Consistency Challenges of Service Discovery in Mobile Ad
Hoc Networks

Christian Frank

chfrank@inf.ethz.ch
Distributed Systems Group

ETH Zurich, Switzerland

ABSTRACT

Emerging “urban” ad hoc networks resulting from a large number
of individual WLAN users challenge the way users could explore
and interact with their physical surroundings. Robust and efficient
service discovery and routing protocols in such networks are a nec-
essary ingredient. Although a lightweight service discovery pro-
posal integrated with ad hoc routing exists, an implementation and
performance evaluation with respect to overhead and correctness
have so far been missing.

Moreover, the different service providers in an urban scenario,
which (more or less) frequently and actively change their status,
demand more flexible handling of cached information on neighbor-
ing providers than what is currently proposed. We therefore con-
tribute mechanisms that maintain cache consistency and show that
explicitly removing cache entries on existing neighboring providers
is well invested effort. We finally evaluate whether ad hoc network
latency can implicitly help our protocol in retrieving the physically
closest provider, using an 802.11 model. Additionally, we provide
a general architectural framework for enabling lightweight service
discovery on top of most reactive routing protocols.

Categories and Subject Descriptors: C.2.1 [Computer Commu-
nication Networks]: Network Architecture and Design; 1.6.6 [Sim-
ulation and Modeling]: Simulation Output Analysis

General Terms: Algorithms, Design, Performance

Keywords: Service Discovery, Ad Hoc Networks, Ubiquitous Com-
puting

1. INTRODUCTION

The popularity of mobile computing and WLAN interfaces en-
ables a new paradigm of communication: Mobile wireless net-
work participants communicate amongst each other without the use
of any infrastructure, forming mobile ad hoc networks (manets).
With the growing density of WLAN devices large networks could
emerge, which cover a significant part of a downtown city area.
Such a network may be used to retrieve information on the sur-
rounding physical world. Such information often takes on the form
of a “Where” question: Where can I find something, where is a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

MSWiM’04, October 4-6, 2004, Venezia, Italy.

Copyright 2004 ACM 1-58113-953-5/04/0010 ...$5.00.

Holger Karl
hkarl@ieee.org

Telecommunication Networks Group
Technische Universitat Berlin, Germany

specific service provided? Consider a pedestrian user, standing at
a downtown street crossing, wishing to call a taxi cab. Or a user in
a car who wants to locate a subsidiary of his bank in an unknown
neighborhood. In such scenarios, retrieving the closest such entity
is most valuable to the client.

We contend that such functionality, which is currently realized
in a centralized fashion, could easily and much less costly be ad-
dressed by a service discovery protocol within the city manet. The
sought entities (e.g., taxi cabs, stores, gas stations or also Internet
access points) publish their physical service as a network service,
which may then be discovered by mobile clients. We claim that
because of the inherent correlation between ad hoc network topol-
ogy and physical proximity, approximating the physically closest
provider without employing any localization system is feasible.
The protocol would naturally integrate locality, mobility, and scal-
ability and avoid single points of failure.

The required functionality of a service discovery component is
simple: The client application issues a request to the node’s lower
layers. In the case that a provider is found, a reply is issued con-
taining the provider’s network address. Additionally, the network
shall provide end to end routing for communication between client
and provider once the provider has been discovered: In the taxi ex-
ample, the client might wish to “hail” a taxi. In the case that no
provider is available or is unreachable within a given scope from
the client, no reply will be issued by the network. In this case the
client will have to wait for a timeout. The functionality for provider
applications is also straightforward: These shall be able to register
and deregister their services at the service discovery layer.

The detailed mechanisms of such a system are unclear, how-
ever. We have to consider, e.g., where information about service
providers is available: If available only at the providers themselves,
a high overhead in searching for this information is incurred. If in-
formation is cached at other points in the network, this raises ques-
tions regarding cache lifetime and mechanisms for (more or less ag-
gressively) maintaining cache consistency. In addition, the volatil-
ity of service provider availability has to be taken into account
when designing such a system (this aspect is especially valid in
the inspected usage scenarios, as provider availability could change
both frequently and intentionally as in the taxi example). We study
these aspects using a detailed simulation model for the urban ad
hoc environment including a number of relevant participant types.

The following Section 2 overviews existing approaches for their
suitability and selects one basic mechanism integrating service dis-
covery and ad hoc routing as a starting point. Section 3 will then
describe the chosen service discovery mechanism and introduce a
number of enhancements to it that enable the protocol to be efficient
in high load scenarios with frequent changes in provider availabil-
ity. Based on our implementation, we also include a general con-

cept of possible integration of ad hoc routing and service discovery.
We will then present detailed models used for the urban ad hoc en-
vironment in Section 4 and provide simulation results of the basic
protocol and our extensions in Section 5.

2. RELATED WORK

2.1 Service discovery

Service discovery protocols provide features to spontaneously
look up services with a low overhead for network configuration.
Prominent among those are the Service Location Protocol [9], Salu-
tation [20], Jini [6], UPnP [23] and the service directory service
UDDI [22]. These systems were mostly designed for an adminis-
trated network context and are either based on aggregating informa-
tion into central directories (like UDDI or Jini) or on maintaining
a network-wide multicast tree used for periodic service advertise-
ments (like UPnP, Salutation or SLP, when operated without direc-
tory agents). We believe that both approaches are not designed or
suitable for the large and mobile ad hoc networks envisioned in this
paper.

Among other approaches specifically targeted at ad hoc networks,
reference [3] also use multicast trees, adding extensions to the On-
Demand Multicast Routing Protocol (ODMRP) [25] to provide ser-
vice discovery. Services/resources are advertised to a known multi-
cast address which is joined by nodes interested in advertisements.
We assume that multicast group management constitutes too much
overhead for the localized interactions required in our scenario of a
large and inherently mobile network.

