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Abstract. The prominent visions of wireless sensor networks that appeared about
a decade ago have spurred enormous efforts in research and development of this
new class of wireless networked embedded systems. Despite the significant effort
made, successful deployments and real-world applications of sensor networks are
still scarce, labor-intensive and oftenn cumbersome to achieve. In this article, we
survey prominent examples of sensor network deployments, their interaction with
the real world and pinpoint a number of potential causes for errors and common
pitfalls. In the second half of this work, we present methods and tools to be used
to pinpoint failures and understand root causes. These instrumentation techniques
are specifically designed or adapted for the analysis of distributed networked em-
bedded systems at the level of components, sensor nodes, and networks of nodes.

1 Introduction

Sensor networks offer the ability to monitor real-world phenomena in detail and at
large scale by embedding wireless network of sensor nodes into the environment. Here,
deployment is concerned with setting up an operational sensor network in a real-world
environment. In many cases, deployment is a labor-intensive and cumbersome task as
environmental influences trigger bugs or degrade performance in a way that has not
been observed during pre-deployment testing in a lab. The reason for this is that the
real world has a strong influence on the function of a sensor network by controlling the
output of sensors, by influencing the existence and quality of wireless communication
links, and by putting physical strain on sensor nodes. These influences can only be
modeled to a very limited extent in simulators and lab testbeds.

Information on the typical problems encountered during deployment is rare. We can
only speculate on the reason for this. On the one hand, a paper which only describes
what happened during a deployment seldom constitutes novel research and might be
hard to get published. On the other hand, people might tend to hide or ignore problems
which are not directly related to their field of research. Additionally it is often hard to
discriminate desired and non-desired functional effects at the different layers or levels
of detail.

* The work presented in this paper was partially supported by the Swiss National Science Foun-
dation under grant number 5005-67322 (NCCR-MICS), and by the European Commission
under contract number FP7-2007-2-224053 (CONET).



In this chapter we review prominent wireless sensor network installations and prob-
lems encountered during their deployment. The insight into a sufficiently large num-
ber of deployments allows to identify common deployment problems, especially in the
light of system architecture and components used, in order to gain a broader and deeper
understanding of the systems and their peculiarities. In a second part we survey ap-
proaches and methods to overcome deployment problems at the level of components,
sensor nodes, and networks of nodes. A special focus is on techniques for instrumenta-
tion and analysis of large distributed networked embedded systems at run-time.

2 Wireless Sensor Network Deployments

To understand the problems encountered during deployment, 14 different projects are
reviewed with different goals, requirements and success in deploying the sensor net-
work. The key figures for the projects surveyed are given in table 1. Main deployment
characteristics are included such as the network size and the duration of a deployment.
The column yield denotes the amount of data reported by the sensor network with re-
spect to the expected optimum, e.g., based on the sample rate.

|Deployment \ Year H#nodes\ Hardware \ Duration \ Yield Multi-hop
GDI 1 2002 43 Mica2Dot 123 days 16% no
GDIII - patch A| 2003 49 | Mica2Dot 115 days 70% no
GDIII - patch B| 2003 98 | Mica2Dot 115 days 28% yes
Line in the sand | 2003 90 Mica2 115 days n/a yes
Oceanography 2004 6 |Custom HW| 14 days |notreported no
GlacsWeb 2004 8 |Custom HW| 365 days |not reported no
SHM 2004 10 Mica2 2 days up to 50% yes
Pipenet 2004/2005|| 3 | Intel Mote (425-553 days|31% — 63%| no
Redwoods 2005 33 | Mica2Dot 44 days 49% yes
Potatoes 2005 97 TNode 21 days 2% yes
Volcano 2005 16 | TMote Sky 19 days 68% yes
Soil Ecology 2005 10 MicaZ 42 days |not reported no
Luster 2006 10 MicaZ 42 days |not reported no
Sensorscope 2006-2008|| 6-97 | TinyNode | 4-180 days |notreported| yes

Table 1. Characteristics of selected deployments.

In the above projects, a variety of sensor node hardware has been used as summa-
rized in table 2. The majority of the early projects used the Mica2 mote [1] designed at
the University of California at Berkeley and produced by Crossbow Technology Inc. or
a variant of it (Mica2Dot, T-Node [2]). Its main components are an Atmel ATmegal28L
8-bit microcontroller and a Chipcon CC1000 radio module for the 433/868/915 MHz
ISM bands. More recent deployments often use the TI MSP 430 microcontroller due to
its energy efficiency and more advanced radio modules such as the Chipcon CC2420



(implementing the 802.15.4 standard) on the Tmote Sky [3] or the Xemics XE1205 on
the TinyNode [4] sensor nodes.

| [ Mica2(Dot) [ T-Node MicaZ Tmote Sky
Microcontroller ATmegal28L ATmegal28L ATmegal28L MSP 430
Architecture 8 bit 8 bit 8 bit 16 bit
Clock 7.328 MHz (4 MHz)| 7.328 MHz 7.328 MHz 8 MHz
Program Memory 128 kB 128 kB 128 kB 48 kB
Data Memory 4 kB 4 kB 4 kB 10 kB
Storage Memory 512 kB 512 kB 512 kB 1024 kB
Radio Chipcon CC1000 |Chipcon CC1000|Chipcon CC2420|Chipcon CC2420
Frequency 433 /915 MHz 868 MHz 2.4 GHz 2.4 GHz
Data Rate 19.2 kbps 19.2 kbps 250 kbps 250 kbps
TinyNode Intel Mote  |Oceanography| GlacsWeb
Microcontroller MSP 430 ARM7TDMI | PIC 18F452 |PIC 16LF878
Architecture 16 bit 32-bit 8 bit 8 bit
Clock 8 MHz 12 MHz <40 MHz <20 MHz
Program Memory 48 kB 64kB 32 kB 16 kB
Data Memory 10kB *) 1536 B 368 B
Storage Memory 512kB 512kB 0.25 kB 64 kB
Radio Xemics XE1205|Zeevo BT Radio| not specified Xemics
Frequency 868 MHz 2.4 GHz 173 MHz 433 MHz
Data Rate 152.3 kbps 1 Mbps 10 kbps 9600 bps

Table 2. Sensor node characteristics. Data for Mica2Dot in parentheses. (*) The ARM7 core is a
Von Neumann Architecture, hence there is no differentiation between data and program memory.

2.1 Great Duck Island

One of the earliest deployments of a larger sensor network was carried out in the sum-
mer of 2002 on Great Duck Island [1], located in the gulf of Maine, USA. The island
is home to approximately 5000 pairs of Leach’s Storm Petrels that nest in separate
patches within three different habitat types. Seabird researchers are interested in ques-
tions regarding the usage pattern of nesting burrows with respect to the microclimate.
As observation by humans would be both too costly and might disturb the birds, a sen-
sor network of 43 nodes was deployed for 4 months just before the breeding season. The
nodes had sensors for light, temperature, humidity, pressure, and infrared radiation and
have been deployed in a single hop network. Each sensor node samples its sensors every
70 seconds and sends its readings to a solar-powered gateway. The gateway forwards
the data to a central base station with a database and a two-way satellite connection
to the Internet. During the 123 days of the experiment, 1.1 million readings have been



recorded, which is about one sixth of the theoretical 6.6 million readings generated over
this time.

