
Facet: Towards a Smart Camera Network of Mobile Phones

Philipp Bolliger
bolligph@inf.ethz.ch

Moritz Köhler
koehler@inf.ethz.ch

Kay Römer
roemer@inf.ethz.ch

Institute for Pervasive
Computing, ETH Zurich,

Switzerland

ABSTRACT
Smart camera networks provide the opportunity to detect,
classify, and trace visual events by means of a wireless net-
work of embedded computing devices equipped with camera
sensors. Previous research in this area has largely focused on
custom hardware solutions. In contrast, we propose to use
mobile phones as a portable and low-cost platform to im-
plement smart camera networks. Due to mass production,
the price of mobile phones is constantly dropping while ad-
ditional functionality is being added. In particular, the ad-
dition of cameras and ad hoc networking enable the use of
mobile phones for smart camera networks. Also, software
developed for mobile phones is highly portable due to stan-
dardized programming environments and APIs.

In this paper, we present Facet, a self-organizing network of
smart cameras and its software architecture, which addresses
the specific challenges of the mobile phone platform. An
initial prototype of Facet has been developed and is used to
obtain first performance results in an office setting.

Keywords
Smart Camera Networks, Wireless Sensor Networks, Mobile
Phones.

1. INTRODUCTION
Recently, smart distributed cameras have become an active
field of research. Here, small embedded computing devices
equipped with CMOS cameras form a wireless network to
detect, classify, and track visual events in the environment.
Smart distributed cameras are envisioned to be applied for
surveillance, traffic management, health care, assistance of
elderly people, environmental monitoring and others [1].

The research focus in this area has been on high-performance
on-board computing and communication infrastructure, as
well as a deliberate combination of computer vision, video
sensing, and communication tasks (e.g., [13, 24]). Also soft-

ware architectures and frameworks have been proposed (e.g.,
[4]) of which most are more or less bound to the underlying
hardware architecture.

In contrast to these research directions, we propose to use
existing mobile phones as a foundation for smart distributed
cameras. In particular, we develop a portable software frame-
work called Facet to facilitate the development of applica-
tions based on smart camera networks of mobile phones.

This approach is partially motivated by a forecast that sees
a slightly different interpretation of Moore’s law for the
mobile-phone industry [17]: Instead of simply increasing
processing power or memory capacities, processors for mo-
bile phones undergo a constant increase in functionality, like
the most recent additions of mp3 and video streaming. In
the future, mobile phones might have specialized function-
alities for object recognition and video processing to enable
easier real-world interaction. This development and the fact
that worldwide mobile phone sales almost have reached 1bn
in 2006, of which 48% were camera phones, and 70-80% Java
enabled [11], brings us to a very simple, but somewhat pro-
voking idea: Instead of building a very specific platform for
a network of smart cameras, we could use the mobile phone
as a cheap, widely accepted, easy to program, and ubiqui-
tous platform for developing networks of smart cameras. If
we can use mobile phones to build smart camera systems,
we will be able to build and deploy a system that enables
scenarios such as object recognition, object tracking and the
like at a fraction of the costs of traditional special purpose
systems. In addition, maintenance, and upgrading of the
network as a whole becomes easier since we can build on
well established standards for communication such as Blue-
tooth, UMTS, or WIFI. Moreover, the deployment of such
smart camera networks would not only be cheap but also
very easy once the required software components are com-
monly available. It could also open the road for new business
cases for mobile phone producers which then could offer very
slim and simple devices not even meant for communication
between people, but for all sorts of applications.

In the remainder of the paper, we first sketch some motivat-
ing application scenarios in Sect. 1.1 and discuss opportuni-
ties and challenges of using mobile phones for smart camera
networks in Sect. 1.2. In Sect. 2 we outline the architecture
of our software framework Facet, before presenting a first
prototype implementation of Facet in Sect. 3. We evaluate
important aspects of this implementation in Sect. 4.

1.1 Application Scenarios
Our focus is mostly on indoor applications, where mobile
phones can be easily deployed by placing them on furniture
or attaching them to the ceiling or walls. For applications
that require a lifetime of more than a few days, phones need
to be connected to a permanent power supply.

In such a setup, smart phone networks can be used to de-
tect and report certain visual events (e.g., people entering
rooms during the night), for statistical applications (e.g.,
occupancy of certain places over time), and for tracking ap-
plications (e.g., to locate certain objects or to guide people
to certain places).

Realizing these applications requires a number of basic func-
tionalities. First of all, individual nodes must capture and
analyze a stream of images from the camera to detect certain
visual events. In many cases, many phones must cooperate
and exchange information in order to realize an application.
Such cooperation often requires that visual events observed
by different phones have to be examined in a common tem-
poral and spatial reference system to answer questions such
as “Was event X observed before event Y?” or “Were events
X and Y observed in the same room?”. Answering these
questions requires services for time synchronization and lo-
cation calibration.

Our framework Facet provides portable implementations of
these services as discussed in Sects. 2 and 3, taking into
account the specific properties of mobile phones as discussed
in Sect. 1.2.

1.2 Opportunities and Challenges of using Mo-
bile Phones

Using mobile phones to implement a smart camera net-
work presents both opportunities and challenges. In con-
trast to existing smart cameras, mobile phones provide a
relatively standardized programming interface based on the
J2ME implementation of Java, including standardized APIs
for Bluetooth (JSR-82 [28]) and ad-hoc networking (JSR-
259 [27], still under development), or web services (JSR-172
[8]). This enables the provision of a highly portable software
infrastructure that can be be executed by a wide variety of
mobile phones from different vendors. On the other hand,
these standardized APIs sometimes do not provide access
to certain functions of a mobile phone. For example, the
Bluetooth API does not provide access to the HCI layer of
the Bluetooth stack, which complicates the implementation
of functions such as time synchronization (see Sect. 3.3 for
details).

