

end-to-end IP and Web networks of smart things.

Deploying the Web of Things In this thesis particular care was given to test the

proposed architectures by building concrete prototypes and evaluating them with actual

devices. However, most of these prototypes were deployed and evaluated in a lab environ-

ment (except for the Energie Visible prototype presented in Chapter 3). More generally,

there is a significant lack of large-scale real-world deployments for the Web of Things,

perhaps because the WoT research community as defined in this thesis has only recently

emerged. However, the vision behind the Web of Things is to implement a global net-

work of smart things. Hence, future work should also focus on larger deployments of the

developed concepts and technologies that will certainly raise challenging issues but also

perhaps make an even stronger point for using Web standards. Efforts should also be

made to bring these technologies closer to real-world use-cases and to the business. To-

wards this aim we open-sourced several of the software components that were presented

in this thesis and they are increasingly being used by third-parties to implement their

particular use-cases. In this direction, strategic alliances such as the IPSO (IP for Smart

Objects) [244] work on the industrial dissemination of the Internet and Web of Things

and emphasize the relevance of these topics outside of academic research.

Freeing the Social WoT The recent emergence of a Social Web of Things offers some

unprecedented opportunities to use social connections and their underlying social graphs

to share digital artifacts and make them more socially aware. The Sharing Layer of this

thesis only scratches the surface of applications enabled by bridging the gap between

social networks and networks of objects. Object to object communication, objects to

people communication and actuation of the physical world based on processing social

event streams are just a few examples that are increasingly being explored. However,

WoT applications leveraging social networks also face important challenges. First, appli-

cations built using social network APIs are also strongly coupled with the social network

196 Conclusions and Outlook

platforms, and so are their users. Additionally, social networks APIs offer different func-

tionalities, therefore it is difficult to group them under a single common denominator.

Several initiatives attempt to solve these problems such as the OpenSocial standards pre-

sented before. Initially started by Google, many social networks such as Orkut, Linkedin,

Netlog, Yahoo!, Hi5, Myspace and many others have also joined and implemented the

standards in their APIs. However, while the initiative has a lot of potential, the current

implementations are not entirely homogeneous yet and still under construction for most

of them. Moreover, some of the major social networks do not comply with OpenSocial as

of today, most likely due to the strategic implications of such standards [291].

Once smart things increasingly blend with social networks, these challenges will have im-

portant consequences, and hence it is highly relevant for researchers to work on preventing

users from social networks lock-in. Our implementation of the Social Access Controller

supporting several social networks and offering a unified access to their basic data is a

step towards this direction but research should further explore the notion of meta social

networks for the WoT. Furthermore, ensuring portability of users or things-generated data

will be a significant and necessary step to move towards a truly open and interoperable

Social Web of Things.

Increasing the Intelligence The Findability Layer presented in this thesis is a first step

towards more intelligence on top of the WoT. However, it raises a number of issues and

paves the way for future work. First, the presented approach enables users to search for

smart things as well as the automatic generation of mashup building-blocks. It does not,

however, enable a complete and dynamic thing to thing service discovery where smart

things can use and understand each others services in an entirely automated way. The

automatic mashability of the physical world is thus yet to be implemented and has been

on the agenda of researchers for several years already.

Furthermore, this thesis and most of the current research in the WoT has been focusing

on accessibility: Making smart things accessible and enabling cross-integration with other

devices and services on the Web. One of the natural follow-ups of this research is intelli-

gence and reasoning: Given the fact that smart things sense the physical world, how do

we develop, in an open and loosely-coupled way, frameworks, languages and algorithms

that extract meaning from – and react upon – these valuable streams of sensed data?

Final Thoughts This thesis illustrates how introducing support for Web standards at

the device-level (in a direct or Smart Gateways mediated way) is beneficial for developing

a new generation of networked devices that are much simpler to deploy, program, and

reuse. We illustrate how applying the design principles that supported the success of the

Web and in particular openness, connectedness and simplicity can significantly ease the

development process on top of smart things. Thanks to the wide-spread deployments

of Web browsers (e.g., in desktop computers, mobile phones, machines, modern home

appliances, etc.), and to the ubiquitous HTTP support in programming and scripting

5.2. Discussion and Future Challenges 197

languages, we tap into very large communities (e.g., Web developers) as potential appli-

cation developers for the WoT. Furthermore, with Physical Mashups we demonstrated

how tech-savvies and end-users are given the power to develop small but tailored appli-

cations on top of smart things. As a consequence, we believe that the Web of Things

Architecture has the potential to foster open public innovation, leading to an increasing

number of interesting applications involving smart things.

In this thesis, we demonstrate the fact that the Web of Things is interesting not only

because it forces smart things to all understand the same basic and interoperable stan-

dards but also because it significantly eases the direct integration of smart things with

an impressive number of services on the Web: Composition tools, visualization APIs, dis-

tributed data-stores, app-stores, cloud infrastructures, social networks, (micro) blogging

services, search engines, etc. Through the presented architecture smart things become

seamlessly part of the programmable, real-time, semantic and social Web.

198 Conclusions and Outlook

Bibliography

[1] K. Aberer, M. Hauswirth, and A. Salehi. Infrastructure for Data Processing in

Large-Scale Interconnected Sensor Networks. In Proc. of the International Confer-

ence on Mobile Data Management, pages 198–205, 2007.

[2] W. Abrahamse, L. Steg, C. Vlek, and T. Rothengatter. A review of intervention

studies aimed at household energy conservation. Journal of Environmental Psychol-

ogy, 25(3):273–291, 2005.

[3] Robert Adelmann, Marc Langheinrich, and Christian Floerkemeier. A Toolkit for

Bar-Code-Recognition and -Resolving on Camera Phones Jump Starting the In-

ternet of Things. In Proc. of the workshop on Mobile and Embedded Interactive

Systems (MEIS’06) at Informatik 2006. GI Lecture Notes in Informatics Series

(LNI), Dresden, Germany, 2006.

[4] Azucena Guillen Aguilar. Exploring Physical Mashups on Mobile Devices. Master

thesis, ETH Zurich, Switzerland, 2010.

[5] Ryan Aipperspach, Ben Hooker, and Allison Woodruff. The heterogeneous home.

Interactions, 16:35–38, January 2009.

[6] I. F Akyildiz, Weilian Su, Y. Sankarasubramaniam, and E. Cayirci. A survey on

sensor networks. IEEE Communications Magazine, 40(8):102– 114, August 2002.

[7] Rosa Alarcón and Erik Wilde. RESTler: crawling RESTful services. In Proc. of the

19th international conference on World Wide Web (WWW ’10), pages 1051–1052,

New York, NY, USA, 2010. ACM.

[8] Subbu Allamaraju. RESTful Web Services Cookbook. Yahoo Press, March 2010.

[9] John Allsopp. Microformats: Empowering Your Markup for Web 2.0. friendsofED,

March 2007.

[10] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services:

Concepts, Architectures and Applications. Springer, December 2010.

200 Bibliography

[11] W.T. Balke and M. Wagner. Through different eyes: assessing multiple conceptual

views for querying web services. In Proc. of the 13th international World Wide Web

conference (WWW ’04), pages 196–205, New York, NY, USA, 2004. ACM.

[12] Rajiv D. Banker, Srikant M. Datar, Chris F. Kemerer, and Dani Zweig. Software

complexity and maintenance costs. Communications of the ACM, 36:81–94, Novem-

ber 1993.

[13] M. Baqer and A. Kamal. S-Sensors: Integrating physical world inputs with social

networks using wireless sensor networks. In Proc. of the 5th International Conference

on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP 2009),

pages 213–218, Melbourne, Australia, 2009.

[14] John Barton, Tim Kindberg, Hui Dai, Nissanka B Priyantha, and Fahd Al-bin ali.

Sensor-enhanced mobile web clients: an XForms approach. In Proc. of the 12th

international conference on World Wide Web (WWW ’03), pages 80–89, Budapest,

Hungary, 2003. ACM.

[15] Michael Blackstock and Adrian Friday. Uniting Online Social Networks with Places

and Things. In Dominique Guinard, Vlad Trifa, and Erik Wilde, editors, Proc. of

the 2nd International Workshop on the Web of Things (WoT 2011), San Fransisco,

USA, 2011. ACM.

[16] Miodrag Bolic and David Simplot-Ryl. RFID Systems: Research Trends and Chal-

lenges. Wiley, September 2010.

[17] Rachel Botsman and Roo Rogers. What’s Mine Is Yours: The Rise of Collaborative

Consumption. HarperBusiness, September 2010.

[18] Mike Botts and Alex Robin. OpenGIS Sensor Model Language (SensorML) Imple-

mentation Specification, 2007.

[19] Danah M. Boyd and Nicole B. Ellison. Social Network Sites: Definition, History,

and Scholarship. Journal of ComputerMediated Communication, 13(1):210–230,

October 2008.

[20] J. Brandt, P.J. Guo, J. Lewenstein, S.R. Klemmer, and M. Dontcheva. Writing

Code to Prototype, Ideate, and Discover. IEEE Software, 26(5):18–24, 2009.

[21] Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual Web

search engine. In Proc. of the seventh international conference on World Wide Web,

WWW ’98, pages 107–117, Brisbane, Australia, 1998. Elsevier Science Publishers

B. V.

[22] Andreas Brodt and Daniela Nicklas. The TELAR mobile mashup platform for

Nokia internet tablets. In Proc. of the 11th international conference on Extending

DataBase Technology: Advances in database technology (EDBT ’08), pages 700–704,

Nantes, France, 2008. ACM.