In a book chapter [1], the authors analyze the network’s behavior in detail. The most
loss of data was caused by hardware-related issues. Several nodes stopped working due
to water entering the sensor node casing. As all sensors were read out by a single analog-
to-digital converter, a hardware failure of one of the sensors caused false readings of
other sensors. Due to the transparent casing of the sensor nodes, direct sun light could
heat the whole sensor node and thus lead to high temperature readings for nodes which
are deployed above ground. Over time, various sensors report false readings such as
humidity over 150% or below 0%, or too low or unreasonably high temperature. The
temperature sensor of about half the nodes failed at the same time as the humidity sensor
suggesting water inside the packaging. Although it did not directly cause packet loss as
the gateway was always listening, several nodes did show a phase skew with respect to
their 70 second sending interval. A crash of the database running on the base station
resulted in the complete loss of data for two weeks.

After lessons learned from the first deployment, a second deployment was con-
ducted in 2003 [5]. This time, two separate networks, a single-hop network of 49 nodes
similar to the one in the first deployment and a multi-hop network with 98 nodes were
deployed. The multi-hop network used the routing algorithm developed by Woo [6].
Again, the project suffered from several outages of the base station - this time caused
by harsh weather. In the multi-hop network, early battery depletion was caused by over-
hearing in combination with low-power listening. In the pre-deployment calculation, the
group did not account for an increased overhearing in the multi-hop network although
it could have been predicted.

2.2 A Line in the Sand

An early project focussing on intrusion detection, classification and tracking of targets
is ”A line in the sand” [7]. The system consists of densely deployed sensor nodes with
integrated binary detection sensors that collaboratively detect multiple objects.

The system implementation was evaluated by repeated deployments of ninety sen-
sor nodes on three different sites in spring, summer, and fall of 2003 and smaller, fo-
cussed test deployments. The authors describe key problems encountered during the
project. One of the main issues is the unreliability of the network. This is exacerbated
by using a dense network of sensor nodes, which leads to network saturation and con-
gestion and thus a considerable amount of collisions. Unexpected system interaction at
scale diminished services for reliable communication. Additional unanticipated prob-
lems occurred due to hardware failures (e.g., debonding or desensitizing of sensors over
time) and environmental conditions, exhausted batteries as well as problems due to in-
correctly downloaded software. Unanticipated problems caused protocols to fail. The
authors identify many faults that can be addressed by better packaging, hardware opti-
mization and allowing for more redundancy, but indicate that many faults still require
proper support for identification and resolution.



2.3 Oceanography

A small sensor network of 6 nodes was deployed in 2004 on a sandbank off the coast
of Great Yarmouth, Great Britain [8] to study sedimentation and wave processes. A
node did consist of a radio buoy for communication above the sea and a sensor box
on the seabed connected by a wired serial connection. The sensor box had sensors for
temperature, water pressure (which allows to derive wave height), water turbidity, and
salinity. The authors reported problems with the sensor box due to last-minute software
changes which led to cutting and re-fixing of the cable between buoy and sensor, and
later, to the failure of one of the sensors caused by water leakage.

2.4 GlacsWeb

The GlacsWeb project [9] deployed a single-hop sensor network of 8 glacier probes in
Norway. The aim of this system is to understand glacier dynamics in response to climate
change. Each probe samples every four hours the following sensors: temperature, strain
(due to stress of the ice), pressure (if immersed in water), orientation, resistivity (to
detect whether the probe would be in sediment till, water or ice), and battery voltage.
The probes were installed in up to 70 m deep holes located around a central hole which
did hold the receiver of the base station.

In this deployment, initially, the base station only received data from seven probes
and during the course of the experiment, communication with four probes failed over
time. In the end, three probes were able to report their sensor readings. The base station
experienced an outage. The authors speculate that the other probes might have failed
for three reasons: Firstly, nodes might have been moved out of transmission range be-
cause of sub-glacial movement. Secondly, the node casing might have broken due to
stress by the moving ice. And thirdly, clock drift and sleeping policy might have led to
unsynchronized nodes which hinders communication.

2.5 Structural Health Monitoring

To assess the structural health of buildings, the Wisden [10] data acquisition system was
conceived. Each node measures seismic motion by means of a three-axis accelerometer
and forwards its data to a central station over a multi-hop network. The data samples are
time stamped and aggregated in the network to compensate for the limited bandwidth.
In the case of a seismic event, the complete data is buffered on a node for reliable but
delayed end-to-end data transmission.

The authors report a software defect in their system, where an 8-bit counter was
used for the number of locally buffered packets and an overrun would cause packets to
not be delivered at all. Also, the accelerometer readings showed increased noise when
the battery voltage did fall below a certain threshold.

2.6 Pipenet

Pipenet [11] is a sensor network to monitor pipeline infrastructures allowing for in-
creased spatial and temporal resolution of operational data. It collects hydraulic and



acoustic/vibrational data at high sampling rates and analyzes the data to identify and
locate leaks in a pipeline. Pipenet uses a tiered architecture with the sensor network
tier consisting of a cluster of battery-operated Intel Motes equipped with a data acqui-
sition board. Sensor nodes are directly connected to the pipe, sense and process the
collected information and directly send it via Bluetooth to the upper tier. First results of
the initial trial from December 2004 to July 2005 are presented. One of the main prob-
lems encountered was battery exhaustion leading to long-term missing data. Short-term
missing data is attributed to a watch-dog rebooting the gateway at midnight each day,
leading to a loss of all messages in transit. Other sources for packet loss are environmen-
tal conditions such as rainfall and snow, where especially snow had a significant effect
on packet loss. Hardware problems due to bad antennas and insufficient waterproofness
attributed to additional problems in one of the clusters.

2.7 Redwood Trees

To monitor the microclimate of a 70-meter tall redwood tree, 33 sensor nodes have
been deployed along a redwood tree roughly every two meters in height for 44 days in
2005 [12]. Each node measured and reported every 5 minutes air temperature, relative
humidity, and solar radiation. The overall yield of this deployment has been 49%. In
addition to the Great Duck Island hardware and software, the “Tiny Application Sensor
Kit” (TASK) was used on the multi-hop network. The TinyDB [13] component included
in TASK provides an SQL-like database interface to specify continuous queries over
sensor data. In addition to forwarding the data over the network, each sensor node was
instructed to record all sensor readings into an internal 512 kB flash chip.

Some nodes recorded abnormally high temperature readings above 40 °C when
other nodes reported temperatures between 5 and 25 °C. This allowed to single out
nodes with incorrect readings. Wrong sensor readings have been highly correlated to
low battery voltage similar to the report for the Structural Health Monitoring. This
should have not been surprising as the used sensor nodes, Mica2Dot motes, did not
employ a voltage converter and the battery voltage fell below the threshold for reliable
operation over time. Also in this project, two weeks of data were lost due to a gateway
outage. The data stored in the internal flash chip was complete but did not cover the
whole deployment. Although it was estimated that it would suffice, initial tests, calibra-
tion, and a longer deployment than initially envisioned led to a full storage after about
four weeks. In the end it turned out that the overall data yield of 49% was only possible
by manually collecting all nodes and extracting the data from the flash memory on each
node.

2.8 LOFAR-agro

A detailed report on deployment problems was aptly called “LOFAR-agro - Murphy
Loves Potatoes” [2]. The LOFAR-agro project is aimed at precision agriculture. In
summer 2005, after two field trials, 110 sensor nodes with sensors for temperature and
relative humidity were deployed in a potato field just after potatoes have been planted.
The field trials and the final deployment suffered from a long list of problems.