Many existing smart camera implementations provide plen-
tiful computational, storage, and communication resources.
Some platforms even provide specialized digital signal pro-
cessors [5] to run computer vision algorithms. Although mo-
bile phones are becoming more capable over time as well, the
resources provided by currently available devices are small
compared to that of many specialized smart cameras. Also,
while Java provides a portable execution environment, per-
formance often suffers from bytecode interpretation in the
Java VM.

Similar restrictions apply to the capabilities of the camera
modules built into mobile phones. Often, APIs offer limited
or no control over the optical parameters (e.g., focus, zoom,
blind) and the orientation of the camera.

Typical mobile phones offer multiple technologies for wire-
less networking, for example Bluetooth for forming ad-hoc
networks among nearby phones and other Bluetooth devices,
as well infrastructure-based long-range communication such
as GPRS. These capabilities can be exploited to form flexi-
ble smart camera networks. In particular, Bluetooth can be
used to form local ad-hoc networks of nearby phones with
high bandwidth and free of charge, while infrastructure-
based communication can be used to interconnect distributed
ad-hoc networks. Infrastructure-based communication can
also serve as a gateway between smart phone networks to
the Internet.

2. ARCHITECTURE
To realize the applications sketched in Sect. 1.1, a number
of basic services are required that include computer vision
aspects, wireless communication, as well as support for time
and location management. Our goal is to provide a software
framework that offers these basic services as a foundation
for the development of applications based on smart camera
networks of mobile phones. In this section we outline the
architecture of our software framework called Facet.

Communication Network

Calibration

Image Capture

Time SyncDistributed
Event System

Camera

Image Analysis

Figure 1: Overview of Facet’s architecture.

Fig. 1 shows an overview of Facet ’s architecture. Each mo-
bile phone captures a stream of images from the camera
and analyzes these images to detect different vision events,
such as an object entering or leaving the field of view of the
camera. These events have a type (e.g., in or out, i.e., an
object entering or leaving the field of view) and parameters
such as the identity of an object, the point in time when
the event has been detected, or the location where the event
has been detected. The limited computational resources of
mobile phones require that the algorithms used for detection
of vision events are rather simple and efficient.

Many applications require the collaboration of multiple mo-
bile phones. As the bandwidth of wireless communication
among mobile phones is rather constrained, collaboration in
our framework is based on distributed events (rather than
on the exchange of raw image streams). We adopt a pub-
lish/subscribe approach here, where a node can issue a sub-
scription to certain types of events from phones in a certain
network neighborhood. An example subscription could for
example declare interest in all in events generated by phones
that have a direct network link to the subscriber. As soon

Internet

Ad-hoc
network

patch
Ad-hoc network

patch

Figure 2: Interconnecting ad-hoc network patches.

as a node generates an event, this event is delivered to all
matching subscribers.

A specific example of collaboration of multiple phones is
to examine correlations among vision events generated by
different phones. Here, it is often necessary to know the time
when an event has been observed and the location where
this event has been observed. For example, to estimate the
velocity of a tracked object, we can correlate an out event
eout(o, t1, l1) and an in event ein(o, t2, l2) that refer to the
same object o which left the view of a camera at time t1 and
location l1 and entered the view of another camera at time t2
and location l2. When can then estimate the velocity of the
object by computing |t2−t1|/|l2−l1|. This of course requires
that timestamps t1 and t2 refer to a common time scale,
which requires time synchronization. Likewise, locations l1
and l2 have to refer to a common coordinate system, which
requires camera calibration.

In the following subsections we discuss certain aspects of the
architecture in more detail.

2.1 Communication Network
We consider a heterogeneous network architecture as de-
picted in Fig. 2, where nearby phones form an ad-hoc net-
work patch using infrastructure-free short range communi-
cation such as Bluetooth. These patches are interconnected
among each other by means of infrastructure-based long
range communication such as GPRS. The latter may also
be used to connect one or more patches to other networks
such as the Internet. For example, a server connected to the
Internet could subscribe to vision events from one or more
network patches and analyze these to track objects as they
move from phone to phone and from patch to patch.

The idea behind this network architecture is that phones in
the same patch typically require strong collaboration (which
is supported free of charge by high-bandwidth ad-hoc net-
works such as Bluetooth), whereas there is a more loose and
infrequent collaboration between phones that are part of dif-
ferent patches (which uses chargeable services with lower
bandwidth such as GPRS).

2.2 Time Synchronization
Phones within a patch require time synchronization to es-
tablish a common time scale. For the purpose of our frame-
work, internal synchronization suffices. That is, nodes need
to agree on any common time scale rather than on a specific

one such as UTC. Also, as we are focusing on indoor applica-
tions, most vision events will be triggered by human mobil-
ity. As the velocity of humans is in the order of few meters
per second and the spacing between phones is in the order
of meters, a synchronization accuracy in the order of tens of
milliseconds would be sufficient to reliably establish a tem-
poral ordering of vision events triggered by a single human
walking across a space instrumented with smart cameras.

One specific difficulty with time synchronization using J2ME
on mobile phones is the lack of an API to adjust the system
clock to a common time scale. Hence, time synchronization
in Facet is based on timestamp transformation [22]. Here,
each mobile phone timestamps events using its unsynchro-
nized local clock. Before sending this timestamp to another
phone, the timestamp of the event is transformed to the time
scale of the receiving node.

