
Diss. ETH No. 16653

User-Centric Dependability Concepts for
Ubiquitous Computing

A dissertation submitted to the
SWISS FEDERAL INSTITUTE OF TECHNOLOGY

ZURICH (ETH ZURICH)

for the degree of
Doctor of Technical Sciences

presented by
Jürgen Bohn

Diplom-Informatiker, University of Karlsruhe (TH), Germany
born October 16, 1973

citizen of Germany

accepted on the recommendation of
Prof. Dr. Friedemann Mattern, examiner

Dr. Albrecht Schmidt, co-examiner

2006

ii

Abstract

Ubiquitous computing has the goal of enhancing computer use by making many
computers available throughout the physical environment, and thus providing the
technical and conceptual means for enabling anytime, anywhere, anyhow comput-
ing. The technical realization of this vision has become feasible owing to recent
advances in miniaturization and embedded computing technologies, which enable
the integration of diverse computing capabilities into manifold everyday objects
and devices.

The multitude and diversity of computerized entities that are part of ubiquitous
computing systems imply a number of technical challenges. On one side, the differ-
ences in form factors, functionality, and technical capabilities result in a great level
of diversity of hardware and software, and a distinct heterogeneity in capabilities.
Further, ubiquitous computing systems in general are often highly decentralized,
featuring an exceptionally high volatility of cooperative relationships and topolo-
gies due to mobility, spontaneous interaction, and wireless ad hoc communication
on behalf of system components. On top of that, a particularly significant char-
acteristic of ubiquitous computing is its unprecedented degree of user-centricity.
Ubiquitous computing systems are no longer distinct entities separable from the
human user, but instead explicitly designed to embrace and support people in
everyday life settings and situations.

In the face of the technical issues and the strong user-centricity, coping with
the dependability of ubiquitous computing systems and infrastructures constitutes
a crucial challenge, especially since these systems are set to pervade and reshape
people’s everyday life environment and the way they complete their daily chores.

The goal of this dissertation is to provide a systematic study of critical de-
pendability challenges in the context of ubiquitous computing, with particular
consideration of the needs of the end-user, which to this point in time has not
been investigated deeply in the research community. In doing so, we focus on
two fundamental areas of ubiquitous computing: human-computer interaction and
context-aware computing.

Dependability in the area of human-computer interaction so far mainly focused
on the design and implementation of user interfaces. However, with the emergence
of highly interactive ubiquitous computing environments, the user’s dependence on
interface devices has been increasing significantly even in everyday life situations.
This leads to a new, user-centric type of dependability threat: given that a user
requires certain user interface devices to interact with or to control a surrounding
ubiquitous computing environment on a daily basis, it has to be investigated how
he or she can cope with the unanticipated unavailability of these devices. It is
therefore important to ensure the physical availability of user interface devices in
order to preserve the accessibility of personal data and device functionality required
as part of the human-computer dialogue.

A further fundamental challenge is dependable context- and location-aware com-

iii

puting, as the manifold mobile or portable devices and smart objects found in
ubiquitous computing environments are particularly subject to frequent and spon-
taneous changes in their surrounding context. Mobile devices not only have to cope
with dynamic changes in locally available resources and in the physical properties
of the user’s environment, but they often also have to take into account unantic-
ipated alterations of user-specific parameters such as the user’s location, activity,
personal preferences, and intentions. By enabling mobile devices to retrieve context
autonomously in the respective location where it matters and using it as implicit
input, context-aware computing provides means for more user-friendly, unobtrusive
computing services. However, from the viewpoint of dependability, a crucial chal-
lenge is to provide mobile devices with reliable means of context awareness, and – in
addition – to enable applications to use redundant context for the implementation
of fault-tolerance mechanisms. Here an important task is to enable mobile devices
and applications to tolerate and adapt at runtime to disturbances that are liable to
occur in highly dynamic ubiquitous computing environments, such as the tempo-
rary or permanent unavailability of resources, the absence of network connectivity,
or the unavailability of remote infrastructure-based services.

The main contributions of this dissertation are threefold. Firstly, we present
concepts that increase the accessibility of personalized device functionality and
improve the availability of personal user data. For that, we developed and proto-
typically implemented a system that exploits the diversity of user interface devices
by means of a redundant input/output diversification. We further motivate the
concept of instant personalization and temporary ownership as a method of freeing
the user from the dependence on individual personalized devices while preserving
the advantages of customized device functionality and access to personal user data.

Secondly, we describe concepts for improving the dependability of user-centric
systems in ubiquitous computing environments by exploiting redundancy and diver-
sity of resources, with a focus on location awareness. For that we have investigated
and developed two concepts that enable fault-tolerant computing based on localized
cooperation and resource sharing: (1) fault-tolerant services based on cooperating
smart everyday objects, and (2) super-distribution of smart entities. The first ap-
proach enables mobile devices to exploit the multitude and diversity of volatile
resources, which are found in the local computing environment of these devices,
for the realization of fault-tolerant services. The idea of the second approach is
to distribute computerized entities in a highly redundant way over object surfaces
and physical environments, and to use the resulting physical infrastructure as a
substrate for the realization of self-contained, fault-tolerant location-aware services
and applications. As a further elaboration of the concept of redundancy, we present
two systems that exploit diversity of sensor technologies and sensing capabilities by
applying sensor data fusion techniques: (1) a lightweight and extensible system for
the self-positioning of mobile devices based on an open sensor-fusion architecture,
and (2) a solar-cell based positioning system that uses locally available context
knowledge for real-time self-calibration and service optimization to improve the
quality and robustness of the positioning procedure.

Last but not least, we identify and discuss dependability challenges of human-
centered ubiquitous computing systems from a broader social and ethical perspec-
tive, including general aspects of reliability, control, social compatibility, and user
acceptance.

iv

Zusammenfassung

Die Nutzung von Computern ist im Begriff, sich aufgrund der zunehmenden Durch-
dringung unserer alltäglichen Lebenswelt mit einer ständig wachsenden Anzahl von
computerisierten Gegenständen und Geräten grundlegend zu verändern. Der Ent-
wicklung zugrunde liegt die Vision des Ubiquitous Computing : eine unaufdring-
liche Computernutzung an jedem Ort, zu jeder Zeit und auf verschiedenste Art
und Weise zu ermöglichen. Technisch verwirklichbar wurde diese Vision in jüng-
ster Zeit durch die Fortschritte in der Miniaturisierung und in der Entwicklung
von eingebetteten Computersystemen, welche es erlauben, kleinste Computer in
nahezu beliebigen Alltagsgegenständen und -geräten zu integrieren.

Die aufkommende Vielzahl und Vielfalt an computerisierten Objekten in all-
täglichen Umgebungen stellt eine große technische Herausforderung für Ubiqui-
tous-Computing-Systeme dar. Die zum Teil erheblichen Unterschiede in Bezug
auf Formfaktor, Funktionalität und technischer Ausstattung führen zu einer ge-
steigerten Software- und Hardware-Diversität sowie zu einer ausgeprägten Ver-
schiedenartigkeit (Heterogenität) der Fähigkeiten. Darüber hinaus sind Ubiqui-
tous-Computing-Systeme in der Regel sehr dezentralisiert und durch eine hohe
Unbeständigkeit (Volatilität) der kooperativen Wechselbeziehungen und Topolo-
gien gekennzeichnet, was in großem Maße durch die Mobilität, spontane Interaktion
und drahtlose Ad-hoc-Kommunikation von Systemkomponenten bedingt ist. Hinzu
kommt, dass Ubiquitous Computing in einem bisher nicht da gewesenen Ausmaß
benutzer- und humanzentriert ist. Ubiquitous-Computing-Systeme sind keine klar
vom menschlichen Benutzer trennbare Gebilde mehr. Vielmehr ist ihre ausdrück-
liche Zielsetzung, Menschen in alltäglichen Lebensumständen in unaufdringlicher
Weise zu unterstützen.

Im Hinblick auf die technischen Schwierigkeiten und die ausgeprägte Benutzerzen-
triertheit von Ubiquitous Computing ist die Verlässlichkeit von Ubiquitous-Com-
puting-Systemen und Infrastrukturen ein zentrales Anliegen, das letztendlich ein
entscheidendes Kriterium für die Verbreitung, Benutzbarkeit und Akzeptanz von
allgegenwärtigen Computersystemen bildet.

Ziel dieser Dissertation ist es, kritische Herausforderungen hinsichtlich der Ver-
lässlichkeit von Ubiquitous Computing unter besonderer Berücksichtigung der End-
benutzer systematisch zu analysieren. Diese Problemstellung wurde in der Ubiqui-
tous-Computing-Forschung bisher noch nicht eingehender untersucht. Dabei wird
der Schwerpunkt auf die Interaktion von Mensch und Maschine sowie auf kon-
textabhängige Computersysteme gelegt.

Die Betrachtung von Verlässlichkeitsaspekten im Bereich der Mensch-Maschine-
Interaktion hat sich bislang vorwiegend auf den Entwurf und die Entwicklung von
Benutzerschnittstellen beschränkt. Mit dem Aufkommen hochinteraktiver Ubi-
quitous-Computing-Umgebungen nimmt jedoch die Abhängigkeit von Benutzer-
geräten in Alltagssituationen signifikant zu. Dies führt zu einer neuartigen Ge-
fährdung der Verlässlichkeit aus Sicht des Anwenders: Damit ein Benutzer ein

v

ihn ständig umgebendes Ubiquitous-Computing-System kontrollieren bzw. mit
ihm interagieren kann, benötigt er gewisse Benutzerschnittstellengeräte. Hier gilt
es Konzepte zu entwickeln, die dem Anwender im Falle der Nichtverfügbarkeit
von bevorzugten Benutzergeräten weiterhin den Zugriff auf persönliche Daten er-
möglichen und die erforderliche Funktionalität sicherstellen. Einen wichtigen As-
pekt bildet dabei die Identifikation und Nutzbarmachung von vorhandenen Redun-
danzen in Bezug auf Benutzerschnittstellen und -geräte.

Eine weitere grundsätzliche Herausforderung stellt die Verlässlichkeit von kontext-
abhängigen und ortsbewussten Computersystemen dar. Mobile und tragbare Gerä-
te sind in Ubiquitous-Computing-Umgebungen häufig von spontanen Veränderun-
gen in ihrem jeweiligen unmittelbaren Umfeld (Kontext) betroffen: sie müssen
sich nicht nur auf häufige Veränderungen der lokal verfügbarer Ressourcen in der
Benutzerumgebung einstellen, sondern oft auch unvorhergesehene Wechsel von be-
nutzerspezifischen Kenngrößen berücksichtigen, wie z.B. den Ort des Benutzers,
seine Aktivitäten, seine persönlichen Präferenzen und Absichten. Indem mobile
Geräte befähigt werden, ihren Kontext selbstständig und autonom direkt am eige-
nen Ort zu erfassen, ermöglichen kontextabhängige Computersysteme die Bereit-
stellung von benutzerfreundlicheren, unaufdringlicheren Dienstleistungen.

Der Einsatz von Ubiquitous-Computing-Systemen erfordert daher eine zuver-
lässige Ausstattung mobiler Geräte mit Kontextinformationen. Zentraler Aspekt
hierbei ist es, mobile Geräte und Anwendungen zu befähigen, sich an Störungen
zur Laufzeit – wie sie in hoch dynamischen Ubiquitous-Computing-Umgebungen
häufiger etwa in Form vorübergehender oder dauerhafter Nichtverfügbarkeit von
Ressourcen, fehlender Konnektivität oder Nichterreichbarkeit entfernter infrastruk-
turbasierter Dienste anzutreffen sind – anzupassen, diese zu tolerieren, und redun-
dante Kontextinformationen für Fehlertoleranzmaßnahmen einzusetzen.

Diese Dissertation setzt sich in drei Hauptbeiträgen mit der Untersuchung von
Verlässlichkeitsaspekten in Bezug auf Ubiquitous Computing auseinander:

Im ersten Hauptteil werden Konzepte präsentiert, die die Verfügbarkeit von
interaktiven Benutzerschnittstellen erhöhen, um insbesondere auch die Verfüg-
barkeit von personalisierter Gerätefunktionalität und persönlichen Benutzerdaten
zu verbessern. Hierzu wurde ein System entwickelt und prototypisch implemen-
tiert, das auf die Verschiedenartigkeit von Benutzergeräten für eine redundante
Ein-/Ausgabediversifizierung zurückgreift. Der vorgestellte Ansatz der augenblick-
lichen Personalisierung und vorübergehenden Inbesitznahme befreit den Benutzer
aus der Abhängigkeit von individuellen persönlichen Geräten, bewahrt dabei je-
doch gleichermaßen die Vorteile von benutzerangepasster Gerätefunktionalität und
der Verfügbarkeit von persönlichen Daten.

Im zweiten Hauptteil werden diverse Ansätze zur Steigerung der Verlässlichkeit
von kontextabhängigen Computersystemen in Ubiquitous-Computing-Umgebung-
en durch die Ausnutzung lokal vorhandener Ressourcenvielfalt und -redundanz
besprochen. Der Schwerpunkt liegt hier auf den im Ubiquitous Computing be-
deutsamen ortsbewussten Diensten und Anwendungen. Es werden zwei Konzepte
vorgestellt, die durch lokale Zusammenarbeit und Ressourcenteilung fehlertoler-
ante Dienste ermöglichen: (1) Fehlertolerante Dienste basierend auf kooperierenden
intelligenten Alltagsgegenständen und (2) Hochverteilung von intelligenten Ein-
heiten. Der erste Ansatz ermöglicht mobilen Geräten, die Vielzahl und Vielfalt
an dynamisch veränderlichen Ressourcen in der unmittelbaren lokalen Umgebung

vi

für Fehlertoleranzzwecke auszunutzen. Die Grundidee des zweiten Ansatzes ist es
zunächst, computerisierte Einheiten hochredundant über die Oberfläche von Objek-
ten oder physischen Umgebungen zu verteilen, um anschließend die so erhaltene ma-
terielle Infrastruktur als ein Substrat für die Entwicklung von unabhängigen fehler-
toleranten ortsbewussten Diensten und Anwendungen zu nutzen. Als eine weitere
Ausprägung des Redundanzansatzes werden zwei Systeme präsentiert, welche eine
vorhandene Vielfalt von Sensortechnologien und sensorischen Fähigkeiten mit Hilfe
von Sensorfusionstechniken nutzbar machen: (1) eine leichtgewichtiges und erweit-
erbares System für die Selbstpositionierung von mobilen Geräten, basierend auf
einer offenen Sensorfusionsarchitektur, und (2) ein Solarzellen-basiertes Positionie-
rungssystem, das lokal verfügbares Kontextwissen in Echtzeit für eine Selbstkalib-
rierung und Dienstgüteoptimierung zur Verbesserung von Genauigkeit und Robus-
theit der Positionsbestimmung einsetzt.

Im dritten und letzten Hauptteil wird die Problematik der Verlässlichkeit von
Ubiquitous-Computing-Systemen aus einer weiter gefassten, ethisch-sozialen Per-
spektive beleuchtet und bewertet. Angesichts seiner ausgeprägten Human- und
Benutzerzentriertheit werden abschließend mögliche Auswirkungen und Gefahren
des Ubiquitous Computing analysiert sowie eine Reihe von sozialen Herausforderun-
gen und Fragestellungen zu wichtigen Themenkomplexen wie Zuverlässigkeit, Kon-
trolle, soziale Kompatibilität oder Benutzerakzeptanz identifiziert und diskutiert.

vii

viii

Acknowledgments

If you want to build a ship, don’t drum up people together to collect
wood and don’t assign them tasks and work, but rather teach them to
long for the endless immensity of the sea.

Antoine de Saint-Exupery

I am deeply indebted to my supervisor, Prof. Friedemann Mattern, for the
opportunity to work in his research group at ETH Zurich. Prof. Mattern gave me
all the freedom of creativity I required for designing my own research “ship”, and
the encouragement, confidence, and support needed for building it. I am extremely
grateful for his invaluable support and his remarks on preliminary versions of this
dissertation. Further, I want to express my gratitude to my co-adviser Albrecht
Schmidt for his highly appreciated support.

During my time at ETH Zurich I had the opportunity to work with extremely
intelligent and kind people in the Distributed Systems research group, which is
led by Prof. Friedemann Mattern. I would like to warmly thank all of them:
Robert Adelmann, Ruedi Arnold, Vlad Coroama, Svetlana Domnitcheva, Christian
Flörkemeier, Christian Frank, Oliver Kasten, Matthias Lampe, Marc Langheinrich,
Matthias Ringwald, Christof Roduner, Michael Rohs, Kay Römer, Frank Siege-
mund, Silvia Santini, Thomas Schoch, and Harald Vogt.

My family and friends have always been a constant source of understanding and
never-ending moral support. They were the ones who already saw my ship sailing
when all I had in my hands were planks and bolts.

But above all, I wish to thank God for all the grace and favor he has bestowed on
me: for granting me the will and the strength to persevere and overcome my own
limitations, and for my beloved wife Giselle, who has become my greatest source
of purpose, joy, and peace in this life.

ix

x

Contents

Abstract iii

Zusammenfassung v

Acknowledgments ix

Table of Contents xi

1 Introduction 1
1.1 Problem Statement . 2
1.2 Contributions . 3
1.3 Structure of this Dissertation . 5

I Fundamentals 7

2 Dependability 9
2.1 Definition and Terminology . 9
2.2 Dependability in Distributed Computing 10
2.3 Fault Tolerance Through Redundancy 12

3 Ubiquitous Computing 13
3.1 Vision and Background . 13
3.2 User-Centric Ubiquitous Computing Challenges 15
3.3 A Characterization of Ubiquitous Computing Systems 17

4 Dependability in Ubiquitous Computing 23
4.1 Faults in Ubiquitous Computing Environments 23
4.2 Fault Detection . 25
4.3 Fault Prevention . 26
4.4 Fault Removal and Fault Forecasting 27
4.5 Fault Tolerance Based on Different Forms of Redundancy 27
4.6 Adaptability . 31
4.7 Conclusion . 33

5 User-Centric Dependability Challenges 35
5.1 System-Centricity vs. User-Centricity 35
5.2 Dependable Human-Computer Interaction 36
5.3 Dependable Context-Aware Computing 38

xi

Contents

II Dependability in Human-Computer-Interaction 41

6 Dependable Human-Computer-Interaction 43
6.1 Accessibility of Devices and Services as a Fundamental Challenge . 43
6.2 Redundancy Through Diversity and Multitude of User Interfaces . 44
6.3 Input/Output Diversification . 45
6.4 Instant Personalization and Temporary Ownership 49

7 Case Study: I/O Diversification in the ETHOC System 57
7.1 Providing Physical Hyperlinks into a Virtual Campus 58
7.2 Entry Points into a Ubiquitous Computing Campus Environment . 58
7.3 Overview of the ETHOC System 59
7.4 ETHOC System Architecture . 62
7.5 Results . 65
7.6 Experimental Evaluation . 66
7.7 Conclusion . 67
7.8 Related Work . 67

8 Instant Personalization of Handheld Devices 71
8.1 Instant Personalization of Mobile Devices 71
8.2 Design Goals . 74
8.3 Discussion . 79
8.4 Prototype Implementation . 84
8.5 Conclusion . 84
8.6 Related Work . 86

III Dependability in Context-Aware Computing 89

9 Dependable Context-Aware Computing 91
9.1 Dependable Context-Aware Computing Through Fault Tolerance . 91
9.2 Fault-Tolerant Operation Through Localized Cooperation and Re-

source Sharing . 93
9.3 Concepts for Fault-Tolerant Data Fusion and Context Inference . . 95
9.4 Super-Distribution of Smart Entities as a Design Principle 98

10 Fault-Tolerant Data Dissemination Based on Cooperating Smart
Objects 105
10.1 Dependable Computing Based on Cooperating Smart Objects . . . 105
10.2 Conceptual Framework . 108
10.3 Architecture of a Fault-Tolerant User-Centric Service Infrastructure 111
10.4 Fault-Tolerance Management of the Fault-Tolerance Layer 113
10.5 Internal Classification of Resource Conditions 115
10.6 Fault-Tolerance Mechanisms Based on Proximate Smart Objects . 117
10.7 Rule-Based Activation of Fault-Tolerance Mechanisms 119

xii

Contents

10.8 Incentives for Cooperation Among Independent Smart Objects . . 121
10.9 Support for Disconnected Operation 122
10.10 Further Dependability Issues . 123
10.11 Prototype Implementation: Mobile Patient Monitoring Platform . 124
10.12 Conclusion . 130
10.13 Related Work . 131

11 Super-Distributed RFID Tag Infrastructures 135
11.1 Super-Distribution of Radio Frequency Identification Tags 135
11.2 Efficient and Redundant Large-Scale Deployment of RFID Tags . . 139
11.3 Initial Prototype Development and Assessment 143
11.4 Conclusion . 144

12 Fault-Tolerant Service Middleware Based on Super-Distributed Smart
Entities 147
12.1 Dependable Location-Aware Services for Mobile Devices 147
12.2 Middleware Support for Super-Distributed Infrastructures 148
12.3 Motivating Usage Scenarios . 150
12.4 Middleware Architecture . 152
12.5 Middleware Design Aspects . 156
12.6 Prototypical Implementation Based on RFID Technology 161
12.7 Summary . 163
12.8 Related Work . 164

13 Middleware Implementation Based on Super-Distributed RFID Tags 165
13.1 Motivation and Background . 165
13.2 Overview of Middleware Implementation 166
13.3 Basic Middleware Services . 167
13.4 SDRI Tracking and Positioning Prototype 169
13.5 Collaborative SDRI Mapping Prototype 173
13.6 Conclusion . 178

14 iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data
Fusion 181
14.1 Motivation and Background . 181
14.2 Fundamentals . 183
14.3 System Architecture . 185
14.4 Probabilistic Sensor-Fusion Algorithm 191
14.5 Complexity Analysis . 197
14.6 iPOS Positioning System Prototype 198
14.7 Experimental Evaluation . 207
14.8 Discussion . 214
14.9 Conclusion . 219

xiii

Contents

14.10 Related Work . 220

15 LuxTraceRT: Real-Time Positioning Using Indoor Lights and RFID 225
15.1 Motivating Scenario . 226
15.2 Design Goals . 227
15.3 System Architecture . 228
15.4 System Design Aspects . 229
15.5 Experimental Setup . 231
15.6 Experimental Results . 233
15.7 Discussion . 237
15.8 Conclusion . 238
15.9 Related Work . 239

IV Social Perspective on Dependability 241

16 The Social Dimension of Dependability in Ubiquitous Computing 243
16.1 Reliability . 243
16.2 Delegation of Control . 245
16.3 Social Compatibility . 246
16.4 Acceptance . 248
16.5 Living in a World of Smart Environments and Augmented Objects 250
16.6 Conclusion . 252

V Summary and Conclusion 255

17 Summary and Conclusion 257
17.1 Main Contribution . 257
17.2 Individual Contributions . 257
17.3 Conclusion . 259

VI Appendix 261

A Dependability 263
A.1 Definition . 263
A.2 Terminology . 263
A.3 Hardware Fault-Tolerance . 270
A.4 Fundamental Dependability Concepts 274
A.5 Fault-Tolerant Software . 277

B Ubiquitous Computing 279
B.1 Vision . 279
B.2 Background . 279

xiv

Contents

B.3 Ubiquitous Computing Technologies 291
B.4 Human-Computer Interaction . 296
B.5 Context-Aware Computing . 299
B.6 Sensor Networks . 303

C About the Author 309

Bibliography 311

xv

Contents

xvi

1. Introduction

Dependability is a classical key challenge of distributed computing [Lap85, Lap92a,
Jal94]. The dependability of a system is threatened if faults in components of the
system occur, which in return are the cause for errors that are liable to lead to
subsequent failure of the system and the services it provides. As the components
of a distributed system are often physically distributed and loosely coupled, the
sources of potential faults increase. Such faults potentially lead to an undependable
system on whose services reliance cannot or will not be placed any longer.