A service discovery approach in which proactive routing and an-
nouncements are performed within a small neighborhood area is
presented in [12]. Discovery outside the neighborhood is initiated
reactively through remote contact nodes which then reply the query
from their own neighborhood or forward it to their contacts. This
work applies well to the described usage scenarios, yet we would
like to avoid the routing overhead within the neighborhood areas in
the case that network traffic is very infrequent. Also, it is unclear
how a hop distance could be obtained for discovered resources,
which would enable us to exploit network proximity for retrieving
the closest provider.

In an Internet Draft [10], Koodli and Perkins describe ongoing
work to integrate service discovery and a reactive routing protocol.
This approach appears promising as it is a lightweight extension
on top of a proven ad hoc routing protocol and may benefit from
existing routing information.

2.2 Anycasting

Service discovery in ad hoc networks using Anycasting [14] is a
promising approach to integrate routing and discovery: Providers
of a given service type also advertise routes to an additional vir-
tual node representing the service type. Routing will then forward
routing queries for the virfual node correctly to one of the service
providers. Anycast extensions are described for various routing
types. Among those, for the described large mobile network sce-
nario, only the reactive AODV [17] and potentially link reversal
may apply. However, AODV uses sequence numbers for each node
to avoid loops, and it is unclear how virtual nodes could issue co-
herent sequence numbers [14].

Link-reversal routing algorithms [8] maintain a valid route to a
destination proactively. This is done by local repairs that always
maintain a forwarding link towards the destination. We considered
a service discovery protocol such that nodes maintain a valid route
to a given service type at all times (at least in a given scope around
the provider or in areas with high network load). Whenever the last

link to a provider of any service type fails, nodes will take proactive
measures to ensure at least one outbound link (and therefore at least
one route) is present. By treating service types on the same level as
node addresses, one could use a variant of TORA [15] to do service
discovery as proposed in [13]. Although interesting, we believe
that the proactive link reversal protocols are not quite suitable for
the requested functionality: While nodes will maintain a route to
a matching provider whenever possible, nodes do not incorporate
new information: If a new provider becomes available and a route
to another (possibly quite remote) provider already exists, the node
will never learn of the new provider, as no state change of the node
is required.

2.3 Internet connectivity for mobile ad hoc
networks

Support of Mobile IP [19] in ad hoc networks also includes dis-
covery of foreign agents when a mobile host has reached a new
network. Prominent work in this area is done by Sun et al. [21].
The focus is on integrating AODV [17] and Mobile IP protocols.
Proactive foreign agent advertisements are flooded periodically by
intermediate nodes. The analysis focusses on varying mobility and
announcement intervals with one or two foreign agents. Ratanchan-
dani and Kravets [18] describe a hybrid approach between reactive
discovery and periodical advertisements of foreign agents. The re-
active discovery is integrated into AODV route discovery. Agent
advertisements are limited in scope and also establish routes. Our
work is different as it provides support for a variety of provider
types among which some may frequently change their availability.

Summing up, we believe that the most promising mechanisms are
based on the integration of service discovery functionality into ad
hoc routing protocols as exemplified by reference [10], especially
because both routing and discovery must be available in such a
network anyway. However, it appears reasonable to extend it fur-
ther with functionality that reflects the dynamic nature of service
availability, which is independent of whether a service provider is
reachable from a pure routing point of view — the main problem is
that cached information on service availability might be outdated or
staled inside the network while routing information is still accurate.
Hence, we choose reference [10] as our starting point and extend
it with proactive extensions that reflect these service dynamics and
are efficient in both high-load and inactive phases of network op-
eration. The following section will describe these mechanisms in
more detail.

3. PROTOCOL DETAILS

Section 3.1 describes our current specification and implementa-
tion of reference [10]. Some clarifications and additional specifica-
tions were needed (even though they might have introduced some
slight differences to [10]). Additional specifications for our pur-
pose can be found in subsections 3.1.3 and 3.1.4. Section 3.2 will
motivate additional proactive enhancements to the protocol in order
to find a balance between areas of lower and higher request rates;
it will analyze different proactive elements that may be employed
and will summarize the elements chosen for simulations.

3.1 Service discovery in on-demand ad hoc
networks

The main idea of [10] is to attach a service discovery header to
control packets used by routing.

3.1.1 Service request and reply packets

In [10] the authors assume that the routing component follows a
request/reply cycle: A route request packet containing the sought
destination is broadcast and is replied by a node knowing a route
to the destination. This sequence is part of most reactive routing
protocols.

A service request packet (SREQ) is shown in Figure 1. It com-
prises a route request packet (RREQ) plus an additional header de-
scribing the sought service, the so-called Service Request Extension
or SRE. The SRE contains information to identify a given service
type (service selector). In referece [10] this information may be
either a URL or a port number; in our context it is modeled by an
integer referring to a predefined service type. If the search should
be enhanced with semantic attributes (which is not implemented),
these attributes would also be located in the SRE. Similarly, a ser-
vice reply packet (SREP) will be a route reply packet including
additional information on the service found, accordingly termed a
Service Reply Extension or SRpE. It includes the service lifetime,
which may be different for various providers.

Service Request (SREQ)

SRE RREQ

service selector

‘ destination address

Service Reply (SREP)

SRpE RREP

service selector lifetime ‘ ‘ destination address

Figure 1: An additional header is attached in front of routing
control messages

The depicted destination address field in the RREQ and RREP
messages refers to the sought destination for which route discovery
is performed. Service discovery will use it to store the provider
address, see below.

3.1.2 Service and route resolution

At the time a client issues a request, it creates a route request
packet and adds an SRE with the sought service type. At this time
the destination address of the RREQ packet is unknown and will be
set to zero (other fields may need to be set compatibly, e.g. if using
AODV routing the destination sequence number must be set to un-
known). The destination address of the RREQ will later contain a
matching provider address.

The SREQ will propagate through the network like an ordinary
RREQ. A node which receives an SREQ will fill-in the missing
destination address if it knows a matching provider or if it is a
provider itself. Each node will store so-called service bindings,
a binding associating a service type to addresses of provider nodes.
The provider node will update its bindings locally. Other nodes
will cache service information from SREPs they forward. Note that
multiple providers may be registered for a given service type. The
table additionally stores a cache lifetime up to which the service
information is valid.