Bibliography 201

[23] Gregor Broll, John Hamard, Massimo Paolucci, Markus Haarländer, Matthias Wag-

ner, Sven Siorpaes, Enrico Rukzio, Albrecht Schmidt, and Kevin Wiesner. Mobile

interaction with web services through associated real world objects. In Proc. of the

9th international conference on Human computer interaction with mobile devices

and services (MobileHCI ’07), pages 319–321, New York, NY, USA, 2007. ACM.

[24] Gregor Broll, Sven Siorpaes, Enrico Rukzio, Massimo Paolucci, John Hamard,

Matthias Wagner, and Albrecht Schmidt. Supporting Mobile Service Usage through

Physical Mobile Interaction. In Fifth Annual IEEE International Conference on

Pervasive Computing and Communications (PerCom ’07), pages 262–271. Ieee,

2007.

[25] J. Bungo. Embedded Systems Programming in the Cloud: A Novel Approach for

Academia. IEEE Potentials, 30(1):17–23, 2011.

[26] T. Burbridge and M. Harrison. Security considerations in the design and peering of

RFID Discovery Services. In Proc. of the IEEE International Conference on RFID,

pages 249–256. IEEE, April 2009.

[27] Davide Carboni and Pietro Zanarini. Wireless wires: let the user build the ubiqui-

tous computer. In Proc. of the 6th international conference on Mobile and Ubiquitous

Multimedia (MUM ’07), pages 169–175, Oulu, Finland, 2007. ACM.

[28] Gong Chen, Nathan Yau, Mark Hansen, and Deborah Estrin. Sharing Sensor Net-

work Data. Technical report, UC Los Angeles, 2007.

[29] Marshini Chetty, David Tran, and Rebecca E Grinter. Getting to green: under-

standing resource consumption in the home. In Proc. of the 10th International

Conference on Ubiquitous Computing (UbiComp ’08), pages 242–251, Seoul, Korea,

2008. ACM.

[30] Paul Couderc. Spreading the web. In Marco Conti, Silvia Giordano, Enrico Gregori,

and Stephan Olariu, editors, Personal Wireless Communications, volume 2775 of

LNCS, pages 375–384. Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[31] Marco Crasso, Alejandro Zunino, and Marcelo Campo. Easy web service discovery:

A query-by-example approach. Science of Computer Programming, 71(2):144–164,

April 2008.

[32] Fred D. Davis. Perceived Usefulness, Perceived Ease of Use, and User Acceptance

of Information Technology. MIS Quarterly, 13(3):319–340, 1989.

[33] Stephen Dawson-Haggerty, Xiaofan Jiang, and Gilman Tolle. sMAP: a simple mea-

surement and actuation profile for physical information. In Proc. of the 8th ACM

Conference on Embedded Networked Sensor Systems (Sensys ’10), pages 197–210,

New York, NY, USA, 2010. ACM.

[34] J.D. Day and H. Zimmermann. The OSI reference model. Proceedings of the IEEE,

71(12):1334–1340, 1983.

202 Bibliography

[35] S. de Deugd, R. Carroll, K.E. Kelly, B. Millett, and J. Ricker. SODA: Service

Oriented Device Architecture. Pervasive Computing, IEEE, 5(3):94–96, 2006.

[36] L. de Souza, P. Spiess, D. Guinard, M. Köhler, S. Karnouskos, and D. Savio.

Socrades: A web service based shop floor integration infrastructure. In Christian

Floerkemeier, Marc Langheinrich, Elgar Fleisch, Friedemann Mattern, and San-

jay E. Sarma, editors, Proc. of the Internet of Things Conference (IoT ’08), LNCS,

pages 50–67, Zurich, Switzerland, March 2008. Springer Berlin Heidelberg.

[37] Robert Dickerson, Jiakang Lu, Jian Lu, and Kamin Whitehouse. Stream Feeds -

An Abstraction for the World Wide Sensor Web. In Proc. of the Internet of Things

Conference (IoT ’08), LNCS, pages 360–375, Zurich, Switzerland, 2008. Springer

Berlin Heidelberg.

[38] Bettina Dober. Exploring Query Augmentation for the SOCRADES Application

Service Catalogue. Master thesis, University of Fribourg, Switzerland, 2009.

[39] W. Drytkiewicz, I. Radusch, S. Arbanowski, and R. Popescu-Zeletin. pREST: a

REST-based protocol for pervasive systems. In Proc. of the IEEE International

Conference on Mobile Ad-hoc and Sensor Systems, pages 340–348. IEEE, 2004.

[40] Adam Dunkels. Full TCP/IP for 8-bit architectures. In Proc. of the 1st international

conference on Mobile Systems, Applications and Services, MobiSys ’03, pages 85–98,

New York, NY, USA, 2003. ACM.

[41] S. Duquennoy, G. Grimaud, and J.-J. Vandewalle. Consistency and scalability in

event notification for embedded Web applications. In Proc. of the 11th IEEE In-

ternational Symposium on Web Systems Evolution (WSE ’09), pages 89–98. IEEE,

2009.

[42] Simon Duquennoy, Gilles Grimaud, and J.J. Vandewalle. The Web of Things: in-

terconnecting devices with high usability and performance. In Proc. of the Interna-

tional Conference on Embedded Software and Systems, pages 323–330, HangZhou,

Zhejiang, China, May 2009. IEEE.

[43] Charles Engelke and Craig Fitzgerald. Replacing legacy web services with RESTful

services. In Proc. of the First International Workshop on RESTful Design (WS-

REST ’10), pages 27–30, Raleigh, North Carolina, 2010. ACM.

[44] EPCglobal. EPC Information Services (EPCIS) Version 1.0.1 Specification. Tech-

nical report, GS1, 2007.

[45] EPCglobal. The Application Level Events (ALE) Specification ver 1.1.1. Technical

report, GS1, 2009.

[46] EPCglobal. EPC Tag Data Standard. Technical report, GS1, 2010.

[47] EPCglobal. Low Level Reader Protocol (LLRP) ver. 1.1. Technical report, GS1,

2010.

[48] Eran Hammer-Lahav. The OAuth 1.0 Protocol. Technical report, April 2010.

Bibliography 203

[49] Thomas Erl. Service-Oriented Architecture: A Field Guide to Integrating XML and

Web Services. Prentice Hall, April 2004.

[50] R. Fielding. Architectural styles and the design of network-based software architec-

tures. Phd thesis, 2000.

[51] R Fielding, J Gettys, J C Mogul, H Frystyk, L Masinter, P Leach, and Tim Berners-

Lee. Hypertext Transfer Protocol-HTTP/1.1. Technical report, World Wide Web

Consortium, 1999.

[52] Klaux Finkenzeller and D. Mueller. RFID Handbook: Fundamentals and Applica-

tions in Contactless Smart Cards, Radio Frequency Identification and Near-Field

Communication. Wiley, second edition, 2010.

[53] C. Fischer. Feedback on household electricity consumption: a tool for saving energy?

Journal of Energy Efficiency, 1(1):79–104, 2008.

[54] Christian Floerkemeier. EPC-Technologie vom Auto-ID Center zu EPCglobal. In

Elgar Fleisch and Friedemann Mattern, editors, Das Internet der Dinge, pages 87–

100. Springer-Verlag, 2005.

[55] Christian Floerkemeier. Integrating RFID Readers in the Enterprise IT Overview of

Intra-organizational RFID System Services and Architectures. In Integrating RFID

Readers in Enterprise IT, pages 269–295. John Wiley & Sons, Ltd, 2010.

[56] Christian Floerkemeier and Matthias Lampe. Facilitating RFID development with

the accada prototyping platform. In Fifth IEEE International Conference on Per-

vasive Computing and Communications Workshops (PerCom ’07), pages 495–500,

New York, NY, USA, 2007. IEEE Computer Society.

[57] Christian Floerkemeier, Christof Roduner, and Matthias Lampe. RFID application

development with the Accada middleware platform. IEEE Systems Journal, 1(2):82–

94, December 2007.

[58] C. Frank, P. Bollinger, C. Roduner, and W. Kellerer. Objects Calling Home: Lo-

cating Objects Using Mobile Phones. In Proc. of the International Conference on

Pervasive Computing (Pervasive ’07), Toronto, Canada, 2007.

[59] Christian Frank, Philipp Bolliger, Friedemann Mattern, and Wolfgang Kellerer. The

Sensor Internet at Work: Locating Everyday Items Using Mobile Phones. Pervasive

and Mobile Computing, 4(3):421–447, June 2008.

[60] Jon Froehlich. Promoting Energy Efficient Behaviors in the Home through Feedback

: The Role of Human-Computer Interaction. Computing Systems, 9:10, 2009.

[61] Patrik Fuhrer and Dominique Guinard. Building a Smart Hospital using RFID

Technologies. In Proc. of the European Conference on eHealth (ECEH), Fribourg,

Switzerland, October 2006.

204 Bibliography

[62] Erich Gamma, Richard Helm, Ralph Johnson, and J. Vlissides. Design patterns:

elements of reusable object-oriented software, volume 206. Addison-wesley Reading,

MA, November 1995.

[63] David Gefen and Mark Keil. The impact of developer responsiveness on perceptions

of usefulness and ease of use: an extension of the technology acceptance model.

SIGMIS Database, 29:35–49, April 1998.

[64] Hans Gellersen, Carl Fischer, and Dominique Guinard. Supporting device discov-

ery and spontaneous interaction with spatial references. Journal of Personal and

Ubiquitous Computing (PUC), 2009.

[65] N. Gershenfeld and D. Cohen. Internet 0: Interdevice Internetworking - End-to-

End Modulation for Embedded Networks. Circuits and Devices Magazine, IEEE,

22(5):48–55, 2006.

[66] Antonio Goncalves. Beginning Java EE 6 with GlassFish 3. Apress, 2 edition,

August 2010.