Ubiquitous computing is a further development of the distributed computing
idea. Ubiquitous computing systems typically feature a much higher degree of dis-
tributedness, heterogeneity, and system dynamics than we find in conventional dis-
tributed computing systems, providing manifold opportunities for errors to occur.
In addition, ubiquitous computing systems are often characterized by a multitude or
abundance of computerized entities that cooperate to some degree, and by a great
diversity of resources, technologies, capabilities, and form factors. These character-
istics further aggravate the classic dependability problem. Ubiquitous computing
further aspires to pervade the everyday life environment of the end-user to a so
far unprecedented extent [Wei93b]. Ubiquitous computing systems thus have a
strong impact on the users’ lives in daily situations [BCL+04a], and the associ-
ated dependability challenges hence exhibit a strong user-centric, human-centered
character.

In ubiquitous computing, the occurrence of faults generally cannot be prevented,
not even through meticulous validation and verification procedures. This is because
individual devices or remote services are liable to spontaneously cease functioning
or responding for various reasons, such as because of hardware failures, interference
of wireless communication, energy shortage, unavailability of background commu-
nication infrastructures, user mobility, or deliberate user intervention (e.g., other
users may turn their services/devices off or cancel cooperative device relationships
without prior notice).

However, in certain situations, it is possible to tolerate faults during operation to
maintain some level of operability. Such fault tolerance always requires redundancy
of some kind, as the functionality of components required for providing a certain
service needs to be taken over by other components that have both the capability
and the capacity for doing so. The major dependability challenge of ubiquitous
computing systems therefore can be rephrased into identifying and harnessing new
and existing sources of redundancy for enabling fault-tolerant operation. Bearing
this in mind, the multitude and diversity of resources in ubiquitous computing
environments, which are often considered a hindrance of dependable systems de-
velopment, can be turned into an opportunity and exploited as a valuable source
of redundancy. At the same time, it is important to acknowledge that ubiquitous
computing technologies and systems center on the individual user in his everyday
life environment. In the long run, the user may not even be in a position to “opt out”

1

Introduction

of a life largely influenced by ubiquitous computing systems [BCL+04a]. Conse-
quently, dependability concepts for ubiquitous computing have to be user-centered
and socially compatible, taking into account the particular needs and demands of
the average user.

In this dissertation, we present a number of concepts for increasing the depend-
ability of services and applications with regard to two fundamental areas of ubiq-
uitous computing: human-computer-interaction and context-aware services. We
show how the traditional concepts of redundancy and diversity can be applied to
achieve fault tolerance in ubiquitous computing environments to provide more de-
pendable services to the user. In doing so, we consider a service or system to be
dependable from the user’s perspective if it allows the user to perform a given task
even in the presence of certain disturbances and failures. Such disturbances include
the unavailability of network connectivity and of services of the background com-
puting infrastructure, and the failure or unavailability of mobile devices the user
requires for interaction with an omnipresent ubiquitous computing environment.

1.1. Problem Statement

The goal of this dissertation is to provide a systematic study of critical dependabil-
ity challenges in the context of highly-distributed ubiquitous computing systems
that are characterized by a multitude of smart cooperating and interacting objects.
To this point in time this topic has not been investigated deeply in the research
community.

In our work, we focus on two fundamental areas of ubiquitous computing: context-
aware computing and human-computer interaction.

Firstly, microprocessors, memory modules, communication chips, and sensors
are embedded into an ever broader range of everyday life objects. These objects
thus become “smart” in the sense that they are capable of executing certain object-
specific services and applications, and that they are able to interact and cooperate
with other smart objects via wireless ad hoc or infrastructure-based communica-
tion. The ubiquity of such computerized entities and their sensory capabilities form
the basis of context-aware computing. The main goal is to enable computer systems
to gain knowledge and understanding about the particular situation of a person or
a device (such as the current geographic or symbolic location, the user’s activity or
intention, or physical characteristics of the surrounding environment), and to use
this knowledge as a source for implicit input to improve the quality and adaptabil-
ity of computing services provided to the user. Here an important dependability
challenge is to ensure the reliability and availability of user-centric context-aware
services and applications that rely on a ubiquitous computing infrastructure. These
services have to operate in an environment consisting of highly-distributed comput-
erized entities that feature a great diversity of resources, technologies, capabilities,
and form factors. Context-aware computing systems may also rely on remote ser-
vices and databases situated in a networked background infrastructure or in the
Internet. Here a major challenge is to maintain a certain functionality for the
user even in the case that individual smart objects in the vicinity of the user and
the services they provide fail to respond, or if remote infrastructure services and
databases are unavailable due to lack of connectivity or failure.

Secondly, it has been recognized that computing systems are about to partially

2

1.2 Contributions

dissolve into the environment and become much more intimately associated with
their users’ activities [HBC+96]. In this context, the interaction between users and
their surrounding ubiquitous computing environments has become an important
challenge of research in the domain of human-computer interaction. However, while
much work has been dedicated to the development of novel interaction paradigms
and user interfaces, the dependability aspect of the interaction with smart comput-
ing environments and mobile services so far has received little attention. As users
more and more depend on mobile devices to perform everyday tasks at home, at
work, or in public places, the interaction with surrounding ubiquitous computing
infrastructures also has to be performed in a dependable manner. Concretely, there
has to be explicit support for the user to ensure the accessibility of mobile devices
and ubiquitous computing services even in situations where the user’s customary
physical tools of interaction, such as personal mobile devices, cease to operate or
are physically unavailable.

1.2. Contributions

The main contributions of this dissertations are threefold. Firstly, we present con-
cepts that increase the accessibility of personalized device functionality and improve
the availability of personal user data by freeing the user from the dependence on
individual mobile devices. Secondly, we describe concepts for improving the de-
pendability of context-aware services in ubiquitous computing environments by
exploiting redundancy and diversity of resources, with a focus on location aware-
ness. Thirdly, we identify and discuss dependability issues from a broader social
perspective. To demonstrate the feasibility and effectiveness of our concepts, we
have developed several exemplary prototypical implementations, which we discuss
in the respective chapters. Altogether, we present the following contributions:

1. Concepts for dependable, device-independent interaction between
users and their surrounding smart environments by harnessing the following
properties of ubiquitous computing environments:

a) Diversity of devices and communication technologies:
We demonstrate how the accessibility of personal user data and on-
line services can be increased by means of input/output diversification.
We have applied the concept in the prototypical implementation of the
ETHOC System (EveryThing Has Online Content), where users can ac-
cess online content and functionality linked to physical objects both by
means of different personal devices and computing platforms, and by
means of a generic web interface.

b) Multitude of mobile user devices:
We developed the concept of instant personalization and temporary own-
ership, which frees the user from the dependence on individual devices
and provides mechanisms for protecting the confidentiality of personal
user data. Here the main idea is to realize the interchangeability of de-
vices while preserving the advantages of customized functionality pro-
vided by personalized handheld devices. As a proof of concept, we de-

3

Introduction

scribe a working prototypical implementation for the use with personal
digital assistants.

2. Concepts for dependable location-aware services and applications
that exploit the following properties of ubiquitous computing environments:

a) Multitude of dedicated local resources:
We developed the concept of super-distribution of smart entities, where
smart computerized entities are distributed in a dense and redundant
fashion over object surfaces. We use the resulting dedicated infrastruc-
ture as the basis for a fault-tolerant service middleware which enables
the realization of fault-tolerant location-aware services. We also de-
scribe a concrete realization of the concept based on RFID technology,
together with reference implementations of exemplary middleware ser-
vices and applications, such as fault-tolerant local data sharing, tracing
and tracking, self-positioning, and collaborative map-making.

b) Multitude and diversity of volatile local resources:
While the super-distribution of smart entities constitutes a dedicated in-
frastructure, we also investigate means to provide fault-tolerant services
to mobile devices by making use of the volatile resources obtained from
heterogeneous smart objects and devices typically found in ubiquitous
computing environments. As a result, we developed an infrastructure
that provides mobile devices with fault-tolerant data dissemination and
communication services by means of localized cooperation and resource
sharing based on cooperating smart everyday objects.

c) Diversity of sensor technologies and sensing capabilities:
By virtue of data fusion techniques, mobile user devices can capital-
ize on the richness of diverse context data extracted from ubiquitous
computing environments in order to improve the adaptiveness and fault
tolerance of context-aware applications and services. We developed two
systems for the self-positioning of mobile user devices that combine re-
dundant sources of location context information: Firstly, we developed
a positioning system for resource-limited mobile devices based on an
open data fusion architecture. The system enables a mobile device to
merge the context information (i.e., position information) inferred from
the environment by means of multiple diverse sensors. This allows the
device to tolerate the transient or permanent failure of individual sen-
sors, enabling it to maintain a certain quality of service as long as some
sensory input is available (graceful degradation). Secondly, we built a
system that features real-time positioning and automatic self-calibration
by combining light intensity measurements obtained from off-the-shelf
solar cells with location and topology information retrieved in situ from
densely distributed RFID tags. Here the combination of redundant data
fusion with an online processing of location-dependent context knowl-
edge improves the accuracy, availability, coverage, and energy efficiency
of the positioning service.

4

1.3 Structure of this Dissertation

3. Investigation of dependability challenges for ubiquitous computing
from a social perspective:

We identify and analyze dependability challenges of human-centered ubiqui-
tous computing systems from a social and ethical angle, including general
aspects of reliability, control, social compatibility, and user acceptance. We
further discuss opportunities and pitfalls of living in a world of smart envi-
ronments and augmented objects.

1.3. Structure of this Dissertation

The remainder of this dissertation is structured as follows:
In Part I, we review some fundamentals of dependability research (Chapter 2)

and of ubiquitous computing in general (Chapter 3). Then we describe the relation-
ship between the two disciplines by discussing basic dependability methods in the
context of ubiquitous computing (Chapter 4). Finally, in Chapter 5, we motivate
the challenge of user-centric dependability in the context of ubiquitous computing
systems, which is central to this dissertation.

In Part II, Chapter 6, we first discuss the challenge of dependable human-
computer interaction, and we describe two concepts we developed to address the
dependability issues we have identified earlier: input/output diversification and in-
stant personalization. In Chapters 7 and 8, respectively, we discuss prototypical
system implementations of these concepts.

In Part III, Chapter 9, we further motivate the challenge of dependability with
regard to context- and location-aware computing. We present three concepts for
fault-tolerant location-aware computing: localized cooperation and resource sharing
based on smart everyday objects, super-distribution of smart entities, and redundant
multi-sensor data fusion. In Chapter 10, we describe a system based on physically
proximate smart objects, which employs localized cooperation and resource sharing
in order to achieve fault-tolerant operation on mobile devices.

The concept of super-distribution of smart entities we describe in greater detail
in Chapters 11–13. In Chapter 11, we first present our work on super-distributed
RFID tag infrastructures, explaining how a physical infrastructure of densely dis-
tributed RFID tags can be used for delivering novel location-aware services. Then,
as a generalization of this work, we present the concept of super-distribution of
smart entities in Chapter 12, together with a general fault-tolerant middleware
architecture we developed. This is followed by a description of a number of pro-
totypical reference implementations of this middleware based on RFID technology
in Chapter 13.

We conclude Part III in Chapters 14 and 15, respectively, by describing two
systems that apply redundant sensor fusion and context knowledge for achieving
fault-tolerant positioning and automatic self-calibration.

In Part IV, Chapter 16, we analyze the dependability challenge of ubiquitous
computing from a social perspective. Finally, in Part V, Chapter 17, we summarize
the contributions of this dissertation, and we draw some conclusions.

Part VI contains the appendix. It provides complementary information on the
basic terminology and concepts of dependability in general (Appendix A), and
an overview of the background, technologies, and major research challenges of
ubiquitous computing and its related disciplines (Appendix B).

5

Introduction

6

Part I.

Fundamentals

7

2. Dependability

In this chapter we introduce the basic terminology and concepts of computing sys-
tems dependability. The chapter is complemented by Appendix A, which provides
a more comprehensive overview of fundamental properties and concepts in the field
of dependability.

2.1. Definition and Terminology

2.1.1. Definition

From a general perspective, computing systems dependability is considered a uni-
fied discipline with the explicit purpose of “designing, implementing, and using
computer systems where faults are natural, foreseeable and tolerable” [AL86]. The
term dependability itself is conventionally defined as the trustworthiness of a com-
puter system such that reliance can justifiably be placed on the service it deliv-
ers [Lap85, Lap92a]. In this context, the service delivered by a system is its behavior
as it is perceived by its users, while the user may be human or another physical
system.

2.1.2. Attributes of Dependability

Laprie defines fundamental attributes which emphasize different, complementary
properties of dependability [Lap92a], and which serve to express the properties
that are expected of a dependable system. These attributes allow us to assess the
system quality in relation to system impairments and the means opposing them.
The most significant attributes of dependability are reliability, availability, safety,
and security [Lap85, Lap92a]. Reliability deals with the property of continuity of
service, availability with readiness for usage, safety with avoidance of catastrophic
consequences, and security with prevention of unauthorized access and/or handling
of information.

2.1.3. Faults, Errors, and Failures

The term fault is usually used to name a defect at the lowest level of abstraction,
such as a memory cell that always returns the value 0, for example. The de-
pendability of a system is threatened if faults in components of the system occur,
being the cause for errors which in return are liable to lead to subsequent failure.
A failure manifests itself through a system behavior that is not compliant with
the specifications, the latter being an agreed description of the system’s expected
function and/or service [Jal94].

9

Dependability

2.1.4. Dependability Methods

The development and maintenance of dependable computing systems calls for suit-
able means. According to Laprie, dependability can be achieved by the combined
utilization of a set of methods that can be classified into the following four groups:
(1) methods to prevent the occurrence or introduction of faults (fault prevention);
(2) methods to provide a service complying with the service specification even in
the presence of faults (fault tolerance); (3) methods to reduce the presence (in
terms of number or seriousness) of faults (fault removal); (4) methods that es-
timate the present number, the future incidence, and the consequences of faults
(fault forecasting).

Fault prevention and fault tolerance are used to provide a system with the ability
to deliver a service complying with the specification, thus constituting “depend-
ability procurement”. In contrast, fault removal and fault forecasting are more
concerned with the “validation” of the dependability of the system.

Fault prevention tries to eliminate as many sources for faults as possible before
the system is put in regular use without the deployment of redundancy. Fault
tolerance, in contrast, uses protective redundancy [Jal94] to automatically mask
failures and to avert system failure in case some components fail.

2.2. Dependability in Distributed Computing

Dependability is a classical key challenge of distributed computing [Lap85, Lap92a,
Jal94]. When modeling processes in the real world, one often finds that different sub
tasks have to be carried out in different locations, looking at production chains in
manufacturing plants, for instance. Hardware, software, and data may therefore be
physically distributed across several locations and operate self-sufficiently on local
tasks, thus forming a distributed system. For a distributed system to be capable of
achieving a global task efficiently, the different distributed pieces of hardware have
to be able to reliably communicate to be in a position to cooperate and coordinate
the different sub tasks of the superordinate process.

As the components of a distributed system are often physically distributed and
loosely coupled, the sources of potential faults increase. Such faults are liable to
cause errors and failures, which potentially leads to an undependable system on
whose services reliance cannot or will not be placed any longer.

Traditionally, distributed systems are viewed in two ways, either as defined by
its physical components, or as defined from the point of view of processing or
computation. In the first case, we speak of the physical model of the system, and
in the latter case of the logical model [Jal94].

2.2.1. Physical Model

In the physical model, the distributed system is regarded as a physical network
of many autonomous computing entities, which are also called nodes. The nodes
are geographically at different locations and connected with each other by means
of a communication network, through which the nodes communicate with each
other by exchanging messages. Each node is equipped with a processor, which
has some private volatile memory, a private clock that is used for coordinating the

10

2.2 Dependability in Distributed Computing

internal execution of instructions, a network interface through which the node is
connected to the communication network, and software that governs the sequence
of instructions to be executed on the node [Jal94]. These components of a node are
considered to be atomic. Fault tolerance mechanisms in distributed systems aim at
masking the failure of some of these components to prevent the entire distributed
system from failing [Jal94]. Often a distributed system is modeled as consisting of
nodes and of a communication network as the basic components. In this case, the
main component failures that have to be addressed by fault-tolerance mechanisms
are the failure of a node and the failure of the communication network.

2.2.2. Logical Model

The logical model concentrates on the applications viewpoint of a distributed com-
puting system: a distributed application consists of a finite number of concurrently
executing processes that cooperate with each other to perform some task [Jal94].
A process is defined as the execution of a sequential program, which in return is a
list of statements or instructions. Further, concurrent processes can either be exe-
cuted on a single processor, or in parallel on different nodes in the system, which
is the more interesting case for a distributed application. Concurrent processes
are competing if they share resources but at the same time do not exchange infor-
mation between themselves. This corresponds to a set of independent processes.
Cooperating processes are characterized by an exchange of information which is
either based on message passing or on using shared data objects. In the context of
distributed systems as they are traditionally seen, only message passing is possible,
as no shared data is allowed, and processes are usually considered to be cooperat-
ing [Jal94]. From the applications point of view, the underlying network is treated
as a fully connected network, assuming the physical network is connected. This
implies that a message can be sent from one node to any other node, which is sup-
ported by suitable communication protocols. Consequently, the network topology
is not considered at this level. The logical connection between any two processes
which interact by means of message passing is called a channel. A channel is
assumed to have infinite buffer, to be error-free, and to deliver messages in the
order that they have been sent (which is ensured by underlying communication
protocols).

2.2.3. Interrelationship of the Models

With regard to the dependability of a distributed system, failures that occur in
the physical system can cause the failure of components in the logical system.
If a physical node fails, it may cause the failure of some processes, which can
be considered as logical nodes. Similarly, the failure of communication lines in the
physical network may cause the failure of logical channels. According to Jalote, the
primary goal of fault tolerance is to preserve some properties in the logical model,
which ultimately includes the provisioning of services according to the applying
specifications, despite some failures in the physical model [Jal94].

11

Dependability

2.3. Fault Tolerance Through Redundancy

In order to make a distributed system fault-tolerant, redundancy of some kind
has to be employed [Gär99]. A non-redundant system may be able to detect the
failure of a vital component, but will not be able to recover from that failure
due to a lack of spare or substitute components that could take over the missing
functionality. However, if redundancy is added to the structure of the system
(structural redundancy), the dependability of a system evolves from mere “fault
detection” capabilities to “fault tolerance”. A more formal definition of structural
redundancy was provided by Geffroy and Motet [GM02], stating that a system
features structural redundancy “if its structure possesses certain elements which
are not necessary to the obtaining of a behavior conform to the specifications,
assuming that all the structure elements have a correct functioning”. According to
Geffroy and Motet, if structural redundancy is to be implemented, the redundant
resources can be expressed in terms of hardware (electronic components, integrated
circuits, logical gates, etc.), software (statements, functions, procedures, data, or
objects), and time (execution time of the algorithm and/or circuit).

2.3.1. Replication

A common method of achieving structural redundancy in a distributed system is
to duplicate a physical or logical component to obtain multiple redundant copies
(replication). Then, by simultaneously executing the redundant components, the
individual results are compared and a correct result is chosen (for instance, see N
modular redundancy (NMR) in the Appendix A.3). Alternatively, it is possible to
only activate and use available backup-components if an error is detected in the
currently active (or primary) component (cf. Appendix A.4.2). This procedure is
also referred to as forward recovery. Rather than replicating a hardware or software
component, a component that has reached an erroneous state can also be resumed
from a recorded previous state that is known to be error free. This procedure makes
use of temporal redundancy. A common example is to simply reset and restart a
component, such as rebooting a computer after an error occurred.

2.3.2. Design Diversity

The repeated execution of a failed component or its substitution with identical
replicas does not provide fault tolerance if the inherent design of the component is
flawed. In this case, the execution of the flawed component and of all its replicas
will fail, given that the particular input or boundary conditions expose the internal
design fault and repeatedly lead to identical errors and the failure of the component
or its provided service in the distributed system. While the root cause of failure of
hardware components is some physical failure, software has no physical properties
but is a totally conceptual entity. For that reason, software faults are always
design faults [Jal94]. And while physical failures are usually caused by natural
laws, software faults are the result of incorrect design or the presence of “bugs”,
both of which are caused by human errors.

To avoid identical errors caused by design faults, design diversity is a potentially
effective method. Here the basic idea is that N independently designed software
or hardware components are used rather than identical copies [AL86].

12

3. Ubiquitous Computing

In this chapter we present an overview of fundamental properties and characteristics
of ubiquitous computing in general. This chapter is complemented by Appendix B,
which provides a more comprehensive overview of the background, fundamental
properties, and research challenges of ubiquitous computing.

3.1. Vision and Background

3.1.1. Vision

Mark Weiser was the first to describe the vision of ubiquitous computing, which
“has as its goal the enhancing computer use by making many computers available
throughout the physical environment”, and making computers “effectively invisible
to the user” [Wei93b]. Weiser observed that – unlike virtual reality – “ubiquitous
computing endeavors to integrate information displays into the everyday physical
world”, that it aims at augmenting “the nuances of the real world”, envisioning
“a world of fully connected devices, with cheap wireless networks everywhere”.
And in contrast to conventional computing systems, ubiquitous computing has
the explicit aspiration to transform the real world in every day life situations by
providing the technical and conceptual means for enabling anytime, anywhere,
anyhow computing.

3.1.2. Background

The forthcoming realization of the ubiquitous computing vision asserts itself in
the continuing progress in the development of small and cheap computing and
communication technologies [HMNS01]. This development largely benefits from
the technological advances in the domain of embedded computing [Mat05]: as the
power of microprocessors, storage capacities and communication bandwidth rapidly
increase, it becomes technically feasible to build ever smaller, cheaper and more
abundant computers. This development ultimately results in the creation of so
called “smart things” which not only have access to the Internet and its plentiful
resources, but which also are increasingly capable of autonomous cooperation and
interaction with each other [Mat03].

Embedded Computing

Embedded computing systems are generally defined as special-purpose computer
systems which are completely encapsulated by the devices they control. An em-
bedded system usually has specific requirements and performs pre-defined tasks,
unlike a general-purpose personal computer. Important examples where embed-
ded systems are employed are sensor networks, fly-by-wire systems, engine control

13

Ubiquitous Computing

(e.g., improved fuel efficiency and lower emissions in automobiles), medical implants
and monitoring systems, avionics (e.g., navigation and collision avoidance), smart
homes and work spaces, and space control. But there are also more mundane ex-
amples of how embedded systems pervade our everyday life environment, spanning
the whole spectrum of electronic devices and products, such as electronic toys, mul-
timedia entertainment systems, mobile (smart) phones, digital alarm clocks, and
even toasters and coffee machines with built-in or embedded computer systems.