The handling of an incoming SREQ is shown in Figure 2. The
node at first checks whether the packet contains a destination (the
destination field is non-zero). If the packet does not contain a des-
tination, there are two possibilities:

1. If the node does not have a service binding for the given ser-
vice type it will rebroadcast the SREQ unchanged.

SREQ received

no

contains DEST

has altern.
binding
with route

SREQ (same DEST) SREP

Figure 2: Handling an incoming SREQ

2. If the node has a service binding including a route, it will
send an SREP packet back towards the client. If it has a ser-
vice binding but no route, it will just fill-in the destination
address of the binding with the highest lifetime and rebroad-
cast an SREQ with an updated destination field.

If the packet does contain a destination there are also two cases:

1. If the node knows a route to the destination, it will send an
SREP packet including the service type and lifetime in its
service binding table.

2. If the node does not know a route to the destination, it will
look up whether it has alternative service bindings (including
a route to the provider address) for the given service type. If
s0, it sends an SREP including service time and the lifetime
stored in its table, if not it just rebroadcasts the SREQ.

An SREP will be unicast back along the spanning tree established
by the SREQ flood. The intermediate node will add or update its
own service binding if the information in the message is more re-
cent than its own. In the opposite case, the lifetime of the message
is updated to the node’s own service binding entry. The RREP part
of the message will always be processed by the corresponding rout-
ing component and thus routes will be constructed via the message
as well. If the SREP is directed at the local node, a service reply
is indicated to the requesting application and the message is not
forwarded.

3.1.3 Choice of service bindings

The cited Internet Draft [10] does not make any statements on the
choice of service bindings when multiple bindings are available.
In our work the closest provider — measured in hops — is chosen
according to the current node’s route table. If service bindings are
cached at intermediate nodes, this is only an approximate choice
which will be evaluated in the results section.

This decision does weigh (potential) closeness of a provider heav-
ier than the freshness of provider information. As a consequence
of cache inconsistencies, some requests may be replied incorrectly.
This could be avoided when using the most recent service bind-
ing (with the largest lifetime) instead, but this would heavily com-
promise the goal of hop-wise optimality of the replies. The per-
formance evaluation section will show the consequences of this
choice.

3.1.4 Post-discovery connectivity

A route from the client to the provider is always implicitly con-
structed by the SREQ/SREP pair. Because it is assumed that sub-

sequent communication between provider and client will be neces-
sary, the route back from provider to client is also important. This
route is also implicitly constructed if the SREQ message reaches
the provider itself (as the reply travels this route as part of the con-
structed spanning tree). Yet this route is not available if the reply is
issued by an intermediate node.

Having used AODV as the routing component, we achieve this
end-to-end connectivity by setting the “gratuitous” flag in the route
request (RREQ) part of the message. The flag causes a gratuitous
route reply (GRREP) to be generated at the intermediate node and
be unicast towards the provider as shown in Figure 3. The fields of
a GRREP are set as if the provider node had requested a route to
the client and the GRREP were the reply. This functionality is part
of the AODV protocol ([17], Sec. 6.7).

Client Intermediate Node Provider
)
O o @
— e

SREP GRREP

Figure 3: Intermediate node constructing routes in both direc-
tions

If the client node should be able to reply the service request lo-
cally, i.e. the client node holds a service binding and a route and
does not send out an SREQ message at all, service discovery will
explicitly initiate a GRREP at the AODV module.

3.2 Proactive enhancements

The route and service search by [10] described in the previ-
ous Section 3.1 and its integration with AODV routing contribute
the valuable concept of simultaneously discovering routes and ser-
vices. It is not clear, however, how these mechanisms behave espe-
cially under heavy load on the network and under frequently chang-
ing provider availability.

We evaluated possible proactive enhancements that are able to
decouple protocol effort from the number of requests in areas of
high traffic. Naturally, the proposed caching of service bindings is
able to improve performance in high load scenarios. It is unclear,
however, what a suitable caching lifetime would be in such scenar-
ios. Although caching may reduce protocol effort, we expect that
it yields a significant amount of incorrect replies, especially when
providers become unavailable and in presence of many requests.
Also, caching may compromise our goal of hop-wise optimality,
when a choice among several providers is made. These aspects
will be studied in the performance evaluation section.

Generally, proactivity is activated by a provider becoming ei-
ther newly available or unavailable. In both cases, the time dur-
ing which the network stores inconsistent information should be as
short as possible. In the reactive case (with caching), a node learns
about a new provider only after it has overheard or processed a re-
quest/reply pair to this node. This happens soon at high request
frequencies. Periodic announcements, on the other hand, limit the
time until the new provider is known to the announcement interval.
To match the reactive protocol’s performance in high-load cases,
frequent announcements would be necessary, which are just wasted
overhead in other cases. Additionally, the period of inconsistency
for providers that have become unavailable remains. Hence, the
benefits of periodic announcements would depend on a careful tun-
ing of announcement intervals; therefore, periodic announcements
are questionable and will not be considered further.

Yet, what other enhancements can be made at high load, which
do match our scenario and also maintain correct protocol behav-
iour?

3.2.1 Negative announcements

When a provider becomes unavailable, every cached entry on
this provider may cause incorrect replies. Here, the disadvantages
of caching are clear, both for reactive and for periodically announc-
ing systems. To limit incorrect answers, short cache lifetimes would
be necessary, nullifying its effectiveness. Therefore, explicitly re-
moving cached entries by negative announcements would allow to
maintain caching benefits without, hopefully, imposing too large
an administrative burden. Such negative announcements are easy
to implement for providers actively switching state. This active
transition to unavailable status triggered by the service application
is a crucial aspect, in which our scenario is different from scenarios
used in most related work.

In the case that the provider becomes inadvertently disconnected
through route changes, the case is different: The first request will
result in a route error, yet the provider address is still valid and
useful information: If no other service provider is known at this
node, a new route to the provider will have to be discovered by the
routing component. The route error becomes relevant only when
choosing among several providers: Other providers with available
routes will be preferred choices.