[67] W. I Grosky, A. Kansal, S. Nath, Jie Liu, and Feng Zhao. SenseWeb: An Infras-

tructure for Shared Sensing. IEEE Multimedia, 14(4):8–13, December 2007.

[68] Dominique Guinard. Mashing up your web-enabled home. In Proc. of the 10th

International conference on Current trends in Web Engineering (ICWE ’10), pages

442–446, Vienna, Austria, July 2010. Springer-Verlag.

[69] Dominique Guinard, Oliver Baecker, and Florian Michahelles. Supporting a mobile

lost and found community. In Proc. of the 10th international conference on Human

Computer Interaction with mobile devices and services (Mobile HCI ’08), pages

407–410. ACM, September 2008.

[70] Dominique Guinard, Oliver Baecker, Patrik Spiess, Stamatis Karnouskos, Moritz

Koehler, Luciana Moreira Sa De Souza, Domnic Savio, and Mihai Vlad Trifa. On-

demand provisionning of services running on embedded devices, Patent, 2010.

[71] Dominique Guinard, Mathias Fischer, and Vlad Trifa. Sharing using social networks

in a composable web of things. In Proc. of the First IEEE International Workshop

on the Web of Things (WoT 2010), pages 702–707, Mannheim, Germany, March

2010. IEEE.

[72] Dominique Guinard, Christian Floerkemeier, and Sanjay Sarma. Cloud Computing,

REST and Mashups to Simplify RFID Application Development and Deployment.

In Proc. of the 2nd International Workshop on the Web of Things (WoT 2011), San

Fransisco, USA, June 2011. ACM.

[73] Dominique Guinard, Iulia Ion, and Simon Mayer. In Search of an Internet of Things

Service Architecture: REST or WS-*? A Developers’ Perspective. In Proc. of

Mobiquitous 2011 (8th International ICST Conference on Mobile and Ubiquitous

Systems)., Copenhagen, Denmark, 2011.

Bibliography 205

[74] Dominique Guinard, Mathias Mueller, and Jacques Pasquier. Giving RFID a REST:

Building a Web-Enabled EPCIS. In Proc. of the International conference on the

Internet of Things (IoT ’10), LNCS, Tokyo, Japan, November 2010. Springer Berlin

/ Heidelberg.

[75] Dominique Guinard, Mathias Mueller, and Vlad Trifa. RESTifying Real-World

Systems: a Practical Case Study in RFID, chapter 16. Springer, August 2011.

[76] Dominique Guinard and Vlad Trifa. Towards the web of things: Web mashups

for embedded devices. In Proc. of the Second Workshop on Mashups, Enterprise

Mashups and Lightweight Composition on the Web (MEM ’09), WWW ’09, Madrid,

Spain, April 2009. ACM.

[77] Dominique Guinard, Vlad Trifa, Stamatis Karnouskos, Patrik Spiess, and Domnic

Savio. Interacting with the SOA-Based Internet of Things: Discovery, Query, Selec-

tion, and On-Demand Provisioning of Web Services. IEEE Transactions on Services

Computing, 3(3):223–235, February 2010.

[78] Dominique Guinard, Vlad Trifa, Friedemann Mattern, and Erik Wilde. From the

Internet of Things to the Web of Things: Resource-oriented Architecture and Best

Practices. In Dieter Uckelmann, Mark Harrison, and Florian Michahelles, edi-

tors, Architecting the Internet of Things, pages 97–129. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2011.

[79] Dominique Guinard, Vlad Trifa, Thomas Pham, and Olivier Liechti. Towards phys-

ical mashups in the web of things. In Proc. of the 6th International Conference on

Networked Sensing Systems (INSS ’09), pages 1–4, Pittsburgh, USA, June 2009.

IEEE.

[80] Dominique Guinard, Vlad Trifa, Patrik Spiess, Bettina Dober, and Stamatis

Karnouskos. Discovery and On-Demand Provisionning of Real-World Web Ser-

vices. In Proc. of the IEEE International Conference on Web Services (ICWS ’09),

Los Angeles, California, USA, July 2009.

[81] Dominique Guinard, Vlad Trifa, and Erik Wilde. A Resource Oriented Architecture

for the Web of Things. In Proc. of the 2nd International Conference on the Internet

of Things (IoT 2010), LNCS, Tokyo, Japan, November 2010. Springer Berlin /

Heidelberg.

[82] Dominique Guinard, Felix von Reischach, and Florian Michahelles. MobileIoT

Toolkit: Connecting the EPC Network to MobilePhones. In Proceedings of Mobile

Interaction with the Real World (MIRW ’08), Amsterdam, Netherlands, September

2008. The University of Oldenburg.

[83] Dominique Guinard, Markus Weiss, and Vlad Trifa. Are you energy-efficient? sense

it on the web. In Adjunct Proc. of the International Conference on Pervasive Com-

puting (Pervasive ’09), Nara, Japan, May 2009. Springer.

206 Bibliography

[84] V. Gupta, P. Udupi, and A. Poursohi. Early lessons from building Sensor.Network:

an open data exchange for the web of things. In Proc. of the First International

Workshop on the Web of Things (WoT 2010), pages 738–744. IEEE, 2010.

[85] Vipul Gupta, Ron Goldman, and Poornaprajna Udupi. A network architecture for

the Web of Things. In Proc. of the Second International Workshop on Web of Things

(WoT 2011), WoT ’11, pages 3:1–3:6, San Francisco, California, 2011. ACM.

[86] Marc J Hadley. Web application description language (WADL). Technical report,

Sun Microsystems, Inc., 2006.

[87] Richard Hall, Karl Pauls, Stuart McCulloch, and David Savage. OSGi in Action:

Creating Modular Applications in Java. Manning Publications, April 2011.

[88] Mark Halvorson and Andy Smith. OpenSocial 2.0 Specification. Technical report,

Open Social Working Group, 2010.

[89] Haodong Wang, C. C Tan, and Qun Li. Snoogle: A Search Engine for Pervasive

Environments. IEEE Transactions on Parallel and Distributed Systems, 21(8):1188–

1202, August 2010.

[90] B. Hartmann and S. Doorley. Hacking, mashing, gluing: understanding opportunis-

tic design. IEEE Pervasive Computing, 7(3):46–54, 2008.

[91] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen. The

Gator Tech Smart House: a programmable pervasive space. Computer, 38(3):50–60,

2005.

[92] Johannes Helander. Deeply embedded XML communication: towards an interop-

erable and seamless world. In Proc. of the 5th ACM international conference on

embedded software (EMSOFT ’05), pages 62–67, Jersey City, NJ, USA, 2005. ACM.

[93] M. Hepp, K. Siorpaes, and D. Bachlechner. Harvesting Wiki Consensus: Using

Wikipedia Entries as Vocabulary for Knowledge Management. IEEE Internet Com-

puting,, 11(5):54–65, 2007.

[94] Soojung Hong. Mobile Discovery in a Web of Things. Master thesis, ETH Zurich,

Switzerland, 2010.

[95] A. Hornsby and E. Bail. µXMPP: Lightweight implementation for low power oper-

ating system Contiki. In International Conference on Ultra Modern Telecommuni-

cations (ICUMT ’09), pages 1–5. IEEE, October 2009.

[96] A. Hornsby and R. Walsh. From instant messaging to cloud computing, an XMPP

review. pages 1–6. IEEE, June 2010.

[97] Volker Hoyer, Katarina Stanoesvka-Slabeva, Till Janner, and Christoph Schroth.

Enterprise Mashups: Design Principles towards the Long Tail of User Needs. In

IEEE International Conference on Services Computing (SCC ’08), volume 2, pages

601–602, 2008.

Bibliography 207

[98] J.W. Hui and D.E. Culler. Extending IP to low-power, wireless personal area net-

works. IEEE Internet Computing, 12(4):37–45, 2008.

[99] J.W. Hui and D.E. Culler. IP is dead, long live IP for wireless sensor networks. In

Proceedings of the 6th ACM conference on Embedded network sensor systems, pages

15–28, Raleigh, NC, USA, 2008. ACM.

[100] Jonathan J Hull, Xu Liu, Berna Erol, Jamey Graham, and Jorge Moraleda. Mobile

image recognition: architectures and tradeoffs. In Proc. of the Eleventh Workshop

on Mobile Computing Systems & Applications (HotMobile ’10), pages 84–88, New

York, NY, USA, 2010. ACM.

[101] Iulia Ion, Marc Langheinrich, Ponnurangam Kumaraguru, and Srdjan Čapkun.

Influence of user perception, security needs, and social factors on device pairing

method choices. In Proc. of SOUPS 2010, SOUPS ’10, pages 6:1–6:13, Redmond,

Washington, USA, 2010. ACM.

[102] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L.

Stewart. HTTP Authentication: Basic and Digest Access Authentication. Technical

report, IETF, 1999.

[103] F. Jammes and H. Smit. Service-oriented paradigms in industrial automation. IEEE

Transactions on Industrial Informatics, 1(1):62–70, 2005.

[104] François Jammes, Antoine Mensch, and Harm Smit. Service-oriented device com-

munications using the devices profile for web services. In Proceedings of the 3rd

international workshop on Middleware for pervasive and ad-hoc computing, MPAC

’05, pages 1–8, New York, NY, USA, 2005. ACM.

[105] Xiaofan Jiang, Stephen Dawson-Haggerty, Prabal Dutta, and David Culler. Design

and implementation of a high-fidelity AC metering network. In Proc. of the 2009 In-

ternational Conference on Information Processing in Sensor Networks (IPSN ’09),

pages 253–264. IEEE Computer Society, 2009.

[106] A. Juels. RFID security and privacy: a research survey. IEEE Journal on Selected

Areas in Communications, 24(2):381–394, February 2006.