Distributed Computing

Obviously, ubiquitous computing constitutes a further development of the tradi-
tional distributed computing idea, promoting an ongoing process of decentraliza-
tion [HMNS01]: the computer is “irresistible on its way to push all limits and is
getting omnipresent”, eventually becoming a “part of everyday life and an inevitable
component when performing a variety of private and business related tasks”. Be-
yond the era of personal and distributed computing, ubiquitous computing makes
“information access and processing easily available for everyone from everywhere at
any time”, enabling users to “exchange and retrieve information they need quickly,
efficiently, and effortlessly, regardless of their physical location”.

However, compared to conventional distributed computing systems, ubiquitous
computing systems typically feature a higher degree of distributedness, heterogene-
ity, and system dynamics. In contrast to the traditional distributed systems model
where it is assumed that the underlying physical network is connected and thus
also the logical nodes or applications are fully interconnected, physical and logical
entities are much more loosely coupled in ubiquitous computing systems. Fur-
ther, mobility, portability, and ad hoc wireless interconnectivity of smart devices
effectuate an unprecedented degree of volatility of cooperative relationships and
topologies.

Mobile Computing

Mobile computing can be considered the logical forerunner of ubiquitous computing.
Since motion is an integral part of everyday life, ubiquitous computing technology
must support mobility. If this is not the case, a user will be acutely aware of the
technology by its absence when he moves [Sat01]. To satisfy the increasing desire
for ubiquitous access to information, anywhere, anyplace, and anytime, adequate
communication systems and software infrastructures are required in addition to
mobile and portable devices [MS03].

3.1.3. Human-Centered Technology

A particular characteristic of ubiquitous computing is user-centricity: ubiquitous
computing constitutes a human-centered technology [Mat03], which aims to provide
ubiquitous access to information, communication, and computation by having users
employ many different mobile, stationary and embedded computers over the course
of the day. Consequently, ubiquitous computing focuses on mobile people and not
just on mobile computers [SAW94].

14

3.2 User-Centric Ubiquitous Computing Challenges

3.2. User-Centric Ubiquitous Computing
Challenges

In the area of ubiquitous computing, two fundamental user-centric and interaction-
based research challenges have been established [AM00]: context-aware computing
and human-computer interaction.

3.2.1. Context-Aware Computing

Context-aware computing aims at enabling computer systems to gain a certain
knowledge and understanding about the particular situation of a person or a de-
vice, and to use this knowledge as a source for implicit input to improve the quality
and adaptability of computing services provided to the user [Dey01]. Context-aware
computing enables a software system to continuously adapt its behavior to a chang-
ing environment over which it has little or no control [RJH02]. Context awareness
also facilitates automation, making the interaction with computing devices is sim-
plified and more casual [Nel98].

Context awareness is a particular challenge for mobile devices and ubiquitous
computing applications to enable adaptability in a physical and computational en-
vironment that is liable to change frequently [AM00]. Moreover, context-aware
computing systems can also promote and mediate people’s interactions with de-
vices, computers, and other people, and it can help to navigate in unfamiliar
places [SAW94]. Schilit et al. [SAW94] have classified context-aware applications
into four major categories: proximate selection as an interface technique facilitat-
ing the interaction with nearby objects, automatic contextual reconfiguration of
system components, contextual information and commands, and context-triggered
actions.

Last but not least, context awareness is a user-centric view of computing [Nel98].
It enables computing systems to dynamically and non-intrusively adapt itself to a
user’s circumstances, reducing the focus on individual computing devices.

3.2.2. Location-Aware Computing

If context is narrowed down to any information that (1) can be used to characterize
the particular location of an entity or that (2) is characteristic of a particular
location, we talk of location context. Such location context can be used in two
different ways: (1) directly for the localization and tracking of objects or people, for
creating geographic or topological maps, and for the implementation of navigation
systems in general, or (2) indirectly for providing location-based services which
have the goal of delivering location-aware content to subscribers on the basis of the
positioning capability of the wireless infrastructure [CCR+04].

For instance, Kang et al. developed an algorithm that provides mobile devices
with a user-level notion of "place" by inferring semantic information about the
user’s current location [KWSB05], such as “my place of work”, “the place we live”,
or “my favorite lunch spot”, for example. This semantic location information can
then be used for the development of location-aware systems, such as a location-
aware cell phone that switches to a silent mode when its owner enters a place where

15

Ubiquitous Computing

a ringer is inappropriate (e.g., a movie theater, a lecture hall, a place for personal
reflection).

In general, location awareness is of particular interest to ubiquitous computing.
Location information has been identified to remain “the single most important piece
of context used in ubicomp applications” [ABO02]. As a consequence, numerous
location aware systems have been conceived in ubiquitous computing [HB01], and
location awareness still constitutes a major research challenge as of today [SLP05].

3.2.3. Human-Computer Interaction

The research field that investigates issues related to novel human-computer inter-
faces and interaction paradigms is generally called human-computer interaction
(HCI). Ubiquitous computing technologies provide the technical foundations for
advanced input and output devices as well as for ever more sophisticated small-
scale embedded systems. In the process, physical objects play a central role as both
physical representations and controls for digital information. This is mirrored in a
“wave of new HCI research into ways to link the physical and digital worlds” [UI00],
which aims at exploring the relationship between physical representation and dig-
ital information, and at highlighting new kinds of interaction that are not readily
described by existing frameworks. These human-computer interfaces are typically
referred to as graspable interfaces [FIB95] or tangible user interfaces [IU97]. An
important challenge of tangible user interfaces is the seamless integration of repre-
sentation and control, which differs markedly from the mainstream graphical user
interface (GUI) approaches of modern human-computer interaction.

A commonly observed trend is that computing systems appear to partially dis-
solve into the environment and become much more intimately associated with their
users’ activities [HBC+96]. With the help of ubiquitous computing technologies,
it becomes feasible to integrate computation and communication means into all
kinds of objects and artifacts for which uses can be found. For this reason, the
user finds the surrounding everyday life environment to be increasingly populated
by smart embedded devices that may interact with each other or with the user.
The resulting human interfaces to these embedded devices are often very different
from those appropriate to conventional computers and workstations [HBC+96].
The increasing desire for novel, more natural user interfaces [AM00] becomes
apparent in the broad spectrum of novel manipulative or haptic user interfaces
and interaction paradigms that have been presented over the past years, such
as [Rek97, HFG+98, KL99, KRA99, RAKO03], for instance. In the context of
ubiquitous computing, the realization of anytime, anywhere accessibility of ser-
vices by means of ubiquitous communication and user interfaces, and the integra-
tion of novel means of embedded computation in the process, constitute crucial
challenges [HBC+96].

A prominent example for embedding computing technology into mundane every-
day objects is the Mediacup [BGS01]. The idea here was to augment an everyday
artifact, represented by an inanimate coffee cup, so that it makes information about
itself available for computing within a local environment, assuming that such con-
text is of primarily local value. The augmented cup can principally be used as
a haptic user interface for explicit interaction (e.g., using the cup as a pointer
device). By harnessing the information derived from the sensors monitoring the

16

3.3 A Characterization of Ubiquitous Computing Systems

state of the cup (artifact context) as a source of implicit input, the Mediacup can
also be employed for the realization of context-aware applications, such as a smart
door-plate application that indicates an ongoing meeting in a room and detects
the participating persons depending on the presence and states of individual cups
detected within the room, for instance.

3.3. A Characterization of Ubiquitous Computing
Systems

The concept of ubiquitous computing, based on Weiser’s visions and ideas [Wei91,
Wei93b], does not provide precise instructions on how to build a concrete system.
In other words, there is no one model for ubiquitous computing systems. Ubiqui-
tous computing rather describes a system design and development paradigm (or
“philosophy”). It strives to integrate a number of established disciplines (cf. Ap-
pendix B.2), such as embedded, mobile, peer-to-peer, and grid computing. It also
spawned a number of more recent sub-disciplines, the most prominent of which
probably are context- and location-aware computing (cf. Sections 3.2.1 and 3.2.2,
respectively), human-computer interaction (cf. Sections 3.2.3), and sensor networks
(cf. Appendix B.6).

Despite being this amalgam of disciplines and influences, ubiquitous computing
systems can be characterized by a number of comprehensive properties, which
were partly inherited from its related areas, or which emerged anew during the
process of realizing Weiser’s vision. Based on an analysis of literature in the field
of ubiquitous computing, we identify and describe fundamental characteristics of
ubiquitous computing environments and the applications that form or are part of
those environments.

3.3.1. Decentralization

Ubiquitous computing systems are highly decentralized, distributing the respon-
sibilities between manifold small, autonomous entities. Each entity takes over
special tasks and functionalities, thus contributing to a heterogeneous computing
landscape [HMNS01]. Decentralization usually requires additional efforts in data
synchronization, to keep sources and destinations of information, which can be
distributed across different devices and applications, consistent and up-to-date.
Further, ubiquitous computing devices and applications are often embedded into a
background service infrastructure, which provides management and system mainte-
nance functionality (such as remote software deployment and update, for instance),
or persistent, reliable data bases and mass storage capabilities. The back-end sys-
tems themselves must be highly scalable and flexible, potentially serving millions
of ubiquitous computing entities, which can be delivered by means of established
conventional architectures for distributed systems, such as client/server architec-
tures or redundant server clusters employing load-balancing and fault-tolerance
techniques, as described in detail by Tel [Tel00], for instance.

17

Ubiquitous Computing

3.3.2. Pervasiveness

The advances in miniaturization and embedded computing technology paved the
way for the practical realization of Weiser’s vision of weaving computing technolo-
gies “into the fabric of everyday life until they are indistinguishable from it” [Wei91].
To phrase it in a more mundane way, it became possible to enhance everyday life
objects and spaces with embedded computing technology and communication ca-
pabilities, thus making them smart [Mat03, Mat05]. By embedding computing
technology in building infrastructure, we obtain interactive “smart spaces” [Sat01],
which provide additional means of sensing and controlling the physical environment
to smart objects and applications. So the characteristic of pervasiveness refers to
the process of pervading and augmenting physical objects and spaces with (embed-
ded) computing technology. The degree of pervasiveness of a ubiquitous computing
environment is determined by the rate of penetration of ubiquitous computing tech-
nology into the (mobile and stationary) infrastructure.

3.3.3. Ubiquity

As Weiser foresaw “a world of fully connected devices, with cheap wireless net-
works everywhere” [Wei91], the availability of ever smaller and cheaper computing
and communication technologies [HMNS01] gradually enables a large-scale, ex-
haustive deployment of objects and devices enhanced with ubiquitous computing
technology. Ubiquity describes the characteristic of “anywhere” computing, refer-
ring to the property that ubiquitous computing technology does not just occur
in individual places, but instead in abundant quantities “throughout the physical
environment”, with a particular stress on everyday life situations, as envisioned by
Weiser [Wei93b]. So ubiquity is a result of the multitude and abundance of smart
objects and devices that are found in the user’s environment. What makes the pro-
liferation of smart objects and devices possible at a large scale is the fact that prices
for microelectronic functionality have been falling radically over the last years, and
experts expect that this trend will continue for many years [Mat04]. This has the
effect that computer processors and storage components are becoming ever more
powerful, smaller, and cheaper at the same time, enabling the mass-production of
a variety of novel low-cost computerized products for domestic use. A prominent
example of ubiquity is the massive proliferation of mobile phones (and of mobile
phone access points). Today mobile phones are sold in large quantities and have ac-
quired the status of basic commodities, whereas only a few years ago, they still had
the reputation of being expensive, clumsy status symbols with limited functional-
ity [Mat04]. According to Gartner, in 2004 mobile phones were sold in quantities
surpassing six hundred of millions of units worldwide [Gar05a], with sales expected
to exceed 730 million units in 2005. Further, Informa expected the global wireless
market to hit 2 billion subscribers by end of 2005 [inf05], after having reached 1.5
billion in mid 2004 [inf04], which corresponds to a global mobile penetration of
about 30%. A similarly rapid growth can be observed at the market for personal
digital assistants (PDAs). For instance, in the first quarter of 2005, PDA shipments
increased 25 percent within one year to 3.4 million [Gar05b, KCMT05].

18

3.3 A Characterization of Ubiquitous Computing Systems

3.3.4. Diversification

In contrast to the all-purpose workstation of the past decades, where different appli-
cations were provided by means of different software, we find a variety of diversified
devices in ubiquitous computing environments that suit a specific group of users
for a specific purpose [HMNS01]. The diversity of hardware and software results
in a high degree of heterogeneity in capabilities [HMNS01] (e.g., concerning com-
munication interfaces and protocols, memory storage, energy supply, processing
power, operating systems, and available operating system support and application
software). It also contributes to an “uneven conditioning” [Sat01] of the environ-
ment, which is determined by a varying rate of penetration of ubiquitous computing
technology into the infrastructure (i.e., a varying degree of pervasiveness), which is
liable to effect significant differences in the “smartness” of different environments.

3.3.5. Portability

Portability can be defined as the ease with which a system or component can be
transferred from one hardware or software environment to another [IoEEE90]. In
ubiquitous computing settings, the portability of devices and objects plays an im-
portant role. On the one hand, this is a result of the shift from using self-contained
and statically networked computers to the use of portable computers with wireless
communication capabilities [FZ94]. On the other hand, portability is a funda-
mental concept in ubiquitous computing, as the latter aims at turning everyday
artifacts into “computer embodiments [. . .] of many sizes and shapes, including tiny
inexpensive ones that could bring computing to everyone” [Wei93a]. Nowadays the
continuing advances in embedded computing and the thus enabled increasingly
high pervasiveness of ubiquitous computing technology, together with the observed
desire for specialized new gadgets on behalf of the consumers [HMNS01], spur the
development of an ever greater variety of devices and augmented objects that are
small and handy enough to be portable while retaining their usefulness and effec-
tiveness for their particular purposes.

3.3.6. Mobility

Motion is an integral part of everyday life. Ubiquitous computing technology there-
fore must support mobility, or a user will be acutely aware of the technology by
its absence when he moves [Sat01]. This is not only true for portable ubiquitous
computing equipment carried along or worn on the body by the user, but also for
ubiquitous computing devices in general that are part of a mobile carrier substance
or of a vehicle, such as devices that are built into automobiles, airplanes, or trains.

3.3.7. Interconnectivity

Interconnectivity is a fundamental property of distributed systems, as the different
distributed entities have to be able to communicate in order to cooperate and to
coordinate different sub tasks. Ubiquitous computing has a particularly strong
demand towards connectivity [HMNS01], which is motivated by the necessity of
seamlessly integrating the manifold heterogeneous devices that are expected to
populate ubiquitous computing environments. And according to Lou Gerstner,

19

Ubiquitous Computing

former Chairman and CEO of IBM, we will soon “see this hyper-extended networked
world – made up of a trillion interconnected intelligent devices” [Ger98].

3.3.8. Ad Hoc Wireless Communication

Wireless communication is a prerequisite of ubiquitous computing, providing the
technical means of localized interconnectivity between mobile entities and of ac-
cess to infrastructure-based communication networks. Already Weiser stated the
need of “cheap wireless networks everywhere” [Wei91]. Depending on the particular
purpose, both infrastructure-based and localized ad hoc wireless communication is
required, to enable the communication and cooperation between mobile entities and
remote networked services with the help of wireless network gateways, and to stim-
ulate direct local interaction among (mobile and stationary) ubiquitous computing
entities and smart objects themselves.

3.3.9. Open-World Assumption

In order to enable interoperability and connectivity across platforms and bound-
aries in the face of a high degree of hardware and software diversity, common
open standards are a crucial requirement [HMNS01]. Ubiquitous computing en-
courages open systems based on an open-world assumption. Or as Lou Gerstner
described his vision of interoperability during a keynote speech at CeBIT ’98 in
Hanover, Germany [Ger98]: “Everybody’s software, running on everybody’s hard-
ware, over everybody’s network”. The different decentralized smart entities “co-
operate in an open mutual community”, by establishing a “dynamic network of
relationships” [HMNS01].

3.3.10. Volatility of Cooperative Relationships and
Topologies

In ubiquitous computing environments, the nature of cooperative relationships and
partnerships among devices is highly volatile. This is a direct consequence of mo-
bility, as mobile devices may frequently and without notice enter and leave the
range of direct/indirect communication with other potential interaction partners.
Another reason is the inherently high dynamics of ubiquitous computing systems,
which results in frequent changes of device topologies and resource availability. The
number of entities involved in providing a service changes over time, depending on
the availability and/or physical presence of those entities, their internal states, the
situation of the user (change in intention, required quality of service, etc.). The
result is an ad hoc composition [GDL+04] of services, applications, and devices
at runtime. Further, communications and interactions between smart objects are
liable to be initiated (and ended) spontaneously [Mat04].

3.3.11. User-Centricity

Ubiquitous computing does not aim at being separated from the real world, but it
instead aspires to mold the familiar everyday environment of the user by means of
unobtrusive technology, with the goal of improving the user’s quality of life [Mat03].

20

3.3 A Characterization of Ubiquitous Computing Systems

Or in Marc Weiser’s words, ubiquitous computing provides computation that “works
primarily in the background where it may not even be noticed”, unobtrusively sup-
porting people in everyday life situation, but at the same time leaving “you feel-
ing as though you did it yourself” [Wei93b]. So as ubiquitous computing provides
ubiquitous access to information, communication, and computation by having users
employ many different mobile, stationary and embedded computers over the course
of the day, ubiquitous computing focuses on mobile people and not just on mobile
computers [SAW94]. Therefore ubiquitous computing can be considered a vision
of human-centered technology [Mat03]. In the long run, ubiquitous computing sys-
tems may even be considered the spearhead of a new generation of human-centered
systems [Der02].

3.3.12. Ubiquitous Computing Environments and Clients

In the remainder of the document, we use the term ubiquitous computing envi-
ronment to refer to (1) a physical environment which is populated with various
entities (physical artifacts and devices, mobile or stationary, large or small) that
have been augmented with ubiquitous computing technology, and to (2) the sum
of services and applications provided by these augmented entities. In accordance
with Satyanarayanan [Sat01], we further assume that each user is immersed in a
personal computing space that accompanies him/her everywhere and mediates all
interactions with the ubiquitous computing elements in his/her surroundings (e.g.,
with nearby smart objects). This personal computing space is likely to be imple-
mented on a body-worn or handheld computer (or a collection of these acting as
a single entity). We refer to this entity as a mobile user device, or simply mo-
bile device. Sometimes we may also refer to this entity as client, as suggested by
Satyanarayanan, though the nature of many of its interactions may be peer-to-peer
rather than strictly client/server.

21

Ubiquitous Computing

22

4. Dependability in Ubiquitous
Computing

As we saw earlier in Chapter 3, ubiquitous computing systems are significantly
different from traditional distributed computing systems. Within a ubiquitous
computing environment saturated with computing and communication capability,
we find a potentially large number of autonomous, heterogeneous computerized
entities that are capable of interacting spontaneously or of changing cooperative
relationships at random. If smart objects or devices are mobile, they have to adapt
to changes in their surrounding environment, which includes changes in the num-
ber of available resources, services, or communication bandwidth. Cooperating
devices may be disconnected or leave the area of influence of other devices for an
undetermined amount of time, possibly never to be seen again by their former
cooperative partners. In case a device is portable, it may further be subject to
inadvertent temporary absence or permanent loss. And due to the user-centric
nature of ubiquitous computing applications, there are situations in which it is not
possible to simply abstract from the identity or location of a networked device or
service. In traditional system-centered distributed computing systems, a backup
software process or a standby hardware component can usually be executed on a
different computer in the network to compensate for the failure of the primary pro-
cess or component. An individual person in a ubiquitous computing environment,
however, relies on the concrete instances of tangible devices that are in his or her
possession or physically present in his or her immediate vicinity in order to interact
with the surrounding smart environment at the current location.

In the following, we first describe typical faults that occur in ubiquitous comput-
ing environments. Then we briefly review the four traditional methods that can
be applied to protect the dependability of a computing system in the context of
ubiquitous computing.

4.1. Faults in Ubiquitous Computing
Environments

Traditionally, faults are distinguished as hardware faults in case a physical hard-
ware component ceases to function according to specification, or as software faults
which are the result of incorrect design or erroneous programming (“bugs”) caused
by human errors in the software. A hardware fault can be further classified as
either a crash fault (the component halts or loses its internal state), omission fault
(the component does not respond to some inputs), timing fault (the component
responds too early or too late), or Byzantine fault (the component behaves in a
totally random manner) [Jal94]. In ubiquitous computing environments, hardware
faults are liable to occur frequently, as the user is expected to be surrounded by a

23

Dependability in Ubiquitous Computing

potentially large number of unreliable low-cost computerized devices and artifacts
(see also Sect. 3.3: pervasiveness and ubiquity). Portability further increases the
likelihood of hardware failures due to physical damage, as devices and objects are
liable to suffer from percussions during transport.

In ubiquitous computing systems, there are additional sources for faults to occur
with regard to a smart object or device, which are not considered in conventional
distributed systems:

4.1.1. Ad Hoc Communication Faults

An ad hoc communication fault may lead to the inability of establishing or to
the unintentional termination of ad hoc communication links with other entities
in communication range. Such faults can be caused by (1) incompatible commu-
nication technologies/interfaces/software versions, or by (2) the loss of (wireless)
connectivity due to interference, object mobility, the spontaneous turning-off of
devices (e.g., performed manually by the user or automatically by the object itself
when switching into standby-mode for energy saving), or physical damage.

4.1.2. Coordination and Synchronization Faults

A coordination and synchronization fault may effect the disruption or corruption
of cooperative relationships between devices or between devices and external re-
sources. This is the case if a cooperation partner or a used resource (1) sponta-
neously loses the willingness (e.g., user manually terminates cooperation) or ability
(e.g., due to physical damage or a lack of resources) to cooperate and therefore
terminates established cooperative relationships without further notice, (2) be-
comes temporarily or permanently unavailable (e.g., by moving out of ad hoc or
infrastructure-based communication range, by changing a previously used address
or identifier, or due to physical damage or destruction), or (3) partially or com-
pletely loses its internal state (e.g., due to energy-loss, software error and restart,
operating system error and reboot, etc.) and thus gets out-of-sync with regard to
previously established cooperative or usage relationships.

4.1.3. Inaccessibility Faults

An inaccessibility fault may lead to the unanticipated physical unavailability of a
user device or user interface device. Such faults occur in case a user unintentionally
lacks the physical means to locally access services or particular device functionality
(which are otherwise fully operational and unaffected by faults).

Ad hoc communication faults and coordination and synchronization faults typi-
cally affect the interaction between smart objects and devices and lead to technical
or system-oriented failures. They are largely a result of the high system dynamics
and volatility of inter-device-relationships in ubiquitous computing environments.