Once inconsistencies are dealt with, the possibility to maintain
longer service lifetimes is reintroduced, as the entry will be erased
when the provider actively changes state and routes will be kept up
to date by the routing protocol.

Similarly, positive announcements upon provider state changes
may also be beneficial, but preliminary evaluations showed that
they increase inconsistency for providers which frequently change
state: The effort required to delete information spread via positive
announcements plus the additional effort to send the announcement
in the first place is larger than their benefit. Due to space con-
straints, we largely omit their discussion (for details see [7]).

In summary, the remaining mechanisms to consider are reactive
with or without caching and caching with negative announcements.
Service announcements are implemented as follows.

3.2.2 Service announcement format

A service announcement message (SANM) is shown in Figure 4.
Its header consists of the service discovery header, which is also
used for service replies, and a flag indicating whether it is a pos-
itive or a negative announcement. The message tail is a regular
route reply with the provider as the destination and may be used
to construct routes to the provider: E.g. in our implementation the
tail is processed by the AODV routing component. It will mark the
predecessor (which forwarded the announcement) as a next hop to
the provider. Note that the originator address of the RREP is set to
broadcast: The RREP is not unicast back to any requesting (origi-
nator) node, but is simply broadcast to all neighbors up to a speci-
fied number of hops. As this is not required AODV behavior, some
functionality needs to be added; Section 3.3 describes the required
functionality at the routing component and its implementation for
the existing AODV protocol.

Service Announcement (SANM)

SRpE RREP

service selector lifetime ‘ ‘ ‘ destination address |originator address=BCAST

positive/negative flag

Figure 4: Service announcement (SANM)

3.2.3 Limiting Announcement Forwarding

Service announcements will be forwarded only within a given
parameterized scope. Service bindings will be deleted while for-
warding negative announcements. Additionally, several heuristics
are used in order to limit the protocol effort imposed by announce-
ment floods; essentially, a node does not forward the announcement
if it does not affect the node’s own provider choice:

1. A node forwards negative announcements only in the case
that the binding which shall be deleted by the announcement
is present in its own service binding table.

2. A node does not forward negative announcements in the case
that another — hop-wise closer — provider is already present in
its service binding table. This is because the old information
to be deleted by the negative announcement would not be
part of replies issued by this node, anyway.

In summary, if the provider has changed to unavailable state it
will send out a negative announcement. Upon reception of a neg-
ative announcement nodes delete their corresponding service bind-
ing. Forwarding is limited by a parameterized scope and the above
heuristics. Preliminary simulations have shown that the above heuris-
tics significantly reduced the number of messages while maintain-
ing consistency and correctness levels.

3.3 Interdependency of Routing and Discov-
ery

The previous section has described the possibilities for a service
discovery layer built on top of an ad hoc routing protocol, espe-
cially AODV. In principle, however, the service discovery function-
ality should be independent of the concrete routing protocol, even
though it clearly has to rely upon it. To enable a flexible combi-
nation of service discovery and routing protocol, we describe here
a separation of routing and service discovery functionality that en-
ables different ad hoc routing protocols to be used as a plug-in, as
long as they satisfy a given interface.

Service discovery functionality will be realized in the network
layer, the service discovery component is placed, perhaps uncon-
ventionally, adjacent to and below the routing component as seen
in Figure 5.

Applications (Store, AccessPoint, Client, etc.)

A A
servRequest servReply sendData recvdData
servAvailable
servUnavailable
A 4 A
Service ﬂ Routing (AODV) ‘
Discovery
Module T 1
RREQ
RREP
\ 4 ‘
SREQ 4 RREQ, RREP,
SREP RERR, DATA, other
SANM v v
Link Layer

Figure 5: Network layer service discovery

The top part of the figure summarizes the application primitives:
An application may request and (un)register services (at the service
discovery component) as well as send and receive data messages (at
the routing component).

Being set below routing, the service discovery layer has the pos-
sibility to intercept all routing messages. This constitutes its inde-
pendence of routing: It is able to attach the described service dis-
covery headers while passing messages downward and detach and
process the headers from routing messages passed upward. Note
that SREQs, SREPs and SANMs, are only service discovery head-
ers in front of RREQ and RREP messages, respectively (SANMs
also enclose a RREP, as seen in Section 3.2.2). Service discovery at
first removes the header, passes the regular routing message upward
and reattaches the header on its way out.

This structure makes it possible to achieve the required function-
ality (both the reactive part derived from [10] and the announce-
ments) while keeping as much independency as possible from the
routing component.

Nevertheless, the protocol requires additional access to informa-
tion of the routing component, especially information in the rout-
ing tables. One could retrieve this information from the intercepted
routing messages, but this is tedious and requires code that is heav-
ily customized to a given routing protocol. Hence, an employed
routing protocol is required to support the following interface:

createRREQforSd Shall create a RREQ message according to the
message format used by routing and initialize all message
fields such that they are compatible to other RREQs issued
(e.g. in AODV the route request id must be unique for this
node). The destination field shall have a symbolic address
that indicates an unknown target address. The routing proto-
col must support such a symbolic address for which it does
not hold any routes.

routeAvailable Shall look up a given destination in the route table
and return the number of hops or that none is available.

setDest Shall change the destination field of a given RREQ to the
new address (the service discovery module itself does not ex-
plicitly access routing message fields in order to maintain the
exchangeability of routing modules). Additionally, it must
perform all other required changes to keep the message fields
consistent with the new destination. In the present case of
AODV routing the corresponding destination sequence num-
ber must be set, which is also held in the AODV routing ta-
bles. Other similar simple access methods are also required
(e.g., getDest etc.).

belongsTo(rrep, rreq) In order to correctly reattach the service
discovery header to a RREP message, the service discovery
layer needs to be able to relate RREPs to RREQs that caused
them (and have been previously passed upward).