2.3 Camera Calibration
Camera calibration is concerned with estimating the pose
(i.e., location and orientation, which results in 6 degrees
of freedom) of each camera in a common coordinate system.
While in principle it would be possible to perform calibration
by placing each camera in a predefined way, this is often
impractical even for small networks. Hence, we need an
automated way to calibrate a patch of cameras. In general,
all approaches can be separated into two groups: calibration
based on visual evidence, such as overlapping fields of view
or markers, and calibration based on motion of objects like
people passing by an observed area. The latter approach is
suitable to calibrate non-overlapping cameras. As we want
to support setups with non-overlapping cameras, we employ
the latter technique in Facet.

Calibration based on moving objects is an active field of
research. Several algorithms have been proposed (e.g., [19],
[10]), but several challenges remain. Hence, rather than rely-
ing on a specific algorithm, we provide an open interface that
allows to use different algorithms. The foundation for this
open interface is the observation that existing algorithms are
based on spatial and temporal constraints between cameras
(e.g., camera X and Y are at most Z meters apart). These
constraints are derived from vision events triggered by mo-
bile objects (e.g., if the maximum speed of a mobile object is
known, then the time interval between successive detections
of this object by different cameras can be used to derive an
upper bound on the distance between these cameras).

To support calibration algorithms based on constraints, Facet
provides a constraint graph. Cameras in a network patch
form the nodes of the constraint graph, while constraints as
in the above example form the edges of the graph. Each
constraint has a type (e.g., maximum-distance constraint)
and zero or more parameters (e.g., the maximum distance
in meters). Facet ’s constraint graph is an extension of spa-
tial relationship graphs [18] with support for additional con-
straint types derived from the network topology (e.g., two
nodes are connected by a link constraint if the cameras have
a direct communication link). The constraint graph is im-
plemented in a distributed fashion in Facet : each graph node
(i.e., mobile phone) stores its adjacent edges.

In summary, calibration with Facet requires mobile objects

to move through the area being observed by the camera
network. These objects trigger vision events that result in
edges in the constraint graph. When enough constraints
have been collected, a calibration algorithm is executed on
the constraint graph to compute the pose of each camera.

3. IMPLEMENTATION
To study the feasibility of our approach, we produced an
initial implementation of Facet with basic functionality. Al-
though conceptually straight-forward, many functions re-
quired unconventional approaches due to limitations of the
phone platform. In this section, we describe our solutions.

3.1 Communication Network
Our prototype implementation currently supports a single
ad-hoc patch. Nodes within the patch form a multi-hop net-
work using Bluetooth. One node in the patch is designated
as a master node, which maintains a GPRS connection to
deliver data to a PC. Within the patch, unicast routing of
messages between any pair of nodes is supported.

Although several Java networking frameworks exist, most
of them are not usable in the context of our work. For
example, JXME [29] does not support Bluetooth, and JO-
RAM [26] requires a central messaging platform. Hence, we
worked with the basic Bluetooth API JSR-82 [28]. Unfortu-
nately, JSR-82 has the fundamental limitation that only a
single Bluetooth connection can be open at a time. To send
a Bluetooth message to a new destination node, any open
connection has to be closed first before being able to open a
connection to the new destination.

Another problem is that Bluetooth’s inquiry procedure to
find out the addresses of network neighbors takes quite a
long time. In our experiments, an inquiry took at least 15
seconds to complete, but may last up to 2 minutes. Hence,
the use of this function should be reduced to the absolute
minimum.

For our solution, we assume that the patch network is static,
that is, the network topology is fixed. To support message
routing in such a patch network, we use a modified version
of the algorithm presented in [3] as depicted in Alg. 1. Each
node maintains two variables, the set of network neighbors
ntable and a routing table rtable which contains an entry for
each node d in the patch network, such that rtable[d] holds
the address of the next hop on the path to d. Upon initial-
ization, a node performs a Bluetooth inquiry to discover the
addresses of its neighbors, which it stores in ntable. Then
it sends an announce message to each of its neighbors to
announce its presence. A node which receives this message
includes the sender in its neighbor table and creates an ap-
propriate entry in its routing table for this node. Then the
node forwards the announce message to its neighbors, allow-
ing them to create a routing table entry for the new node as
well. This process terminates when all nodes in the patch
have created an entry in their routing tables for the new
node. Finally, the immediate neighbors of the new node re-
ply a route message containing their routing table entries
to allow the new node to create appropriate entries in its
routing table. Note that this approach does not necessarily
result in “best” (e.g., shortest) routing paths, but the algo-
rithm can be easily extended to obtain shortest paths using

a distance vector approach.

Once all nodes have joined the network and nodes have setup
their routing tables using the above algorithm, nodes can
send messages to any other node in the patch. For this,
the source node first checks if the destination node is a di-
rect neighbor and sends the message directly in this case.
Otherwise, the source node consults its routing table to find
the next hop and forwards the message to this node. This
process is repeated until the message reaches its final desti-
nation.