However, inaccessibility faults describe a novel non-technical, user-oriented cat-
egory of faults which, to our knowledge, so far has not been of concern in conven-
tional distributed or mobile computing systems. Inaccessibility faults may lead to
the unanticipated inaccessibility of devices and services on behalf of the user (rather
than on behalf of other computerized entities), in situations where these devices or

24

4.2 Fault Detection

services are essential for the user to perform a required task. Inaccessibility faults
are intrinsic to many ubiquitous computing systems due to the user-centric char-
acter of ubiquitous computing in general. For instance, such faults are induced by
the portability of devices and objects, which may lead to the unintentional physical
absence of user devices, and by the locality aspect of human-computer interac-
tion: the user needs some means of physical user interface in his or her immediate
vicinity in order to be able to interact with a surrounding ubiquitous computing
environment.

4.2. Fault Detection

In general, the detection of faults is a non-trivial task in distributed computing
systems. For instance, it can be difficult to decide whether a remote computer
process failed or is still up and running. The remote process, for example, may not
respond due to a prolonged delay or due to the loss of asynchronous communication
messages as a result of an unreliable communication system. Further, the process
itself may be delayed due to overload, it may be blocked due to racing conditions,
or it may have crashed and stopped. In the worst case, it may have suffered from a
Byzantine failure and respond in a random, syntactically correct but semantically
incorrect fashion.

Ubiquitous computing systems potentially suffer from the same kinds of faults
as distributed computing systems in general do, including crash faults, omission
faults, timing faults, and Byzantine faults. The higher degree of distributedness
and systems dynamics in ubiquitous computing make efficient fault detection a
“tough challenge” [CRC05].

4.2.1. Fault Detection in Synchronous Relationships

In the case of synchronous relationships between system components or services, ad
hoc communication faults that result in the loss of ad hoc connectivity to a smart
object usually can be detected in a straightforward manner. For instance, com-
munication protocols usually signal a termination of a synchronous wireless com-
munication link (e.g., “connection terminated” or “connection aborted”). Besides,
incompatibilities concerning software drivers or communication stacks typically re-
sult in the failure of initializing a communication link or of sending/receiving data
packets on the communication layer.

With regard to coordination and synchronization faults, a spontaneous termina-
tion of a synchronous cooperative relationship is difficult to detect, as the reason
of the termination may also be an underlying communication problem. However,
detection is possible if a termination of a relationship is explicitly signalized by neg-
ative acknowledgments indicating the withdrawal of permission (e.g., “connection
refused”).

4.2.2. Fault Detection in Asynchronous Relationships

The trend in distributed and ubiquitous computing is towards asynchronous and
reactive systems, which cannot wait indefinitely for synchronous calls to terminate.

25

Dependability in Ubiquitous Computing

Asynchronous communication is usually applied in user interface systems or real-
time systems, for instance [MS03]. For failure detection in asynchronous, loosely-
coupled relationships between system components, the use of failure detectors based
on timeout techniques such as heartbeat messages has been suggested [CRC05].
However, such messages are expected to add significantly to network traffic in
densely populated ubiquitous computing environments. Furthermore, in case of
network failures it is difficult to decide whether an entity or network failure oc-
curred.

In general, without the availability of synchronized clocks, lossless reliable com-
munication, and a known upper-bound on message delivery, a smart object cannot
decide whether another smart object has disappeared temporarily or permanently,
as the other object may reappear and respond at an arbitrarily late point in time.
This problem has been reduced to the fundamental consensus problem [FLP85]
in distributed systems (also cf. Appendix A.2.6). Similar such problems (i.e.,
problems where an agreement on (in)correct results or values has to be achieved
among possibly faulty distributed computer entities) are synchronization, reliable
communication, resource allocation, task scheduling, reconfiguration, replicated file
systems, and sensor readings [BDM93]. From a system-oriented viewpoint, highly
distributed ubiquitous computing systems generally constitute a more loosely cou-
pled type of distributed systems with an inherently higher degree of system dy-
namics. Therefore the fundamental consensus problem of distributed systems in
particular applies to the domain of ubiquitous computing systems, where messages
can be lost and message delays are potentially unbounded in case a communica-
tion partner becomes unavailable for an arbitrary long period of time or ceases to
cooperate without prior notice. The study of solutions to the consensus problem in
the domain of ubiquitous computing, however, is not subject of this dissertation.

4.2.3. Detection of User-Centric Faults

The detection of inaccessibility faults is performed by the user the moment he or
she discovers the absence or unavailability of a required device or service. Such
user-centric faults and their detection are not of interest in traditional distributed
computing, where the applied models are system-centric (i.e., they do not consider
individual processes or devices that are associated with a particular user). In this
dissertation, we explicitly focus on the investigation of user-centric dependabil-
ity issues and solutions in ubiquitous computing settings where the user plays a
significant role.

4.3. Fault Prevention

Fault prevention methods are conventionally used in the process of designing, test-
ing, and validating applications with the goal of identifying and removing possible
sources of failure before the applications are actually deployed.

In ubiquitous computing environments, the are a number of faults that cannot
be prevented. First, the sheer number of mass-produced, low-priced components
with limited technical dependability are prone to hardware and software faults.
Further, the high level of distributedness of computerized entities, their mobility,
and the dynamics and spontaneity of their interrelationships [Mat01a] add further

26

4.4 Fault Removal and Fault Forecasting

possibilities of incurring ad hoc communication faults or coordination faults. For
instance, smart objects and devices may be turned off at any time, move out of
radio range (potentially severing existing communication links), or simply run out
of resources (memory, energy) because of stringent resource limitations stemming
from small form factors or from reasons of cost efficiency. Mobile devices are further
prone to become physically unavailable, either temporarily (e.g., if left behind
unintentionally) or permanently (e.g., if broken, lost, or stolen), which cannot be
prevented in practice. Fault prevention as a general method is therefore not a
practical means for ensuring the dependability of ubiquitous computing systems.

Nevertheless, computer-based memory aids and reminder tools [Sil97] can to
some extent help to prevent user-centered inaccessibility faults by reminding peo-
ple about things they need to do, or more specifically, about smart objects or
devices they need to carry along. Boriello et al. [BBH+04], for instance, developed
a wristwatch-sized device that reminds users about objects they are about to leave
behind unintentionally. In the process, they used passive radio frequency identifi-
cation as an enabling ubiquitous computing technology for object identification.

4.4. Fault Removal and Fault Forecasting

Fault removal and fault forecasting methods have limited practical relevance with
regard to ensuring the dependability of ubiquitous computing applications. In
ubiquitous computing, the end-user typically forms an integral part of ubiquitous
computing systems. The user makes use of smart devices he carries or finds in his
immediate locality in order to implicitly or explicitly interact with a surrounding,
omnipresent ubiquitous computing environment. The human factor introduces a
significant level of uncertainty with regard to predictions: forecasting the user’s
future intentions, actions, or even misbehaviors in order to estimate the future
incidence and the consequences of faults is a very difficult if not impossible task.
Neither can such indeterministic sources of faults be anticipated a priori and re-
moved, as it is possible with the removal of deterministic faults or “bugs” in a piece
of software. This situation is aggravated by the potentially large number of low-cost
computerized entities with comparably unreliable and failure-prone hardware, the
volatility of their cooperative inter-device-relationships, and the unpredictability
of how these computerized entities may be put to use and controlled by end-users.

4.5. Fault Tolerance Based on Different Forms of
Redundancy

In ubiquitous computing environments, the occurrence of faults cannot be pre-
vented a priori. However, in certain conditions, fault-tolerance methods make it
possible to continue to provide a service that complies with the service specifica-
tion even in the presence of faults. For that, these methods require some kind of
redundancy of local resources to be in a position to compensate for faults (and
failures induced by these faults) that are liable to appear during operation.

27

Dependability in Ubiquitous Computing

4.5.1. Hardware Redundancy

A classical approach for achieving fault tolerance is to substitute a failing resource
with a readily-available duplicate resource at runtime, such as the hot or cold
swapping of resources by using standby components (cf. Appendix A.3.2: dynamic
redundancy). The term “duplicate” implicates that the standby component fea-
tures the identical physical structure and/or logical functionality as the original
component it is replacing (homogeneous redundancy). Further, if the additional or
substitute resources that a ubiquitous computing device or application requires for
tolerating a certain type of fault are location-independent, such as memory space
or processing power, the device or application can also utilize resources available in
a background network infrastructure as part of a conventional distributed system,
assuming that infrastructure-based connectivity is available.

4.5.2. Homogeneous and Heterogeneous Redundancy

As a rule, mass-produced ubiquitous computing devices do not have reliable or
redundant resources at their disposal, either for cost or size limitations. As a
consequence, smart objects and portable devices in particular are liable to fail
completely or become unusable in the case of faults (e.g., complete destruction due
to physical damage, battery depleted, display broken, etc.). In such a situation,
it is the user’s task to exchange the device with a suitable surrogate. Either the
user can replace it with another device of the same kind, or with a different type
that features similar (but not identical) functionality. In the first case, if there are
redundant identical devices available in the locality of the user to serve as potential
surrogates, we again speak of homogeneous redundancy. Otherwise, if the available
redundancy is represented by devices that significantly differ in terms of physical
structure or logical functionality from the device that is to be replaced, then we
speak of heterogeneous redundancy. So homogeneous redundancy is concerned
with the multitude of equal resources in the ubiquitous computing environment,
while heterogeneous redundancy is the result of an abundance in diverse resources
(diversity).

4.5.3. Individuality of Devices

User devices are often personalized or customized in some way, which provides them
with an individuality. If the user’s personal data or customizations are essential
for the proper functioning of the device and the services it provides, it is not
sufficient to merely replace the physical device in order to achieve fault tolerance
in case the original individual user device fails. Instead, either the user or the
surrounding ubiquitous computing infrastructure need to provide the personal user
data required for the proper functioning of the replaced device.

4.5.4. Locality Aspect of Redundancy

Given a user-centric ubiquitous computing application or device, the redundancy
required for tolerating failures in components or services usually has to be recruited
in the immediate vicinity of the user. For instance, unlike in a distributed server
cluster or in a peer-to-peer network where the physical location of computers or

28

4.5 Fault Tolerance Based on Different Forms of Redundancy

processes is of no concern, a service running on a device used by a person in
a particular location in order to interact with the local environment cannot be
substituted with an arbitrary device upon the occurrence of a fault. Even though
other devices may logically be part of the same communication network, they will
be useless to the user in case he or she depends on the presence of a physical
interface in the current immediate vicinity or locality. With regard to ubiquitous
computing systems in general, even though a mobile user far from home is expected
to generate some distant interactions with sites relevant to him, the preponderance
of his/her interactions will be local [Sat01].

Furthermore, as we described earlier in the characterization of ubiquitous com-
puting systems in Sect. 3.3, ubiquitous computing encourages open systems and
user-centric applications. Literally, in a ubiquitous computing environment, the
single users (and their personal devices) constitute individual players that tend
to follow independent, personal goals. This means that the users’ devices and
the processes executed on these devices are usually not or only loosely embedded
into a background computing infrastructure. This naturally reduces the degree of
infrastructure support to ubiquitous computing applications and thus implicitly
limits the availability of remote resources as a source of redundancy needed for the
realization of fault-tolerant system behavior.

Instead, the different players (i.e., devices) “cooperate in an open mutual com-
munity” by establishing a “dynamic network of relationships” [HMNS01]. In the
process, the general open-world assumption of ubiquitous computing requires from
individual user-focused devices and applications that they adopt a dynamic view of
the world, forming temporary ad hoc alliances and cooperations with other partners
as they are encountered along the way. Technically, the observed high system dy-
namics and the need of localized ad hoc interaction is mirrored in the capabilities for
ad hoc wireless communication and support for mobility, which are characteristic
of many devices and augmented objects found in ubiquitous computing environ-
ments as we discussed earlier. This is a further reason why user-centric ubiquitous
computing devices and applications in particular require localized redundancy.

4.5.5. Localized Ad Hoc Redundancy

One potential solution for obtaining redundancy in the locality of a user’s device it
the local allocation of external resources in the direct vicinity of the user by means
of a temporary localized cooperation with nearby devices, which we call localized ad
hoc redundancy, or in short, ad hoc redundancy. Ad hoc redundancy can be homo-
geneous, exploiting the multitude of identical resources in the vicinity (e.g., using
the identical display and media player of a nearby device of the same kind when
the display of the user’s primary device is defect), or heterogeneous, relying on the
diversity of available resources. An example for heterogeneous ad hoc redundancy
is a device that connects in an ad hoc fashion to a nearby smart phone via Blue-
tooth [BS06] in order to use it as a proxy for contacting a remote server via a cellular
network-based GSM/GPRS/UMTS [GSM06, UMT06] Internet connection in case
the Wireless LAN communication interface on the device itself is not functioning.
Especially smart objects or user clients with significant resource limitations have
to rely on additional resources from external sources (such as additional persistent
memory space, computation power, remote connectivity sharing, or data forwarding

29

Dependability in Ubiquitous Computing

services, obtained from other smart objects in the vicinity) in case of local resource
bottlenecks or component failures. By using nearby “richer” smart objects as com-
munication proxies, it is possible to provide resource-restricted smart devices that
are only capable of short-range communication with additional resources residing
in the background network infrastructure. Due to the high volatility of coopera-
tive relationships in ubiquitous computing environments, the providers of ad hoc
redundancy may change frequently from the perspective of a user’s individual de-
vice. Further, as a rule, a device that employs ad hoc redundancy does have no
quality-of-service guarantees for services used from nearby devices, and no control
over resources and data that have been outsourced in the process.

4.5.6. Quality-of-Service Redundancy

Another possibility to provide fault tolerance capabilities to individual devices is
to reduce their performance and quality of service within the tolerances of the
effective functional specifications and user expectations. This is possible if an
application or service does not need all available resources at the same time or
does not require to work them to capacity for meeting the minimum quality-of-
service requirements. In this case the resources on the device are redundant with
regard to the delivered quality of service as a measure. Such redundancy we call
quality-of-service redundancy, or in short qualitative redundancy. Quality of service,
however, is a soft criteria for measuring the degree of redundancy, as it is specific to
a concrete task or problem. In contrast, hard redundancy is based on the physical
or logical structure of a device (e.g., redundant physical components) or application
(e.g., redundant processes).

For instance, the smart Mediacup [BGS01] we mentioned earlier could be pro-
grammed to disable its integrated chip used for temperature measurements in favor
of a prolonged operability of the motion sensor in case of a low battery level, assum-
ing that motion sensing is sufficient for inferring the activity and presence of people
in a meeting room with an acceptable loss of accuracy, and therefore prioritizing
motion sensing over temperature measurements.

4.5.7. Functional Redundancy

A further potential source of local redundancy is functional redundancy, which ex-
ploits the diversity of resources. In the context of our work, a device possesses
functional redundancy if it possesses diverse resources that overlap with regard
to a particular functionality. For instance, a battery-powered device using solar
cells for light intensity measurements can also revert to using the solar cell for
generating power – here the battery and the solar-cell constitute two functionally
overlapping resources that yield functional redundancy with regard to energy gen-
eration. Of course, functional redundancy can also be obtained by making use
of external, diverse resources of other devices. The combination of local ad hoc
cooperation and resource sharing with an overlap in functionality results in func-
tional ad hoc redundancy. Consequently, heterogeneous redundancy with regard
to diverse external resources as defined earlier implies functional redundancy.

30

4.6 Adaptability

4.6. Adaptability

In situations where there is a significant mismatch between the supply and demand
of a resource while the resource itself is not at fault, adaptation is necessary [Sat01].
In the process, adaptation concerns resources such as wireless network bandwidth,
energy, computing cycles, memory, and so on. In the following, we use the term
adaptability to refer to the capability of a system to perform adaptation of some
kind.

4.6.1. Adaptability vs. Fault Tolerance

Faults tolerance enables a computing system to deal with faults that have their
origin in unexpected, randomly occurring defects of system components, such as
the failure of the network, of a physical part, or of a software process. Similar to
the effects of a partial system failure, a mismatch of resources can also effectuate
a system behavior which is not compliant with the specifications. For a computing
system to become reliable and highly available, adaptability is an important quality
in addition to the ability of tolerating faults.

4.6.2. Adaptability in Ubiquitous Computing Environments

We have seen earlier that diversification is a pronounced characteristic of ubiqui-
tous computing systems and infrastructures, resulting in a high degree of hetero-
geneity in capabilities [HMNS01] and in an “uneven conditioning” [Sat01] of the
environment. The existence of significant differences in the “smartness” of different
environments (e.g., what is available in a well-equipped conference room, office,
or classroom, may be more sophisticated than in other locations) is expected to
persist for years or decades, if not forever [Sat01].

Furthermore, ubiquitous computing systems feature high systems dynamics and
object mobility. This manifests itself in an ad hoc composition [GDL+04] of ser-
vices, applications, and devices at runtime, and in the spontaneous initiation and
termination of communications and interactions [Mat04]. For this reason, tempo-
rary mismatches in resources may occur even in environments that are otherwise
uniformly penetrated with ubiquitous computing technology. As a consequence,
adaptability is an important quality of ubiquitous computing applications.

4.6.3. Strategies for Adaptation

Satyanarayanan has identified three alternative strategies for adaptation in ubiqui-
tous computing [Sat01]: Firstly, a client device running an application can change
its behavior so that it uses less of a scarce resource. This requires quality-of-service
redundancy or functional redundancy, and usually reduces the user-perceived qual-
ity, or fidelity, of an application. Odyssey [NSN+97, FS99] is an example of a system
that uses this strategy. Secondly, a client can ask the environment to guarantee
a certain quantity or amount of a resource. This approach is typically used by
reservation-based quality-of-service systems [NCN98]. It effectively increases the
supply of a scarce resource to meet the demands of a mobile device or application.
Third, a device or application can suggest a corrective action to the user. If the

31

Dependability in Ubiquitous Computing

user acts according to this suggestion, it is likely (but not certain) that the resource
supply will become adequate to meet demands.

According to Satyanarayanan, the existence of smart spaces (i.e., spaces where
computing infrastructure is embedded in building infrastructure) suggests that
some of the environments encountered by a user may be capable of accepting
resource reservations. He also states that uneven conditioning of environments
suggests that a mobile device cannot rely solely on a reservation-based strategy, as
the environment may be uncooperative or resource-impoverished, forcing a device
to ask applications to reduce their fidelities. Corrective actions involving the user
broaden the range of possibilities for adaptation, and may be particularly useful
when lowered fidelity is unacceptable.

4.6.4. Example for Adaptation

For example, assume a battery-powered device whose energy level drops below
a critical threshold below which a continued operation at maximum power con-
sumption would lead to an imminent loss of operability. A conventional means of
achieving fault tolerance against a sudden energy loss is to supply the device with
a redundant secondary battery to be used as a standby-unit. Upon depletion of the
primary battery, the system would automatically switch to the secondary battery.
However, in the absence of dedicated redundancy, other means of redundancy have
to be found and harnessed in order to maintain an acceptable degree of operabil-
ity that still complies with the (minimum) service requirements. Concretely, in
our case, the following exemplary adaptive measures could be taken to maintain
operability:

• The device dynamically reduces its workload to lower energy consumption
and to prolong its operating time. For instance, the workload reduction
could be performed in the following ways:

– Temporary or permanent switching-off of non-critical services and hard-
ware components, such as the deactivation of a wireless radio interface
or of an on-device display. The switching-off can be performed auto-
matically for components and services that are idle and not required by
other services/components. If the smart object is unable of making that
choice due to the absence of objective criteria, it can prompt the user to
manually stop services or to deactivate hardware components that are
not needed at the moment.

– Graceful degradation of provided quality of service, e.g., by reducing
the rate of communication transmissions, processing, sampling, sensing,
brightness of the on-device display, etc.

– Shifting necessary communication traffic from long range communica-
tion with remote access points towards more energy-efficient short range
(ad hoc) communication (e.g., using nearby smart objects as local com-
munication proxies).

• The device prompts the user to replace or recharge the battery, or to provide
an alternative power supply (e.g., by cable).

32

4.7 Conclusion

4.7. Conclusion

Ubiquitous computing systems are significantly different from traditional distribut-
ed, mobile, and embedded computing systems. On the one side, this has technical
and system-related reasons such as the particularly high degree of distributedness,
pervasiveness, abundance, diversity, ad hoc interconnectivity, mobility, and porta-
bility of devices and resources, which manifests itself in an exceptionally high level
of system dynamics, open system architectures, and in the pronounced volatility
of cooperative relationships and device topologies. On the other side, ubiquitous
computing is distinctively user-centric in character, which means that the human
factor plays an essential role in the design and operation of ubiquitous computing
systems and applications.

These particular characteristics lead to novel issues and challenges with regard
to the dependability of ubiquitous computing systems. In contrast to established
dependability models, permanent (inter-)connectivity between system entities can
no longer be taken for granted, as interaction is often based on localized ad hoc
communication only, which is prone to ad hoc communication faults. What is
more, the openness of system architectures, the high volatility, and the strong user-
centricity of ubiquitous computing systems lead to a high uncertainty about the
persistence of cooperative relationships, which manifests itself in the occurrence
of coordination and synchronization faults. Finally, as ubiquitous computing is
set to embrace the user in his or her everyday life environment, inaccessibility
faults caused by the unanticipated unavailability of user interface devices constitute
a novel kind of fault that have to be considered in human-centered ubiquitous
computing systems.

Since it cannot be prevented that faults of various types occur in ubiquitous
computing systems, fault-tolerance concepts are of paramount importance to safe-
guard dependability. Further, in response to the high volatility of relationships and
the expected fluctuations with regard to local resources, adaptability is a crucial
capability of user-centered ubiquitous computing applications.

33

Dependability in Ubiquitous Computing

34

5. User-Centric Dependability
Challenges in Ubiquitous
Computing

In this chapter, we first explain the notion of user-centric dependability. The we
discuss a number of user-centric dependability challenges in ubiquitous comput-
ing, with a focus on the areas of human-computer interaction and context-aware
computing.

5.1. System-Centricity vs. User-Centricity

The widely accepted definition of dependability as the “trustworthiness of a com-
puter system such that reliance can justifiably be placed on the service it deliv-
ers” [Lap85, Lap92a] is inherently system-centric: The underlying physical model is
based on distributed physical system components, and its logical model considers
distributed, cooperating system processes that perform the actual computing to
provide specified and programmed services to the user [Jal94].

With respect to the physical model, fault-tolerant system behavior is achieved by
replacing defunct components of a distributed system with redundant components
to maintain operability. In the logical model, individual processes that fail have to
be replaced by other processes to ensure that a computation – the service provided
by the system – is continued according to specifications. In both cases, the single
failing system component or process has no individuality of its own, but it can
be replaced by redundant components that are indistinguishable from the failed
one with regard to functional behavior and operation. Further, as the distributed
system components are linked by physical or logical communication channels where
the physical distance between single system components is of minor importance.
What matters is that all components are connected to the same overall distributed
system and able to communicate with each other with acceptable delay.