For the proactive enhancements it is beneficial to create routes
while (negatively or positively) announcing service providers. This
improves performance (and is implemented in the experiments of
Section 5), but is not mandatory for the functionality of the pro-
tocol. Announcements are service discovery headers attached in
front of route reply messages according to Section 3.2.2. For this
case, an additional interface method to routing is needed to create
a correctly formatted broadcast RREP message:

createRREPforSd Shall create a RREP message with the fields
set such that routing components in neighboring nodes will
forward the RREP up to a given number of given hops (an-
nouncement scope). If using AODV this would encompass
setting the originator address, which usually holds the re-
quest initiating node and the addressee of the RREP, to broad-
cast and the #/ field to the given scope.

Summing up, the entanglement between service discovery and
routing is significant. But the areas of interaction between the two
can be well defined and it is possible to exchange one routing pro-
tocol against another while maintaining the various optimizations
of the service discovery component described here (caching, proac-
tive negative announcements, smart forwarding).

4. MODEL

Several system aspects have to be modeled for a performance
evaluation. The models of this section were implemented in C++
using the Omnet++ [24] discrete event simulator and its extensions
for wireless networks [5].

4.1 Network model

For most of the scenarios, physical and link layers are not mod-
eled in detail, a simple unit-disc graph model is used (mostly to
keep simulation times manageable): Broadcast and unicast mes-
sage delivery is provided. Message losses occur depending on a
given bit error rate and message length. Parameters for the trans-
mission range of the network interfaces are derived from off-the-
shelf 802.11b Wireless LAN cards [4]. A bitrate of 2 MBit is as-
sumed (the 802.11b standard allows up to 11 MBit within a smaller
radius; as messages are fairly short, higher bitrates are not consid-
ered necessary and not modelled).

Transmission duration is computed from the bitrate and message
length. Hosts transmit with a nominal power of 15dBm (about
32mW) and a simplified path loss model is used. Assuming a path
loss factor for a semi-open environment yields a maximal trans-
mission range of 158 meters. The semi-open environment roughly
describes inner-city or airport hallway/lounge environments.

To study how well the nearest provider can be found, channel
conditions of the ad hoc network are very relevant. For these inves-
tigations, we used an IEEE 802.11b model with DSSS PHY and
the Distributed Coordination Function (DCF). The simulation pa-
rameters were chosen to be comparable with [1] but with a higher
path loss factor resulting in a 310 m interference range and a 140 m
transmission range. The data rate is 2 MBps; the RTS threshold is
set such that the RTS procedure is used for data messages (used
e.g. in access point sessions or service invocations) but not for the
fairly short control messages.

An AODV routing component is used with fairly standard para-
meters [17].

4.2 Participant model

The urban scenario will be modeled with a variety of partici-
pant types: clients and three types of service providers. The avail-
ability of each provider behaves differently to client requests. All
participant types provide routing and service discovery functional-
ity. For mobile providers a random waypoint mobility model [2]
with a few adaptations is used: In this model, node speeds are not
uniformly distributed, but drawn from a normal distribution with a
mean chosen according to the participant type. To avoid problems
with nodes “starving” on paths with very low speeds, a positive
minimum speed is adopted as proposed in [26], which skews the
distribution towards the right. The actual mobility parameter values
differ with each host type. We modelled the following participant

types:

Client These participants model a pedestrian (or by other means
mobile) network user. Instances of this type will follow the
random waypoint mobility model. Their main parameters
are summarized in Table 1(a). In this model, users do not
provide services of their own and are the only participants

Table 1: Parameters for different participant types

(a) client
Parameter Value
mean time to next request 120 s
mean speed 4 m/s
speed variance 1 (m/s)?
mean pause time 20s
(b) cab
Parameter Value
mean time until avail. 20s
mean speed 8 m/s
speed variance 3 (m/s)?
mean pause time 3s
(c) access point
Parameter Value
mean session length 120 s
session packet rate 1.2 pkt. /s
mean speed stationary

that request services. Inter-request times are drawn from an
exponential distribution.

Store This simplest provider type represents any stationary ser-
vice provider with a constant service configuration: The typ-
ical example is a store, which offers a range of goods and
represents them in the network by advertising its products as
services to the network. The provider is always available.

Cab This type represents mobile service providers with volatile
service configurations. Examples of such providers are taxi
drivers or bike couriers. Instances of this type will follow
the random waypoint mobility model. The service configu-
ration, i.e. is the service available or not at a given time, is
dynamic: A taxi cab changes its status of availability each
time it is hailed or when it completes a ride. The simulation
includes an implementation of taxi cabs: The time for com-
pleting a taxi ride will be modeled by a gamma distributed
variable [11]. The cab will become unavailable again after it
has been found by a client and hailed (service invocation).

An overview of the parameters used for providers of type
cab is given in Table 1(b). These providers, used with sta-
tionary mobility parameters, may also model other examples
like free parking spots.

Access Point Represents a stationary provider which exhibits
a semi-stable service configuration: Initially an access point
is available and accepts client sessions. Upon each service
invocation a new client session begins. Session durations are
drawn from a gamma distribution. The access point becomes
unavailable when it has reached a threshold number of clients
(full capacity). After having reached full capacity, it will be-
come available again only when at least one client session
has ended, or, to avoid oscillations, when the available ca-
pacity has fallen below, say, 90% of nominal capacity.

Additionally, the access point communicates with its clients
during a session. The effect is that the route between client

and provider is needed and will be maintained (data mes-
sages cause route requests at the routing protocol) in spite of
route changes throughout the session. To model this, the ac-
cess point sends messages at the session packet rate to each
of its clients, with appropriately chosen, exponentially dis-
tributed inter-message times. We focussed on the route main-
tenance effect, as it most predominantly influences our met-
rics. Different packet sizes and heavier data traffic remain to
be studied. Table 1(c) shows the main parameters.

The access point type, if turning the background traffic
feature off, also models other physical services with a given
maximum capacity like parking lots, garages or a taxi stand.