[107] Andreas Kamilaris, Nicolas Iannarilli, Vlad Trifa, and Andreas Pitsillides. Bridging

the Mobile Web and the Web of Things in Urban Environments. In Proc. of the first

Workshop on the Urban Internet of Things (UrbanIoT ’10), Tokyo, Japan, 2010.

[108] S Karnouskos, D Savio, P Spiess, D Guinard, V Trifa, and O Baecker. Real-world

Service Interaction with Enterprise Systems in Dynamic Manufacturing Environ-

ments. In Lyes Benyoucef and Bernard Grabot, editors, Artificial Intelligence Tech-

niques for Networked Manufacturing Enterprises Management, Springer Series in

Advanced Manufacturing, pages 423–457. Springer London, 2010.

[109] A. Katasonov and M. Palviainen. Towards ontology-driven development of applica-

tions for smart environments. In Proc. the International Conference on Pervasive

208 Bibliography

Computing and Communications Workshops (PERCOM Workshops 2010), pages

696–701. IEEE, April 2010.

[110] Tim Kindberg, John Barton, Jeff Morgan, Gene Becker, Debbie Caswell, Philippe

Debaty, Gita Gopal, Marcos Frid, Venky Krishnan, Howard Morris, and Others.

People, places, things: Web presence for the real world. Mobile Networks and

Applications, 7(5):365–376, 2002.

[111] Jacek Kopecký, Karthik Gomadam, and Tomas Vitvar. hRESTS: An HTML Mi-

croformat for Describing RESTful Web Services. pages 619–625. IEEE Computer

Society, 2008.

[112] Tiiu Koskela, Kaisa Väänänen-Vainio-Mattila, and Lauri Lehti. Home Is Where

Your Phone Is: Usability Evaluation of Mobile Phone UI for a Smart Home. In

Stephen Brewster and Mark Dunlop, editors, Mobile Human-Computer Interaction

MobileHCI 2004, volume 3160 of LNCS, pages 74–85. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2004.

[113] Mathias Kovatsch, Markus Weiss, and Dominique Guinard. Embedding internet

technology for home automation. In Emerging Technologies and Factory Automation

(ETFA), 2010 IEEE Conference on, pages 1–8, Bilbao, Spain, September 2010.

IEEE.

[114] D. Kristol and L. Montulli. HTTP State Management Mechanism. Technical report,

1997.

[115] Kirk L Kroeker. The evolution of virtualization. Communications of the ACM,

52:18–20, March 2009.

[116] Roland Kübert, Gregory Katsaros, and Tinghe Wang. A RESTful implementation

of the WS-agreement specification. In Proc. of the Second International Workshop

on RESTful Design (WS-REST ’11), WS-REST ’11, pages 67–72, New York, NY,

USA, 2011. ACM.

[117] Chris Kürschner, Cosmin Condea, Oliver Kasten, and Frédéric Thiesse. Discov-

ery Service Design in the EPCglobal Network. In Christian Floerkemeier, Marc

Langheinrich, Elgar Fleisch, Friedemann Mattern, and Sanjay E. Sarma, editors,

Proc. of the Internet of Things Conference (IoT ’08), volume 4952 of LNCS, pages

19–34, Zurich, Switzerland, 2008. Springer Berlin Heidelberg.

[118] Marc Langheinrich. Personal Privacy in Ubiquitous Computing – Tools and System

Support. PhD thesis, ETH Zurich, Zurich, Switzerland, May 2005.

[119] Jon Lathem, Karthik Gomadam, and Amit P Sheth. SA-REST and (S)mashups:

Adding Semantics to RESTful Services. In Proc. of the International Conference

on Semantic Computing (ICSC ’07), pages 469–476. IEEE Computer Society, 2007.

Bibliography 209

[120] J.S. Lee, Y.W. Su, and C.C. Shen. A comparative study of wireless protocols:

Bluetooth, UWB, ZigBee, and Wi-Fi. In Proc. of the 33rd Annual Conference of

the IEEEIndustrial Electronics Society (IECON 2007), pages 46–51. IEEE, 2007.

[121] Mark Lentczner and Donovan Preston. Reverse HTTP. Technical report, IETF,

March 2009.

[122] Joshua Lifton, Mark Feldmeier, Yasuhiro Ono, Cameron Lewis, and Joseph A Par-

adiso. A platform for ubiquitous sensor deployment in occupational and domestic

environments. In Proc. of the 6th international conference on Information pro-

cessing in sensor networks (IPSN ’07), pages 119–127, Cambridge, Massachusetts,

USA, 2007. ACM.

[123] Tao Lin, Hai Zhao, Jiyong Wang, Guangjie Han, and Jindong Wang. An Embedded

Web Server for Equipments. In Proc. of the International Symposium on Parallel

Architectures, Algorithms and Networks (ISPAN’04), Hong Kong, Hong Kong, 2004.

[124] Alexander Linden, Jackie Fenn, David W McCoy, David W Cearley, Nikos Drakos,

Jim Tully, Monica Basso, Phillip Redman, Erik Dorr, Allen Weiner, Kenshi

Tazaki, Ant Allan, Rafe John Graham Ball, Jim Sinur, Michael A Silver, Mar-

tin Gilliland, Carl Claunch, Ray Valdes, Betsy Burton, Jeff Woods, Nick Jones,

Jeffrey Mann, Whit Andrews, John Pescatore, Christophe Uzureau, Mary Knox,

Rita E Knox, Van L Baker, Mike McGuire, Leslie Fiering, Christopher Ambrose,

Steve Cramoysan, Bern Elliot, Bob Hafner, Yefim V Natis, Benoit J Lheureux,

Howard J Dresner, Michael J Blechar, Brian Gammage, and Mark A Margevicius.

Hype Cycle for Emerging Technologies 2005, August 2005.

[125] Peter Lubbers, Brian Albers, and Frank Salim. Pro HTML 5 Programming. Apress,

March 2010.

[126] T. Luckenbach, P. Gober, S. Arbanowski, A. Kotsopoulos, and K. Kim. TinyREST:

A protocol for integrating sensor networks into the internet. In Proc. of REALWSN,

Stockholm, Sweden, 2005. Citeseer.

[127] Liqian Luo, Aman Kansal, Suman Nath, and Feng Zhao. Sharing and exploring

sensor streams over geocentric interfaces. In Proc. of the 16th ACM SIGSPATIAL

international conference on advances in geographic information systems (GIS ’08),

pages 1–10, Irvine, California, 2008. ACM.

[128] Urs Maeder. Smart Lost & Found Services for Insurers. Master thesis, University

of St-Gallen, Switzerland, 2007.

[129] M. Marin-Perianu, N. Meratnia, P. Havinga, L.M.S. de Souza, J. Muller, P. Spieß,

S. Haller, T. Riedel, C. Decker, and G. Stromberg. Decentralized enterprise systems:

a multiplatform wireless sensor network approach. IEEE Wireless Communications,

14(6):57–66, 2007.

[130] Toshiyuki Masui, Koji Tsukada, and Itiro Siio. MouseField: A Simple and Versatile

Input Device for Ubiquitous Computing. In Nigel Davies, Elizabeth D. Mynatt, and

210 Bibliography

Itiro Siio, editors, Proc. of the Conference on Ubiquitous Computing (Ubicomp ’04),

volume 3205 of LNCS, pages 319–328, Berlin, Heidelberg, 2004. Springer Berlin

Heidelberg.

[131] Mathias Fischer. Social Access Controller: Sharing, Protecting and Publishing

RESTful Resources through Social Networks. Semester thesis, ETH Zurich, Zurich,

Switzerland, July 2009.

[132] Kieran Mathieson, Eileen Peacock, and Wynne W Chin. Extending the technol-

ogy acceptance model: the influence of perceived user resources. ACM SIGMIS

Database, 32:86–112, July 2001.

[133] Friedemann Mattern. Die technische Basis für das Internet der Dinge. In Elgar

Fleisch and Friedemann Mattern, editors, Das Internet der Dinge, pages 39–66.

Springer-Verlag, 2005.

[134] Friedemann Mattern and Christian Floerkemeier. From the Internet of Computers

to the Internet of Things. In Kai Sachs, Ilia Petrov, and Pablo Guerrero, editors,

Active Data Management to Event-Based Systems and More, volume 6462 of LNCS,

pages 242–259. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2010.

[135] Friedemann Mattern, Thorsten Staake, and Markus Weiss. ICT for green: how

computers can help us to conserve energy. In Proc. of the 1st International Confer-

ence on Energy-Efficient Computing and Networking (e-Energy ’10), e-Energy ’10,

pages 1–10, Passau, Germany, 2010. ACM.

[136] E. Michael Maximilien. Mobile Mashups: Thoughts, Directions, and Challenges. In

Proc. of the IEEE International Conference on Semantic Computing, pages 597–

600, 2008.

[137] Simon Mayer. Deployment Support for an Infrastructure for Web-enabled Devices.

Master thesis, ETH Zurich, Switzerland, 2010.

[138] Simon Mayer and Dominique Guinard. An Extensible Discovery Service for Smart

Things. In Proc. of the 2nd International Workshop on the Web of Things (WoT

2011)., San Fransisco, USA, June 2011. ACM.

[139] Michelle L Mazurek, J. P Arsenault, Joanna Bresee, Nitin Gupta, Iulia Ion,

Christina Johns, Daniel Lee, Yuan Liang, Jenny Olsen, Brandon Salmon, Richard

Shay, Kami Vaniea, Lujo Bauer, Lorrie Faith Cranor, Gregory R Ganger, and

Michael K Reiter. Access Control for Home Data Sharing: Attitudes, Needs and

Practices. In Proc. of the 28th international conference on Human factors in com-

puting systems (CHI 2010), CHI ’10, pages 645–654, New York, NY, USA, 2010.