Sending a message to a neighbor node n is implemented as
follows. If there is an open connection to n already, then
the message is sent over this connection. Otherwise, if there
is an open connection to a neighbor other than n, then the
connection is closed, a new connection to n is opened, and
the message is sent. Otherwise, if there is no open con-
nection, then a connection to n is opened and the message
is sent. Opening and closing a connection to a node with
known Bluetooth address took less than 1 second in our ex-
periments.

on init:
ntable = inquiry();
foreach n ∈ ntable do

send announce<self> to n;
receive route<rt> from n;
foreach r ∈ rt do

rtable[r] = n;
end

end

on receive announce<dst> from s:
ntable = ntable ∪ s;
if dst $∈ rtable then

rtable[dst] = s;
foreach n ∈ ntable \ s do

send announce<dst> to n;
end

end
if dst = s then

send route<rtable> to s;
end
Algorithm 1: Routing algorithm for a Bluetooth patch.

3.2 Distributed Events
In our initial prototype, we implemented a very simple form
of event distribution. When a node generates an event, this
event is broadcast to all nodes in the patch using the routing
algorithm given in the previous section. In addition, the
master node sends the event to the backend PC via GPRS.

3.3 Time Synchronization
As Bluetooth uses a time division multiple access scheme
for communication, it maintains an internal clock that is
tightly synchronized between nodes that share a connection.
We exploited this feature in [21] to measure the offsets ∆ij

between the system clocks of neighboring nodes i and j.
Time synchronization is then implemented by transposing
timestamps as follows. Node i first obtains a timestamp ti

using its local unsynchronized clock. When ti is sent to node
j, the timestamp is transposed by adding the clock offset

∆ij to ti. This approach works also across multiple hops
and has two primary advantages: it avoids the difficulties
of explicitly synchronizing the system clocks and does not
require any master time.

Unfortunately, the Bluetooth API of the connected limited
device configuration (CLDC) [25] on mobile phones does not
provide access to the Bluetooth clock. Hence, we need a dif-
ferent way to measure the clock offsets ∆ij between network
neighbors. Since the requirements on synchronization accu-
racy in Facet are not very strong as pointed out in Sect.
2.2, we resorted to the following simple scheme, which is
executed for each pair i, j of neighboring nodes. Node i
reads its local clock, obtaining a timestamp ti and sends
this timestamp to node j using a sync message. At arrival,
node j reads out its local clock obtaining a timestamp tj . We
then compute ∆ij = tj − ti, neglecting the (nonzero) mes-
sage latency. However, as the latency is very variable, the
clock offset obtained this way differs heavily from measure-
ment to measurement. We therefore perform k such message
exchanges, obtaining k different clock offset values. In our
experiments, we used k = 20. Among these values, we se-
lect the smallest one, since for the respective measurement
the message latency was the smallest. Finally, the receiving
node sends the computed clock offset to the sending node.

In our prototype implementation, we perform this synchro-
nization procedure once for every pair of neighbor nodes at
startup. However, due to clock drift, the accuracy of syn-
chronization will decrease over time. To support systems
with a longer lifetime than in our initial experiments, syn-
chronization would have to be repeated from time to time.

3.4 Image Capture
Capturing an image from the camera seems to be a straight-
forward task at first. However, to our surprise we had to find
out that capturing an image on a mobile phone, and only
having the J2ME API available, is harder than it seems.
Again, the main problem is speed. To reduce the effort
required to process an image, we found that we could reduce
the image size down to 120 by 160 pixels without loosing
accuracy in the image analysis process. But still, the process
of capturing an image took more than 1 second on the mobile
phones used (see Section 4 for details) because the standard
capturing routine creates a jpeg or png image. However, the
API also allows to capture raw images stored in a byte array.
This approach showed to be about twenty times faster. In
this byte array, each pixel is encoded in three bytes: one
for red, green, and blue, respectively. As we don’t need the
color information but only gray values, we convert the values
in one single loop thus reducing the time needed to capture
an image to about 80 milliseconds.

3.5 Image Analysis
Our prototype implementation supports the detection of two
types of events: in events of objects entering the field of view
of a camera and out events of objects leaving the field of view
again. In particular, we consider humans as “objects” in our
experiments. These events will be used to infer constraints
for calibration as described in Sect. 3.6. Due to the lim-
ited performance of our communication architecture, these
events should be detected on the phone itself, such that we
avoid communication of raw images between camera nodes.

-70

 70

 200

 400

 600

 800

 1000

 1200

IN OUT IN OUT

pi
xe

l c
ou

nt

measurements

difference to background (bd)
avgerage difference to background (abd)
derivation of abd (bds)

Figure 3: Exemplary background subtraction.

The basic approach to detect these events is to compute
the difference between the current image and a previously
stored background image that contains no moving objects.
To calculate the difference between the current image and
the stored background image, we subtract the images pixel
by pixel. If the difference is greater than a certain threshold
value, whose value we determined experimentally, we incre-
ment a background difference counter bd. To speed up image
analysis, we combined gray value conversion (see Sect. 3.4)
and background subtraction into a single loop.

Figure 3 shows a typical graph of the background difference
counter bd(t) over time t. The first peak indicates a person
passing through the field of view in one direction whereas
the second peak indicates a person returning, i.e., passing
through the field of view from the other direction. The graph
shows a notable oscillation at the falling edge of the first
peak and at the rising edge of the second peak. This is due
to the camera of the mobile phone automatically correcting
the white balance slower than our image analysis is captur-
ing and processing images. To remove these high frequency
components, we apply a simple moving average filter to the
last 10 values, i.e., abd(t) = 1/10

∑9
i=0 bd(t − i). Although

this approach delays the event generation by about 1 second,
it helps making the image analysis much more robust.