Passive Participant To be able to increase the request frequency
without affecting node density the model will also include
passive participants. These nodes include the routing and
service discovery components but do not request or provide
services themselves. Mobility parameters are equivalent to
client hosts.

5. RESULTS

This section studies the behavior of the different protocol vari-
ants. We concentrate in this paper on the reactive protocol without
and with caching as well as on the hybrid protocol with negative
announcements. Adding positive announcements turned out to be
quite undesirable and is not discussed here. The fact that routes
are constructed with positive announcements does not make up for
increased message traffic and increased inconsistency levels.

As metrics, we used the messages sent per request, counting
overheads (as routes are discovered along with discovery requests,
messages for route resolution to providers are also counted). Later
we will evaluate the distance optimality metric: The distance be-
tween the physically closest and the provider actually included in
the reply.

All simulations are conducted in a square area of 800x800m.
Akaroa [16] was used to remove initial transient periods of the sim-
ulation. Once in steady state, samples were collected until means
could be estimated with a confidence interval width smaller than
5% or narrower than 0.05 in absolute units, whichever is higher, at
a 95% confidence level.

5.1 Varying cache lifetimes

The first question in context with caching is the proper cache
lifetime. Here, the different characteristics of store, cab, and
access point providers should require different lifetimes. The
cache lifetimes were varied from 1s to 600s.

The simplest case are the store providers. We simulated 9
stationary st ore providers placed on a 3x3 grid surrounded by 50
mobile hosts. Because of their stable service configuration, cached
information is always consistent and the caching lifetime can be
arbitrarily large. Figure 6 shows the messages per request (note the
logarithmic x axis); there are no incorrect replies for this provider
type. Negative announcements would never be sent in this scenario
as services never become unavailable.

Two curves (1) and (2) are shown with 50 or 20 active clients,
respectively. The larger benefit of caching in the face of many
clients (1) can be explained in two ways: Firstly, more frequent re-
quests enable better exploitation of cached information. Secondly,
client requests also keep routes in between intermediate hosts up-
to-date. Because the messages metric also counts SREQ messages
that are only sent to discover routes (although the provider address
is known), requests require less SREQ messages in face of existing
routes.

Messages per Request (Sent)

1 10 100 1000
Caching Lifetime

(1) reactive with 50 clients
(2) reactive with 20 clients

Figure 6: Effects of increasing cache lifetime, store providers

45 T T

[i
_ S e
€ @
@ -
@ 35 X .
]
g 80r TK,\ 1
i
g 25t X\\ J
a N
S X
g 20t i
15 v 4
10 L L
1 10 100 1000
Caching Lifetime
(a) Messages per request (sent)
0.7 T ————
X
06 - x i
1) -
5 05 X 4
3 04 4
2 X
g osr o
<} LT
g o02r X L 1
0.1 s
.
oy T S T .
1 10 100 1000
Caching Lifetime
(1) reactive e
(2) negative anm. e !

(b) Incorrectly invoked requests

Figure 7: Effects of increasing cache lifetime, cab providers

Services very frequently become unavailable for cab providers:
Five cab providers and 50 clients requesting the service were sim-
ulated next. Figure 7 shows caching lifetime effects on number
of messages per request and on the number of incorrect invocations
for the cab providers, comparing a purely reactive protocol (1) and
one with negative announcements (2).

While the messages per request in Figure 7(a) monotonously de-
crease with growing lifetimes, they must always be regarded jointly
with the presented ratio of incorrectness: The reactive protocol suf-
fers from a very high number of incorrect replies in Figure 7(b),
even with moderate cache lifetimes.

Negative announcements are able to keep the ratio of incorrect
replies low for small to moderate cache lifetimes. When lifetimes
become very large, more incorrect answers are produced: Any node

35 T T

[.
_ 304 *. . J
5 25t 4
|73 .. [}
] X_
= .
EE 20 F X o 4
@, ; e e
3 5 T]
0 -
s
10 - X 1
X
5 ‘ ‘
1 10 100 1000
Caching Lifetime
(a) Messages per request (sent)
0.4 T T
0.35 + ok
g 08r K 1
S
T 025 i
g 0.15 >(. J
B .
0.05%" - 1
o
0 R ’ . L \
1 10 100 1000

Caching Lifetime

(1) reactive
(2) negative anm.

(b) Incorrectly invoked requests

Figure 8: Effects of increasing cache lifetime, access point
providers

which is “missed” by the negative announcement process — which
is limited in scope — re-injects the information into the network
and causes high inconsistency. On the other hand, higher life-
times cause the amount of messages used by negative announce-
ment floods to increase: More and more inconsistent information is
cached and due to smart forwarding, negative announcement floods
must spread further.

The presented two provider types are extreme in the sense that
they are insensitive to requests (st ores), making caching very at-
tractive, or become unavailable even after a single request (cabs),
making caching quite questionable. In the second case, negative
announcements have performed acceptably — the interesting ques-
tion is what is their performance for providers where caching does
make sense, but which do switch state from time to time? The
access point providers are such an example.

Figure 8 shows the effects of various caching lifetimes when dis-
covering access points. Here, 50 clients issue discovery requests
and subsequently begin internet traffic sessions at one of the 5 ac-
cess points. Access points accept up to 10 parallel sessions; the
parameters are set such that they operate at their load limit (change
their state frequently) but at least one of the providers is available
most of the time. This provides a challenging scenario for ser-
vice discovery. As expected, the negative announcement protocol
can improve the ratio of incorrect replies to acceptable levels. The
number of messages per request is higher but yet acceptable in face
of the presented consistency improvements. Also, the utilized mes-
sages are always fewer than without caching.

The incorrectness stays low only up to certain lifetime levels;
similarly to the cab provider type leftover inconsistencies may

40 T T T T T T T

Messages per Request (Sent)

.l e i

15 L L L
10 15 20 25 30 35 40 45 50

Clients (equal to Access Points * 10)

(a) Messages per request (sent)

0.25 T T T T T T T

02t R y

otk o7 |

Incorrect Incovations

0.05 - 1

0 L « L « L « .
10 15 20 25 30 35 40 45 50
Clients (equal to Access Points * 10)

(1) reactive without caching
(2) reactive with caching
(3) negative anm.