ACM.

[140] T. Mikkonen and A. Salminen. Towards Pervasive Mashups in Embedded Devices.

In Proc. of the 16th IEEE International Conference on Embedded and Real-Time

Computing Systems and Applications (RTCSA’10), pages 35–42, 2010.

Bibliography 211

[141] Andrew D Miller and W. Keith Edwards. Give and take: a study of consumer

photo-sharing culture and practice. In Proc. of the SIGCHI conference on Human

factors in computing systems, CHI ’07, pages 347–356, New York, NY, USA, 2007.

ACM.

[142] Richard Monson-Haefel. J2EE Web Services: XML SOAP WSDL UDDI WS-I

JAX-RPC JAXR SAAJ JAXP. Addison-Wesley Professional, October 2003.

[143] Richard Monson-Haefel and Bill Burke. Enterprise JavaBeans 3.0. O’Reilly Media,

5 edition, May 2006.

[144] Peter Morville. Ambient Findability: What We Find Changes Who We Become.

O’Reilly Media, October 2005.

[145] Peter Morville and Louis Rosenfeld. Information Architecture for the World Wide

Web: Designing Large-Scale Web Sites. O’Reilly Media, third edit edition, Decem-

ber 2006.

[146] Luca Mottola and Gian Pietro Picco. Programming wireless sensor networks: Fun-

damental concepts and state of the art. ACM Comput. Surv., 43(3):19:1–19:51,

April 2011.

[147] Mathias Müller. Design and Implementation of a Web-enabled Electronic Product.

Master thesis, University of Fribourg, 2009.

[148] Geoff Mulligan. The 6LoWPAN architecture. In Proc. of the 4th workshop on

Embedded networked sensors (EmNets ’07), EmNets ’07, pages 78–82, Cork, Ireland,

2007. ACM.

[149] Lukas Naef. ClickScript a visual programming language in the browser. Master

thesis, ETH Zurich, Switzerland, 2009.

[150] L. O’Gorman and T. Pavlidis. Auto ID technology: From barcodes to biometrics.

IEEE Robotics & Automation Magazine, 6(1):4–6, 1999.

[151] Benedikt Ostermaier, Kay Römer, Friedemann Mattern, Michael Fahrmair, and

Wolfgang Kellerer. A Real-Time Search Engine for the Web of Things. In Pro-

ceedings of Internet of Things 2010 International Conference (IoT 2010), Tokyo,

Japan, November 2010.

[152] Danny Parker, David Hoak, Jamie Cummings, and Florida Solar. Pilot Evaluation of

Energy Savings and Persistence from Residential Energy Demand Feedback Devices

in a Hot Climate. In Proc of the ACEEE Summer Study on Energy Efficiency in

Buildings (ACEEE 2010), pages 245–259, 2010.

[153] Cesare Pautasso and Erik Wilde. Why is the web loosely coupled?: a multi-faceted

metric for service design. In Proc. of the 18th international conference on World

Wide Web (WWW ’09), pages 911–920, Madrid, Spain, April 2009. ACM.

[154] Cesare Pautasso, Olaf Zimmermann, and Frank Leymann. Restful web services

vs. big web services: making the right architectural decision. In Proc. of the 17th

212 Bibliography

international conference on World Wide Web (WWW ’08), pages 805–814, New

York, NY, USA, 2008. ACM.

[155] Thomas Pham. Resource Oriented Architecture in Wireless Sensor Network. Bach-

elor thesis, University of Applied Science of Western Switzerland, 2008.

[156] Antonio Pintus, Davide Carboni, and Andrea Piras. The Anatomy of a Large Scale

Social Web for Internet Enabled Objects. In Dominique Guinard, Vlad Trifa, and

Erik Wilde, editors, Proc. of the 2nd International Workshop on the Web of Things

(WoT 2011), San Fransisco, USA, 2011. ACM.

[157] N.B. Priyantha, Aman Kansal, Michel Goraczko, and Feng Zhao. Tiny web services:

design and implementation of interoperable and evolvable sensor networks. In Proc.

of the 6th ACM conference on Embedded Network Sensor Systems (SenSys ’08),

pages 253–266, Raleigh, NC, USA, 2008. ACM.

[158] T Quack, H Bay, and L Van Gool. Object Recognition for the Internet of Things.

In Christian Floerkemeier, Marc Langheinrich, Elgar Fleisch, Friedemann Mattern,

and Sanjay E Sarma, editors, First International Conference on the Internet of

Things (IoT 2008), volume 4952 of Lecture Notes in Computer Science, pages 230–

246. Springer-Verlag New York Inc, 2008.

[159] Jun Rekimoto, Brygg Ullmer, and Haruo Oba. DataTiles: a modular platform for

mixed physical and graphical interactions. In Proc. of the SIGCHI conference on

Human factors in computing systems (CHI ’01), CHI ’01, pages 269–276, Seattle,

Washington, United States, 2001. ACM.

[160] Leonard Richardson and Sam Ruby. RESTful web services. O’Reilly Media, May

2007.

[161] T. Riedel, N. Fantana, A. Genaid, D. Yordanov, H.R. Schmidtke, and M. Beigl.

Using web service gateways and code generation for sustainable IoT system devel-

opment. In Internet of Things (IOT), 2010, pages 1–8. IEEE, 2010.

[162] Joel J. P. C. Rodrigues and Paulo A. C. S. Neves. A survey on IP-based wireless

sensor network solutions. International Journal of Communication Systems, 2010.

[163] Marc Roelands, Laurence Claeys, Marc Godon, Marjan Geerts, Mohamed Ali Feki,

and Lieven Trappeniers. Enabling the Masses to Become Creative in Smart Spaces.

In Dieter Uckelmann, Mark Harrison, and Florian Michahelles, editors, Architecting

the Internet of Things, pages 37–64. Springer Berlin Heidelberg, 2011.

[164] Michael Rohs. Linking Physical and Virtual Worlds with Visual Markers and Hand-

held Devices. Phd thesis, ETH Zurich, Zurich, Switzerland, August 2005.

[165] Kay Römer, Thomas Schoch, Friedemann Mattern, and Thomas Dübendorfer.

Smart Identification Frameworks for Ubiquitous Computing Applications. Wire-

less Networks, 10(6):689–700, December 2004.

Bibliography 213

[166] K. Romer, B. Ostermaier, F. Mattern, M. Fahrmair, and W. Kellerer. Real-Time

Search for Real-World Entities: A Survey. Proceedings of the IEEE, 98(11):1887–

1902, 2010.

[167] Enrico Rukzio, Gregor Broll, Karin Leichtenstern, and Albrecht Schmidt. Mobile

Interaction with the Real World: An Evaluation and Comparison of Physical Mobile

Interaction Techniques, pages 1–18. Springer Berlin / Heidelberg, 2007.

[168] Daniel Salber, A.K. Dey, and G.D. Abowd. The context toolkit: aiding the de-

velopment of context-enabled applications. In Proc. of the SIGCHI conference on

Human factors in computing systems: the CHI is the limit, pages 434–441, Pitts-

burgh, Pennsylvania, United States, 1999. ACM.

[169] S. Sarma, D. Brock, and D. Engels. Radio frequency identification and the electronic

product code. IEEE Micro, 21(6):50–54, 2001.

[170] Sanjay Sarma, David L Brock, and Kevin Ashton. The Networked Physical World.

Technical report, MIT Auto-ID Labs, 2001.

[171] Albrecht Schmidt, Michael Beigl, and H.W. Gellersen. There is more to context

than location. Computers & Graphics, 23(6):893–901, November 1999.

[172] Patrick Schmitt. Adoption und Diffusion neuer Technologien am Beispiel der

Radiofrequenz-Identifikation (RFID). Phd thesis, ETH Zurich, 2008.

[173] Lars Schor, Philipp Sommer, and Roger Wattenhofer. Towards a zero-configuration

wireless sensor network architecture for smart buildings. In Proc. of the First

ACM Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings

(BuildSys ’09), pages 31–36. ACM, November 2009.

[174] P. Schramm, E. Naroska, P. Resch, J. Platte, H. Linde, G. Stromberg, and T. Sturm.

A service gateway for networked sensor systems. IEEE Pervasive Computing,

3(1):66– 74, March 2004.

[175] S. Senecal. The influence of online product recommendations on consumers’ online

choices. Journal of Retailing, 80(2):159, 2004.

[176] Z. Shelby. Embedded web services. IEEE Wireless Communications, 17(6):52–57,

December 2010.

[177] A. P Sheth, K. Gomadam, and J. Lathem. SA-REST: Semantically Interoperable

and Easier-to-Use Services and Mashups. IEEE Internet Computing, 11(6):91–94,

December 2007.

[178] A.S. Shirazi, C. Winkler, and A. Schmidt. SENSE-SATION: An extensible platform

for integration of phones into the Web. In Proc. of the Internet of Things 2010

International Conference (IoT 2010), pages 1–8, 2010.

[179] Shwetak Patel, Thomas Robertson, Julie Kientz, Matthew Reynolds, and Gregory

Abowd. At the Flick of a Switch: Detecting and Classifying Unique Electrical

214 Bibliography

Events on the Residential Power Line. In Proc. of the International Conference on

Ubiquitous Computing (UbiComp 2007), pages 271–288, 2007.

[180] Meredith M Skeels and Jonathan Grudin. When social networks cross boundaries:

a case study of workplace use of facebook and linkedin. In Proc. of the ACM

International Conference on Supporting Group Work (Group ’09), pages 95–104,

Sanibel Island, Florida, USA, 2009. ACM.