Similar to the oceanography project, an accidental commit to the source code re-
vision control system led to a partially working MAC protocol being installed on the
sensor nodes just before the second field trial. Later, update code stored in the nodes’
external flash memory caused a continuous network code distribution which led to high
network congestion, a low data rate and thus the depletion of all nodes’ batteries within
4 days. The routing and the MAC component used different fixed size neighbor tables.
In the dense deployment, where a node might have up to 30 neighbors, not all neighbor-
hood information could be stored, which caused two types of faulty behavior. Firstly,
the routing component of most nodes did not send packets to the gateway although the
link would have been optimal. Secondly, as both components used different neighbor
tables, packets got dropped by the MAC-layer when the next hop destination was not in
its neighbor table. To allow nodes to recover from software crashes, a watchdog timer
was used. Either due to actual program crashes or due to a malfunction of the watchdog
handling, most nodes rebooted every two to six hours. This did not only cause data loss
for the affected node but also led to network instability as the entries for rebooting nodes
are removed by their neighbors from their neighborhood tables. As in other projects, the
LOFAR-agro project suffered from gateway outages. In this case, a miscalculation of
the power requirements for the solar-powered gateway caused a regular outage in the
morning when the backup battery was depleted before the sun rises and the solar cells
provided enough power again. The sensor nodes were programmed to also store their
readings in the external flash memory, but due to a small bug, even this fallback failed
and no data was recovered after the deployment. In total, the 97 nodes which ran for 3
weeks did deliver 2% of the measured data.

2.9 Volcanoes

In August 2005, a sensor network of 16 sensor nodes has been deployed on the volcano
Reventador in Ecuador [14]. Each node samples seismic and acoustic data at 100 Hz. If
anode detects a local seismic event, it notifies a base stations. If 30% of the nodes report
an event in parallel, the complete data set of the last minute is fetched from all nodes in a
reliable manner. Instead of immediately reporting all data, which would lead to massive
network congestion and packet collisions with current low-power MAC protocols, the
nodes are polled by the base station sequentially.

The first problem encountered was a software defect in the clock component which
would occasionally report a bogus time. This led to a failure of the time synchronization
mechanism. The team tried to reboot the network but this trigged another bug, which
led to nodes continuously rebooting. After manual reprogramming of the nodes, the
network was working quite reliably. A median event yield of 68 % was reported, which
means that for detected events 68% of the data was received. As with other deploy-
ments, data was lost due to power outage at the base station. During the deployment,
only a single node stopped reporting data and this was later confirmed to be due to a
broken antenna.



2.10 Soil Ecology

To monitor the soil ecology in an urban forest environment, ten sensor nodes have been
deployed near John Hopkins University in the autumn of 2005. The nodes have been
equipped with manually calibrated temperature and soil moisture sensors and packed
into a plastic waterproof casing. The sensor application was designed to store all sen-
sor readings in the local flash memory which had to be read out every two weeks to
guarantee 100% sensor data yield in combination with a reliable data transfer protocol.

However, due to an unexpected hardware behavior, a write to the flash memory
could fail and an affected node would then stop recording data. Further parts of the data
have been lost due to human errors while downloading the data to a laptop computer.
Similar to previous deployments, the software on the nodes had to be updated and for
this the waterproof cases had to be re-opened several times which led to water leakage
in some cases.

2.11 Luster

A recent project for environmental monitoring is Luster [15], a system to monitor envi-
ronmental phenomena such as temperature, humidity, or CO5. LUSTER is an environ-
mental sensor network specifically designed for high reliability. Its main goal is to mea-
sure sunlight in thickets in order to study the relation between light conditions and the
phenomenon of shrub thickets overwhelming grasslands. Luster is a multi-layer, single-
hop architecture replicated into multiple clusters that cover the entire deployment area:
The lowest layer is a cluster of sensor nodes collecting and transmitting data at a config-
urable rate to a clusterhead gateway. The gateway nodes (Stargate microservers) form a
delay tolerant network layer. For redundancy purposes an additional layer is introduced,
the reliable distributed storage layer. This layer is made up of dedicated storage nodes
overhearing data reported by sensor nodes at the lowest layer and passively storing it on
SD cards, for physically retrieval at a later point in time. Overlapping sensor coverage
increases reliability of the overall system.

The system was deployed at Hog Island. While two problems were caused by hard-
ware failures, i.e., bad contacts to the sensor, and a non-responding storage node, the
problems could be identified in the field using their inspection tool SeeDTV [16].

2.12 SensorScope

Sensorscope [17, 18] is a system for environmental monitoring with many deployments
across Switzerland. Instead of few accurate and expensive sensors, many densely de-
ployed inexpensive sensing stations are used to create accurate environment models.
Instead of accuracy of individual sensors, the system design strives for generating mod-
els by high spatial density of inexpensive sensing stations. Each station is powered by
a solar cell, which is mounted onto a flagstaff alongside the sensors and a TinyNode.
Different environmental parameters are captured and gathered for later analysis. Most
deployments are in the range of days to a couple of months. The environments are typ-
ically harsh, especially in the high mountain terrain deployments, e.g., on the Grand St.
Bernard pass. Similar to the report of the LOFAR-agro project, the authors provide a



detailed overview of issues and lessons learned in a comprehensive guide [18]. They
again stress the importance of adequate packaging of the sensor nodes, and especially
the connectors. With respect to these particularly harsh environments, substantial tem-
perature variation showed considerable impact on the clock drift. However, while the
clock drift typically affects the time synchronization of the network, in this case, it in-
duced a loss of synchronization of the serial interface between the sink node and the
GPRS modem. In an indoor test deployment, the authors report on packet loss due to
interference where the interfering source could not be determined. Finally, a change
of the query interval of the wind speed sensor, when moving from the lab to the field,
caused counter overruns, which rendered a lot of sensor readings useless.

3 Deployment Problems

Based on the described problems typically found during deployments as surveyed in the
previous section, a classification of problems is presented. Here, a “problem” is defined
as a behavior of a set of nodes that is not compliant with a (informal) specification.

We classify problems according to the number of nodes involved into four classes:
node problems that involve only a single node, link problems that involve two neighbor-
ing nodes and the wireless link between them, path problems that involve three or more
nodes and a multi-hop path formed by them, and global problems that are properties of
the network as a whole.

3.1 Node Problems

A common node problem is node death due to energy depletion either caused by “nor-
mal” battery discharge [7, 11], short circuits or excessive leakage due to inadequate or
broken packaging [5].

Low batteries often do not result in a fail-stop behavior of a sensor node. Rather,
nodes show random behavior below a certain low battery level. In the Redwood Trees
deployment [12], for example, wrong sensor readings have been observed at low battery
voltage. Even worse, a slowly degrading node can also impact the performance of other
nodes in a network ensemble, possibly still having enough energy.

An increased amount of network traffic, compared to initial calculations, led to an
early battery depletion due to unexpected overhearing (e.g., Great Duck Island de-
ployment [19], section 2.1) or repeated network floods (e.g., LOFAR-agro deploy-
ment [2], section 2.8). In the Great Duck Island deployment [5], a low-resistance path
between the power supply terminals was created by water permeating a capacitive hu-
midity sensor, resulting in early battery depletion and abnormally small or large sen-
sor readings. Poor packaging [7, 18], bad contacts [15] to sensors or deteriorating sen-
sors [7] are typical problems encountered for sensor nodes, especially in harsh environ-
mental conditions.