The absolute values of the peaks for people moving through
the field of view heavily depend on the light conditions,
clothing, as well as speed and trajectory of movement. How-
ever, we observed that the maximum slope of abd(t) is re-
markably independent of these conditions. Hence, we com-
pute an approximation of the first derivation of abd(t) as
follows: bds(t) = abd(t) − abd(t − 1). See Fig. 3 for an
example. To detect in and out events, we apply threshold-
ing to bds(t). We empirically found a threshold of ± 70 to
work well. That is, if bds(t) rises above 70, then an in event
is detected. If bds(t) falls below -70, then an out event is
detected.

In order to accommodate to changes of the background im-
age, e.g., due to changing light conditions, we also imple-
mented a very simple background image adaption algorithm.
To detect durable changes of the background we applied the
following rule: if the difference from the background is sub-

Figure 4: Exemplary constraint graph before edge
removal.

stantial (i.e., bd(t) > Tbd) and the difference from image to
image is small (i.e., bds(t) < Tbds) for at least TN successive
t, then we update the background image. We empirically
found threshold values Tbd = 90, Tbds = 10, TN = 100 to
work well.

3.6 Calibration
In our prototypical implementation, in and out events are
used to derive constraints to populate the constraint graph.
Here, we derive visual neighborhood constraints between
pairs of nodes. Two nodes a and b are said to be visual
neighbors if tracked humans walk from the field of view of
a to the field of view of b without passing through the field
of view of any other node. In the setup depicted in Fig. 5,
for example, where four cameras are linearly aligned in a
hallway, nodes 1 and 2 are visual neighbors, but not nodes
1 and 3. Visual neighbors are connected by an edge in the
constraint graph.

To detect visual neighborhood, we identify matching pairs
of out and in events. A pair (o, i) is said to be a matching
pair if o is an out event, i is an in event, and no other event
occurred after o and before i. For each such matching pair,
we create an undirected edge (assuming that visual neigh-
borhood is a symmetric relation) in the constraint graph
between the node that generated event o and the node that
generated event i. Each edge between nodes a and b is anno-
tated with a counter cab that counts the number of matching
event pairs for this edge. The weight wab of an edge between
a and b is defined as wab = cab/

∑
e,f cef .

As explained in Sect. 2.3, the constraint graph is distributed
in the sense that each node stores its adjacent edges. To
implement this, every event is broadcast to every node in
the patch as described in Sect. 3.2. Every node then uses
the approach described in the previous paragraph to find
matching pairs of events which involve a locally generated
event, as these represent edges that are adjacent to the node.

Consider the constraint graph in Figure 7 as an example. If
node 2 broadcasts an out event, and shortly after that node 1
broadcasts an in event, then both nodes update their local
graph by incrementing c12 by one. Figure 7(a) shows the
constraint graph after two matchings have been detected,
namely the one described above and a second one between
node 1 and node 4. Thus, the edge weight w is 0.5 for both
edges.

False negative and false positive events cause our approach
to wrongly create edges between nodes that are actually not
visual neighbors. For example, the constraint graph in Fig.

4 contains edges between nodes that cannot be visual neigh-
bors according to Fig. 5. In fact, only the edges between
the nodes 4 and 1, between 1 and 2, and between 2 and 3
are true edges. All the other edges are said to be false.

To remove false edges, we assume that false negative/positive
events are generated rarely and thus the weights of false
edges will be small compared to those of true edges. In
our prototype implementation, we assume that all camera
nodes detect about the same number of events. We will see
in Sect. 4.5 that these assumptions are reasonable for our
experiments. The edge removal procedure first counts the
number n of edges in the constraint graph. With the above
assumptions, true edges should have a weight w that is sub-
stantially larger than 1/n, while false edges can be expected
to have a weight substantially smaller than 1/n. That is, we
remove all edges with a weight smaller than 1/n. In the ex-
ample graph in Figure 4, there are n = 6 edges, so all edges
with a weight smaller than 1/6 will be removed, resulting in
the graph depicted in Fig. 7(b).

4. EVALUATION
To verify the feasibility of a camera network of mobile phones,
we performed a preliminary evaluation of the crucial com-
ponents of the Facet prototype described in Sect. 3. In
particular, we investigated the latency of Bluetooth-based
communication, as well as the the accuracy of time syn-
chronization, image analysis, and calibration. All tests were
conducted using Nokia 6630 mobile phones having firmware
6.03.40 installed. As the 6630 is a rather old mobile phone
– it was released in November 2004 – better results can be
expected for more up-to-date hardware.

4.1 Experimental Setup
For the evaluation we performed experiments with four mo-
bile phones in our office hallway. The nodes were attached
to the ceiling and used to detect people passing by. In a
first setup, we aligned the mobile phones linearly, mounted
in equal distances of 3.7 meters as illustrated in Figure 5.
The second setup, intended to be more realistic and thus
more demanding, consisted of three linearly aligned nodes
in the hallway and one node in the printer and coffee ma-
chine room in a triangular setup as depicted in Figure 6.
Moreover, we increased the distance between node number
4 and node number 1 to 7.4 meters.

To analyze the formation of the constraint graph, the nodes
where programmed to send all events via GPRS to a cen-
tral server in addition to exchanging them among each other
via Bluetooth. Both setups, i.e., the linear and the triangle
experiment, where used to collect events during normal busi-
ness hours, i.e., not during lunch or over night. We gathered
more than 8 hours of data for the linear setup, and another
two hours for the triangular setup.

4.2 Communication
As described in Section 2.1, we use Bluetooth to organize
nodes in local ad-hoc patch networks and GPRS to inter-
connect multiple patches. In the following, we will discuss
the performance of Bluetooth communication and refer to
[14] and [16] for evaluation results on GPRS channel alloca-
tion.

