
Poster Abstract: BurstMAC — Low Idle Overhead
and High Throughput in One MAC Protocol

Matthias Ringwald, Kay Römer
Institute for Pervasive Computing, ETH Zurich, Zurich, Switzerland

Email: {mringwal,roemer}@inf.ethz.ch

Abstract— Many sensor network applications feature bursty
traffic patterns: after long periods of idle time with almost no
network traffic, large amounts of data have to be transmitted
reliably and in a timely manner. One example is volcano
monitoring [5], where precious high-volume data is generated
by rare volcanic eruptions.

Unfortunately, existing MAC protocols do not sufficiently
support such applications with bursty traffic patterns. CSMA
protocols such as WiseMAC or SCP-MAP have very low overhead
in idle situations, but have high overhead and low throughput
under high load due to collisions. In contrast, TDMA protocols
such as LMAC can handle high loads without collision, but have
low throughput and significant overhead in idle mode [2].

BurstMAC closes this gap by combining low idle overhead
with high throughput under load. We present the ideas behind
BurstMAC and report initial performance results.

I. PROTOCOL OVERVIEW

To achieve the above behavior, BurstMAC combines several
techniques which will be outlined in the following. To provide
high throughput under load, BurstMAC uses efficient time
scheduling and multiple radio channels. However, the control
overhead is strictly dependent on the amount of traffic. In idle
situations, the overhead comes close to that of a few clear-
channel assessments.

A. Collision-free Communication

To avoid collisions, BurstMAC operates in synchronous
rounds. The sink node is used as time reference for synchro-
nization. Each node synchronizes to the average time of all
nodes which are closer to the time reference than itself. Each
round consists of 32 frames. Every frame contains a control
section and a data section as depicted in Fig. 1. To maximize
throughput and to allow for collision-free communication
during the data section, BurstMAC uses 32 interference-free
data channels and one control channel. The control section is
used for time synchronization, to broadcast other information
to all network neighbors, and to assign color ids to nodes. As
a result of the latter, each node is assigned a color id c ∈ 1..32
that is unique within two hops. The color id c is used for two
purposes. Firstly, the control section of frame c is reserved for
the node with color id c, which allows a node to send control
messages without collision on the control channel in frame c.
Secondly, the node receives data on radio channel c during
the data section, coordinating multiple senders to receive data
without collisions.

FRAME 1 FRAME 2 FRAME 31 FRAME 32

1 round = 32 frames

...

CONTROL DATA

50 ms 950 ms

Master

Slave 1 x

sync

x

1 schedule ack ack

x xSlave 2

2 ...

data 1

data 2

Fig. 1. BurstMAC round consisting of 32 frames which each contain a
CONTROL and a DATA section.

B. Coordination-free Transmission Scheduling

During each frame, a node is either in transmit or receive
mode, that is, it can either only transmit or only receive data
during the whole frame. The choice of mode is controlled by
a pseudo-random number sequence which is seeded with the
unique 16-bit node id. Knowing the node ids of its neighbors,
a node can not only compute its own current mode, but also
the current modes of its neighbors. If node A wants to send
to neighbor B, then A has to wait for a frame when it is in
send mode and B is in receive mode. A uses B’s channel for
the actual transmission. This approach avoids any extra traffic
for coordination among nodes.

C. Cooperative and Single-Bit Transmission

These two physical layer techniques allow for efficient
scheduling in the data section of BurstMAC. If multiple
senders send a jamming signal at the same time, a receiver
can use the Received Signal Strength Indicator (RSSI) to detect
that at least one node is sending. This cooperative transmission
is used to quickly detect if at least one sender wants to send
a packet.

To query which nodes want to send, single-bit transmission
is employed. For this, a coordinating node broadcasts a short
synchronization packet to provide a bit-accurate time refer-
ence. If node c wants to send a packet, it sends a jamming
signal in bit slot c which is detected by the coordinating node.
Both techniques are described in more detail in [4].

D. Packet Bursts

To increases throughput and reduce communication over-
head, a sender can request the transmission of multiple packets
in a row, eliminating lengthy preambles for all but the first
packet. Still, each packet has an individual checksum to detect
bit errors. The receiver replies a bit vector with a one bit for
each packet that has been received correctly.

E. Cross-layer Optimizations

Typical routing protocols such as MintRoute [6] need to
perform neighbor discovery and link quality estimation, which



FRAME 1 FRAME 2 FRAME 31 FRAME 32

1 round = 32 frames

...

CONTROL DATA

50 ms 950 ms

Receiver

Sender (c = 1) x

sync

x

schedule ack

x xSender (c = 3)

...

data 1

ack

data 2

A B D E
1

E
2

C

21 3

Fig. 2. DATA section with two senders transmitting a packet to the receiver.
Cooperative transmission is used in segment A and single bit transmission in
segments B and C to identify the senders.

requires each node to broadcast beacon packets at regular
intervals. However, due to the existence of the control packets
in BurstMAC, we can integrate neighbor discovery and link
estimation into BurstMAC without additional overhead.