Software bugs often result in node reboots, for example, due to failure to restart
the watchdog timer of the micro controller (e.g., LOFAR-agro deployment [2]). Also
observed have been software bugs resulting in hanging or killed threads, such that only
part of the sensor node software continued to operate. Overflows in counters may also



deviate the sensor readings by spoiling a reference interval [18]. In [7] problems are
also attributed to incorrectly downloaded software.

Sink nodes act as gateways between a sensor network and the Internet. In many ap-
plications they store and forward data collected by the sensor network to a background
infrastructure. Hence, problems affecting sink nodes or the gateway must be promptly
detected to limit the impact of data loss (e.g., GlacsWeb deployment [9], Great Duck
Island deployment [19], Redwood Trees deployment [12]). This can also manifest in
temporary errors as reported for the serial link between the sink and its secondary in-
terface [18] or periodic problems due to watchdog reboots [11].

3.2 Link Problems

Field experiments (e.g., [6,20]) demonstrated a very high variability of link quality
both across time and space resulting in temporary link failures and variable amounts of
message loss. Interference in office buildings can considerably affect the packet loss;
the source often cannot be determined [18].

Network congestion due to traffic bursts is another source of message loss. In the
Great Duck Island deployment [19], for example, a median message loss of 30% is
reported for a single-hop network. Excessive levels of traffic bursts have been caused
by accidental synchronization of transmissions by multiple senders, for example, due
to inappropriate design of the MAC layer [21] or by repeated network floods as in the
LOFAR-agro deployment [2]. If message loss is compensated for by retransmissions,
a high latency may be observed until a message eventually arrives at the destination.
Congestion is especially critical in dense networks, e. g. , when many nodes detect an
event simultaneously and subsequently compete with the neighbors for medium access
to send off an event notification [7].

Most protocols require each node in the sensor network to discover and maintain a
set of network neighbors (often implemented by broadcasting HELLO messages con-
taining the sender address). A node with no neighbors presents a problem as it is isolated
and cannot communicate. Also, neighbor oscillation is problematic [21], where a node
experiences frequent changes of its set of neighbors.

A common issue in wireless communication are asymmetric links, where commu-
nication between a pair of nodes is only possible in one direction. In a field experi-
ment [20] between 5-15% of all links have been observed to be asymmetric, with lower
transmission power and longer node distance resulting in more asymmetric links. If not
properly considered, asymmetric links may result in fake neighbors (received HELLO
from a neighbor but cannot send any data to it) and broken data communication (can
send data to neighbor, but cannot receive acknowledgments).

Another issue is the physical length of a link. Even though if two nodes are very
close together, they may not be able to establish a link (missing short links). On the
other hand, two nodes that are very far away from each other (well beyond the nominal
communication range of a node), may be able to communicate (unexpected long links).
Experiments in [20] show that at low transmit power about 1% of all links are twice
as long as the nominal communication range. These link characteristics make node
placement highly non-trivial as the signal propagation characteristics of the real-world
setting have to be considered [22] to obtain a well-connected network.



Most sensor network MAC protocols achieve energy efficiency by scheduling com-
munication times and turning the radio module off in-between. Clock drift or repeated
failures to re-synchronize the communication phase may result in failures to deliver
data as nodes are not ready to receive when others are sending. In [23], for example,
excessive phase skew has been observed (about two orders of magnitude larger than the
drift of the oscillator).

3.3 Path Problems

Many sensor network applications rely on the ability to relay information across multi-
ple nodes along a multi-hop path. In particular, most sensor applications include one or
more sink nodes that disseminate queries or other tasking information to sensor nodes
and sensor nodes deliver results back to the sink. Here, it is important that a path ex-
ists from a sink to each sensor node, and from each sensor node to a sink. Note that
information may be changed as it is traversing such a path, for example due to data
aggregation. Two common problems in such applications are hence bad path to sink
and bad path to node. In [2], for example, selfish nodes have been observed that did not
forward received traffic, but succeeded in sending locally generated messages.

Since a path consists of a sequence of links, the former inherits many of the possi-
ble problems from the latter such as asymmetric paths, high latency, path oscillations,
and high message loss. In the Great Duck Island deployment [19], for example, a total
message loss of about 58% was observed across a multi-hop network.

Finally, routing loops are a common problem, since frequent node and communica-
tion failures can easily lead to inconsistent paths if the software is not properly prepared
to deal with these cases. Directed Diffusion [24], for example, uses a data cache to sup-
press previously seen data packets to prevent routing loops. If a node reboots, the data
cache is deleted and loops may be created [25].

3.4 Global Problems

In addition to the above problems which can be attributed to a certain subset of nodes,
there are also some problems which are global properties of a network. Several of these
are failures to meet certain application-defined quality-of-service properties. These in-
clude low data yield, high reporting latency, and short network lifetime [26].

Low data yield means that the network delivers an insufficient amount of informa-
tion (e.g., incomplete sensor time series). In the Redwood Trees deployment [12], for
example, a total data yield of only about 20-30% is reported. This problem is related to
message loss as discussed above, but may be caused by other problems such as a node
crashing before buffered information could be forwarded [11], buffer overflows, etc.
One specific reason for a low data yield is a partitioned network, where a set of nodes
is not connected to the sink.

Reporting latency refers to the amount of time that elapses between the occurrence
of a physical event and that event being reported by the sensor network to the observer.
This is obviously related to the path latency, but as a report often involves the output
of many sensor nodes, the reporting latency results from a complex interaction within a
large portion of the network.



The lifetime of a sensor network typically ends when the network fails to cover a
given physical space sufficiently with live nodes that are able to report observations. The
network lifetime is obviously related to the lifetime of individual nodes, but includes
also other aspects. For example, the death of certain nodes may partition the network
such that even though sensing coverage is still provided, nodes can no longer report
data to the observer.

3.5 Discussion

Orthogonal to the classification in the previous section, the deployment problems in
the surveyed literature fall into two categories: implementation and design defects. A
majority of the problems reported have been caused by problems and defects in the
hardware and software implementation, and can be fixed after they have been detected,
analyzed, and understood. Here, dedicated inspection tools allow to find the defects
quicker.

The two most underestimated problems in the surveyed sensor network deploy-
ments have been the water-proof packaging of the sensor nodes required for an outside
deployment and the provision of a reliable base station which records sensor data and
has to run for months and years. This suggests that sensor nodes should be sold together
with appropriate packaging. However, due to the variety of sensors used for different
applications, a common casing is often not practicable or possible. The provision of a
reliable base station is not specific to wireless sensor networks and mostly depends on
a reliable power supply and software implementation.

4 Understanding the System

To detect the problems discussed in the previous section and to identify their causes, one
needs to analyze the state of the system as it changes over time. Here, the term system
does not only refer to the state of the sensor network, but also to the state of its enclosing
environment as the latter is closely coupled to the state of the sensor network. The state
of the sensor network itself is comprised of the state of the individual nodes plus the
states of the communication channels between the nodes. The state of a sensor node
can be further refined into the hardware state and the state of the software executed
by the microcontroller. Isolating the contribution of a single system component from
the overall context is a complicated task and care should be taken to actually design a
sensor network in a way that this task is facilitated.

As many sensor networks are real-time systems or have real-time aspects (e.g., sen-
sor readout at regular intervals), it is not only important to understand the progression
of the system state over time, but also its exact timing, i.e., when a certain state is as-
sumed with respect to real time. Especially in the context of a larger distributed system,
in the case of a sensor network even exacerbated by stringent resource constraints, this
is a feat requiring novel tools and methods for analysis.