Figure 5: Linear camera setup in a hallway.

Figure 6: Cameras setup in triangle.

The message latency for Bluetooth communication in our
prototype is mainly dominated by opening and closing a
Bluetooth connection. Our experiments with Nokia 6630
phones showed that when connecting directly to other phones
with a known Bluetooth address, small messages (< 20 KB)
can be sent in under 2 seconds, the time to establish and
close the link connection included.

In our experiment setups, the diameter of the network patch
is at most 3 hops, hence it takes at most 6 seconds to send a
message through the network. Although this result is very
promising compared to [3], it also imposes a limit on the
speed of objects that can be tracked in realtime. With an
average distance of 4 meters between neighboring nodes in
the linear setup, the per-hop message latency will be larger
than the time it takes an object to move from one node to
another if the object moves faster than 2 m/s. However,
in our experiments humans went very rarely faster than 1.7
m/s in a hallway.

We omit a detailed performance analysis of the algorithm
proposed to disseminate the Bluetooth device addresses as
it only needs to be run once when initially setting up the
camera network and thus the overhead is negligible. Yet, we
can say that in our four node experiment setup (see Figure
5), the distributed algorithm rarely needed more than 25
seconds to complete. This approximately equals the time
needed to complete a Bluetooth inquiry (15-20 seconds) and
to send 3 consecutive announce messages (2 seconds each).

4.3 Time Synchronization
To measure the clock offsets between neighboring nodes,
each pair of neighbors exchanges a sequence of messages
without closing the connection in between. As connection
setup takes far longer than sending a message, the time re-
quired for synchronization of a pair of nodes is about the
same as sending a single message, i.e., less than 2 seconds.
But, as we cannot synchronize nodes in parallel due to the
limitations of the used Bluetooth API, this number has to
be multiplied by the number of neighboring node pairs in

the patch. In our hallway test using four nodes, the time
synchronization took between 6 and 8 seconds.

The question remains how accurate the clocks can be syn-
chronized. By executing the synchronization algorithm mul-
tiple times in sequence and measuring the difference between
the resulting clock offsets, we found the values to vary by
about 30 milliseconds. In addition, there is a systematic
error due to the fact that we do not take into account the
message latency. We could not quantify this error due to
the lack of an external reference system for comparing the
clocks of two phones.

4.4 Image Analysis
The task of the image analysis component, which runs lo-
cally on each node, is to generate the appropriate in and out
events. Hence, camera images must be processed fast enough
to track humans passing by. Likewise, the image analy-
sis component should only generate correct events in order
for the calibration algorithm to generate the correct con-
straint graph. Thus, the image analysis component should
not create false positive events, i.e., send an event although
no human passed by, as this would distort the calibration by
leading to false matchings (see Sect. 3.6). Even worse are
false negatives, i.e., not sending an event although a human
was passing by, as they not only distort the calibration but
also delay it.

To test the accuracy with which the image analysis compo-
nent generates in and out events, we gathered all events cen-
trally on a server and compared them to the ground truth,
that is a record of several members of our group walking
through the hallway and going to the printer room, respec-
tively. Thereby, we found that no mobile phone generated
false positives while nearly 20% false negatives occurred. As
expected, false negatives mainly occurred when two or more
people entered the field of vision of a camera at about the
same time and subsequently left one after another. Very
infrequently, false negative events occurred because people
ran through the hallway, thus generating a background dif-
ference derivation (bds) smaller than the threshold. Due to
the limited image size, low resolution and in particular due
to the low computing power available on the mobile phones
used, we were not able to improve the image analysis so as
to count the number of people concurrently in the field of
vision. For the same reasons, we could not further speed-up
the image processing on the Nokia 6630 phones and were
thus only able to track objects or humans not faster than 2
m/s. On the upside, we found that although different cloth-
ing colors and differences in their brightness did result in
quite different bds peaks, we were still able to generate the
correct events by adapting the threshold accordingly.

As mentioned in Section 3.5 and found in the above section,
one of the biggest challenges developing the image analysis
component was to speed-up the analysis per se. Our first
naive implementation of background subtraction was capa-
ble of processing about 0.75 frames per second. Taking into
account that a human passing by will remain in the field
of vision for only about 2.5 seconds, it became clear that
this was way too slow. However, by applying the different
optimizations detailed in Section 3.5, we finally achieved a
frame rate of 12.8 fps (average frame rate measured during

both the linear and the triangle experiment).

4.5 Calibration
Our framework supports the construction of a constraint
graph as described in Sect. 3.6, which is intended to be used
as the input to an calibration algorithm which computes the
locations of cameras. Hence, the accuracy of the constraint
graph is crucial for the accuracy of the final calibration.
Here, the accuracy of the constraint graph is informally de-
fined as the level of congruence between the actual layout
of the camera nodes and the constraint graph. For both ex-
periments, our approach produced correct constraint graphs
despite varying environmental parameters such as light in-
tensity, clothing, or velocity. The resulting graphs (after
removal of edges with a weight below the topology-specific
threshold) are shown in Figs. 7(b) and 8, respectively.

(a) After 5 minutes (6 matching event pairs).

(b) After 8 hours (400 matching event pairs).

Figure 7: Constraint graphs for the linear setup.