Likewise, conventional, system-centric dependability concepts focus on the pro-
tection of system infrastructures and installations, such as mobile phone telephony
backbones, Internet domain name services, landline telephone switching networks,
database and booking systems, or computer systems managing manufacturing and
power plants, for instance. Thereby the end-user is mainly considered at the fringes
of the computing system, monitoring or interacting with a system by means of
dedicated access points, such as mobile or stationary terminals. Even in the case
of mobile telephony, the main dependability challenges were traditionally seen in
maintaining the operability of the underlying background infrastructure, and the
robustness and effectiveness of the wireless communication channels.

Whereas cost-intensive and highly reliable mobile user devices are often employed
in specialized, safety-critical systems (e.g., medical implants used in the medical

35

User-Centric Dependability Challenges

sector) and as part of heavy-duty industrial applications, such devices are usually
not found in everyday life ubiquitous computing systems, where the quality and
reliability of mass-produced off-the-shelf user devices and smart objects is signifi-
cantly lower due to cost reasons.

Furthermore, as we have seen earlier in Section 3.3, ubiquitous computing is
characterized by an unprecedented degree of user-centricity. The highly distributed
ubiquitous computing infrastructure is no longer a distinct entity separable from
the user, but instead explicitly designed to embrace and surround people in every-
day life settings and situations. Consequently, the interaction of users with their
surrounding smart environments, and the exploitation of the multitude of ubiq-
uitous computing resources and devices found therein for the delivery of novel or
augmented services and applications, center on the user himself as the focal point.
This user-centeredness is evident in late Marc Weiser’s defining mission statement
of ubiquitous computing, which is to “serve the user in an unobtrusive manner in
everyday life situations” [Wei93b].

As the user is moving into the center of attention, the discipline of dependability
has to acknowledge the strong user-centricity of applications and services in ubiq-
uitous computing: the user has to be seen as an integral part of the system, and
the dependability concepts need to accommodate the strong interrelation between
the user and the surrounding ubiquitous computing environment. The matter of
user-centric dependability so far has received little attention in the dependabil-
ity community, where the traditional system-centered viewpoint is predominating
research.

In the following, we identify novel user-centric dependability issues for two funda-
mental areas of ubiquitous computing, human-computer-interaction and context-
aware computing. For more general information about these two areas, please refer
to Sections B.4 and B.5 in the appendix.

Of course, ubiquitous computing technology is not limited to providing user-
centric dependability concepts only, but it can also be employed for the delivery
of fault-tolerant system-centric services. For instance, in [BGV02], we describe
how an existing distributed ubiquitous computing infrastructure, which features
diverse ubiquitous computing devices and sensing technologies, can be used for
the monitoring and logging of security-relevant activities in buildings or places,
thus delivering the technical basis of a highly-distributed, system-centric automated
security auditing system.

5.2. Dependable Human-Computer Interaction

Naturally, human-computer interaction puts the user into the center of attention:
aspects of usability and user-friendliness are paramount as part of the human-
computer dialogue. The importance of the usability aspect is mirrored in ISO
standardization efforts for defining this term [JIMK03].

Considering the manifold publications in the field on new means for human-
computer interaction, typically combined with usability studies, the strive for the
development of ever new tangible user-interfaces, novel displays, embedded utilities,
and networked user appliances currently dominates the scene. Dependability in the
context of human-computer interaction so far mainly focused on the design and
implementation of user interfaces, investigating how the lack of clarity, usability,

36

5.2 Dependable Human-Computer Interaction

and erroneous design and implementation of user interfaces affect the safety or
security of computer systems and applications [MS04].

5.2.1. Accessibility of User Devices and Interfaces

With the emergence of highly interactive and computerized ubiquitous computing
environments, the user’s dependence on computer interfaces and portable user de-
vices has been increasing significantly even in everyday life situations. This leads
to the new, user-centric type of dependability threat caused by inaccessibility faults
(see Sect. 4.1.3): if a user requires certain devices or user interfaces to interact with
a surrounding ubiquitous computing environment on a daily basis, how does he or
she cope with the unavailability of such interfaces? The physical unavailability
of a suitable user interface leads to the inaccessibility of data and functionality.
The inaccessibility of the user interface is independent from the availability of the
services providing the data and functionality as part of the ubiquitous computing
environment or background computing infrastructure: even if a service itself is
available and operational, it is unusable to the user if the absence of the proper
user interface prevents the user from getting access to that service. Therefore, the
accessibility of devices and interfaces and of the functionality they deliver is a novel
critical dependability challenge in user-centric ubiquitous computing.

5.2.2. Data Persistence, Confidentiality, and Life-Cycle
Management

The use of small portable devices such as smart phones and personal digital as-
sistants aggravates the accessibility issue, as these items are especially subject to
physical damage, loss, and theft. What is more, portability in particular poses the
additional threats of permanent data loss and loss of data confidentiality: personal
devices may permanently get out of reach for the user, or confidential information
may fall into the hands of malicious third parties.

When similar dependability problems in alleviated form were first recognized
in mobile computing, it was suggested to minimize the essential data kept on
the portable device, to use encryption, and to employ data synchronization and
replication mechanisms [FZ94]. In ubiquitous computing applications, however, it
may even be wanted or necessary to carry more than the basic minimum of personal
data on a portable device. The availability of ample personal data on a physical
local device is a prerequisite for enabling localized services in offline or disconnected
mode, or to enable applications where data is available and processed in situ, such
as recorded sound or video that a user wants to edit on his device and share with
other nearby physical devices.

Further, with the proliferation of computing devices and portable ubiquitous
computing appliances in the form of commercial off-the-shelf products – such as
mobile phones, personal digital assistants, and digital cameras – the life cycles of
many such products are also becoming significantly shorter. Taking into account
the higher probability of loss and damage with regard to portable devices, personal
user data and meta data tend to outlive the life cycles of their physical carriers.
The life cycle management of short-lived user devices and of persistent personal
data and customizations constitutes an important ubiquitous computing challenge.

37

User-Centric Dependability Challenges

5.2.3. Limitations of Conventional Dependability Concepts
in Human-Computer Interaction

Portable and handheld devices have become popular and ubiquitously accessible
companions that support users in activities of daily living [MB03]. As they are
inexpensive compared to other types of computers, users may possess more than
one of these devices, each having a specialized user interface and/or functionality.
Furthermore, handhelds are expected to increasingly serve as a personalized, single
point of access for controlling electronic equipment and devices in the user’s en-
vironment [NMH+02]. Consequently, in emerging ubiquitous computing scenarios,
there will be situations where the user relies on handhelds to provide customized
device-specific functionality and access to arbitrary personal data in a sponta-
neous fashion without much ado and delay. Data synchronization and replication
mechanisms are apt to prevent data loss, but they do not protect the loss of the
user-interface and interaction device itself which would incapacitate the user from
interacting with surrounding smart environments. In ubiquitous computing scenar-
ios where the user depends on mobile user devices to perform everyday life chores
and tasks, such a loss of interaction capability and control may lead to severe
discomfort or safety risks. Besides, encryption is a valid option to protect data
confidentiality, however it may not be a practical solution for the user in everyday
living as frequent access to personal data would require frequent and cumbersome
authorization, and because low-cost resource-limited devices may even only have
limited support for cryptographic functionality for cost-saving reasons, resulting in
slow or insecure encryption. This calls for novel user-centric dependability concepts
that ensure the accessibility of mobile user devices needed for the interaction with
smart environments, and which protect the confidentiality of personal data with
regard to portable devices that are particularly liable to loss and theft.

5.3. Dependable Context-Aware Computing

In general, by the application of context awareness, a single device can exhibit
different semantics in different contexts, and thus adapt itself dynamically and non-
intrusively to a user’s circumstances. Context awareness is therefore considered a
user-centric view of computing [Nel98].

5.3.1. Dependability of Indirect Context-Awareness Systems

If context awareness is provided indirectly to devices by means of background in-
frastructures, the dependability of these infrastructure-based services can be pro-
tected by means of conventional dependability mechanisms, such as primary site
or active replication strategies (see Appendix A.4.2). Mobile devices that rely on
such indirect context information require connectivity to be able to communicate
with the infrastructure-based services. Hence the dependability of the indirect
context-awareness is a system-centric dependability challenge of the background
infrastructure and of the communication link.

38

5.3 Dependable Context-Aware Computing

5.3.2. Dependability of Direct Context-Awareness Systems

Direct context refers to context information that is retrieved autonomously in the
respective location where it matters [GSB02]). In dynamic ubiquitous computing
environments featuring specifically equipped smart objects and mobile devices –
from the perspective of the user – direct context-awareness is much more relevant
than indirect context-awareness. This is because mobile and portable devices are
subject to frequent context changes and have to be able to adapt to a high volatility
of cooperative inter-device-relationships and locally available resources. Therefore
mobile devices particularly benefit from direct context information, as it reduces
their dependence from remote services and networked background infrastructures,
fostering autonomous and disconnected local operation.

For some applications the semantic higher-level context of the user may be of
interest, such as the user’s current intention or activity. On the fundamental level
of computing, however, the physical, low-level context of a (mobile) device is most
relevant. This context consists of physical environmental properties, resources, and
services found in the sphere of direct interaction of the device with its surrounding
physical environment. The latter we also refer to as the vicinity or locality of the
device. Low-level context potentially provides localized access to additional redun-
dant resources that may be tapped for fault-tolerant computing. In particular, the
knowledge of higher-level context itself can only be gained through the processing
and fusion of lower-level or raw context data, as the low-level context provides the
basic, technical means to explore, sense, and interact with the environment.

Dependability is an issue on two different levels of abstraction with regard to
direct context-aware computing: the process for obtaining and inferring context
should be rendered dependable and fault-tolerant, and the dependability of ubiqui-
tous computing applications themselves should be improved by exploiting context
information and local external resources.

39

User-Centric Dependability Challenges

40

Part II.

Dependability in
Human-Computer-Interaction

41

6. Concepts for Dependable
Human-Computer-Interaction

In the following, we further motivate the importance of ensuring the accessibility
of services and devices in ubiquitous computing for dependable human-computer-
interaction. Then we introduce the two concepts of Input/Output Diversification
and Instant Personalization, which address the accessibility issue.

6.1. Accessibility of Devices and Services as a
Fundamental Challenge

In general, a user requires some kind of physical user interface – which we call user
interface device (UID) in the following – to be in a position to explicitly interact
with his surrounding ubiquitous computing environment. The UID can either be
provided as part of the local infrastructure (such as a public Internet terminal, a
personal computer at home, or a smart shopping cart), or be carried by the user
(such as a notebook computer, personal digital assistant, digital camera, or mobile
phone). The UID can further either be a public device devoid of personalization
information, or personally owned and customized by the user.

6.1.1. Accessibility as a User-Centric Dependability
Challenge

From the perspective of the individual user, the dependability of the interaction
with his or her surrounding smart ubiquitous computing environment is violated
when the UID that the user customarily relies on is unavailable for unforeseen dis-
turbances the very moment its services are required for accomplishing a certain
purpose (inaccessibility fault). As a result, the user is denied the accessibility of
UID-specific functionality, such as access to personal information (e.g., personal
calendar, phone book, passwords and electronic passkeys, etc.) or particular ser-
vices (e.g., making calls, writing a letter, taking a photo, etc.). The unanticipated
unavailability of the UID in general is the result of two main reasons: the failure
or the physical unavailability of the UID. These conditions can further be char-
acterized as temporary or permanent according to their temporal duration. The
unavailability is temporary if it resolves itself or if it can be actively eliminated
by the user after a certain period of time that outlasts the period in which the
user would have required the service of the UID. This corresponds to a temporary
disturbance that prevents the user from utilizing a UID for accomplishing a partic-
ular purpose. A permanent disturbance does not resolve itself over time and cannot
be removed by the user in the current situation. Instead, it requires professional
assistance and/or the future replacement of some or all components of the UID.

43

Dependable Human-Computer-Interaction

6.1.2. Functional Unavailability

The failure of a UID (e.g., caused by hardware, software, communication, or coor-
dination faults) makes it unfit for service and renders it unusable, which leads to
its functional unavailability. Failures can have variable causes, such as a random
technical defect during operation due to hardware, software, or configuration faults,
physical damage because of an extraneous influence (e.g., a device is dropped and
breaks upon impact, or water seeps into a mobile phone and short-circuits it), and
temporary shortage of resources required for computing such as lack of memory
space, communication bandwidth, connectivity, or energy. A failure due to loss of
energy can be the result of an electrical power outage or of a depleted battery, for
instance.

6.1.3. Physical Unavailability

The unexpected physical unavailability of a UID can be caused by accidental loss,
intentional theft, or temporary displacement. Temporary displacement describes
the situation where the UID is left behind in a safe place where the user can
retrieve it at a later point in time. The temporary displacement therefore can be
considered a private dependability issue. In contrast, intentional theft or accidental
loss constitute public dependability threats since in these cases the UID leaves the
sphere of control and possession of the user: the UID along with potential user
data is liable to be permanently lost and unavailable. In addition, this may result
in the loss of the confidentiality of personal user data (e.g., personal addresses, user
passwords, electronic door keys, credit card information, etc.) and in the potential
abuse thereof.

6.2. Redundancy Through Diversity and
Multitude of User Interfaces

We have seen that the two fundamental issues of the user-centric accessibility chal-
lenge are the functional and physical unavailability of the user’s technical medium
of interaction, which we called UID. Concepts aiming at increasing the depend-
ability of human-computer interaction in ubiquitous computing consequently have
to provide the user with means of overcoming the unavailability of the UIDs he
requires to maintain accessibility of personal information and services.

6.2.1. Tolerating Functional and Physical Unavailability

Ideally, the physical or functional unavailability of a UID should be averted in
the first place, which corresponds to fault-avoidance according to the established
conventional dependability terminology. However, this is not a realistic option for
highly dynamic ubiquitous computing settings where potentially a large number of
low-cost computerized devices spontaneously interact. Technical devices are liable
to break and cease functioning because of technical failures and environmental
influences. Further, UIDs are often represented by handheld or portable devices,
such as mobile phones, PDAs, or notebook computers. It is the nature of such

44

6.3 Input/Output Diversification

mobile and portable devices that they are subject to being left behind, getting lost
or stolen.

Since we naturally cannot prevent an unanticipated unavailability of an individ-
ual UID, the user has to be put into a position to cope with hardware, software,
communication, coordination, or inaccessibility faults leading to the failure or phys-
ical unavailability of UIDs as part of the human-computer interaction. Since the
user requires some kind of interaction device or interface, he or she needs to be sup-
plied with an adequate replacement or substitute, which provides the user with the
redundancy required for achieving fault tolerance. Based on a ubiquitous comput-
ing environment, the nature of redundancy concerning potential substitute UIDs
is twofold: either we can exploit the diversity or the multitude of devices found in
the immediate locality of the user.

6.2.2. Motivating Example

In the following we give a basic and practical example that clarifies the use of di-
versity and multitude of resources for increasing the availability of a UID, and for
preserving the accessibility of needed personal data (phone number) and function-
ality (making a phone call). Imagine a user named John who needs to make an
urgent private phone call but who discovers that his mobile phone is (physically or
functionally) unavailable. Firstly, if John also possesses a PDA with Wireless LAN
connectivity, he could try and make the call by means of Voice-over-IP Internet
telephony software. Alternatively, he could look for the nearest public phone booth
instead. This is an example for the use of two diverse user interfaces in case of the
inaccessibility of the preferred primary user interface (his mobile phone). However,
while John may be able to easily retrieve the phone number from his the personal
PDA for making his call, he may not be able to use the public phone if he does
not know the phone number by heart, given that no phone directory is available or
that the number he needs is confidential and not included in the public directory.
Secondly, John may possess multiple mobile phones, such as one for business use
and one for making private calls. Given that he left his business phone at home
but still has his personal phone, and assuming that he regularly synchronizes his
personal contacts with both phones, he is in a position to use his private mobile
phone instead: for the specific purpose, given the circumstances that both phones
contain the required personal user data required for making the call, both devices
are interchangeable with regard to functionality.

6.3. Input/Output Diversification

In the following we introduce the concept of input/output diversification. We show
how it can be applied to address the accessibility challenge of human-computer
interaction in ubiquitous computing by providing the user with redundant means
of interaction that accommodate the user’s varying needs in different situations
and locations.

45

Dependable Human-Computer-Interaction

6.3.1. Diversity of User Interfaces and Capabilities

A natural solution to overcome the physical or functional unavailability of a pref-
erential UID is for the user to look for alternative, diverse means of interaction.
In a ubiquitous computing environment, we often find a variety of diversified UIDs
that suit specific groups of users for specific purposes [HMNS01]. The diversifi-
cation of these devices is mirrored in differences of hardware and software, which
also manifests itself in heterogeneous device capabilities [HMNS01], such as diverse
communication protocols, operating systems, application software, form factors,
and input/output capabilities. Very often we find an “uneven conditioning” [Sat01]
of the environment, as the capabilities and resources of different devices and com-
puterized entities may significantly vary (e.g., comparing a full-fledged PDA with
a basic passive RFID tag).

Even if the capabilities and properties of different UIDs vary significantly, they
often have basic features in common. For instance, a laptop and a mobile smart
phone both provide the user with the ability to write textual notes or to browse
the Web. Diverse UIDs therefore can be used to solve the same task, but they
do so with varying degrees of user-friendliness and aptitude, as each device has its
specialized user interface and optimized functionality [MB03].

6.3.2. The Concept of Input/Output Diversification

The process of exploiting the diversity of input and output devices for the diversi-
fication of a user interface for the interaction with a smart ubiquitous computing
environment we call Input/Output diversification (in short: I/O diversification).
Enabling users to employ diverse UIDs for interaction provides them with (1) di-
verse means of input for obtaining information from the environment, and (2)
diverse means of output. Both capabilities are necessary for the user to be in a
position to control services and manipulate objects of the surrounding ubiquitous
computing environment.

We have investigated the diversification of the interaction between a person and
a surrounding ubiquitous computing infrastructure based on a practical setting.
We focused on the university campus as an application environment that provides
a very interesting setting for applying ideas from the field of ubiquitous comput-
ing [Wei91, Wei98]. In a campus environment, a substantial number of users share
a large amount of their information needs. These needs include information about
schedules, locations of class rooms, lectures, assignments, lab equipment, presenta-
tions, seminars, sports events, student ads, etc. Much of this information is directly
related to objects, places, and people that are situated within the campus environ-
ment. The exhaustive installation of wireless computing facilities such as Wireless
LAN, together with small handheld devices and technologies for detecting objects
or locations, make it possible to satisfy the information needs of users in a campus
environment in new ways.

6.3.3. Case Study: I/O Diversification in the ETHOC
System

As a result of our investigation of the concept of I/O diversification, we developed
and implemented the ETHOC system. “ETHOC” is an acronym for “EveryThing

46

6.3 Input/Output Diversification

Has Online Content”. The ETHOC system enables users to attach virtual informa-
tion and online functionality to printed material, and it makes this information and
functionality available to other users via a diverse set of UIDs. The system consists
of an ETHOC server application residing in the background infrastructure or in the
Internet, and of software interfaces for a set of diverse ETHOC client UIDs. The
ETHOC background system supports the creation, administration, and intermedi-
ation of online resources. To information providers, it offers a Web-based author
portal for generating unique IDs that can be printed as barcodes and for associating
online content and actions to printed material. To users it offers simple means of
input/output to interact with virtual representations of printed documents using
a variety of diverse UIDs, thus implementing the concept of I/O diversification:
WAP-enabled mobile phones, personal digital assistants, notebook computers, and
public web terminals. A more detailed account on the design, implementation, and
evaluation of the ETHOC system is given in Chapter 7.

Barcodes as Visual Identification Technology

For the user to select and identify an object for interaction with his UID, we
used one-dimensional barcodes as a visual identification technology (also cf. Sec-
tion B.3.4). We have augmented each barcode with a textual representation of
its identifier and with an ETHOC label - the resulting marker we call an ETHOC
code. To access the information linked to a document that was tagged with an
ETHOC code, the user can utilize a barcode-reader connected to his UID to scan
the ETHOC code. Alternatively, if no barcode reader is available, the user can
read the barcode identifier and manually enter it into the UID to select the corre-
sponding document for interaction. Each ETHOC client caches the ETHOC codes
it obtained and forwards this information to the ETHOC server once connectivity
is established. Based on the type of online information attached to a document, the
ETHOC client allows the user to retrieve additional information provided earlier
during the authoring phase by the author of the document.

Customized Online Functionality

The ETHOC client enables the user to access certain customized online services
related to a document, which include the adding of calendar entries to his electronic
calendar, the registering for a course or event, participating in an online discussion
forum about the content of the document, or subscribing to a notification service
which informs the user about latest changes to the online content. Whenever an
ETHOC code is accessed, the ETHOC system keeps a personal access history for
each user. This allows the user to switch between different UIDs while maintain-
ing access to information previously scanned with other UIDs. To address the
issue of uneven conditioning and heterogeneity of UIDs, the ETHOC server uses
independent modules (servlets) which perform the adaption of content and content
representation to accommodate the capabilities and limitations of the various client
UIDs.

47

Dependable Human-Computer-Interaction

Support for Arbitrary Objects

The ETHOC system can easily be extended to support arbitrary objects and iden-
tification mechanisms, because the underlying system architecture is modular and
extensible. On the client side, it is possible to use arbitrary identification technolo-
gies to retrieve the ETHOC code attached to a physical object by implementing
stubs for the corresponding identification hardware. On the server side, the mod-
ular architecture allows for a simple integration of additional services. In our case,
barcodes had the advantage that they can be produced without extra costs and
without special hardware, that users can easily integrate them with printed doc-
uments during the authoring process, and that barcode reader devices for mobile
and stationary use are readily available off-the-shelf at moderate costs.

6.3.4. Motivating Scenario

The following scenario describes – from the user’s perspective – how a more de-
pendable and flexible interaction with augmented everyday objects can be achieved
by exploiting the diversity of input/output devices. Based on the ETHOC [RB03]
system where every thing has online content, it shows how a variety of comple-
mentary devices can be used to interact with environments where electronic in-
formation is linked with physical objects that serve as physical hyperlinks into
topically related information spaces. Firstly, by providing diverse means of infor-
mation input/output, the user is free to pick the device of his choice, that is the
device which appears most suitable for the intended interaction in the user’s par-
ticular situation. Secondly, by allowing the interchanging use of different clients
that share the same access history, a diversification of the information access is
achieved: individual devices may be lost or broken, but the information that has
been retrieved once remains accessible. Further, having diverse networked devices
at one’s disposal, these devices can be used independently from each other, which
reduces the dependence on a single device or technology. This way, by exploiting
redundancy implicitly provided by diverse devices with overlapping functionality,
hardware faults or inaccessibility faults with regard to individual devices or services
can be tolerated.

Bob has just graduated and decides to sell some of his furniture via the
student bulletin board before he moves out. He prepares the ad with his
favorite word-processing program, including a short description of the
items on sale, his address, and a date for the sale. He uses the author
interface of the ETHOC web interface to get an ETHOC barcode –
formatted as a GIF image – which he inserts into his ad. Bob enters
his contact information and the date and time for viewing the items
on sale. Additionally, he takes some pictures of the items and uploads
them to the ETHOC system to be added to the virtual representation
of the ad. Finally, he uploads the ad, prints it, and sticks it to the
student bulletin board. The ETHOC barcode now provides a physical
hyperlink to an augmented online representation of his ad maintained
on the ETHOC server residing in the Internet.