4.1 Hardware

The sensor node hardware typically consists of three main subsystems: the microcon-
troller, a low-power radio and a sensing subsystem, often implemented as an auxiliary
sensor board. Components are connected through buses, e.g., UART or SPI, and inter-
rupt lines. Each of these components executes concurrently with synchronization be-
tween contexts initiated through interrupts on the microcontroller. In the following, we
discuss the individual component state of these three main building blocks and discuss
how physical characteristics such as power consumption allow for inferring the overall
system state.

Component State System state is typically referred to as the state of the microcon-
troller and is inferred using an instrumentation technique (cf. Sec. 5). However, the
microcontroller is not the sole functional component attributing to the system state; the
node hardware state machine is the cross-product of each of the individual component
state machines. As an example consider the process of sending a packet: The micro-
controller prepares the packet and sends the packet to the radio buffer, e.g., via the SPI
bus. While the radio schedules the transmission based on its internal state machine, the
microcontroller can either perform further work or go to a low-power sleep state. In
this interval, the microcontroller has no knowledge of the ongoing state changes of the
radio driver. Finally, when a packet is transmitted, the radio notifies the processor via
an interrupt.

Power Consumption Each component of a sensor node can be characterized by its
power consumption. Power consumption is dependent chiefly on current state but also
features dynamic, non-linear effects due to capacitances and inductances. Sensor node
components have typically very distinctive power consumption characteristics for their
individual state. As an example, Table 3 shows power consumption for different hard-
ware component states of the microcontroller and the radio. A detailed overview of
current draw of different hardware states is provided in [27].

lMicrocontroller‘ Radio ‘ Current (mA) ‘

on RX 23
on X 21
on off 2.4
idle off 1.2
standby off 0.021

Table 3. Current consumption for different component states of a Tmote Sky node. Max values
derived from datasheet.

In the context of a detailed powertrace is is possible to infer system behavior and
system state in a most expressive way. Shown in Figure 1 is an exemplary powertrace of



an enhanced synchronized low-power listening scheme implemented in TinyOS-2.x for
the Tmote Sky platform. By timing and coordinating packet transmissions between pe-
riodic listening/acknowledgement periods (1) a data packet must not be sent repetitively
(2) but only once when the receiving side is ready listening (3) [28].
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Fig. 1. A powertrace yields detailed insight into system behavior and anomalies.

4.2 Software

The state of the software executed by a microcontroller is defined by memory contents
and by the contents of the registers of the microcontroller, in particular the program
counter and the stack pointer. As many microcontrollers feature a Harvard architecture
with separate program memory (flash) and data memory (RAM), the focus is often
on the data memory as the contents of the program memory typically do not change
over time. Many sensor nodes offer additional flash memories. While earlier systems
used these primarily as data sinks for logging (and hence flash memory contents do
not affect program behavior directly), there is a trend to use these memories in a more
interactive way, for example, for file systems or virtual memories. In this case, flash
memory contents may directly affect program behavior and hence are as important as
RAM in understanding the behavior of the system.

Instead of working with a low-level view of the software state directly, one is often
more interested in a higher-level view, e.g., the values of certain program variables
(instead of raw memory contents) or a function call trace (instead of the content of
the program counter). These high-level views also depend on the functionality of the
operating system used. In many operating systems such as TinyOS, there is no strict
separation between a kernel and the application. Here, the kernel is simply a library of
functions that is linked to the application code. As there is no means of isolation and
protection, bugs in the application code can modify kernel state and vice versa, such
that the complete software state has to be taken into account to understand the behavior
of the system.

Other systems offer a more strict separation and sometimes also isolation mecha-
nisms between kernel and application. If this is the case, then one may trust that the
operating system is well-behaved and focus on the application state. Some operating



systems provide a thread abstraction with an individual program counter per thread.
Although threads offer an additional level of abstraction, they also introduce additional
complexity due to interactions between threads (e.g., shared variables, synchronization,
timing aspects of thread scheduling).

4.3 Communication

The contents and timing of messages exchanged between sensor nodes does not only
disclose the nature of interactions between sensor nodes (e.g., neighborhood relation-
ships, routing topologies), but does also provide hints on the state of individual nodes.
For example, a lack of messages from a certain node may indicate that the node has
died, or the values of a sequence number contained in a message may indicate certain
problems such as node reboots (after which the sequence number counter in the node
memory is reset to an initial value). Often dedicated messages catry system health infor-
mation that is vital to the deployment, commissioning and operation of a sensor network
application. As a number of deployment reports have shown, e.g., [29], expressiveness
and simple, cleartext access to message payload is preferential over elaborate coding or
even segmentation of data. In the case of segmentation of context over multiple packets,
state cannot be reconstructed if one of the packets gets lost.

4.4 Environment

Sensor networks are deeply embedded into the physical world and hence the behavior
of a sensor network is strongly dependent on the state of the environment. Not only
does the state of the environment control the output of sensors attached to sensor nodes,
but it also influences the wireless communication channel and hence communication
as well as hardware performance (e.g., frequency of oscillators). Hence, additional in-
frastructure can be used (e.g., video cameras as in [5,30]) to measure the state of the
environment in a given deployment which is not only important to obtain ground truth
for calibration of the system and individual sensors, but also to understand the reasons
of certain failures, system behavior in general or degraded performance.

Some sensor networks apply techniques to process or aggregate sensor data in the
network, such that the data collected from the sensor network does not disclose the
output of individual sensors. In such settings it may be helpful to provide access to the
raw output of the sensors in order to understand the system behavior.

5 Node Instrumentation

Node instrumentation is concerned with modifications of sensor nodes (both at the hard-
ware and software levels) to allow access to the system state. One fundamental chal-
lenge here is to minimize interference with the application in the sense that introducing
instrumentation should avoid so-called probe effects, where instrumentation (i.e., in-
serting a probe) results in a changed behavior of the system.



5.1 Software Instrumentation

Software instrumentation is required to retrieve the state of the software executing on
the microcontroller. In practice, it is impossible (since there is not enough bandwidth to
extract this information from the sensor node) and often also not necessary to extract the
complete software state continuously. Instead, only a slice of the state (e.g., the values of
a certain set of program variables) at certain points in time (e.g., when a certain program
variable is modified, when a certain function is entered) suffices in many cases.

Source vs. Binary Software instrumentation can be achieved at two levels: at the
source level, where the source code of the software is modified, or at the binary level,
where the binary program image (i.e., output of the assembler) is modified. At the
source level, calls to specific functions are inserted, for example to log the value of
a certain variable when a new value is assigned to this variable [31]. At the binary level,
the binary CPU instructions are modified. A particular difficulty with this approach is
that it is not easily possible to insert additional instructions as the code contains ref-
erences (e.g., jump instructions) to certain addresses in the code image. By inserting
instructions, these references would be invalidated. A common technique to avoid these
problems are so-called trampolines [32-34], where an instruction X at address A in the
code image is overwritten with a jump instruction to an address after the end of the bi-
nary image. At that address, a copy of the overwritten instruction X is placed, followed
by instructions to retrieve the software state, followed by a jump instruction back to
address A+1. This way, the layout of the original binary code image is not changed as
the code to retrieve the software state is appended to the code image.

In some cases, instrumentation of the binary can be performed without actually
modifying the binary code, by linking in additional code that makes references to the
symbols (e.g., of variables or functions) defined in the binary. Marionette [35], for ex-
ample, uses this approach to link RPC stubs with the binary to allow remote access to
variables and functions in the code executing on the sensor node. The stubs are created
by parsing an annotated version of the source code of the application.