Besides the topology of the constraint graph, we also tried to
infer the length of the edges (i.e., distance of camera nodes
that are visual neighbors). For this, we consider the time
interval between a matching pair of out and in events and
multiply this value with an average human walking speed.
We used a value of 5.4 km/h (i.e., 1.5 m/s) according to [6].
In Figs. 7(b) and 8, graph edges are annotated with the
resulting distance estimates. For edges where people walk
at constant speed (e.g., along the hallway), the resulting
distance estimates are quite accurate. For these edges, we
obtain an accuracy of ± 17 centimeters in the linear setup
and ± 44 centimeters in the triangle setup. The larger er-
ror for the triangle setup is due to the increased distance
between nodes 1 and 4. Overall, this results in a relative
error of about 5-6%. However, for the edge between nodes
1 and 3 in Fig. 8, where people change walking speed to en-
ter/leave the printing room, the distance estimate has very
poor accuracy.

Figure 8: Final constraint graph for the triangle
setup.

As the constraint graph changes over time with every new
matching pair of out and in events, we are interested in how
the quality of the constraint graph evolves over time. For
this purpose, we consider the confidence of the constraint
graph, which is defined as the sum of the weights of the true

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300 350 400

co
nf

id
en

ce

events

linear setup
triangular setup

Figure 9: Development of graph confidence over
time.

edges. Fig. 7(a), for example, shows the constraint graph
for the linear setup after 6 matching event pairs have been
processed, which all refer to true edges. Here, the confidence
is 1.0 or 100%.

However, failure of the image analysis component to detect
certain in or out events will result in false edges being added
to the constraint graph, such that the confidence decreases.
As more and more events are being processed, we expect the
confidence value to converge to a stable value due to the law
of large numbers. Figure 9 illustrates the development of
the confidence over time for both the linear and triangular
setups.

Both curves show a similar qualitative behavior, starting
at a value of 1 since the probability for a matching pair of
events that refers to a true edge is larger than the probability
for a matching pair of events that refers to a false edge.
Over time, wrong edges appear, so the confidence values
drop. Slowly, the confidences converge to a stable value as
expected. In general, the probability of false matchings is
larger in the triangle setup than in the linear setup, resulting
in lower confidence values for the former experiment. In
the linear experiment, confidence first drops to 0.725 before
converging to about 0.8 after 400 matchings, which perfectly
coincides with the false event detection rate of about 20% as
reported in the previous section. In the triangle experiment,
confidence drops to as low as 0.4 before converging to about
0.7.

5. RELATED WORK
Recently, several embedded hardware platforms equipped
with vision sensors have been developed (e.g., [7, 13, 20]) and
supporting software frameworks have been devised. While
the architecture of these software platforms bare some simi-
larities to Facet, these are custom solutions for specific plat-
forms. In contrast, Facet is aimed to support mobile phones
as a standardized and portable hardware platform.

Camera calibration is a very well explored and understood
topic in computer vision. For example, [12] give an excellent
introduction into the field.

Baker et al. [2] focus on classic calibration of multi-vision

systems using textures such as checkerboards. Their ap-
proach results in high precision calibration, however, it re-
quires a great amount of user attention. Additionally, every
time a node is replaced, calibration has to be redone at least
locally, which results in high maintenance cost.

Jannotti et al. [15] propose a calibration based on Geo-
graphic Hash Tables, however, their work is still limited to
3D reconstruction from overlapping fields of view which can-
not always be guaranteed.

Taylor et al. [23] propose a calibration and positioning tech-
nique based on light sources attached to cameras which then
can be viewed and analyzed by each camera, respectively.
This approach again can lead to high precision. However,
since cameras need to be able to “see” each other, this ap-
proach requires overlapping fields of view.

In [9], Ercan et al. investigate object tracking via camera
networks, especially in situations where occlusions occur.
Their approach is similar to ours, since they put an emphasis
on simple image preprocessing on the camera node, in order
to reduce network traffic. However, they assume an already
calibrated system and do not address reconfigurability of the
camera network.

Different from vision calibration but of similar importance
is the calibration of non-overlapping cameras. The goal is
to achieve spatio-temporal relationships between cameras.
Rahimi et al. [19] establish these links by modeling the
trajectory of objects with Gaussian Markov chains. Their
approach is the most similar one to ours. An empiric com-
parison of the two approaches therefore would be interesting.

6. CONCLUSION
In this paper we have presented Facet, a software architec-
ture to support smart camera networks of mobile phones.
In contrast to other work which relies on custom-built hard-
ware, our approach is based on low-cost mobile phones with
standardized Java APIs. We have implemented a proto-
type of Facet and showed through a preliminary evaluation
the feasibility of this approach. In particular, we support
multi-hop Bluetooth networking, time synchronization, de-
tection of visual events on the phone itself, as well as first
steps towards calibration. Although our system is executed
on a Java Virtual Machine which runs on a mobile phone
with limited resources, we could achieve frame rates of more
than 12 fps. While this represents an important first step,
further work is needed to fully implement and evaluate the
framework.

Our main goal is to push forward the development of mobile
phone-based smart camera networks and to make relevant
code available to the public. Our vision is that in the fu-
ture it will be possible to easily install the networks of smart
cameras with little effort using by simply downloading the
code onto the phone using 3G data networks. Our future
work will focus on improving the system in order to enable
concrete scenarios such as indoor navigation or object track-
ing. We also plan to publish the reference implementation
of our software architecture as an open source project, and
hope to establish a base for further community-driven de-
velopment in the area. Further we want to add multiple

view calibration in order to support high resolution object
detection. As the vision capabilities of mobile phone become
more elaborate, we hope to be able to work more on object
recognition.