Meanwhile, in Alice’s introductory computer science class, lecture hand-
outs and exercise sheets are distributed. They contain ETHOC bar-

48

6.4 Instant Personalization and Temporary Ownership

codes that are linked to a newsgroup for discussing the exercises, to a
source code skeleton needed to solve the programming assignment, and
to survey articles relevant to today’s class. Alice scans the codes with a
tiny barcode reader that is attached to her mobile phone and the links
are stored in her personal online history.

After the lecture, a poster announcing an interesting talk attracts her
attention. She scans the attached code with her phone. The talk
is added to her personal history and a WML page optimized for the
web browser of her phone is instantly displayed, shortly describing the
speaker’s biography as well as directions to the lecture hall. It also in-
dicates that the location of the talk has been changed. Clicking on an
item labeled “appointment” inserts an entry for the talk into her mo-
bile phone’s calendar. A little later she spots a posting on the student
bulletin board announcing various things for sale. She decides to study
it later and quickly scans the ETHOC code of the ad to store it in her
access history.

At home she connects her laptop to the Internet and – using the ETHOC
Java client – looks at the items she has scanned today. She first selects
the sale entry and looks at the photos of the items. Using the contact
information, she calls Bob for an item she is interested in and verifies
the date and time for the sale. Later, she selects the exercise entry
on the ETHOC client, upon which the source code skeleton for the
programming assignment is automatically downloaded. Following the
resource links, she finds two papers that discuss an aspect of today’s
talk in detail. At the exercise newsgroup she posts a question about a
particular topic she did not understand during the lecture.

The next day she is having a coffee with friends at the cafeteria. Talking
about Bob’s sale, her friends also wish to take a look at the furniture.
Since Alice has left her laptop in a locker, she looks up the ETHOC code
of Bob’s ad on her mobile phone and uses the public Web terminal of
the cafeteria to display the ad together with the photos on the terminal
screen. As her friends are also interested in some of Bob’s items, she
wirelessly transmits the appointment for the sale, which includes the
ETHOC code of the ad, from her phone to her friends phones, when
suddenly the alarm on her own mobile phone goes off. It is the reminder
for the talk that she would have missed otherwise. She quickly verifies
on her mobile that the location has not changed in the meantime by
revisiting the ETHOC page of the event before leaving the cafeteria to
attend the talk.

6.4. Instant Personalization and Temporary
Ownership

In this section we introduce the concept of instant personalization and temporary
ownership. We motivate how the concept contributes to solve the accessibility
challenge of human-computer interaction in ubiquitous computing environments

49

Dependable Human-Computer-Interaction

by enabling users to easily personalize arbitrary handheld devices on-demand and
to temporarily share the usage of personal mobile devices that belong to different
users.

6.4.1. Ubiquity of Mobile and Personal User Devices

As Weiser foresaw “a world of fully connected devices, with cheap wireless networks
everywhere” [Wei91], the availability of ever smaller and cheaper computing and
communication technologies [HMNS01] gradually enables a large-scale, exhaustive
deployment of objects and devices enhanced with ubiquitous computing technology,
making them truly ubiquitous. Thus the term ubiquity describes the characteris-
tic of “anywhere” computing, referring to the property that ubiquitous computing
technology does not just occur in individual places, but instead in abundant quan-
tities “throughout the physical environment”, with a particular stress on everyday
life situations, as envisioned by Weiser [Wei93b]. In practice, ubiquity is a result
of the multitude and abundance of smart objects and devices that are found in the
user’s environment. A prominent example for ubiquity is the massive proliferation
of mobile phones (and of mobile phone access points), which – according to Gart-
ner – were sold in quantities surpassing six hundred of millions of units worldwide
in 2004 [Gar05a], with sales expected to exceed 730 million units in 2005. As a
consequence of this development, a mobile phone market penetration in excess of
100% is expected for Western Europe as a whole by 2007 [Ana05]. Further, In-
forma says that the global wireless market is about to hit 2 billion subscribers by
end of 2005 [inf05], after having reached 1.5 billion in mid 2004 [inf04], which re-
sults in a global mobile penetration of about 30%. A similarly rapid growth can be
observed at the market for personal digital assistants (PDAs): driven by wireless
e-mail applications, worldwide PDA shipments increased 25 percent to 3.4 million
in the first quarter of 2005 compared with a year ago, with a 84 percent growth in
shipments to 1.3 million units in Western Europe [Gar05b, KCMT05].

6.4.2. Increasing Dependence on Mobile User Devices

As we have seen earlier, handheld devices in particular have become inexpensive
and popular companions that support activities of daily living, forming ubiquitous
computing tools in everyday life situations. Today, an estimated 30 million Per-
sonal Digital Assistants (PDAs) and about 1.3 billion mobile phone devices are in
use worldwide, with sales being expected to increase considerably within the next
years [MB03]. Thanks to their portability and ease of use, mobile user devices en-
able convenient ubiquitous access to personal user data in situations where bulkier
devices such as laptop and desktop computers are inappropriate. Being small and
lightweight everyday companions that fit into a pocket, they can be employed while
being on the move, often even supporting hands-free operation.

As we gradually depend more and more on the assistance of mobile user devices
at work and in daily life, the reliability and availability of these devices and of
the particular services they provide us with becomes a crucial issue. Firstly, a
handheld device at hand may not function properly due to a technical defect or
because of an empty battery, for example. This problem is aggravated by the
fact that low-cost, mass-produced handheld devices are more prone to suffer from

50

6.4 Instant Personalization and Temporary Ownership

hardware failures than higher-priced quality products used for more demanding
professional activities. Secondly, a personal device may be physically unavailable,
either only temporarily when the user has forgotten to take his or her device along,
or permanently in case the handheld is lost or stolen.

6.4.3. Evolution and Inversion of Device Characteristics

Over the last decades, the characteristics of everyday life communication and com-
puter devices and their accessibility as UIDs have changed tremendously with re-
gard to mobility, portability, and their degree of personalization.

Figure 6.1 illustrates the evolution and inversion of characteristics of UIDs in
terms of scope of deployment (public/many users, semi-public/restricted user,
private/single user), degree of personalization (impersonal/stateless vs. person-
al/stateful), degree of mobility (stationary, limited portability, full mobility), and
devices-per-user ratio (one device per many users/any user has access, one device
per some users/restricted user group, and many devices per individual user/exclu-
sive personal use). In the following, we discuss this process in more detail.

PRIVATE
PERSONAL

MOBILE

Shared Personal
Home/Office PC

Shared/Personal
Programmable
Cable Phones

1 : 1/SOME MANY : 1

Personal
Devices

Portable
Computers

Mobile
(Smart)
Phones PDAs

Networked
Digital Cameras

IMPERSONAL
STATIONARY

PUBLIC

1 : MANY

Public Terminal

Public Phone

Plain Phone

Figure 6.1.: Evolution and inversion of characteristics of user devices in terms of
scope of deployment, degree of personalization, mobility, and devices-
per-user ratio

Impersonal Stationary Devices

In the beginning, impersonal stationary devices predominated in both public and
private spaces, such as public computer terminals, public pay phones, or plain old
stationary telephones. Due to their generic functionality, these devices have the
advantage of simple deployment, setup, and configuration. In addition, they are
suitable to be shared among large, open user groups. However, the generality of

51

Dependable Human-Computer-Interaction

these devices also implies a lack of personalization capabilities, which limits the
efficiency and ease of use on behalf of the end-user. Further, their lack of mobility
and the usually sparse distribution density (e.g., only one plain phone per building,
one public pay phone per city quarter, etc.) severely limits the accessibility of these
UIDs: one device has to serve many people.

Personal Stationary Devices

With the availability of personal stationary devices in larger numbers, such as
personal programmable cable phones or personal computers at home and in the
office, single users or small user groups can be granted their own individual device
of a kind. This enables a more uniform distribution of UIDs, which improved
both the accessibility and convenience of these devices and of the services they
deliver. For instance, several rooms of a building or office could be equipped with
a phone and/or personal computer. Moreover, the support for personalization
and customization increases the ease of use and efficiency. However, this also has
the effect that the access of personalizable user devices is restricted to smaller,
closed user groups: one device serves a few people only. Thus the original quality
of sharing and pooling of devices that was exhibited by impersonal (stationary)
devices is limited in the process.

Personal Mobile Devices

Recently, with the emergence of ubiquitous computing, personal mobile devices
(or personal mobile UIDs) have been rapidly proliferating and becoming everyday
life commodities, as the ubiquity of personal digital assistants (PDAs) or mobile
phones today shows, for example. As a result, a single user typically personally
owns multiple, highly customized and personalized devices, such as one personal
mobile phone, one PDA, one networked digital camera, and one computer note-
book. Owing to the portability and strong user-centricity of these devices, their
accessibility and ease of use is greatly improved, enabling a convenient anywhere,
anytime usability. However, due to the high degree of personalization, customiza-
tion, and personal ownership, personal mobile devices are mostly restricted to an
exclusive personal use by the respective owner. This strongly limits the sharing
and pooling capabilities of these devices.

For the user, a particular consequence of using personal mobile devices is the
increased complexity of personal data management. The user himself has to take
care of the synchronization, persistence, and confidentiality of his personal user data
that is liable to be distributed over his various personal devices. This situation
is aggravated as commodity user devices tend to have an ever shorter life-cycle.
This implies that the user also has to perform the task of migrating data from one
personal device to its successor, which can be a cumbersome and difficult procedure
in case different hardware and software standards are involved, for instance.

6.4.4. Exclusive Personal Use and Ownership as Barriers to
Accessibility

An important observation is that the strong user-centricity and individuality of
personal user devices provide a barrier to the sharing and pooling of these devices.

52

6.4 Instant Personalization and Temporary Ownership

A user may refuse to lend a personalized device to another person for different rea-
sons. On the one hand, the user may want to protect the confidentiality of personal
data, such as personal photos, contacts, correspondence, spreadsheets, passwords,
etc., which are permanently stored on his devices. On the other hand, the user may
want to prevent the misuse of his devices. Potential misuse is liable to occur with
regard to illegitimate manipulation of personal user data (e.g., the editing or dele-
tion of contacts, appointments, spreadsheets, etc.), unauthorized or excessive use
of billable services (e.g., unauthorized payments using the electronic wallet/credit
card information, or excessive use of a mobile phone subscription, etc.), or with
respect to identity theft (e.g., the borrower makes illegitimate phone/VoIP calls,
or sends unauthorized instant messages/e-mails/faxes in the name of the owner of
the device).

For these reasons, an abundance of personal mobile devices in a ubiquitous com-
puting environment does not automatically lead to a high availability of such de-
vices to the individual user, or to a high accessibility of the device-specific func-
tionality these devices deliver. Instead, the increasing degree of personalization
and customization of mobile and portable user devices constitutes a serious imped-
iment to the accessibility of UIDs, as it restricts access to individuals and opposes
a spontaneous sharing with other, possibly unknown persons.

6.4.5. The Concept of Instant Personalization and
Temporary Ownership

The particular strength of mobile and handheld devices is their portability and
special device-specific functionality, which enable the user to accomplish particular
tasks anytime and anywhere, and the advanced personalization and customization
capabilities that enhance the ease of use and efficiency in the process.

The personal meta data, individual preferences, device and application settings,
customizations, user names and passwords, and so on, define the individuality of
a mobile user device. As we have seen earlier, this individuality of mobile user
devices is the main cause for an exclusive personal use and permanent ownership,
which usually makes the devices inaccessible to persons other than their respective
owners. In response to the user’s increasing dependence on mobile and portable
user devices for the interaction with ubiquitous computing environments, we pro-
pose the concept of instant personalization and temporary ownership of mobile
devices, which addresses these issues. Instant personalization makes personal user
devices and handhelds interchangeable and shareable, while preserving the intrinsic
advantages of personalized mobile user devices.

As a proof of concept, we developed and prototypically implemented a system
for the instant personalization of personal digital assistants (PDAs). The system
enables the user to make the transition from requiring a specific individual PDA
to utilizing any instance of the same type of device at hand. This significantly
raises the degree of redundancy of devices accessible to the user from one to a
potentially unlimited number of devices. The system that we prototypically imple-
mented further provides support for periodic data backup, remote data recovery,
and data confidentiality protection when devices are lost or stolen. The description
of our prototype system is presented in Chapter 8, together with a more detailed
discussion of important design aspects and challenges.

53

Dependable Human-Computer-Interaction

6.4.6. Motivating Scenario

This scenario demonstrates how the concept of instant personalization of portable
devices reduces the user’s dependence on individual personal devices by making
them interchangeable while preserving personalization: instant personalization em-
powers people to use any mobile device of a kind rather than depending on a partic-
ular one. Thus the user still has access to customized device-specific functionality
and personal user data required for interaction with ubiquitous computing envi-
ronments even when a preferred personal user device such as a personal PDA or
mobile phone becomes temporarily unavailable (e.g., the device is left behind or its
battery is depleted) or permanently (e.g., in case of loss, theft, or destruction).

Sitting at his office computer, Mr Smith prepares the files he needs for a
business meeting later on that day and books a flight and a hotel room.
Later he takes a random smart phone from the department’s supply of
mobile devices and logs on to the remote instant personalization server
by means of a wireless network connection. As a result, his personal
customizations, settings, and user data, which are maintained at the
personalization server, are transferred onto the device. Mr Smith then
synchronizes the device with his office computer, upon which the latest
documents, calendar entries, contacts, tasks, and files are copied to the
smart phone, including the booking reference code for his flight later
in the evening, and the door-lock pin for his hotel room he had booked
online. To fetch his luggage, he goes back to his apartment, where he
also changes his suit. He then takes a cab to the airport, where he meets
with a colleague who accompanies him on the trip. In the meantime, his
smart phone wirelessly connects to the remote instant personalization
server to perform a backup of new or changed personal data.

Later, at the check-in counter, Mr Smith discovers that the flight is
delayed. He also notices that he left his smart phone in his apartment.
He therefore asks his colleague to borrow him his device for a few min-
utes. His colleague agrees and logs off his device, upon which the device
loses all personal user information. Afterwards, Mr Smith logs on to
the instant personalization service. From the list of his own personal-
ized devices, he selects the smart phone he forgot at home and initiates
a remote log-off. For personalizing his current smart phone, he only
chooses to personalize his files and contacts, which are then retrieved
from the server. Mr Smith now transmits his flight booking details to
the clerk’s computer via near field communication, and checks in for
the flight. He then selects the phone number of his business partner
on the smart phone, calls him to inform him of the delayed flight, and
asks him to postpone the scheduled meeting. Afterwards he logs off the
smart phone and returns it to his colleague. After the meeting took
place, Mr Smith arrives at the hotel where he picks up an unpersonal-
ized smart phone at the hotel lobby, which he can keep for the duration
of his stay. He personalizes the device, proceeds to his room, looks up
his door-lock pin now stored on his temporarily owned device, and un-
locks his room. Before going to sleep, Mr Smith uses the smart phone
to check his e-mail, to take some notes, and to call his wife. The next

54

6.4 Instant Personalization and Temporary Ownership

morning Mr Smith leaves the hotel to return to the airport. He forgot
his borrowed device on the table in his hotel room, but he is not worried
about his personal data: the smart phone has automatically logged-off
Mr Smith after one hour of inactivity, wiped all private user data from
its memory, and is now ready to be used by other hotel guests.

55

Dependable Human-Computer-Interaction

56

7. Case Study: Dependable
Computing Through
Input/Output Diversification in
the ETHOC System

In the following, we present our work on the ETHOC system (short for “EveryThing
Has Online Content”), which enables users to attach online information and func-
tionality to physical objects. Concretely, the ETHOC system performs the creation,
administration, and intermediation of online resources related to paper documents.
To information providers, it offers a Web-based author portal for generating unique
IDs that can be printed as barcodes and for associating online content and actions to
printed material. To users it offers simple means of interacting with virtual coun-
terparts of printed documents using a variety of devices, such as mobile phones
or PDAs that support the Wireless Application Protocol (WAP) [Ope06], and it
maintains a personal access history for each user.

The ETHOC system was developed as part of the “Entry Points” project at
ETH Zurich, which dealt with applying ubiquitous computing ideas to a campus
environment.1 The ETHOC system allowed us to examine aspect of linking virtual
and physical elements in such a campus environment, as it enables users to attach
virtual counterparts to physical objects. In our case, for practical reasons and
hardware availability, we focused on the use of printed material and barcodes as
a linking technology. However, the underlying approach we chose can easily be
adapted to accommodate any kind of physical object in arbitrary environments, and
to integrate any linking technology for which there is suitable hardware available
in the targeted user community.

With regard to dependability, ETHOC serves as a case study of applying in-
put/output diversification as a design principle for interactive ubiquitous comput-
ing systems that have to be flexible, user-centered, and dependable. The ETHOC
systems empowers the user to interchangeably employ a diverse set of user inter-
face devices for collecting and accessing information attached to physical objects
(here: printed documents) found in the surrounding smart ubiquitous computing
environment (here: smart campus environment). Concretely, the user can choose
among several different types of personal mobile devices including WAP-enabled
mobile phones, personal digital assistants (PDAs), and notebook computers, as
well as public web terminals or networked desktop computers.

1Entry Points was part of a larger initiative at ETH Zurich, named “ETH World” (see http:
//www.ethworld.ch/), whose goal it was to establish a virtual campus in addition to the
existing physical campus. ETH World provided a virtual environment that sustained the
university community, supported research, teaching, and learning, unified various university
services, and was used by all people working or studying at ETH Zurich.

57

Case Study: I/O Diversification in the ETHOC System

7.1. Providing Physical Hyperlinks into a Virtual
Campus

The university campus is an interesting application environment for applying ideas
from the field of ubiquitous computing [Wei91, Wei98]. In a campus environment,
a substantial number of users share a large amount of their information needs.
These needs include information about schedules, locations of class rooms, lectures,
assignments, lab equipment, presentations, seminars, sports events, student ads,
etc. Much of this information is directly related to objects, places, and people
situated within the campus environment. The exhaustive installation of wireless
computing facilities such as Wireless LAN, together with small handheld devices
and technologies for detecting objects or locations, make it possible to satisfy the
information needs of users in a campus environment in new ways.

While the World Wide Web with its manifold services in the domain of teaching
and research exists mainly in the virtual world, a ubiquitous computing campus
infrastructure is supposed to augment the physical campus infrastructure and to
be closely related to the physical entities, places, and people within it. To achieve
a close coupling between the physical and virtual campus, not only the parallel
development of physical and virtual architecture are needed, but also their dense
interweaving.

By embedding physical hyperlinks into the campus and attaching information
to physical objects, visible entry points into the information space are created,
enabling a natural interaction between the physical and the virtual environment
and thus providing ubiquitous access to it. By linking the virtual to the real world,
new interaction patterns emerge on both sides.

7.2. Entry Points into a Ubiquitous Computing
Campus Environment

In [Fit93], Fitzmaurice discusses situated information spaces – real environments,
in which electronic information is associated and collocated with physical objects
that act as information anchors and provide a means of partitioning and organizing
the information space. They provide “hot spots”, which are roughly equivalent to
what we call entry points, and serve as retrieval cues for users. The result is
that information is situated and grounded in the physical context to enhance user
orientation and ease of use.

A virtual campus as we envision it can be seen as an instance of a situated in-
formation space. For the usefulness and usability of a virtual campus it is vital
to make it accessible from the physical objects and the physical environment of
the people involved. To reach this goal, visible entry points are embedded into the
physical campus environment that lead to items in the virtual campus infrastruc-
ture. The visibility of the entry points ensures that the virtual campus is present
in the consciousness of its users and used in an everyday manner.

A way to realize this is to attach so-called physical hyperlinks to physical enti-
ties. Physical hyperlinks couple real objects to virtual counterparts, which represent
physical objects in the virtual world and provide online resources and online func-
tionality. Virtual counterparts also process events and capture relationships with

58

7.3 Overview of the ETHOC System

other virtual counterparts. Relationships between virtual counterparts are dynamic
and evolve over time as a result of user actions and other events.

Potential relevant information related to physical objects might concern place
and time as well as object-specific information or online information available on
the Web [BR01]. Examples for such couplings in the context of a university are

• lecture halls that are associated with their occupancy status and reservation
plan,

• technical equipment that is connected to its maintenance schedule or usage
information,

• flyers, posters, and announcements that are linked to background informa-
tion, electronic calendar entries or ticket reservation systems, and

• lecture handouts and exercise sheets that are coupled to related multimedia
content or exemplary solutions.

Not only passive information, but also online functionality and actions can be
triggered when following a link from the physical object to its virtual counter-
part. This includes, for example, performing reservations, storing calendar entries
on the user’s mobile device, triggering e-mail messages, or signing up for event
notifications.

To effectively support the everyday activities in research and teaching, the mem-
bers of the university community have to be given the opportunity to actively
participate. An easy-to-use system is needed that enables students, assistants,
faculty, and staff

• to augment printed material they create as well as physical resources they
use for teaching and research by online content and functionality, and

• to interact with the virtual resources using a variety of mobile and stationary
devices of potentially limited capability.

These general ideas form the foundation and starting point of the ETHOC sys-
tem.

7.3. Overview of the ETHOC System

After having introduced the concepts of entry points and virtual counterparts in
the previous section, we now give a general description of the ETHOC system.

In its current form, ETHOC focuses on paper documents as instances of popular
real-world objects of a university campus. The tasks that the ETHOC system
performs are the creation, administration, and intermediation of online resources
related to such documents. The system has two interfaces: one for information
providers and another one for information users. The first interface is a Web-based
author portal for generating and embedding ETHOC codes into documents. It
also takes care of managing associated online content and document meta data,
and of specifying the associated actions. The second interface offers simple means
to interact with virtual counterparts using a variety of different devices. Examples

59

Case Study: I/O Diversification in the ETHOC System

range from WAP-enabled mobile phones equipped with attached barcode readers,
over PDAs with wireless connectivity, to the full fledged ETHOC browser for Java-
enabled PCs and laptops.

Figure 7.1.: Picture of a printed ETHOC code with unique ID 0000000073 displayed
both in human-readable form and in barcode representation, together
with the former URL of the ETHOC Web portal at ETH Zurich

An ETHOC code is a unique identifier for linking a physical object (here: a
printed document) with its virtual online representation. A printed ETHOC code
shows the identifier in barcode representation and in human-readable form, and the
URL of the former ETHOC Web portal at ETH Zurich (http://ethoc.ethz.ch,
now offline). A picture of a typical ETHOC code is shown in Fig. 7.1.

The motivating scenario described in Sect. 6.3.4 explains how the ETHOC system
is used from the author’s as well as from the client’s perspective.

This scenario vividly illustrates the notion of environment-mediated communi-
cation [Gel98], where electronic information is dispersed throughout the environ-
ment, enabling casual interaction and anonymous communication. Environment-
mediated communication describes how communication between persons is medi-
ated by instances of the physical environment. It is motivated by the traditional
use of the physical environment for the mediation of information between people,
in which messages are left at specific places or particular objects for later retrieval
by other people: ads and announcements are posted to bulletin boards, post-its are
pasted on office doors or folders. Information dispersed in this way is bound to a
physical object or location and therefore reduces information overload. Information
is organized according to physical entities and information of only local relevance
is filtered by location.