II. PROTOCOL DETAILS

A. 2-Hop Coloring

Each node has to be assigned a color id which is unique
within two hops. For this, all nodes keep track of the frames
used by their neighbors for sending control messages. As a
node with color id c uses frame c for its control message,
each nodes is aware of the colors used by its neighbours and
periodically broadcasts a bit vector of these occupied color ids
in its control message. A new and uncolored node with id i
receives the list of used color ids in the control messages of all
of its neighbors. The union of these sets results in the set of
color ids used in its 2-hop neighborhood. The new node then
randomly picks a color id c from the remaining free colors
and transmits its control packet in frame c in the next round.
A special flag in the control message requests other nodes to
echo the node id contained in the control packet of frame c.
If another node with id j in parallel picks the same color c,
both node ids i and j will be reported for frame c by different
neighbors. In this case, both newly colored nodes pick another
free color at random.

B. Efficient Transmission Scheduling

BurstMAC efficiently schedules data transfer on demand
using cooperative and single-bit transmission. Fig. 2 shows the
data section in more detail, time increases from left to right.
One node is in receive mode and two nodes in send mode want
to transmit a packet to the receiver. In segment A, both senders
employ cooperative transmission and concurrently transmit
their send request to the receiver. If there is at least one sender,
the receiver exerts the single-bit transmission technique by
sending a minimal sync packet in segment B. The sync packet
allows a sender to accurately synchronize and send a single
jamming “bit” in the slot which corresponds to its color id c
in segment C. Based on the list of senders, the receiver than
computes and broadcasts the transmission schedule in segment
D. In each data segment Ex, a sender transmits a data packet
which is immediately acknowledged by the receiver.

C. Network Startup

All nodes concurrently send a short jamming signal, called
Blip, for 100 us at the very beginning of the control section on
an extra Blip channel. By this, a new node joining the network

has to scan the control channel at 100% duty-cycle only for
a single frame instead of a whole round. On detection of the
Blip, the node already has approximate timing information on
the start of the control section and will receive at least one
control message in the next 32 frames.

III. IMPLEMENTATION AND PRELIMINARY
MEASUREMENTS

We implemented BurstMAC on BTnode Rev. 3 nodes [1].
They consist of an ATMEL ATmega128 8-bit microcontroller,
256 KB SRAM, a ChipCon CC1000 radio module and a Zeevo
ZV-4002 Bluetooth module. BTnut, an extension of Nut/OS, is
used as operating system. The CC1000 module is configured
for 34 separate channels (32 for data communication, 1 for
control and 1 for Blip broadcasts). We use a frame length of
1 s, which is split into 50 ms for the control section and 950
ms for the data section. The RSSI output is used for clear-
channel assessment, cooperative and single-bit transmission.
We further make use of the CC1000’s ability for precise MAC
layer timestamping in the order of 10 us [3].

The energy consumption of BurstMAC in the idle case
is dominated by the periodic broadcast of control messages
which in turn depends on the number of neighbors. For a
well-connected network with seven neighbors, a node runs
at 0.8 % duty cycle. This is comparable to other state-of-
the-art low-power CSMA MAC protocol such as WiseMAC
and SCP-MAC when link estimation and routing messages
are included. The duty-cycle for a node which is constantly
sending or receiving data, e.g., a neighbor to the sink when all
nodes have data to send, can reach 94% while at the same time
up to 74% of the raw bandwidth of 19200 baud are utilized
for data transport. In other words, 78.7% of the raw bandwidth
is used for the actual payload transmission without collisions.

IV. OUTLOOK

We are currently working on a thorough evaluation using
30 BTnodes distributed in our lab. Support for very dense
networks is a further topic as 32 channels might not be
sufficient for the 2-hop-coloring of very dense networks.

ACKNOWLEDGMENTS

The work presented in this poster abstract was partially
supported by the Swiss National Science Foundation under
grant number 5005-67322 (NCCR-MICS).

REFERENCES

[1] BTnodes. A distributed environment for prototyping ad hoc networks.
www.btnode.ethz.ch.

[2] Koen Langendoen. Medium access control in wireless sensor networks.
In H. Wu and Y.Pan, editors, Medium access control in wireless networks,
volume II: practive and standards. Nova Science Publishers, 2007.

[3] Miklós Maróti, Branislav Kusy, Gyula Simon, and Ákos Lédeczi. The
flooding time synchronization protocol. In SenSys, 2004.

[4] Matthias Ringwald and Kay Römer. Bitmac: A deterministic, collision-
free, and robust mac protocol for sensor networks. In EWSN, 2005.

[5] Geoff Werner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees, and
Matt Welsh. Fidelity and yield in a volcano monitoring sensor network.
In OSDI, 2006.

[6] Alec Woo, Terence Tong, and David Culler. Taming the underlying
challenges of reliable multihop routing in sensor networks. In SenSys,
2003.


	Protocol Overview
	Collision-free Communication
	Coordination-free Transmission Scheduling
	Cooperative and Single-Bit Transmission
	Packet Bursts
	Cross-layer Optimizations€

	Protocol Details
	2-Hop Coloring
	Efficient Transmission Scheduling
	Network Startup

	Implementation and Preliminary Measurements
	Outlook
	References