7. REFERENCES
[1] I. F. Akyildiz, T. Melodia, and K. R. Chowdhury. A

Survey on Wireless Multimedia Sensor Networks.
Computer Networks, 51:921–960, 2007.

[2] P. Baker and Y. Aloimonos. Calibration of a
multicamera network. In Fourth workshop on
Omnidirectional Vision and Camera Networks
(Omnivis 2003), Madison, WI, USA, June 2003.

[3] S. Basagni, R. Bruno, G. Mambrini, and C. Petrioli.
Comparative performance evaluation of scatternet
formation protocols for networks of bluetooth devices.
Wirel. Netw., 10(2):197–213, 2004.

[4] M. Bramberger, A. Doblander, A. Maier, B. Rinner,
and H. Schwabach. Distributed embedded smart
cameras for surveillance applications. Computer,
39(2):68, 2006.

[5] M. Bramberger, B. Rinner, and H. Schabach. An
embedded smart camera on a scalable heterogeneous
multi-dsp system. In European DSP Education and
Research Symposium (EDERS) 2004, Nov 2004.

[6] G. Cappellini, Y. P. Ivanenko, R. E. Poppele, and
F. Lacquaniti. Motor patterns in human walking and
running. Journal of Neurophysiology, 95:3426–3437,
2006.

[7] I. Downes, L. B. Rad, and H. Aghajan. Development
of a mote for wireless image sensor networks. In
COGIS 2006, Paris, France, March 2006.

[8] J. Ellis and M. Young. JSR 172: J2me web services
1.0. http://jcp.org/en/jsr/detail?id=172,
October, 2003.

[9] A. O. Ercan, A. E. Gamal, and L. J. Guibas. Object
tracking in the presence of occlusions via a camera
network. In IPSN ’07: Proceedings of the 6th
international conference on Information processing in
sensor networks, pages 509–518, New York, NY, USA,
2007. ACM Press.

[10] S. Funiak, C. Guestrin, M. Paskin, and
R. Sukthankar. Distributed localization of networked
cameras. In Proceedings of the fifth international
conference on Information processing in sensor
networks, Nashville, Tennessee, USA, 2006.

[11] I. Gartner. Gartner dataquest, March 2007.
[12] R. I. Hartley and A. Zisserman. Multiple View

Geometry in Computer Vision. Cambridge University
Press, ISBN: 0521540518, second edition, 2004.

[13] S. Hengstler and H. Aghajan. A smart camera mote
architecture for distributed intelligent surveillance. In
ACM SenSys Workshop on Distributed Smart Cameras
(DSC), Boulder, Colorado, USA, October 2006.

[14] T. Irnich and P. Stuckmann. Analytical performance
evaluation of internet access over gprs and its
comparison with simulation results. In The 13th IEEE
International Symposium on Personal, Indoor and
Mobile Radio Communications, 2002.

[15] J. Jannotti and J. Mao. Distributed calibration of
smart cameras. In Workshop on Distributed Smart
Cameras (DSC 2006), Boulder, CO, USA, October

2006.
[16] P. Lin. Channel allocation for gprs with buffering

mechanisms. Wirel. Netw., 9(5):431–441, 2003.
[17] O. Malik. Moore’s law reconsidered. CNNmoney.com

Business 2.0 Magazine, April 3 2007.
[18] J. Newman, M. Wagner, M. Bauer, A. MacWilliams,

T. Pintaric, D. Beyer, D. Pustka, F. Strasser,
D. Schmalstieg, and G. Klinker. Ubiquitous tracking
for augmented reality. In 3rd IEEE and ACM
International Symposium on Mixed and Augmented
Reality (ISMAR 2004), Arlington, VA, USA, 2-5
November 2004.

[19] A. Rahimi, B. Dunagan, and T. Darrell. Simultaneous
calibration and tracking with a network of
non-overlapping sensors. In Proceedings of the 2004
IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR 2004), June
2004.

[20] M. Rahimi, R. Baer, O. I. Iroezi, J. C. G. amd
Jay Warrior, D. Estrin, and M. Srivastava. Cyclops:
In situ image sensing and interpretation in wireless
sensor networks. In Sensys 2005, Boulder, CO, USA,
November 2005.

[21] M. Ringwald and K. Römer. Practical time
synchronization for bluetooth scatternets. In
Proceedings of the 4th International Conference on
Broadband Communications, Networks, and Systems
(BROADNETS 2007), May 2007.

[22] K. Römer. Time Synchronization in Ad Hoc Networks.
In MobiHoc 2001, Long Beach, USA, Oct. 2001.

[23] C. J. Taylor and B. Shirmohammadi. Self localizing
smart camera networks and their applications to 3d
modeling. In Workshop on Distributed Smart Cameras
(DSC 2006), Boulder, CO, USA, October 2006.

[24] W. Wolf, B. Ozer, and T. Lv. Architectures for
distributed smart cameras. In IEEE International
Conference on Multimedia & Expo, Baltimore,
Maryland, USA, July 2003.

[25] Connected Limited Device Configuration (CLDC);
http://java.sun.com/products/cldc/index.jsp, JSR 30,
JSR 139.

[26] JORAM: Java Open Reliable Asynchronous
Messaging. http://joram.objectweb.org.

[27] JSR 259: Ad hoc networking api.
http://jcp.org/en/jsr/detail?id=259, January,
2006.

[28] JSR 82: Java apis for bluetooth wireless technology.
http://jcp.org/en/jsr/detail?id=82, September,
2005.

[29] The JXTA Java Micro Edition (MIDP/CLDC/CDC)
Project. https://jxta-jxme.dev.java.net.