The short interaction time of just scanning an item that is then automatically
inserted into a personal online history is crucial for usability in a mobile environ-
ment. The action does not require much effort and takes just a few seconds. The
user can later review the scanned items and is not distracted from the current
activity.

The scenario also shows that a variety of devices can be used to interact with
the virtual counterparts. Information that is situated in a real world context can
be picked up in the originating context using an unobtrusive mobile device. The
information can later be reviewed and interacted with in a more suitable situation,
using a stationary device with better display capabilities. That way, mobile and
stationary devices complement each other. Mobile devices have severe size restric-
tions and limited interaction capabilities, but are easy to use in a mobile context
of an everyday real-world situation. Stationary devices are used outside of the
situational context, but offer richer user interface capabilities.

The majority of the information picked up might be immediately useful to the
user in the current situation, while some other information might be more useful
at a later point in time, potentially in another context. ETHOC supports this by

60

7.3 Overview of the ETHOC System

automatically storing scanned ETHOC codes in the user’s personal online history
of scanned objects.

ETHOC
Barcode

Internet

WAP-
Server

WAP/GPRS or
WAP/GSM

ETHOC
History

WML,
vCalendar,
vCard, …

Figure 7.2.: Scanning an ETHOC code using a mobile phone with an attached
barcode reader

Figure 7.2 shows what happens when the user scans a barcode with a mobile
phone. The wireless communication technology used in the displayed case is WAP
over GSM/GPRS [GSM06], but it could also be Wireless LAN [WFA06] or Blue-
tooth [BS06] instead. The scanned ETHOC ID is sent as part of an HTTP request
to the ETHOC server. In addition to the ID of the scanned object, the request
contains information about the client device capabilities, which is used to render
the result in a format the client can display.

The ETHOC server stores the scanned ID in the user’s personal online history,
where it is available for later retrieval using other devices. Depending on the device
capabilities, an HTML or WML page that contains hyperlinks to the document’s
online content is generated and sent back to the client device. By following the
links, the associated online content – such as background information, contact
information, or calendar entries – can be retrieved. Which functionality of the
virtual counterpart is available at a time depends on the device currently in use;
the automatic insertion of a calendar entry, for instance, may only make sense for a
mobile phone or PDA, but not for the Web browser used in a public Internet café.

Even though the display size of current mobile phones is often rather limited,
mobile phones in general represent useful tools in the showcase described earlier.
Using the standard vCalendar [DS98] format, calendar entries can automatically be
inserted into the user’s personal calendar to act as reminders for deadlines or events.
Using the vCard [DH98] format, phone calls can immediately be placed. Last but
not least, WML has capabilities that come close to those of HTML. Fig. 7.3 shows a
document as displayed on a mobile phone. The left screenshot shows the ETHOC
ID and the title of the document, the middle and right parts show information
about the document author. For example, based on the functionality provided by
the WML page, the user can opt to store the author’s address in the calendar of
the phone.

61

Case Study: I/O Diversification in the ETHOC System

Figure 7.3.: On the mobile phone, a WML page is shown as the result of scanning
a paper document

7.4. ETHOC System Architecture

In the ETHOC system, printed documents are enhanced with online resources and
functions by means of so-called virtual counterparts. Currently, barcodes are used
to provide a unique ID that unambiguously links the physical and virtual document
representation. (see Fig. 7.4).

14

Document Document
Zusatz
Datei
More
Files

...

Appointment

Links

Author

Virtual Counterpart

Figure 7.4.: Enhancement of a physical document with online resources by means
of a virtual counterpart. The barcode serves as a unique object identi-
fier, which unambiguously links the physical document with its virtual
representation

The augmentation of printed documents requires authoring support for authors
of documents. Besides, as we have seen earlier, users should be in a position to
scan and view documents using different available everyday life technologies, such
as a notebook computer, a PDA, or a mobile phone. This helps to maximize both
the ease of use of the system and the availability of the information and services
it provides. Further, a common data format is required for allowing a flexible and
efficient processing. Finally, the system has to persistently store virtual documents
and manage their life cycle and functionality, including the management of barcode
IDs or of a user’s document history.

The ETHOC system was designed to accommodate these requirements. It fea-
tures a modular architecture which is flexible and extensible. In the following, we
give an overview of the system architecture, describing the main system compo-
nents that can be categorized as XML-based data processing, authoring support,
client support, and back-end data management.

62

7.4 ETHOC System Architecture

Author Portal

Create document
Edit document
Edit profile

Registration
Create ID & min.
XML document

Load XML document

Update

Form
Part 1

Form
Part n

Barcode
download &
XML check

Figure 7.5.: Flow of operation for the registration of new documents and for editing
and updating existing documents in the author portal

XML-Based Data Processing. The generic description language XML was cho-
sen to model the data structures of virtual counterparts of arbitrary objects in
the ETHOC system. Extensible Stylesheet Language Transformations (XSLT)2

are used to convert internal XML data structures into client-readable data rep-
resentations. For each object type different XSLT descriptions are stored in the
ETHOC database (e.g., for HTML, WML, or XML data representation), together
with suitable mappings for various client devices. Then, whenever a document is
requested, the type of the client (or user agent) is evaluated and the data trans-
formed corresponding to the best matching XSLT description.

XML is also used to store and maintain the configuration of system components
in a flexible manner. The number and type of modules available in the authoring
portal, for example, are stored in an XML document that can be edited to add
new tools or modules. As a side effect, the broad range of advanced tools for pars-
ing, processing and transforming XML (see [Xal02, Xer02], for instance) contribute
to the versatility of XML-based data processing. With respect to virtually aug-
mented documents, the XML structure of a virtual document counterpart consists
of four main sections: author information, document related information, contact
information, and actions.

Authoring Support. The authoring portal3 provides authors with tools to create
and modify documents and to edit the personal profile. In addition, the authoring
support also includes modules for author registration and authentication.

After successful log-on, an author may either create a new or edit an existing
virtual document counterpart. In the first case, a new minimal XML document
is generated, and the user is guided through different forms to fill in required and
optional information. In the second case, the existing XML document is loaded
and displayed. In both cases, the editing process operates directly on the XML rep-
resentation of the document counterpart. With respect to its structure, the XML
document is divided into different sections. For each document section there exists
a distinguished module, represented by a separate servlet application which is in
charge of displaying and editing the current document fragment, and of the trans-
formation and validation of the data entered by the author. An author may either
follow a preconfigured sequence of authoring tools to complete a new counterpart,
or alternatively just select the modules of interest. Once the author has entered
all obligatory information, he or she can download an ETHOC ID (barcode) and

2See http://www.w3.org/Style/XSL/
3See http://ethoc.ethz.ch/

63

Case Study: I/O Diversification in the ETHOC System

insert it into the electronic version of the document that is to be printed. Before
a new document counterpart is activated, a summary of the added meta data and
selected functions is presented to the author by a special finalizing servlet.

The possible operation sequences for the creation or modification of virtual doc-
ument counterparts in the author portal are illustrated in Fig. 7.5. The document
counterparts are edited in different form parts. The functionality of each stage
in the diagram, including the various form parts, is performed by an independent
module. New modules can be introduced by updating the global configuration
(XML file) of the author portal.

Currently, the following authoring tools (modules) have been implemented for
virtual document counterparts: author notification for life cycle management sup-
port, a feedback questionnaire, and a news client to read or write news articles
related to the current document.

Figure 7.6.: Screenshot of the stand-alone ETHOC Browser

Client Support. The ETHOC system supports three different ways of accessing
the virtual counterparts of physical documents. First, it provides a Web-based user
interface that can be used on any device with an installed standard Web browser.
Second, for small, resource-limited mobile devices such as mobile phones, a WML
interface has been implemented. Since small devices often have limited capabilities
(such as a lack of viewers for PDF and PostScript documents), and due to the
restrictions imposed by WML, the WML portal only grants access to a limited
number of features and items of information of a document counterpart. Third,
for devices that are capable of running Java (e.g., laptops or PDAs) we provided
a designated application, the ETHOC Browser (see screenshot in Fig. 7.6), which
provides advanced features such as document caching and automatic synchroniza-
tion whenever document updates occur on the ETHOC back-end server.

64

7.5 Results

If the client configuration and the available hardware permits, a barcode on a
document can be scanned automatically by means of a mobile barcode reader.
Otherwise, each client offers a user interface for manual input of the corresponding
numeric barcode value that is displayed on the corresponding ETHOC code.

Back-End Data Management. An important task of the ETHOC system is the
management and persistent storage of virtual document counterparts that consist of
the XML descriptions and the attached objects (files, movies, etc.). The back-end
database system – we use MySQL for that purpose – keeps track of all documents
that are viewed by a person, maintaining a personal history for each user. Further
responsibilities of the back-end data management include the accounting of assigned
ETHOC codes and the administration of user profiles.

7.5. Results

The ETHOC system provides physical entry points into a virtual infrastructure by
linking physical documents to virtual counterparts. Further, its modular design
contributes to an increased flexibility and extensibility of the system.

By supporting a variety of heterogeneous clients and ubiquitous computing de-
vices, the system allows accessing virtual object counterparts in various different
situations and locations, such as in an Internet café using a Web browser, on the
train using a mobile phone, or at a communication hot spot at public places (e.g.,
at the airport or train station) using a PDA with wireless LAN or Bluetooth con-
nectivity. Because of fully interchangeable clients and with the assistance of the
user’s personal access history, any other client is suitable to retrieve the informa-
tion about previously scanned documents in case a previously used client device is
left behind unintentionally or gets lost. This user-friendly behavior increases the
ease of use of the system.

At the same time, these characteristics also positively influence the reliability of
the system: By allowing the interchanging use of multiple, diverse clients, a di-
versification of the information access is achieved: individual devices may be lost,
left behind, or broken, but the information that has been retrieved once remains
accessible through alternative means input/output. While a user may own just one
device of a kind (e.g., one mobile phone, one PDA, or one laptop), the function-
alities of all his devices overlap to some degree when taken together (functional
redundancy, see Sect. 4.5.7). As a consequence, the various devices that possess
some means of wireless communication and web content displaying and editing ca-
pabilities can be used independently from each other to connect to the ETHOC
service, reducing the dependence on a single device or technology. Thus the func-
tional redundancy of the available heterogeneous devices is exploited, yielding a
higher accessibility and availability of information and services on the client’s side.

Furthermore, the ETHOC system is capable of tolerating transient disconnectiv-
ity, as it explicitly supports disconnected operation of all mobile client devices that
possess a standard Java Virtual Machine to run the stand-alone ETHOC browser
application. The ETHOC browser performs local caching of on-line resources for
off-line operation, including the automatic synchronization of documents updated
on the server or newly scanned in with a barcode reader.

65

Case Study: I/O Diversification in the ETHOC System

For identifying printed documents, we used one-dimensional barcodes (see also
Appendix B.3.4). For identifying other types of objects, alternative identification
technologies could be more suitable, such as using active radio beacons to tag rooms
or other locations. In this case, however, the chosen identification technology either
has to be ubiquitous and pervasive in the sense that it is available in a sufficiently
high proportion of all user interface devices of the targeted user community, or the
system has to provide alternative means of performing the identification without
the need of special hardware. In our case, the ETHOC codes themselves feature
functional redundancy as described in Sect. 4.5.7, as the identification can be per-
formed either by scanning the barcode or by manually typing the corresponding
human-readable identification number (see Figures 7.1 and 7.2, respectively).

7.6. Experimental Evaluation

The use of barcodes as the underlying identification and linking technology proved
to be very practical. Barcodes can be printed on paper and do not require special
(pre)processing, as is the case with passive radio frequency identification (RFID)
tags which need to be initialized and manually attached to physical documents.

Also, instead of requiring the author to manually place an ETHOC barcode
inside the documents, a printer driver that combines the authoring procedure with
a fully automated barcode integration would further improve the ease of use and
robustness of the authoring procedure (e.g., preventing the user from attaching an
ETHOC code to the wrong printed document).

Concerning practical experiments, we annotated exercise sheets with ETHOC
codes in an undergraduate lecture. This allowed us to timely provide source code
fragments and exemplary solutions to students. By means of the integrated news
client module, we successfully setup custom news groups for the discussion of spe-
cific exercises and coupled them with the corresponding exercise handouts. Apart
from these promising initial experiments, the system has not yet been applied on
a day to day basis with larger user groups.

In our group we further experienced that the perceived convenience, usefulness
and fun factor increased noticeably with the availability of barcode scanner devices
for automatic barcode scanning, such as a mobile barcode reader attached to a
mobile phone, or a small and handy stand-alone wireless barcode scanner. In
this respect the extra costs for the required add-ons still constitute a handicap,
especially since popular consumer products such as PDAs and mobile phones are
not equipped with barcode scanners per default. However, as each ETHOC code
also contained a human-readable version of its respective identifier, the possibility
of manually “scanning” barcodes enabled students and other users to participate in
the ETHOC experiments even without the availability of barcode scanner hardware.
Further, the built-in cameras of advanced cellular phones can also be employed for
barcode detection, removing the need of a dedicated barcode reader [Qod06].

The ETHOC system therefore can be set up as a truly open system that does
not pose access restrictions based on the need of special hardware, which is in ac-
cordance of the open-world assumption of ubiquitous computing systems described
earlier in Sect. 3.3.9.

As part of future work, field studies with non-expert users, such as with students
from fields other than computer science, should be carried out to assess the usability
and user acceptance of the ETHOC system.
66

7.7 Conclusion

7.7. Conclusion

While in the current version of the ETHOC system we mainly dealt with document-
type objects and their counterparts, the overall architecture has been designed with
the intention to support arbitrary real-world objects. In future versions of ETHOC,
we plan to extend the range of supported object types and authoring modules. We
also intend to investigate concepts of context-aware retrieval of online content, such
that the provided information that a user receives not only depends on the ID of
an object, but also on context like the identity or location of the person.

Our main research goals were to get insight into the design of virtual counterparts
that augment physical things in the real world, and to investigate novel means
interaction with smart ubiquitous computing environments. Further, by applying
of input/output diversification, the accessibility of interaction devices could be
maximized for the individual user, resulting in a high degree of flexibility, ease of
use, and availability of information and services provided by the ETHOC system.
For direct interaction with online content and functionality of augmented physical
objects found at the current location, a person can interchangeably use (a) his
or her favorite personal mobile devices while on the way and (b) any available
public terminal or other user device (e.g., personal user devices temporarily lent
from other persons) with Web browser capabilities. For location-independent a
posteriori access to arbitrary services and data of smart objects, a user can browse
through his personal access history maintained on the ETHOC server, or manually
enter arbitrary ETHOC codes. By using ETHOC clients supporting local caching,
a user can also access ETHOC resources during disconnected operation.

7.8. Related Work

7.8.1. Linking Physical with Virtual Spaces

At Xerox PARC the ParcTab ubiquitous computing environment [WSA+97] was
established to augment everyday artifacts with computational capabilities. Want
et al. [WFGH99] describe various techniques that were used in that system to
couple the physical and the virtual world. Paper documents, books, and other
artifacts were equipped with RFID tags and related to corresponding Web pages
and services. In ETHOC we use barcodes, because they are easier to handle and
are well suited to being printed together with the paper document.

HP’s cooltown project4 is a pragmatic approach for the realization of “smart”
environments, in which physical and virtual worlds move closer together. The goal
of the cooltown project is to establish a “real” world wide web, in which users can
pick up URLs that are embedded in the real world and in which people, places
and things have an immediate presence [Tim02]. Unlike in ETHOC, the virtual
counterparts are represented by ordinary Web pages in this model.

In the Sentient Computing project5 [ACH+01] of AT&T Laboratories so-called
“smart posters” were developed. Smart posters are printed and attached to a wall
and contain sensitive areas that are linked to specific actions. A small hand-held

4See http://www.cooltown.com/
5See http://www.uk.research.att.com/spirit/

67

Case Study: I/O Diversification in the ETHOC System

device called “bat” is used to select individual sensitive areas. The Sentient Com-
puting system is based on an ultrasound location system and is rather expensive
to install. In contrast to that we focused on cheap and immediately deployable
technologies that require less implementation effort and costs.

The WebStickers system [LRH00] uses barcode stickers to access and organize
bookmarks on the Web. The stickers are attached to everyday objects that act as
physical representations and reminders of the associated Web pages. The book-
marks are therefore organized according to the context of the physical workspace.

To our knowledge, apart from WebStickers which does so in a limited way, none of
the systems mentioned above provides an authoring interface that allows a group
of people to actively engage in the content generation and publication process.
However, we consider it as crucial that the people interacting with the system are
also in a position to actively design and shape their information environment. As
described earlier, ETHOC provides a Web-based author portal for that purpose.

7.8.2. Input/Output Diversification

There has been a considerable amount of work on providing device-independent
ubiquitous data access from heterogeneous devices based on a file-system-oriented
approach. UbiData [ZHH03] probably is the most comprehensive and representa-
tive system in this area. It constitutes a further development of the mobile file
system idea that was addressed by the early CODA [KS92] file system [HHZK01].
The three main goals of UbiData are (1) any-time, any-where access to user data
even in the face of temporary disconnectivity or weak connectivity through low
bandwidth and high latency networks, (2) device-independent data access enabling
the user to switch among devices with different capabilities and maintain data
access, and (3) application-independent access to data to allow users to modify
portions of documents and files belonging to classes of related applications [HH04].
The main mechanisms applied in UbiData for achieving these goals are automatic
data selection, hoarding, and synchronization [HKZ02], and transcoding, which
together enable continuous availability of data regardless of user mobility and dis-
connection, and regardless of the mobile device and its data viewing/processing
applications. In the process, maintaining currency (up-to-dateness) and consis-
tency of data on mobile devices, support for mobile transactions [LH02], and meta
data and profile management (for building so-called converged networks in which
users can freely use a host of services from cooperating providers through a single
sign-on [SHLX03]) are considered the central challenges.

Obviously, by supporting different clients, UbiData and related systems implic-
itly provide support for input/output diversification with regard to data access.
In contrast to the data-centric view and file-system oriented approach of UbiData
where a user’s data is shared and processed by a number of interchangeable, highly
distributed and possibly mobile entities, we pursued an interaction-based approach
in the ETHOC system. In ETHOC, hoarding and transcoding of data is not an
issue, and data synchronization and representation of minor importance. Instead,
the main objective is to enable the user to enhance physical objects (here: printed
documents) with online information and functionality, and to empower people to
interact with such augmented objects and – through these objects – with other
people. In this context, input/output diversification serves as a method to provide

68

7.8 Related Work

the user with redundant means of interaction to increase the flexibility, ease of use,
and accessibility of online services and information linked to physical objects.

Acknowledgments

This chapter is based on joint work with Michael Rohs [RB03]. The author further
wishes to thank Nikolaos Kaintantzis who was instrumental in implementing the
ETHOC system [Kai01], as well as Harald Vogt for implementing the news client
module.

69

Case Study: I/O Diversification in the ETHOC System

70

8. Device-Independent Interaction
by Means of Instant
Personalization and Temporary
Ownership of Handheld
Devices

As we increasingly depend on inexpensive handheld devices at work and in daily
living, ensuring the accessibility of those devices and the availability of the person-
alized services they provide becomes a major challenge. Further, mobile devices
are currently still poorly integrated, as existing mobile computing infrastructures
often lack support for automatic synchronization and data management across the
various devices owned by a user [MS03].

In the following sections, we present a system for the instant personalization and
temporary ownership of mobile devices that addresses these issues. The system en-
ables the user to make the transition from requiring a specific individual device to
utilizing any device at hand: instant personalization empowers the user to instantly
turn arbitrary devices into a fully personalized device containing both the person’s
user data and meta data. This significantly raises the degree of redundancy of
devices accessible to the user from one to a potentially unlimited number of de-
vices of a certain type, enabling the user to tolerate hardware and inaccessibility
faults in particular as described earlier in Section 4.1. As a result, the accessibil-
ity of specialized functionality offered by personalized handheld devices and the
availability of personal user data is increased. The system that we prototypically
implemented further provides support for (1) periodic data backup, (2) data recov-
ery, enabling the user to retrieve private data from physically unavailable devices,
and (3) data confidentiality protection, assisting the user in preventing illegitimate
data access on behalf of third parties in case a personalized device was lost, stolen,
or unintentionally left behind.

8.1. Instant Personalization of Mobile Devices

In this section, we first discuss the roles that user data and meta data play in per-
sonalization. Then we define the terms of “instant personalization” and “temporary
ownership”, which are central to this chapter. Finally, we show how the instant
personalization of handheld devices is experienced from the user’s perspective.

71

Instant Personalization of Handheld Devices

8.1.1. The Roles of User Data and Meta Data

Today, users of handheld devices typically personally own one device of a kind,
each of which serves a particular purpose and therefore provides functionality for
which it has been designed and optimized. A mobile phone is optimized for making
phone calls, a PDA is convenient for keeping track of appointments or for taking
quick notes, or a smart electronic book (e-book) is a compact means of carrying
with you the content of multiple books while enabling the user to search for words
and phrases, to append written annotations, or to add bookmarks, for example. A
handheld device may offer several of such services if it meets the requirements with
respect to technological capabilities and ease of use (e.g., a PDA with a high-quality
display can be used as an e-book, or a smart phone combines the capabilities of
PDAs and traditional mobile phones).

The operation of handheld devices involves personal user data, either because
the primary purpose of the device is to edit and manage such user data (e.g., tak-
ing notes, updating an existing contact, or adding a new appointment), or because
the data is needed for the provisioning of specific services (e.g., a reminder service
needs access to the user’s personal calendar, a smart phone utilizes the user’s list of
contacts to retrieve the phone number of the person that is to be called, an e-book
requires the digital version of the book the user wants to read). The individuality
of a handheld device, however, is mainly determined by the user’s individual prefer-
ences and device settings which make up the so-called meta data. Such meta data
not only improves the efficiency and the ease of use of certain services provided
by the mobile device (e.g., bookmarked web addresses, application-specific defined
shortcuts, customized views and program settings, etc.), but often constitutes an
essential element of these services (e.g., mail account settings, remote file server
settings, passwords, etc.).

Besides user data and meta data, the personalization of mobile devices may
also include the temporary installation of personal applications which are not part
of the standard software that comes with a specific type or brand of device. In
principle, if an application is self-contained, it can be treated as ordinary user
data: it simply has to be copied into the correct folder on the mobile device.
The deletion of such personal software later on is straightforward, too, since it is
sufficient to delete the previously copied files. Otherwise, apart from legal issues, it
may not be advisable to install applications that are not self-contained, since they
often require the presence of certain libraries or runtime environments, or because
their installation procedure may not be fully reversible or cannot be performed in
an unattended fashion, for example.

8.1.2. Instant Personalization and Temporary Ownership

The goal of an instant personalization of mobile devices is to transform an ar-
bitrary device, devoid of any personal user information, very quickly into a fully
personalized device and with minimal involvement of the user. Further, the instant
personalization process should be started the very moment the user actively and
deliberately initiates it, no matter when (anytime) or where (anywhere).