(b) Incorrectly invoked requests

Figure 9: Effects of increased network load

propagate in the network. The figures for cab and access point
providers motivate lifetimes values of up to 20 seconds; these im-
prove efficiency but still yield acceptable inconsistency levels.

5.2 Varying number of clients and providers

In addition to varying the caching lifetime, it is interesting, in
particular for the access point providers, to look at the po-
tential influence of high network load on performance. As provider
availability influences the messages metric (expanding ring searches
at maximal scope employ much more messages) we chose to keep
the load on each access point constant but to increase the strain on
the protocol. In Figure 9, among a constant number of 55 hosts ac-
cess points and clients are added: The first data point corresponds
to 10 clients and one access point, the second to 20 clients and two
access points etc. This ratio also lets access points operate at the
limit of parallel sessions. The figure shows the reactive protocol
without and with caching, and a protocol with negative announce-
ments.

The reactive protocol without caching (1) marks one side of the
results range: While the amount of messages needed for each re-
quest is comparably high, naturally the amount of incorrect re-
quests is constantly zero, as no inconsistent information is stored
in intermediate nodes.

The reactive protocol with caching (2) marks the other side of
the results range: While the amount of messages needed for each
request is relatively low, a high portion of incorrect requests is mea-
sured.

Curve (3) shows the protocol including negative announcements:
Negative announcements significantly reduce the amount of incor-
rect requests in Figure 9(b) even under high load and result in a

good compromise between effort and correctness. This tradeoff
is better than what could be achieved without negative announce-
ments and only relying on short cache lifetimes.

Slightly different considerations apply to the cab provider type
in Figure 10. While negative announcements do reduce incorrect-
ness, the protocol without caching performs best, because of the
cab application model (the provider becomes unavailable at the
first discovery).

42 T T T T T T T

g
[
[
@ 5 -7
5 T
T 32T J
3
@ 30Ff i
(0]
<4
P 28 -
Q
= 26 1
P . E
2 . . . ‘ ‘ ; ;
10 15 20 25 30 35 40 45 50
Clients
(a) Messages per request (sent)
0.6 : : : : : : — o
05 - ° J
P P
5 04 g -
5 *
g 03°f 1
£
g 0.2 r -
8
2 0.1 + -
[==z
01 . . . ‘ ‘ ‘ ‘

10 15 20 25 30 35 40 45 50
Clients
(1) reactive without caching
(2) reactive with caching
(3) negative anm.

(b) Incorrectly invoked requests

Figure 10: Effects of an increased number of users in the cab
scenario

5.3 Physical distance considerations

One of the basic questions that we set out to investigate was
whether the implicit mapping of proximity to network neighbors is
sufficient to find the (nearly) closest provider (out of several avail-
able ones) by choosing the first reply. This study was performed
using the more detailed MAC model. Choosing the first reply is
based on latency could be suboptimal due to high network load
and interference, effects which are well represented by the above
model.

Nevertheless, results are satisfactory: Figure 11(a) shows the op-
timal and the actual distance in meters between client and provider
in a scenario of 50 clients sending requests at four store providers.
The providers are set on a straight line near the bottom of the simu-
lation area 200 m apart for two reasons: Firstly, the scenario results
in longer routes between client and provider with a mean of around
3 hops and suboptimal replies are more frequent in longer routes as
the provider choice is often made at (caching) intermediate nodes
with incomplete information. Secondly, the provider positions en-
sure high penalty if a wrong provider is chosen.

330

325

320 TR e

a5+ ol f
310t 8
305 + 7 4
300 L 3 1

Distance to Provider in [m]

205 | e ! e

200} | P : g

285 . .
1 10 100 1000

Caching Lifetime

(1) actual e

(a) Distance between client and store
provider

(2) optimal ek

25

- o N
o o o

Distance Difference in [m]

o

10 15 20 25 30 35 40 45 50
Clients (equals to Access Points * 10)
(1) reactive without caching

(2) reactive with caching
(3) negative anm.

(b) Distance difference between replied and
closest ap

Figure 11: Correlation with physical proximity

With varying cache lifetimes, the location error of choosing a
suboptimal provider, averaged over many requests, stays within a
very acceptable range of 30 m. Essentially, at high service bind-
ing lifetimes, this is equivalent to the optimality of the underly-
ing AODV routing information: After a transient phase all four
providers are cached at all nodes, and the remaining provider choice
is made based on the timeliness of cached hop-count information
and the symmetry with which unknown routes are discovered. Sim-
ilar numbers were obtained when varying the number of clients and
are omitted here.

Let us now consider the more unstable case of access point
providers: Here, the scenario brings about the discussed consis-
tency challenges. Also, the network load is higher due to session
data traffic. We chose the access point locations such that each
provider “covers” a certain portion of the simulation area: e.g. the
first in the middle, two on a diagonal (280 m apart), three in a tri-
angle (over 400 m apart) and so forth.

Figure 11(b) shows distance differences between the closest ac-
cess point and the one actually included in the reply. The net-
work load was increased by simultaneously adding clients and ac-
cess points, the providers were set on fixed locations, as described
above. Naturally, all replies are optimal in presence of one provider.
For more than one provider, be aware that the curves are not compa-
rable because they incorporate a different subset of requests: The
distance metric could only be computed for correctly replied re-
quests (the optimal provider is always the closest available provider)
and we must thus disregard replies with unavailable providers that
might be even closer than the optimal one. But the ratio with which

the replied provider is available depends on the protocol variant,
e.g. the large ratio of incorrectly invoked requests in the reactive
case (2) was not included in the metric; these requests were replied
correctly in the negative announcement variant (3) and may account
for its slightly worse numbers.