[181] H. Song, Doreen Cheng, A. Messer, and S. Kalasapur. Web Service Discovery Using

General-Purpose Search Engines. In Proc. of the IEEE International Conference on

Web Services (ICWS 2007), pages 265–271, 2007.

[182] Steve Souders. High Performance Web Sites: Essential Knowledge for Front-End

Engineers. O’Reilly Media, Inc., September 2007.

[183] Patrik Spiess, Stamatis Karnouskos, Dominique Guinard, Domnic Savio, Oliver

Baecker, Luciana Moreira Sa de Souza, and Vlad Trifa. SOA-based Integration of

the Internet of Things in Enterprise Services. In Proc of the IEEE International

Conference on Web Services (ICWS 2009), Los Angeles, California, USA, July 2009.

[184] Katarina Stanoevska-Slabeva and Thomas Wozniak. Cloud Basics An Introduction

to Cloud Computing. In Katarina Stanoevska-Slabeva, Thomas Wozniak, and Santi

Ristol, editors, Grid and Cloud Computing, chapter 4, pages 47–61. Springer, Berlin,

Heidelberg, 2010.

[185] V. Stirbu. Towards a RESTful Plug and Play Experience in the Web of Things. In

Proc. of the IEEE International Conference on Semantic Computing (ICSC ’08),

pages 512–517, 2008.

[186] J. Swartz. The growing magic of automatic identification. IEEE Robotics & Au-

tomation Magazine, 6(1):20–23, 56, 1999.

[187] C Tan, Bo Sheng, and Haodong Wang. Microsearch: When search engines meet

small devices. In Pervasive Computing, Sydney, Australia, 2008. Springer-Verlag.

[188] Schmid Thomas, Young Cho, and Mani B. Srivastava. Exploiting Social Networks

for Sensor Data Sharing with SenseShare. Technical report, CENS 5th Annual

Research Review, 2007.

[189] Ken Traub, Felice Armenio, Henri Barthel, Paul Dietrich, John Duker, Chris-

tian Floerkemeier, John Garrett, Mark Harrison, Bernie Hogan, Jin Mitsugi, Josef

Preishuber-Pfluegl, Oleg Ryaboy, Sanjay Sarma, KK Suen, and John Williams. The

EPCglobal Architecture Framework. Technical report, EPCglobal, 2010.

[190] Vlad Trifa, Dominique Guinard, Philipp Bolliger, and Samuel Wieland. Design of a

Web-based distributed location-aware infrastructure for mobile devices. In Proc. of

the First International Workshop on the Web of Things (WoT 2010), pages 714–719,

Mannheim, Germany, March 2010. IEEE.

Bibliography 215

[191] Vlad Trifa, Dominique Guinard, Vlatko Davidovski, Andreas Kamilaris, and Ivan

Delchev. Web-based Messaging Mechanisms for Open and Scalable Distributed

Sensing Applications. In Proceedings the International Conference on Web Engi-

neering (ICWE 2010), Vienna, Austria, July 2010.

[192] Vlad Trifa, Dominique Guinard, and Simon Mayer. Leveraging the Web to Build a

Distributed Location-aware Infrastructure for the Real World, chapter 17. Springer,

August 2011.

[193] Vlad Trifa, Samuel Wieland, Dominique Guinard, and T.M. Bohnert. Design and

implementation of a gateway for web-based interaction and management of embed-

ded devices. In Proceedings of the 2nd International Workshop on Sensor Network

Engineering (IWSNE 09), Marina del Rey, CA, USA, June 2009.

[194] Brygg Ullmer, Hiroshi Ishii, and Dylan Glas. mediaBlocks: physical containers,

transports, and controls for online media. In Proc. of the 25th annual conference

on Computer graphics and interactive techniques (SIGGRAPH ’98), pages 379–386,

New York, NY, USA, 1998. ACM.

[195] M M Van Raaij Theo and W Fred. A behavioral model of residential energy use.

Journal of Economic Psychology, 3(1):39–63, 1983.

[196] J.P. Vasseur and Adam Dunkels. Interconnecting smart objects with IP: the next

internet. Morgan Kaufmann Publishers Inc., June 2010.

[197] Juan Vazquez and Diego Lopez-de Ipina. Social Devices: Autonomous Artifacts

That Communicate on the Internet. In Proc. of the 1st international conference on

the Internet of Things (IoT 2008), pages 308–324, 2008.

[198] Jo Vermeulen, Kris Luyten, Karin Coninx, and Ruben Thys. Tangible Mashups:

Exploiting Links between the Physical and Virtual World. In Proc. of the 1st In-

ternational Workshop on System Support for the Internet of Things (WoSSIoT’07),

2007.

[199] Jo Vermeulen, Ruben Thys, Kris Luyten, and Karin Coninx. Making Bits and

Atoms Talk Today. In Proc. of the 1st International Workshop on Design and

Integration Principles for Smart Objects (DI PSO 2007), 2007.

[200] Felix von Reischach, Dominique Guinard, Florian Michahelles, and Elgar Fleisch.

A mobile product recommendation system interacting with tagged products. In

Proc. of PerCom 2009 (IEEE International Conference on Pervasive Computing

and Communications), Galveston, Texas, USA, March 2009.

[201] Felix Von Reischach, Florian Michahelles, Dominique Guinard, Robert Adelmann,

Elgar Fleisch, and A. Schmidt. An evaluation of product identification techniques

for mobile phones. In Proc. of the Conference in Human-Computer Interaction

(INTERACT 2009), pages 804–816, Uppsala, August 2009. Springer.

216 Bibliography

[202] Roy Want, Kenneth P Fishkin, Anuj Gujar, and Beverly L Harrison. Bridging

physical and virtual worlds with electronic tags. In Proc. of the SIGCHI conference

on Human factors in computing systems (CHI ’99), pages 370–377, Pittsburgh,

Pennsylvania, United States, 1999. ACM.

[203] Mark Weiser. The computer for the 21st century. Scientific American, 3:94–104,

July 1991.

[204] Markus Weiss and Dominique Guinard. Increasing energy awareness through web-

enabled power outlets. In Proceedings of the 9th International Conference on Mobile

and Ubiquitous Multimedia, page 20, Limassol, Cyprus, December 2010. ACM.

[205] Markus Weiss, Dominique Guinard, T. Staake, and Wolf Roediger. eMeter: An

interactive energy monitor. In Adjunct Proc. of the International Conference on

Ubiquitous Computing (UbiComp 2009), Orlando, Florida, USA, September 2009.

[206] Markus Weiss, Friedemann Mattern, Tobias Graml, Thorsten Staake, and Elgar

Fleisch. Handy feedback: connecting smart meters with mobile phones. In Proc.

of the 8th International Conference on Mobile and Ubiquitous Multimedia (MUM

’09), MUM ’09, pages 15:1–15:4, Cambridge, United Kingdom, 2009. ACM.

[207] E. Welbourne, L. Battle, G. Cole, K. Gould, K. Rector, S. Raymer, M. Balazinska,

and G. Borriello. Building the Internet of Things Using RFID: The RFID Ecosystem

Experience. IEEE Internet Computing, 13(3):48–55, June 2009.

[208] T. Wiechert, F. Thiesse, F. Michahelles, P. Schmitt, and E. Fleisch. Connecting

mobile phones to the Internet of things: A discussion of compatibility issues be-

tween EPC and NFC. In Americas Conference on Information Systems, AMCIS,

Keystone, Colorado, USA, 2007.

[209] Erik Wilde. Putting Things to REST. Technical report, School of Information, UC

Berkeley, November 2007.

[210] Erik Wilde. Feeds as Query Result Serializations. Technical Report 2009-030, April

2009.

[211] Jakkhupan Worapot, Yuefeng Li, and Arch-Int Somjit. Design and implementation

of the EPC Discovery Services with confidentiality for multiple data owners. In

Proc of the IEEE International Conference on RFID-Technology and Applications

(RFID-TA 2010), pages 19–25. IEEE, June 2010.

[212] Ke Xu, Xiaoqi Zhang, Meina Song, and Junde Song. Mobile Mashup: Architecture,

Challenges and Suggestions. In Proc. of the International Conference on Manage-

ment and Service Science (MASS ’09), pages 1–4, Beijing, China, September 2009.

[213] Kok-Kiong Yap, Vikram Srinivasan, and Mehul Motani. MAX: human-centric

search of the physical world. In Proc. of the 3rd international conference on embed-

ded networked sensor systems (SenSys ’05), pages 166–179, San Diego, California,

USA, 2005. ACM.

Bibliography 217

[214] Dogan Yazar and Adam Dunkels. Efficient application integration in IP-based sensor

networks. In Proceedings of the First ACM Workshop on Embedded Sensing Systems

for Energy-Efficiency in Buildings, page 4348, Berkeley, CA, USA, November 2009.

[215] Raymond Yee. Pro Web 2.0 Mashups: Remixing Data and Web Services. Apress,

March 2008.

[216] Jin Yu, Boualem Benatallah, Fabio Casati, and Florian Daniel. Understanding

Mashup Development. IEEE Internet Computing, 12(5):44–52, 2008.

[217] Shuai Zhang, Shufen Zhang, Xuebin Chen, and Xiuzhen Huo. Cloud Computing

Research and Development Trend. In Second International Conference on Future

Networks (ICFN ’10), pages 93–97. IEEE, January 2010.

[218] Justin Zobel, Alistair Moffat, and Kotagiri Ramamohanarao. Inverted files versus

signature files for text indexing. ACM Transactions on Database Systems (TODS),

23:453–490, December 1998.

218 Bibliography

Referenced Web Ressources

[219] Amazon web services. http://aws.amazon.com/.

[220] American energy review (EIA) for 2010. http://www.eia.gov/totalenergy/

data/annual/.