Instrumentation at the source level is often easier to implement, but may signifi-
cantly change the resulting binary code. For example, due to the inserted function calls
the compiler may decide for a different optimization strategy, resulting in a significantly
different binary code image being created. This may lead to pronounced probe effects,
where the instrumented software behaves very different from the unmodified software
due to changed memory layout, register allocations, or timing issues. In contrast, binary
instrumentation is more complex to implement because one has to operate at the level
of machine instructions, but probe effects are often less significant because the basic
memory layout is not changed.

Operating System vs. Application Another aspect of software instrumentation is
whether the actual application code and/or the operating system is instrumented. In
some cases it may be sufficient to only instrument the operating system or runtime en-
vironment to trace timing and parameters of kernel invocations, memory allocations, or
context switches. In particular when using a virtual machine to interpret a byte code rep-
resentation of the application program, an instrumentation of the byte code interpreter



provides a detailed view of the applications state without actually instrumenting the
application code. Some virtual machines have been developed for sensor nodes (e.g.,
[36]), but constrained resources often preclude the use of virtual machines low-end sen-
sor nodes due to the resulting performance degradation.

Dynamic Instrumentation Sometimes it is necessary to change the instrumentation
during runtime, for example to implement interactive debugging, where one wants to
place watchpoints that are triggered when the value of a certain variable changes. While
this is typically impossible with source code instrumentation as code would have to be
recompiled and uploaded to the microcontroller, virtual machines and binary instru-
mentation do support this. A difficulty with binary instrumentation is that the program
image resides in flash memory rather than in RAM. Changing the contents of flash
memory is not only slow and consumes a lot of energy, but flash only supports a limited
number of write cycles (in the order of thousands) before it fails [34]. Hence, changes
of the binary instrumentation during runtime should be rather infrequent. This problem
does not occur with virtual machines, as the interpreted program typically resides in
data memory (i.e., RAM) — only the virtual machine itself resides in flash memory.

Specifications One further aspect of software instrumentation is the way the user spec-
ifies how the software should be instrumented, i.e., which slice of the software state
should be retrieved at what point in time. The most basic way is to specify the exact
locations in the program code (either at source or binary level) where an instrumenta-
tion should be placed and which slice of the program state this instrumentation should
retrieve. However, this is often a tedious and error-prone process. For example, when
monitoring the value of a certain program variable over time, one may forget to place
an instrumentation after one of the many places in the program where the value of this
variable may be changed.

A more advanced approach inspired by Aspect-Oriented Programming (AOP) is to
let the user specify a certain pattern such that instrumentation is inserted wherever the
program code matches this pattern [32]. Example patterns may be of the form “when-
ever a function named ser* is entered, insert a given instrumentation” or ‘“whenever the
value of a variable named state* is modified, insert a given instrumentation”. An inter-
preter would read these patterns, match them with the program code (either source or
binary) and place the appropriate instrumentation.

A related approach is based on the notion of events [37]. Here, an event is said to
occur when the software assumes a certain predefined state. Instrumentation has to be
added at all points where the software enters a state that matches the event definition.
One basic way to implement this is to let the user identify all these points in the program.
But in principle, this can also be automated. Upon occurrence of an event, a notification
is generated that identifies the event, often also containing the time of occurrence and a
certain slice of the software state at the time of occurrence of the event. One example
of such events are watchpoints in a debugger [34].

Systems that support pattern-based or event-based instrumentation during runtime
typically include a small runtime system to evaluate the pattern or event specification



in order to identify the points in the code where instrumentation has to be placed, and
to perform the actual instrumentation [32-34].

5.2 Hardware Instrumentation

Hardware instrumentation enables the extraction of the hardware state but also of the
software state from a sensor node. Note that a hardware instrumentation is not strictly
necessary. For example, one may send off the software state (extracted using the tech-
niques described in the previous section) using the radio or by blinking LEDs. Here,
one can place an additional radio receiver or a video camera next to the sensor nodes
to capture the state without physical access to the sensor nodes. In some cases it is
even possible to retrieve parts of the hardware state in this way. For example, one may
use the built-in analog-to-digital converter of the microcontroller to measure the battery
voltage and send it off via radio or LEDs. However, all these techniques may result
in significant changes of the system behavior and thus may cause probe effects. Hard-
ware instrumentation tries to minimize these effects, but requires physical access to the
sensors nodes, which may be difficult in the field.

Hardware instrumentation of sensor nodes uses the approaches and mechanisms
known from embedded systems [38]. However, for WSN there is a considerable dis-
tinction: a single embedded system is only part of an interacting network. Thus in the
following we describe only approaches from debugging embedded systems, which are
focussed on a system aspect. Traditional embedded debugging methods for a single
node such as flash monitors are not considered. We focus on hardware instrumentation
utilizing a physical connection to the sensor node to extract logical monitoring infor-
mation. On the sensor nodes, microcontroller interfaces are used to drive signals across
a wired connection to a monitoring observer. The connection to an observer may in-
clude a converter translating the serial protocol to a standard interface such as USB or
Ethernet.

The simplest approach for hardware instrumentation is to use General-Purpose 10’s
to generate binary flags, representing internal state of the node. While information con-
tent is limited, such wired pins are very helpful in debugging and have a minimal
overhead in software. Further information can be extracted by using a serial protocol
over the wire. Many microcontrollers provide support for serial protocols in their inter-
faces; in particular UARTSs (universal asynchronous receiver/transmitters) are typically
included. These interfaces can be used to send monitoring messages from the node to an
observer. The additional information content is payed by increased, non-deterministic
latency of an information message due to buffering and serialization. Flow control and
error handling may be incorporated depending on monitoring message frequency and
instrumentation requirements.

Additionally, microcontrollers typically include JTAG (IEEE 1149.1) functionality.
JTAG stops the microcontroller and subsequently allows for non-intrusive extraction of
node state to the external observer. | While, this method is very helpful in debugging

! Note that our discussion only focusses on information extraction and not on the debugging
capabilities of JTAG such as stepping through a program execution.



individual nodes, the stopping of the execution induces considerable probing effects
due to the halting of interaction with the system.

A separate HW instrumentation technique for extracting physical information is ob-
servation of power consumption through voltage and current measurements. While this
is traditionally performed with expensive lab equipment such as voltage/current meters
or oscilloscopes, in [39] a low-cost and distributed hardware instrumentation for power
measurements on a testbed is presented. As sensor nodes have significant differences in
power consumption for the microcontroller and the radio, the power consumption trace
allows for extracting information on system state. A different approach is to focus on
energy consumption of different operations. Using specialized hardware on each sen-
sor node [40], energy attribution to individual tasks [27] may be derived allowing for
additional insights.

6 Network Instrumentation Methods

A number of methods have been developed in recent years to aid development, testing
and deployments of whole sensor network systems. The sheer number of nodes requires
a careful and orchestrated instrumentation in order to allow to interact with a whole net-
work of nodes. In this sense, network instrumentation refers to the instrumentation of
sensor nodes to extract a comprehensive view of a sensor network. There are four dif-
ferent mechanisms for network instrumentation (i) in-band collection, (ii) local logging,
(iii) sniffing and (iv) out-of-band collection. These approaches will be discussed in the
following.

Approach [Online[Data Volume |Attachment
In-Band Yes Low No
Storage No Low No
On-line Sniffing | Yes Low No
Off-line Sniffing] No Low No
Out-of-Band Yes High Yes

Table 4. Characteristics of network instrumentation methods based on distinct parameters: online
capabilities, supported data volume and physical attachment.