The important result is that all three curves yield an optimality
gap which is surprisingly low (below 25 m) throughout the sce-
narios encompassing up 5 providers and 50 clients. From the cor-
rectly replied requests, all protocol variants yield satisfying results
with respect to locality. While we are aware that wireless propa-
gation in urban environments is more complex than our model, the
MAC simulation effectively captures the effects on latency which
is caused by interference and high network traffic. The numbers
confirm that choosing the first reply of the network is a good in-
dicator and not significantly influenced by the latency variance of
multi-hop routes facing the load of the described models.

6. CONCLUSION

The basic conclusion to draw is that service discovery can indeed
be efficiently integrated with route discovery; efficiency refers to
message overhead, correctness of the delivered answers and even
geographic optimality of a discovered service provider. But the de-
tailed mechanisms depend on the type of the service provider — the
diversity of service providers requires a corresponding diversity in
service discovery protocols to work well in a mobile ad hoc net-
work. Providers which are stable both in space and in their service
offerings are best supported by an (existing) reactive protocol with
large caching lifetimes in the network. For volatile providers which
frequently change their availability, we have shown that their needs
are essentially incompatible with caching and that simple reactive
protocols work best. Most interesting is the case of semi-stable
providers: For this type of providers, we have demonstrated that
explicitly removing stale cache information is well invested effort,
outperforming our base protocol. As this last protocol also per-
forms acceptably in the other cases, it is a good candidate for ac-
tual deployment. It even achieves a reasonable closeness of discov-
ered service provider and potentially closest one (which, in reality,
would of course depend largely on radio and MAC characteristics).

The protocol described here opens a number of options for fur-
ther investigations. In particular, using different cache lifetimes
adapted to the type of service appears promising, as does adapting
forwarding range of announcements based on mobility of differ-
ent nodes. In addition, the locality of discovered providers should
be improved by assuming that all nodes in fact know their positions
(e.g., via GPS) and by using geographic routing instead of a pure ad
hoc routing. We are currently implementing such a complementary
approach to the problem and intend to compare these two solutions.

7. REFERENCES

[1] A. Acharya, A. Misra, and S. Bansal. A label-switching
packet forwarding architecture for multi-hop wireless lans.
Technical Report RC22512, IBM Research, June 2002.

[2] T. Camp, J. Boleng, and V. Davies. A survey of mobility
models for ad hoc network research. Wireless
Communications and Mobile Computing (WCMC): Special
issue on Mobile Ad Hoc Networking, 2(5):483-502, 2002.

[3] L. Cheng. Service advertisement and discovery in mobile ad
hoc networks. In Proc. of CSCW 2002, New Orleans, LA,
USA, November 2002.

[4] Proxim Corporation. Orinoco 11b client PC card. Internet
Datasheet, 2003.

[S] W. Drytkiewicz, S. Sroka, V. Handziski, A. Koepke, and
H. Karl. A mobility framework for OMNeT++. 3rd
International OMNeT++ Workshop, January 2003.

[6] K. Edwards and T. Rodden. Jini: Example by Example.
Prentice Hall, June 2001.

[7] C.Frank. A hybrid service discovery protocol for mobile
ad-hoc networks. Master’s thesis, Technische Universitét
Berlin, Berlin, Germany, August 2003.

[8] E. Gafni and D. Bertsekas. Distributed algorithms for

generating loop-free routes in networks with frequently

changing topology. IEEE Transactions on Communications,

29, January 1981.

E. Guttman, J. Veizades, C. Perkins, and M. Day. RFC 2608:

Service location protocol, version 2, June 1999.

[10] R. Koodli and C. E. Perkins. Service discovery in on-demand
ad hoc networks. IETF draft (work in progress), October
2002.

[11] A. M. Law and W. D. Kelton. Simulation Modeling and
Analysis. McGraw-Hill, Inc., second edition, 1991.

[12] N. Nahata, P. Pamu, S. Garg, and A. Helmy. Efficient
resource discovery for large scale ad hoc networks using
contacts. ACM SIGCOMM Computer Communications
Review, 32(3):32, July 2002.

[13] V. Park and J. Macker. Anycast routing for mobile
networking. In Proc. of MILCOM, October 1999.

[14] V. Park and J. Macker. Anycast routing for mobile services.
In Proc. of Conference on Information Sciences and Systems
(CISS), March 1999.

[15] V. D. Park and M. S. Corson. A highly adaptive distributed
routing algorithm for mobile wireless networks. In Proc. of
INFOCOM, pages 1405-1413, Kobe, Japan, 1997.

[16] K. Pawlikowski, H.-D. J. Jeong, and J.-S. R. Lee. On
credibility of simulation studies of telecommunication
networks. IEEE Communications Magazine, pages 132—139,
January 2002.

[17] C.E. Perkins, E. M. Belding-Royer, and S. Das. Ad hoc on
demand distance vector (AODV) routing. IETF draft (work
in progress), February 2003.

[18] P. Ratanchandani and R. Kravets. A hybrid approach for
internet connectivity for mobile ad hoc networks. In Proc. of
WCNC, New Orleans, LA, USA, March 2003.

[19] RFC 3344: IP mobility support for IPv4, August 2002.

[20] Salutation architecture specification v2.0c (part-1). The
Salutation Consortium, June 1999.

[21] Y. Sun, E. M. Belding-Royer, and C. E. Perkins. Internet
connectivity for ad hoc mobile networks. Intl. J. of Wireless
Information Networks (special Issue on Mobile Ad hoc
Networks), 9(2), April 2002.

[22] UDDI version 3.0 published specification, July 2002.

[23] Universal plug and play device architecture. UPnP Forum,
June 2000. Version 1.0.

[24] A. Varga. The OMNeT++ discrete event simulation system.
In Proc. of ESM, Prague, Czech Republic, June 2001.

[25] Y. Yi and S. Lee. On-demand multicast routing protocol
(ODMRP) for ad-hoc networks. IETF draft (work in
progress), November 2002.

[26] J. Yoon, M. Liu, and B. D. Noble. Random waypoint
considered harmful. In Proc. of INFOCOM ’03, San
Francisco, CA, USA, April 2003.

[9

—