[221] Apache abdera atompub server. http://abdera.apache.org/.

[222] Apache tomcat. http://tomcat.apache.org/.

[223] Atmosphere: Web push abstraction framework. http://atmosphere.java.net/.

[224] autowot - a toolkit for the rapid integration of smart devices into the web of things

- google project hosting. http://code.google.com/p/autowot/.

[225] The contiki operating system - instant contiki. http://www.sics.se/contiki/

instant-contiki.html.

[226] Craigslist. http://www.craigslist.com.

[227] Dpws specification 1.1. http://docs.oasis-open.org/ws-dd/dpws/1.1/os/

wsdd-dpws-1.1-spec-os.pdf.

[228] EnergieVisible: our consumption is visible! opensource software for sensing and

visualizing electricity consumption. http://webofthings.com/energievisible/.

[229] EPCglobal architecture framework standards. http://www.gs1.org/gsmp/kc/

epcglobal/architecture.

[230] EPCglobal discovery services standard (in development). http://www.gs1.org/

gsmp/kc/epcglobal/discovery.

[231] European environment agency: Maps and graphs. http://www.eea.europa.eu/

data-and-maps/figures#c15=all&c5=&c9=&c0=15&b_start=0.

[232] Extended environments markup language: EEML. http://www.eeml.org/.

[233] Feel, act, make sense - sen.se. http://open.sen.se/.

[234] Fosstrak - open source software for track and trace. http://www.fosstrak.org/.

http://aws.amazon.com/
http://www.eia.gov/totalenergy/data/annual/
http://www.eia.gov/totalenergy/data/annual/
http://abdera.apache.org/
http://tomcat.apache.org/
http://atmosphere.java.net/
http://code.google.com/p/autowot/
http://www.sics.se/contiki/instant-contiki.html
http://www.sics.se/contiki/instant-contiki.html
http://www.craigslist.com
http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.pdf
http://docs.oasis-open.org/ws-dd/dpws/1.1/os/wsdd-dpws-1.1-spec-os.pdf
http://webofthings.com/energievisible/
http://www.gs1.org/gsmp/kc/epcglobal/architecture
http://www.gs1.org/gsmp/kc/epcglobal/architecture
http://www.gs1.org/gsmp/kc/epcglobal/discovery
http://www.gs1.org/gsmp/kc/epcglobal/discovery
http://www.eea.europa.eu/data-and-maps/figures#c15=all&c5=&c9=&c0=15&b_start=0
http://www.eea.europa.eu/data-and-maps/figures#c15=all&c5=&c9=&c0=15&b_start=0
http://www.eeml.org/
http://open.sen.se/
http://www.fosstrak.org/

220 Referenced Web Ressources

[235] Fosstrak EPCIS - EPCIS webadapter home page. http://www.fosstrak.org/

epcis/docs/webadapter-guide.html.

[236] GlassFish: open source application server. http://glassfish.java.net/.

[237] Google maps. http://maps.google.com.

[238] Google visualization API reference - google chart tools - google code. http://code.

google.com/apis/chart/interactive/docs/reference.html.

[239] Google web toolkit. http://code.google.com/intl/en/webtoolkit/.

[240] Grizzly NIO web server. http://grizzly.java.net/.

[241] HousingMaps. http://www.housingmaps.com.

[242] IETF working group for constrained RESTful environments. http://tools.ietf.

org/wg/core/.

[243] Internet of things - ThingSpeak. https://www.thingspeak.com/.

[244] IPSO alliance: Enabling the internet of things. http://ipso-alliance.org/.

[245] iui - web UI framework for mobile devices - iOS, android, palm, and others. http:

//code.google.com/p/iui/.

[246] The java community Process(SM) program - JSRs: java specification requests -

JSR# 244 (jdo). http://www.jcp.org/en/jsr/detail?id=243.

[247] Java ME (mobile and embedded edition). http://www.oracle.com/technetwork/

java/javame/index.html.

[248] JAX-RS standard for RESTful web services (JSR 311). http://jsr311.java.net/.

[249] Jersey JAX-RS reference implementation for building RESTful web service. http:

//jersey.java.net/.

[250] jQuery: the write less, do more, JavaScript library. http://jquery.com/.

[251] JSR-000220 enterprise JavaBeans 3.0 - final release. http://jcp.org/aboutJava/

communityprocess/final/jsr220/index.html.

[252] kSOAP 2 WS-* for resource constrained devices. http://ksoap2.sourceforge.

net/.

[253] Metering portal: Information for metering professionals. http://metering.com.

[254] Microformats. http://microformats.org/.

[255] Mobile JavaScript framework for developing HTML5 web applications. http://

www.sencha.com/products/touch/.

[256] Mongoose - easy to use embedded web server. http://code.google.com/p/

mongoose/.

http://www.fosstrak.org/epcis/docs/webadapter-guide.html
http://www.fosstrak.org/epcis/docs/webadapter-guide.html
http://glassfish.java.net/
http://maps.google.com
http://code.google.com/apis/chart/interactive/docs/reference.html
http://code.google.com/apis/chart/interactive/docs/reference.html
http://code.google.com/intl/en/webtoolkit/
http://grizzly.java.net/
http://www.housingmaps.com
http://tools.ietf.org/wg/core/
http://tools.ietf.org/wg/core/
https://www.thingspeak.com/
http://ipso-alliance.org/
http://code.google.com/p/iui/
http://code.google.com/p/iui/
http://www.jcp.org/en/jsr/detail?id=243
http://www.oracle.com/technetwork/java/javame/index.html
http://www.oracle.com/technetwork/java/javame/index.html
http://jsr311.java.net/
http://jersey.java.net/
http://jersey.java.net/
http://jquery.com/
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr220/index.html
http://ksoap2.sourceforge.net/
http://ksoap2.sourceforge.net/
http://metering.com
http://microformats.org/
http://www.sencha.com/products/touch/
http://www.sencha.com/products/touch/
http://code.google.com/p/mongoose/
http://code.google.com/p/mongoose/

Referenced Web Ressources 221

[257] NorhTec - products. http://www.norhtec.com/products/mcsr/index.html.

[258] OpenPICUS is an open source embedded platform for smart sensors and the internet

of things. http://www.openpicus.com/cms/.

[259] OpenWrt: linux distribution for embedded devices. https://openwrt.org/.

[260] OSGi alliance. http://www.osgi.org/Main/HomePage.

[261] Phidgets prototyping RFID reader. http://www.phidgets.com/products.php?

product_id=1023.

[262] Plogg: wireless energy sensor networks. http://www.plogginternational.com/.

[263] ProgrammableWeb - mashups, APIs, and the web as platform. http://www.

programmableweb.com.

[264] pubsubhubbub - a simple, open, web-hook-based pubsub protocol & open source

reference implementation. http://code.google.com/p/pubsubhubbub/.

[265] RDFa in XHTML: syntax and processing. http://www.w3.org/TR/rdfa-syntax/.

[266] Real-Time open data web service for the internet of things - pachube. http://

pachube.com/.

[267] REST binding project at AUTO-ID labs at MIT. http://autoidlabs.mit.edu/

CS/content/OpenSource.aspx.

[268] Restlet - RESTful web framework for java. http://www.restlet.org/.

[269] Roving networks wifi modules. http://www.rovingnetworks.com/.

[270] ruote - open source ruby workflow engine. http://ruote.rubyforge.org/.

[271] Server-Sent events. http://dev.w3.org/html5/eventsource/.

[272] Size of wikipedia. http://en.wikipedia.org/wiki/Wikipedia:Size_of_

Wikipedia.

[273] SunSPOT - embedded development platform. http://www.sunspotworld.com/.

[274] ThingWorx the 1st application platform for the connected world. http://www.

thingworx.com/.

[275] Travel - guides - the new york times, supporting microformats. http://travel.

nytimes.com/.

[276] Ubuntu cloud. http://www.ubuntu.com/business/cloud/overview.

[277] Unbeatable JavaScript tools - the dojo toolkit. http://dojotoolkit.org/.

[278] URIs, URLs, and URNs: clarifications and recommendations 1.0. http://www.w3.

org/TR/uri-clarification/#contemporary.

[279] VirtualBox. http://www.virtualbox.org/.

http://www.norhtec.com/products/mcsr/index.html
http://www.openpicus.com/cms/
https://openwrt.org/
http://www.osgi.org/Main/HomePage
http://www.phidgets.com/products.php?product_id=1023
http://www.phidgets.com/products.php?product_id=1023
http://www.plogginternational.com/
http://www.programmableweb.com
http://www.programmableweb.com
http://code.google.com/p/pubsubhubbub/
http://www.w3.org/TR/rdfa-syntax/
http://pachube.com/
http://pachube.com/
http://autoidlabs.mit.edu/CS/content/OpenSource.aspx
http://autoidlabs.mit.edu/CS/content/OpenSource.aspx
http://www.restlet.org/
http://www.rovingnetworks.com/
http://dev.w3.org/html5/eventsource/
http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia
http://www.sunspotworld.com/
http://www.thingworx.com/
http://www.thingworx.com/
http://travel.nytimes.com/
http://travel.nytimes.com/
http://www.ubuntu.com/business/cloud/overview
http://dojotoolkit.org/
http://www.w3.org/TR/uri-clarification/#contemporary
http://www.w3.org/TR/uri-clarification/#contemporary
http://www.virtualbox.org/

222 Referenced Web Ressources

[280] VMware virtualization software for desktops, servers & virtual machines for public

and private cloud solutions. http://www.vmware.com/.

[281] Webnergy - a project to web-enable smart meters. http://code.google.com/p/

webnergy/.

[282] The WebSocket API. http://dev.w3.org/html5/websockets/.