With in-band collection as shown in Fig. 2 monitoring messages are routed through
the sensor network to a sink, where they are merged and fed to the evaluation backend.
This is similar to a data gathering approach to collect sensor values from the network.
This approach has the lowest overhead as no additional hardware is required, but re-
sults in high interference with the application as all traffic is transmitted in-band with
application traffic through the whole network.

With the logging approach in Fig. 2 (b), monitoring messages are stored to a local
node memory (flash) indicated by the small database symbols in the nodes. While this
approach causes no interference with the application traffic, the nodes need to be col-
lected to download the traces from their memories, resulting in substantial overhead. As
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Fig. 2. Different network instrumentation methods have implications on resources used and the
expressiveness of the results: (a) in-band collection (b) logging (c) offline sniffing (d) online
sniffing (e) wireless testbed (f) wired testbed.

local storage is typically limited by sensor nodes, the amount of monitoring messages
is considerably limited.

With the offline sniffer approach in Fig. 2 (c), an additional set of sniffer nodes (de-
picted as squares) is installed alongside the sensor network to overhear messages mes-
sages sent by sensor nodes. Sniffer nodes store these messages in their (flash) memories.
As in the logging approach, sniffer nodes need to be collected to download messages
from their memories, while the sensor network remains operational. This approach may
be used in a completely passive manner without modifying sensor network software or
protocols as in [41]. However, one may also modify the sensor network protocols to in-
clude additional information about node states into messages or to broadcast additional
messages in-band with the application traffic to be overheard by the sniffer nodes. How-
ever, other sensor nodes would ignore these additional messages and would not forward
them, resulting in significantly less in-band traffic compared to the in-band collection.

With the online sniffer approach in Fig. 2 (d), sniffer nodes have a second, powerful
radio that is free of interference with the sensor network radio (e.g., Bluetooth, WLAN).
Using this second radio, sniffer nodes forward overheard monitoring messages to a
dedicated sink where they are merged and fed to the backend for evaluation. In contrast
to the offline sniffer approach, traces are processed online, but a reliable second radio
channel is required. This approach has been used in [42].

Out-of-band logging avoides completely avoids the use of the sensor node radio
for monitoring purposes to as to minimize interference with the application. Instead, a
second, “out-of-band” communication channel is created by wiring the sensor nodes.
However the implementation may differ concerning the transport mechanism for moni-
toring messages. A wireless testbed approach in Fig. 2 (e) is similar to the online sniffer,
but instead of sending monitoring messages in-band with application traffic, each sensor
node is connected by wire (e.g., serial cable) to an additional node, a so-called observer
that forwards the messages over the second radio channel to the sink. This approach
results in even less interference and message loss than online sniffing, but requires sub-
stantial overhead for wiring. This approach has been used in [43]. Finally, with the
wired testbed approach in Fig. 2 (f), each node is wired to a sink. Monitoring messages
are transmitted over the wire to a sink, where they are merged and fed to the evaluation
backend in an online fashion. Many testbeds exist that support such a wired channel
to each node, e.g., [44]. In fact, wired testbeds are the most common instrumentation



method used to date. However, this approach is typically only feasible in the lab, while
the other approaches could be applied both in the lab and in the field.

A basic concept in all instrumentation methods is that of an observer, be it integrated
as in the in-band case, or external as in the out-of-band case. Any state that wants to be
observed needs to be preserved and made available for extraction and further analysis.
By doing so, any method used ultimately influences the system it is applied on. Even
in the case of a passive sniffer, care must be taken that the relevant data necessary for
successful observation and analysis is actually exported. Here, a protocol designer thus
must foresee provisions in the protocol design that allow to reconstruct the necessary
context. Additionally, all network instrumentation methods rely on successful node in-
strumentation, especially w.r.t the preservation of timing properties. As stated earlier,
wired testbeds are the most commonly used approach today. However, most testbeds
are limited to distinct areas only, e.g., an office building. As testing has to take into
account the influence of the actual environment to be encountered at the deployment
site, special equipment is required to simulate environmental impact, for example by
incorporating a temperature cycling chamber into a testbed setup.

7 Analyzing the System

Once access to the system state is provided through node and network instrumentation,
system state can be analyzed, e.g. to detect failures. This analysis can be performed
within the network on the sensor nodes themselves, outside of the sensor network, or
with a mixture of both approaches (e.g., some preprocessing is performed in the sensor
network to reduce the amount of information that has to be transmitted).

A fundamental problem that has to be addressed in analyzing the system state is
incomplete information. Not only do limited node and network resources preclude to
extract the complete system state, but often wireless communication with inherent mes-
sage loss is used to extract the system state.

7.1 Monitoring and Visualization

Visualization of system parameters and state is an invaluable tool for immediate feed-
back. A number of traditional network analysis tools such as Ganglia, Cacti or Nagios
can be readily applied [45], but especially at the deployment site handheld visual in-
spection devices [16, 18] provide insight into the operation of the network and individ-
ual nodes. As an example, SeeDTV [16] provides a handheld device, SeeMote, provid-
ing visual support, while being small, light-weight, and providing long battery lifetime.
The SeeDTV application provides different views on the information provided by the
sensor network such as statistics on the number of available nodes, status and health
(battery level) of an individual selected node, and a detailed view onto the node’s sam-
pled ADC values. SeeDTV was used in the Luster deployment and helped to pinpoint
5 malfunctioning nodes, which could be immediately replaced.

With a focus on the development stage, Octopus [46] is an interactive tool allowing
for visualizing information of system characteristics of a sensor network. It additionally
provides an interface for interactive reconfiguration of application parameters. As an
example, a user may change the duty-cycle and observe the effects on the network.



7.2 Inferring Network State from Node States

Often a user is overwhelmed by monitoring the low-level system state extracted from
the sensor nodes. Here, the low-level traces from multiple nodes can be combined to
interfere a higher-level state of the network. For example, instead of looking at the
individual routing tables of nodes, one may reconstruct the routing topology of the
network and display it to the user.

SNIF [42] allows to infer the network state from message traces collected with a
sniffer network. Inference is implemented with a data stream framework. The basic el-
ement of this framework is a data stream operator which accepts a data stream (e.g., a
stream of overheard messages) as input, processes the stream (e.g., by removing ele-
ments from the stream or modifying their contents), and outputs another data stream.
These operators can be chained together to form a directed acyclic graph. There are
general-purpose operators that can be configured with parameters (e.g., a union operator
that merges two data streams) and custom operators which are implemented by a user
for a specific inference task. Ideally, one should be able to implement a given inference
task just by configuring and combining existing general-purpose operators. However,
in practice it is often necessary to implement some custom operators. LiveNet [41] pro-
vides a similar functionality, however the inference functionality is implemented in an
ad-hoc manner using a general-purpose programming language.

EvAnT and the successive Rupeas DSL [37,47] provide an event analysis frame-
work for WSNs. Input to the system is a trace of log events collected from the execu-
tion. Each event is a tuple of key-value pairs, minimally including a node identifier and
a type. Traces are represented as sets of events with no particular ordering on events im-
plied. Rather the user may specify a strict ordering using timestamps or a partial order
based on message ordering on sent and received packets. EvAnT allows for formulating
queries and assertions on the trace. Queries are based on the EvAnT operators, which
use simple predicates and associating functions for combining events. As an example,
a routing path is composed by iteratively associating individual send/receive and for-
ward links across the nodes. A case study in [37] presents how concise formulations
in EvANT extract information about message flow. In particular, through subsequent
queries on the trace, the underlying problem of a low-power data gathering application
is traced back to the time synchronization protocol.