[283] Weebiz: Business community. https://weebiz.com/.

[284] Wikipedia – comet programming. http://en.wikipedia.org/wiki/Comet_

(programming).

[285] Wikipedia – reflection in computer programming. http://en.wikipedia.org/

wiki/Reflection_(computer_programming).

[286] WS4D web services for devices. http://www.ws4d.org/.

[287] Yahoo pipes mashup editor: Rewire the web. http://pipes.yahoo.com/pipes/.

[288] Yaler - access small devices from the web. http://yaler.org/.

[289] Yahoo search blog: We now support microformats. http://www.ysearchblog.com/

2006/06/21/we-now-support-microformats/, June 2006.

[290] Marking up products for rich snippets - webmaster tools help. http://www.google.

com/support/webmasters/bin/answer.py?answer=146750, March 2011.

[291] Tim Berners-Lee. Keynote at WWW 2009: Twenty years: Looking forward, looking

back. http://www2009.eprints.org/212/1/index.html, April 2009.

[292] Tantek Celik. Geo microformats. http://microformats.org/wiki/geo, November

2009.

[293] Tantek Celik, Ali Diab, Ian McAllister, John Panzer, Adam Rifkin, and Michael

Sippey. hReview 0.3 microformats. http://microformats.org/wiki/hReview,

February 2006.

[294] Tantek Celik and Brian Suda. hCard 1.0 microformats wiki. http://

microformats.org/wiki/hCard, May 2011.

[295] Rory Cellan-Jones. BBC - dot.life: Things that tweet. http://www.bbc.co.uk/

blogs/technology/2009/06/things_that_tweet.html, June 2009.

[296] F. Dawson and T. Howes. vCard MIME directory profile, IETF memo. http:

//www.ietf.org/rfc/rfc2426.txt, September 1998.

[297] Paul Lee and Jay Myers. hProduct microformat draft specification. http:

//microformats.org/wiki/hproduct, June 2010.

[298] Lukas Naef. ClickScript: easy to use visual programming language. http:

//clickscript.ch/site/home.php.

http://www.vmware.com/
http://code.google.com/p/webnergy/
http://code.google.com/p/webnergy/
http://dev.w3.org/html5/websockets/
https://weebiz.com/
http://en.wikipedia.org/wiki/Comet_(programming)
http://en.wikipedia.org/wiki/Comet_(programming)
http://en.wikipedia.org/wiki/Reflection_(computer_programming)
http://en.wikipedia.org/wiki/Reflection_(computer_programming)
http://www.ws4d.org/
http://pipes.yahoo.com/pipes/
http://yaler.org/
http://www.ysearchblog.com/2006/06/21/we-now-support-microformats/
http://www.ysearchblog.com/2006/06/21/we-now-support-microformats/
http://www.google.com/support/webmasters/bin/answer.py?answer=146750
http://www.google.com/support/webmasters/bin/answer.py?answer=146750
http://www2009.eprints.org/212/1/index.html
http://microformats.org/wiki/geo
http://microformats.org/wiki/hReview
http://microformats.org/wiki/hCard
http://microformats.org/wiki/hCard
http://www.bbc.co.uk/blogs/technology/2009/06/things_that_tweet.html
http://www.bbc.co.uk/blogs/technology/2009/06/things_that_tweet.html
http://www.ietf.org/rfc/rfc2426.txt
http://www.ietf.org/rfc/rfc2426.txt
http://microformats.org/wiki/hproduct
http://microformats.org/wiki/hproduct
http://clickscript.ch/site/home.php
http://clickscript.ch/site/home.php

Referenced Web Ressources 223

[299] OpenSocial and Gadgets Specification Group. OpenSocial RESTful proto-

col specification v0.9. http://www.opensocial.org/Technical-Resources/

opensocial-spec-v09/REST-API.html, April 2009.

[300] G. J. Rothfuss. Official google maps API blog: Microformats in google maps. http:

//googlemapsapi.blogspot.com/2007/06/microformats-in-google-maps.

html, July 2007.

[301] Alex Williams. SOAP is not dead - it’s undead, a zombie in

the enterprise. http://www.readwriteweb.com/enterprise/2011/05/

soap-is-not-dead---its-undead.php.

http://www.opensocial.org/Technical-Resources/opensocial-spec-v09/REST-API.html
http://www.opensocial.org/Technical-Resources/opensocial-spec-v09/REST-API.html
http://googlemapsapi.blogspot.com/2007/06/microformats-in-google-maps.html
http://googlemapsapi.blogspot.com/2007/06/microformats-in-google-maps.html
http://googlemapsapi.blogspot.com/2007/06/microformats-in-google-maps.html
http://www.readwriteweb.com/enterprise/2011/05/soap-is-not-dead---its-undead.php
http://www.readwriteweb.com/enterprise/2011/05/soap-is-not-dead---its-undead.php

224 Referenced Web Ressources

Curriculum Vitae: Dominique Guinard
Personal Data

Date of Birth February 27, 1981 in Fribourg
Citizenship Swiss

Education
2007–2011 ETH Zurich, Ph.D. Student in Pervasive Computing

(Department of Computer Science), Zurich Switzerland
2010–2011 MIT, Visiting Researcher at the MIT Auto-ID Labs,

Cambridge, USA
2006–2007 University of Lancaster, Visiting Graduate Student in

Ubiquitous Computing (Master thesis), Lancaster, UK
2005–2007 Universities of Fribourg and Bern, M.Sc. in Computer

Science, Fribourg & Bern, Switzerland
2002–2005 University of Fribourg, B.Sc. in Computer Science and

Business Management, Fribourg, Switzerland
1998–2001 Collège de Gambach, Baccalauréat in Business Admin-

istration (High school), Fribourg, Switzerland
Employment

2007 – 2011 Research Associate, SAP Research, Zurich, Switzerland
2008 – 2011 Research Assistant, Department of Computer Science,

ETH Zurich, Zurich, Switzerland
2007 – 2008 Research Associate, ETH Auto-ID Labs, Zurich,

Switzerland
2005 – 2007 External Scientific Collaborator, Software Engineering

Group, University of Fribourg, Fribourg, Switzerland
2005 – 2006 Teaching Assistant, Pervasive and Artificial Intelligence

Group, University of Fribourg, Fribourg, Switzerland
2002 – 2006 Professional Trainer in Web Development, Ecole-Club

Migros, Fribourg, Switzerland
1999 – 2006 Co-founder, Project Manager, Spoker and GMIPSoft,

Fribourg, Switzerland
2005 – 2005 Intern at the Software Practice, Sun Microsystems,

Gland, Switzerland
1998 – 1999 Web Developer, Dartfish, Fribourg, Switzerland

	Introduction
	Motivation
	Contributions
	The Web of Things: A Web-Oriented Service Platform for Smart Things
	Case Studies

	Thesis Outline

	The Web of Things
	Device Accessibility Layer
	A Web API for Smart Things
	Implementation Strategy: Connecting Things to the Internet
	Pushing Data from Smart Things and Smart Gateways
	Summary and Applications

	Findability Layer
	Search Engines and the Internet of Things
	A Web-Oriented Discovery and Lookup Infrastructure
	Evaluation
	Summary and Applications

	Sharing Layer
	Requirements for a WoT Sharing Platform
	Social Access Control: An Architecture for the Social Web of Things
	Retrieving the Owners' Social Graphs
	Registering and Sharing Smart Things and Smart Gateways
	Accessing Shared Smart Things
	Physical Feeds Aggregation
	Software Architecture
	Friends and Things: A Social WoT Web Application
	Summary and Applications

	Composition Layer
	Physical Mashups in the Web of Things
	From Web 2.0 Mashups Editors to Physical Mashup Editors
	Adapting a Web 2.0 Mashup Editor to the Web of Things
	Requirements for Physical Mashup Editors
	A Platform for Physical Mashups Editors
	System Architecture
	Discussion and Summary

	Developers Perspectives on the WS-* Alternative Architecture
	Methodology
	Results

	Discussion and Summary
	Related Work
	Device Accessibility Layer
	Findability Layer
	Sharing Layer
	Composition Layer

	Summary

	Bringing Wireless Sensor and Actuator Networks to the Web
	WoT General Purpose Sensing Platform
	Device Accessibility Layer with End-to-End HTTP
	Findability Layer

	WoT Smart Metering
	Implementing the Device Accessibility Layer
	Applications
	Qualitative Evaluation

	Sharing Layer
	Quantitative Evaluation

	Composition Layer: Cross-Device Physical Mashups
	The Ambient Meter
	With Clickscript
	Energy-Aware Mobile Mashup Editor

	Related Work
	Discussion and Summary

	Resource-Oriented RFID Networks
	The EPC Network in a Nutshell
	Identifying EPC Numbers
	Standards for Capturing EPC Events
	Sharing EPC Events

	A Cloud-Based Virtual Infrastructure for the EPC Network
	Pain-Point: Complex Backend Deployment and Maintenance
	Virtualization Blueprint
	Cloud Computing: Utility Computing Blueprint

	Device Accessibility Layer
	Pain-Point: Complicated Applications Developments
	EPCIS Webadapter
	Pushing from Readers to Web Clients
	Case-Study: EPC Find

	Sharing Layer
	Pain-Point: Lack of Access Control
	System Architecture

	Composition Layer: Auto-ID Physical Mashups
	Pain-Point: Tedious Business Case Modeling and Cross Systems Integration
	Mobile Tag Pusher
	The EPC Dashboard Mashup
	RFID Physical Mashup Editor

	Evaluating the EPCIS Webadapter
	Related Work
	Discussion and Summary

	Conclusions and Outlook
	Contributions
	Discussion and Future Challenges

	Bibliography