7.3 Failure Detection

Failure detection is concerned with automatically identifying system states that repre-
sent failures (i.e., deviations from the system specification). Hence, instead of manually
scanning traces of node or network states, problematic system states are automatically
identified.

There are two orthogonal approaches to failure detection. Firstly, one can specify
the correct behavior of the system and deviations from this correct behavior are auto-
matically detected and assumed to be failures. Secondly, one can directly specify faulty
behavior and the actual system state is then matched with the failure specifications.

The first approach has the advantage that potentially any failure can be detected,
even ones that are unknown a priori. However, it is often non-trivial to specify the cor-
rect behavior of the system as a wide range of different systems states may represent



correct behavior. This is especially true for failures that result from interactions of mul-
tiple nodes, because here one has to specify the correct behavior of the whole network.
In contrast, specifying the correct behavior of a single node is typically much easier.

One approach to deal with this problem is to focus on certain aspects of the system
behavior instead of trying to specify the complete system behavior. One example for
this approach are assertions, where the user can specify a predicate over a slice of the
system state, formulating the hypothesis that this predicate should always be true. If the
predicate is violated, a failure is detected. Note, however, that the user may also specify
an incorrect hypothesis, so a failed assertion does not necessarily indicate a failure.
Assertions can be non-local both in time (refer to system state obtained at different
points in time) and space (refer to the state of multiple nodes). For example, passive
distributed assertions [31] are local in time but non-local in space. Other examples for
the use of assertions are [31, 33,37, 48].

Another approach to address the problem of specifying the correct behavior of a sys-
tem is to use machine learning techniques to automatically build a model of the system
state during periods when the system is known to behave correctly. In Dustminer [49],
for example, the frequency of occurrence of certain sequences of events is computed
while the system is known to work correctly. If at a later point in time the frequency of
a certain event sequence deviates significantly from the “correct” frequency, a failure is
detected.

It is often easier to directly specify the system behavior that represents a very spe-
cific failure. However, with this approach only failures can be detected that are known
a priori. Many systems build on this approach. For example, SNIF [42] and Sympa-
thy [50] both offer failure detectors for node crash, node reboot, isolated nodes with no
neighbors, no path to/from sink, and others.

7.4 Root Cause Analysis

It is often the case that a failure may cause a secondary failure. For example, if a node
crashes (primary failure), then this may lead to a situation where other nodes fail to route
data to the sink (secondary failure) because the crashed node was the only connection
to the sink. Here, a user would be interested in knowing the primary failure (i.e., the
root cause) instead of being overwhelmed with all sorts of secondary failures.

One technique that has been applied to sensor networks for root cause analysis are
so-called decision trees [50, 42]. As illustrated in Fig. 3 taken from [50], a decision tree
is a binary tree where each internal node is a detector for a specific failure that may
either output Yes (failure detected) or No (failure not detected). The leaf nodes indicate
possible failures that can be detected. To process the decision tree, we start at the root
and execute the failure detector. Depending on the output of the failure detector, we
proceed to one of the child nodes. If the child node is a leaf, the failure noted in the leaf
node is output and we are done. Otherwise, if the node is an inner node, we evaluate the
respective failure detector and so on until we arrive at a leaf node.

Decisions trees in [50,42] are empirically constructed, according to the rule that if
failure A can result in a secondary failure B, then the failure detector node for A should
be located on the path from the root of the tree to the node representing the failure
detector for B.
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Fig. 3. The decision tree for root cause analysis used by Sympathy [50].

7.5 Node-Level Debugging

Traditional source-level debugging techniques such as placing breakpoints, watchpoints,
or single-stepping can also be applied to sensor nodes. For example, in [34], the GNU
debugger gdb is ported to TinyOS. However, this approach is limited as a sensor node is
merely part of a larger network of nodes that often operate under real-time constraints.
Since the timing of program execution is significantly affected by the debugger, signif-
icant probe effects are caused. In the extreme case, the slowed-down execution of the
debugged node may itself lead to failures. Another problem with this approach is that
dynamic modifications of the binary code executing on the microcontroller are needed
to implement the debugger. As the program image is stored in flash memory, this leads
to excessive wear of the flash memory and high latency.

7.6 Replay and Checkpointing

Another analysis technique is to reproduce a faulty execution either directly in the de-
ployed network or in a controlled environment (e.g., lab testbed or simulator). By vary-
ing some of the system parameters during such a replay, one can examine potential
dependencies between these parameters and the faulty behavior, verify that a certain
modification of the system has removed the cause of a problem, or simply tune the
performance of the system.

Envirolog [51] supports repeatability of system executions albeit asynchronous events.
This is grounded on the assumption of scoped event readings, i.e., data is only trans-
ferred via dedicated functions and associated parameters. A log module is responsible
for logging events of interest, i.e., the according function calls with their parameters
into flash memory, thus creating a timestamped event record. In a subsequent replayed
execution, consumers of these events are re-wired to connect to the replay module, pro-
viding the recorded events from flash at the replayed instant in time. While this allows
for repeated tests of different parameter settings, e.g., for protocol tuning, the results



are only valid as long as the re-executions do not change the occurrence and timing of
events. This fundamental problem of timing dependence is avoided with a model-based
approach such as Emuli. Emuli [52] focusses on the capability to emulate network-
wide sensing data to sensor nodes. This allows for analyzing the system execution on
a model-based ground truth, whether it is used for repeatability or exploratory analysis
for novel sensing data. Emuli provides time synchronization and coordination among
nodes in order to generate a consistent network wide model of sensing data.
Checkpointing [53] extracts system state allowing for analysis, transferral between
different execution (test) platforms, e.g., a simulator and a testbed, and for repeatability.
However, in contrast to replay repeatability discussed above, checkpointing only con-
cerns the initial state of an execution, not the subsequent execution itself. Nevertheless,
a consistent state across the system, e.g., concerning the topology and neighbor tables
in network-centric tests, is invaluable for comparative tests and analysis of parameter
changes. Checkpointing of a single sensor node concerns the state of the individual
components. As program code in program flash is typically not modified, only RAM
state needs to be extracted, which is typically already provided by the bootloader. Other
components such as External Flash, LEDs, and especially the radio require special con-
siderations dependent on the requirements of application and the checkpoint. Dunkels
et al. [53] describe the support in Contiki for storing and loading node state and its
current scope. However, the difficulty of checkpointing lies in the synchronized check-
pointing across all nodes in the network for a consistent snapshot. This is handled by
intermittent Linux routers controlling a subset of nodes for freezing and unfreezing.

8 Concluding Remarks

In this contribution we have surveyed the most prominent sensor network deployments
and been able to identify selected underlying problems in system design, during instal-
lation and deployments. A special focus has been made towards problems arising and
relevant in practice with sensor network applications and deployments in a real environ-
ment. We have presented a number of techniques for the instrumentation and analysis,
predominantly to be applied at run-time of a sensor network. With the techniques pre-
sented here, a future designer of networked embedded systems should be able to define
a suitable and successful design strategy suitable to meet requirements specified. With
regard to the distributed nature of sensor networks the typical problems encountered
have been classified into node, link, network path as well as global problems. Likewise
the methods presented in this article are targeting to further understanding at the node,
network and system level. Due to the diversity of applications, requirements and design
goals, there is no single, distinctive approach to the design and deployment of sensor
networks available today.
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