So with an infrastructure for instant personalization in place, it becomes possible
for a user to take temporary ownership of arbitrary devices he or she does not own
personally but which are only available to him or her for a limited period of time.

72

8.1 Instant Personalization of Mobile Devices

Once the instant personalization of a device is completed, it is indistinguishable
from a personally owned device of the same type with respect to the particular
personalized functionality and user data.

To be in a position to instantly personalize an arbitrary device on demand,
anywhere and anytime, the device requires access to a background service (i.e., a
service offered by the background infrastructure) that provides the user’s personal
data and meta data. The access should favorably be performed by means of a
wireless connection in order to not impede device mobility and portability. Further,
the mobile device itself needs to know how to retrieve and install the data needed
for instant personalization. Once the device is no longer needed, it has to be
able to write back those parts of the data which have been modified since the
personalization was effected, before being “released” from service and becoming
available again to be temporarily claimed and personalized by future users. So the
release of a device is the inverse operation to the personalization procedure.

In situations where personal data on a mobile device is utilized in a non-mani-
pulative fashion (e.g., personalizing a mobile phone just for making a few quick
phone calls), it may be practical to perform a read-only personalization where any
personal user data can simply be deleted when the device is released at a later
point in time. By analogy, if we wish to explicitly state that any modified personal
data has to be copied back to the server when the mobile device is released, we
speak of a read-write personalization. Note, however, that even if personal data
has not been deliberately modified by a user, potentially useful meta-data such as
the user’s call history or e-mail history is not preserved in the case of a read-only
personalization.

8.1.3. User Experience

From the user’s perspective, the process of instant personalization of mobile devices
is experienced as follows:

A user picks up an arbitrary blank device (i.e., a device devoid of personal user
information) that is physically available in the current place at the given time. The
user takes temporary ownership of the handheld and logs on, using a personal user
name or fingerprint for identification, and a password for authentication. Hereupon
the device automatically downloads the user’s device-specific individual preferences
and settings, the meta data, together with his or her device-dependent user data
from a dedicated server in the background infrastructure, using a wireless con-
nection. Thus the user’s preferred personal configuration is re-established on the
device. Now the user is able to use the device (e.g., the personalized phone, PDA,
or e-book) as if it were exclusively owned by him or her, exploiting the capabilities
of the device to its fullest, with the personal user data (contacts, appointments,
notes, etc.) as well as the personal meta data (e.g., mail server settings, passwords,
bookmarks, shortcuts, customized views and program settings, self-contained ap-
plications and tools, etc.) installed. When the device is no longer needed, the user
simply logs off, upon which the latest modifications of device settings or user data
are written back to the back-end server. Finally, all the user’s personal user and
meta data are wiped off the device. This restores the original uninitialized blank
state of the device so that it becomes available again to other users.

73

Instant Personalization of Handheld Devices

8.2. Design Goals

By means of instant personalization and temporary ownership, we realized the
following conceptual design goals:

1. Higher availability of personal user data by providing anytime, anywhere
access;

2. interchangeability of handheld devices to increase the accessibility of person-
alized device functionality;

3. support for disconnected operation;

4. periodic data backup;

5. recovery of personal user data and

6. protection of confidentiality of personal user data stored on personalized de-
vices that are physically unavailable;

7. support for user-friendly life cycle management.

With the provisioning of instant personalization of mobile user devices as a ser-
vice, the first two goals were implicitly realized: during personalization, user data
is copied onto the device, and the personal meta data is automatically installed,
which yields the personalized device functionality. Note that device interchange-
ability and device-independence have different meanings. Device interchangeability
refers to the fact that I can easily change my device by virtually “moving” my per-
sonal user data and meta data from one device to another device of a certain type.
In doing so, the device-specific characteristics in terms of usability and function-
ality are retained. The aim of device independence, however, is typically regarded
as to provide an abstract, device-independent means of performing a task. In this
case, the original qualities of the particular devices are not preserved or considered
of secondary importance only. Examples hereof are the virtual network client or
the remote desktop access described in Section 8.6.

The instant personalization of mobile devices anywhere and anytime requires
connectivity to the instant personalization server as part of the background infras-
tructure. However, once the personalization is completed, the personalized mobile
device no longer needs to stay connected but can operate in disconnected mode,
thus supporting disconnected operation. In case of a read-write personalization,
connectivity is again required when the device is to be released and data has to be
sent back to the instant personalization server.

Portability and usability owing to a comparably small form factor are some of
the key advantages of handheld devices. However, as the number of small personal
devices a user relies on grows, it becomes gradually more likely that a certain device
is physically unavailable when needed. This may be because the user simply left
the device behind (e.g., the user forgot to take the personal mobile phone out of
the jacket worn the day before). A mobile device may even become permanently
unavailable in case the user loses it someplace, or if it gets stolen. Apart from the
material loss, this led us to two further concerns. One was the recovery of personal
user data stored on the device, especially if no recent backup of the data exists.

74

8.2 Design Goals

Another concern was the protection of data confidentiality, as the personalized
handheld device may carry private information that should not be revealed to
others, or confidential data such as passwords or credit card numbers.

Last but not least, the increasing availability of mass-produced and cheap person-
alizable mobile user devices and appliances leads to ever shorter product life cycles.
In addition, small, portable devices are more vulnerable to physical damage and
loss than more robust, conventional (stationary) computer devices of larger size.
As a consequence, as people increasingly use and depend on mobile user devices,
the rate at which a user has to replace his or her own personalized mobile devices
increases accordingly. The product life cycles of mobile phones, for instance, have
decreased to 12 months or less. At the same time, the majority of users expects
immediate readiness of new devices (out-of-the-box experience) [GSI05]. As many
acquired personal data and device customizations are likely to outlive the life cycle
of the physical devices (such as contact lists and calendar entries, passwords, e-mail
client settings, and so on), life cycle management support is important. Therefore
a further goal of our system was to provide easy-to-use support for the rapid migra-
tion of personal user data and meta data in order to enable the instant readiness
of replaced personal devices.

In our concept, these issues are addressed in the following way. First, a person-
alized device may perform an automatic release (auto-release) after a prolonged
period of inactivity, triggered by a user-definable timeout. Second, the release of a
personalized device can also be initiated by an external device, such as the remote
personalization server or another device personalized by the user. In either case
the client device first reconnects to the server to write back recently modified or
added user data. As a result, the data of temporarily or permanently unavail-
able mobile devices is recovered (given that network connectivity is available and
the batteries in the device are not depleted). Data confidentiality is preserved by
erasing the user’s data on the handheld device when the latter is released, which
prevents the fraudulent use of private data. Additionally, if data confidentiality is
paramount, the mobile user device can be configured to lock itself automatically
after a short period of inactivity, preventing other users from accessing private
information before the device completed the release operation.

Finally, user data is implicitly protected by means of data backups whenever a
personalized handheld device is released and the modified user data is retransmitted
to the server. However, a personalized user device may be continuously used for a
longer period of time. If this device breaks down beyond repair during operation, all
data that has been modified since the personalization is lost, too. To prevent this,
the client can be configured to regularly reconnect to the instant personalization
server in order to transmit recent changes in user data and meta data, thus realizing
a periodic data backup.

8.2.1. Exclusive and Concurrent Personalization

Instant personalization benefits from the observation that a user typically only
utilizes one personalized device of a kind, such as one mobile phone, one PDA, or
one laptop, for example. In general, it is therefore sufficient to have only one device
of a kind personalized in read-write mode at a time, removing the need for complex
data synchronization and conflict resolution schemes. Consequently, in our concept,

75

Instant Personalization of Handheld Devices

read-write personalization currently is performed as an exclusive operation. This
means that a device that has previously been personalized in read-write mode has
to be released before the server allows the user to personalize another device of
the same type in read-write mode. Note that the user may concurrently perform
as many read-only personalizations on separate devices as desired, as they do not
require further assistance on behalf of the instant personalization server. However,
read-write is probably the preferable personalization mode since it also preserves
additional meta data (such as a call history, for instance) that has been accumulated
during the utilization of a personalized device.

It may happen that a user wants to instantly personalize a device at hand even
though a previously personalized and currently unavailable device has not yet been
released before. Then, instead of waiting for the automatic timeout-triggered re-
lease to occur, the instant personalization server can enforce the release of the
unavailable device by means of a remote release-request sent via the network. If
the remote device is not reachable, the user may choose to perform a read-only
personalization for the time being and wait for the remote device to write back its
modified data in the meantime. Alternatively, the user can override the read-write
personalization lock on the server and enforce a new read-write personalization,
upon which the server considers the data on the unreachable device as stale and
no longer valid. From the perspective of a device which has been personalized
in read-write mode but which is unable to connect to the instant personalization
server, there are also two options: the device may either postpone the auto-release
for a specified amount of time and try to reconnect in the meantime, or perform
the release operation anyway, rating the protection of data confidentiality higher
than data recovery.

Of course, computing power of the mobile devices and communication bandwidth
allowing, data synchronization techniques as discussed by Zhang et al. [ZHH03] may
also be used to support multiple concurrent read-write personalizations per user
and type of device.

8.2.2. Cross-Platform Personalization

The instant personalization of a mobile device not only includes the transfer of
personal user data to the device, but also the installation of the meta-data that is
required for the smooth functioning of the particular applications the user expects
to work with. However, user and meta data for a device often depend on the specific
type of device, applying to concrete versions operating systems (such as Symbian
OS for mobile phones, Windows CE or Palm OS for PDAs, for instance) and the
standard applications associated with these operating systems. As a consequence,
to widen the applicability of personal data, it is necessary to provide abstractions
or generalizations for device-specific knowledge on how to automatically install or
extract a user’s data and meta information.

One solution are standardized interfaces to applications that are commonly in-
tegrated with certain operating systems or types of devices. Such a standardized
interface already exists for the Microsoft Windows CE operating system (version
3.0 and later): the Pocket Outlook Object Model (POOM). It provides a generic
API for manipulating contact, calendar, and tasks data. As these data make up an
integral part of the personal user data and meta data typically used on a PDA, the

76

8.2 Design Goals

POOM interface contributes towards realizing a unified personal data management
for Windows CE based handheld devices, irrespective of hardware configuration and
manufacturer.

Another possible solution is the definition of device-independent personalization
profiles. Such profiles could describe the structure and vocabulary of personal user
settings and preferences. Once personalization profiles for mobile user devices have
been defined and standardized, they provide an abstract and universal interface
for manipulating personal user data and meta data across different hardware plat-
forms and operating systems. An example for such a standardization effort are the
Composite Capability/Preference Profiles (CC/PP) [Dev04] proposed by the W3C
Device Independence Working Group, which have been designed to enable “access
to a unified web from any device in any context by anyone”. A similar goal is pur-
sued by the development of SyncML. SyncML is intended as a single common data
synchronization protocol that aims to deliver an open, industry-wide specification
for the universal synchronization of remote data and personal information across
multiple networks, platforms, and devices.

Note that even if device-independence is achieved at the software level, prob-
lems can still arise from the heterogeneity of manufacturer-dependent hardware
components. Although supporting a similar operating system, mobile phones from
different vendors may still significantly differ in terms of hardware control elements
(such as different button layouts), for example. Thus the perceived ease of use of
a successful instant device personalization may be negatively affected, especially if
a user has difficulties adjusting to unfamiliar operating controls.

An alternative approach could be to upload a complete virtual machine image in-
stead of performing a fine-grained personalization on the data element level. Such
a procedure would implicitly retain all software installations and system modi-
fications performed on the personalized device. However, this scheme has several
drawbacks. Firstly, it would typically be necessary to transfer the complete (binary)
image even if only a small portion of the user’s personal data had been altered, thus
increasing the data transfer load and impeding a customized personalization pro-
cedure. Secondly, it would no longer be possible to synchronize and combine data
modifications from multiple devices since either all changes or no changes could
be retained per image. Thirdly, the upload of complete images (including systems
software and applications) onto arbitrary devices would presumably conflict with
existing licensing policies.

While we are planning to eventually employ a generic personalization profile
such as CC/PP or SyncML, our initial prototypes have been developed using a
combination of the standardized POOM API, together with a set of operating-
system-specific methods not supported by the API (e.g., manipulating the registry
under Windows CE).

8.2.3. System Architecture

Our prototypical system for instant personalization consists of a client component
(Instant Personalization Client), which is executed on the mobile devices, and a
server component (Instant Personalization Server), which resides in the background
infrastructure (see Figure 8.1). In the following, we describe the two components
in more detail.

77

Instant Personalization of Handheld Devices

Figure 8.1.: Architecture of the Instant Personalization System

The Instant Personalization Client (IPC) is executed as a persistent system pro-
cess on the mobile device. It is automatically launched whenever the device is
started (e.g., after a reboot or reset). The IPC also features a graphical user inter-
face (GUI) (see Figure 8.2 for screenshots of the GUI we implemented for our IPC
client prototype). If the device is in the unpersonalized state, the GUI allows the
user to log-on to the personalization server (see login screen dialogue), to choose
the program modules that have to be personalized (see selection of personalization
modules dialogue), and to specify the timeout (in minutes) for the auto-release
function. Afterwards, the module manager performs the instant personalization
for all selected personalization modules. After the device has been personalized,
the user can choose the “release now” menu option to actively release it once the
device is no longer needed. The user can also wait until the IPC-internal timer
starts the auto-release operation (see auto-release notification dialogue). The IPC
communicates with the IPS via sockets using TCP/IP connections. For the server-
initiated release, a separate listener thread on the IPC listens to server requests.

The Instant Personalization Server (IPS) acts as a background service residing in
the network. It manages the database which contains the users’ specific data needed
for the instant personalization of mobile devices. The IPS uses sockets with a fixed
port number to listen to IPC requests. Whenever a user takes ownership of a blank
device and initiates the instant personalization procedure, the IPC on that device
connects to the IPS via a secure channel. The IPS client manager identifies the user
and authenticates the corresponding password. On successful authentication, the
module manager on the user’s handheld requests personalization information for the
desired personalization modules which are then returned by the counterpart module
manager on the IPS. Otherwise, the connection is closed by the IPS. Similarly, if the
user’s personalized device is to be released after a read-write personalization, then
the IPC connects to the IPS, is authenticated, and writes back the modified portions
of the user data and meta data. For a release after a read-only personalization, the
IPC simply removes the user’s personal data from the device. Note that an IPS
can typically only serve user data and meta data for devices that share compatible
interfaces for personalization (such as POOM for Windows CE based devices, for
instance). The actual scope of devices that can be handled by an IPS therefore
largely depends on the availability of suitable interfaces for cross-hardware and

78

8.3 Discussion

cross-platform personalization as discussed in Section 8.2.2.

Figure 8.2.: GUI of the prototypical Instant Personalization Client (from left to
right): login screen dialogue, selection of personalization modules dia-
logue, auto-release notification dialogue

8.3. Discussion

There are a number of benefits and challenges concerning a practical large-scale
deployment of an instant personalization infrastructure, which we discuss in the
following.

8.3.1. Sharing and Pooling of Mobile Devices

A person can employ several devices of a kind (e.g., one in the office, one in the
car, and one at home), and conveniently switch between those devices by means of
instant personalization. And since a device is always stripped of the user’s personal
and potentially confidential information when it is released after use, a user can
temporarily lend devices out to friends and strangers alike without having to worry
about the protection of private data.

For this reason, the concept of instant personalization is particularly suited for
the sharing and pooling of mobile user devices in general. While handhelds have
been a mainstay in the business world for several years, they are recently also
adopted on a larger scale in other areas such as hospital environments [BK02] or
education [SNB+01, Fal02]. For instance, the University of South Dakota became
one of the first universities to implement a full-scale PDA program, giving faculty
members an opportunity to study how the devices can be integrated into college
teaching and learning [Pet02]. In such environments, the use of handheld devices
can greatly benefit from an instant personalization infrastructure: instead of deal-
ing out mobile devices on a per person basis, each device being permanently owned
and exclusively utilized by one user, it becomes feasible to provide a shared pool of
devices out of which one can pick any device, instantly personalize it on demand,
and use it just as long as needed. Such an approach is not only resource-efficient,
lowering the number of devices that have to be bought and maintained, but it also

79

Instant Personalization of Handheld Devices

increases the ease and flexibility of device utilization, as a user no longer relies on
his or her own personally owned device but is free to use any available device.

Instant personalization of mobile devices is also advantageous in areas where it
is inconvenient or prohibited to take along personally owned electronic devices. To
protect the privacy of guests in places such as swimming baths, for example, it
may not be desirable that guests bring along their own personal handheld devices
that might be equipped with a digital video camera. Instead, the authorities could
place generic devices for instant personalization at the guests’ disposal, at a pay-
per-use basis, for example. Such a short-time leasing of mobile devices for instant
personalization can also be to the benefit of the guests, as the latter no longer have
to worry about personally owned devices being stolen while swimming or being
damaged when unintentionally exposed to water or sand.

Further, an interesting question is who should be in charge of operating an
instant personalization server, and where the server should be physically located.
The availability of an instant personalization server may be unsatisfactory if it
is located at the user’s home, there being affected by power outages, transient
failures of the user’s network connection, or unskillful maintenance, for example.
In this context, a promising option could be to have telecommunications providers
offer the instant personalization service bundled with the traditionally provided
communication services. Both services go together well, as connectivity is the
prerequisite of anytime, anywhere instant personalization.

8.3.2. Bandwidth Requirements

The availability of a sufficiently high bandwidth may pose a challenge for the
practical realization of an instant personalization system. Traditionally, when using
a permanently personalized device for remote data access, it is only necessary to
regularly synchronize that portion of the data which has been modified either on
the device or on the remote server, which may significantly reduce bandwidth
requirements.

In contrast, the instant personalization of arbitrary blank devices always requires
the complete download and installation of all necessary user data and meta data.
Consequently, for instantly personalizing devices that involve a potentially large
amount of personal user data (such as laptop computers, MP3 players, or digital
cameras with large storage capabilities), high-speed network connectivity is neces-
sary for achieving a swift data transfer. Further relevant factors are the cost and
reliability of the data transfer.

When focusing on the instant personalization of resource-limited mobile devices,
however, bandwidth usually constitutes a minor problem. On the one hand, the
amount of accumulated user data and meta data is comparably low (today the
space required for plain-text contact entries on a mobile phone or for calendar
entries on a PDA, for instance, is typically in the dimension of a few hundred kilo-
bytes and can be further reduced by means of compression techniques). On the
other hand, the data rates of available network technologies such as Wireless LAN
(11 Mb/s and beyond), Bluetooth (up to 2 Mb/s), or emerging 3G/4G telecom-
munication networks (up to 2 Mb/s in 3G networks, and 20 Mb/s and beyond in
4G networks) should be high enough for the realization of a reasonably quick data
transfer. The estimated duration of an instant device personalization with regard

80

8.3 Discussion

to different communication technologies, data rates, and amounts of personal user
data is displayed in Table 8.1.1 We can see that – with the expected emergence
of higher bandwidth communication networks – the realization of a truly instant
personalization in the range of a couple of seconds or even only milliseconds can be
achieved even for comparably large amounts of user data. Once the personalization
is completed, the amount of data that has to be transferred back to the server dur-
ing the release operation is normally uncritical, as it is sufficient to only write back
the portion of the data which was actually modified. In the case of a read-only
personalization, the release operation can even be efficiently performed off-line by
simply erasing any personal information from the device. In addition, progressive
update propagation schemes as suggested by Lara et al. [dLKWZ03] could help to
further reduce latencies as the user may already start using the device before the
personal data has been completely fetched from the server.

In the long run, if the development of computer networks advances at the cur-
rent rate, one may argue that we ultimately find a close to perfect network at
our hands, with global coverage, nearly unlimited bandwidth, high stability and
minimum delay. Such a development would obviously greatly facilitate the instant
personalization of mobile devices. At the same time, the availability of a nearly
perfect network could, provocatively speaking, even remove the need for storing
personal data locally on diverse devices. It may even provide a boost for the con-
cept of virtual network computing as described by Richardson et al. [RSFWH98],
promoting a unified instant remote access to personalized resources residing in
the background infrastructure by using dumb virtual terminals for local input and
output only.

However, we think that a complete future shift towards network computing is
questionable for several reasons. Firstly, in the past, similarly optimistic prophecies
regarding an expected breakthrough of the thin-client approach repeatedly proved
to be false and unrealistic. This was for technical and economical reasons, even
in the face of a considerable increase of communication bandwidth, or simply just
because the underlying concept itself consistently failed to meet the customers’
expectations. Secondly, we think that it is doubtful that there will ever be such a
(close to) perfect network available. Already today network bandwidth for Inter-
net connections or UMTS communication channels, for instance, is predominantly
provided on a best-effort basis, as network providers are generally interested in
maximizing the traffic load and keeping excess capacities to a minimum in or-
der to keep down costs and to maintain their competitiveness. Consequently, the
quality-of-service characteristics of such communication networks should be far
from perfect, particularly in peak times. Thirdly, a solution where computations
and data processing are performed locally typically scales better and is more robust
against interferences or denial of service attacks than a centralized server approach
for which a stable network connection and a remote data transfer is required for
each device and each single executed operation.

1For calculating the amount of typical personal data used with a PDA or smart phone, we took
the following data as a basis: 340 contacts at 1.5 KB each on average, 20 tasks at 2 KB each,
and 50 future appointments at 1.2 KB each, yielding a total of approx. 600 KB.

81

Instant Personalization of Handheld Devices

C
om

m
unication

B
andw

idth
B

andw
idth

P
D

A
e-B

ook
D

igitalC
am

era
e-M

ail
Technology

(nom
inal)

(net)
(∼

600
K

B
)

(∼
2

M
B

)
(∼

20
M

B
)

(∼
200

M
B

)
G

P
R

S
(4

tim
e

slots)
57.6

K
b/s

48
K

b/s
1

m
in

40
s

5
m

in
33

s
56

m
in

9
h

16
m

in
G

P
R

S
(8

tim
e

slots)
115.2

K
b/s

96
K

b/s
50

s
2

m
in

47
s

28
m

in
4

h
38

m
in

U
M

T
S

(globalcell)
144

K
b/s

144
K

b/s
33

s
1

m
in

51
s

19
m

in
3

h
5

m
in

U
M

T
S

(m
icro/m

acro
cell)

384
K

b/s
384

K
b/s

13
s

42
s

7
m

in
1

h
9

m
in

B
luetooth

2
M

b/s
1

M
b/s

4.8
s

16
s

2
m

in
40

s
26

m
in

40
s

U
M

T
S

(pico
cell)

2
M

b/s
2

M
b/s

2.4
s

8
s

1
m

in
20

s
13

m
in

20
sec

W
LA

N
802.11b

11
M

b/s
5.5

M
b/s

870
m

s
2.9

s
29

s
2

m
in

52
s

W
LA

N
802.11a,H

iperlan/2
54

M
b/s

32
M

b/s
150

m
s

500
m

s
5

s
50

s
4G

N
etw

orks
20-300

M
b/s

100
M

b/s
50

m
s

160
m

s
1.6

s
16

s

Table
8.1.:D

uration
ofinstant

personalization
w

ith
respect

to
typicalcom

m
unication

technologies,net
data

rates,and
different

am
ounts

ofdata
(contacts,appointm

ents
and

task
list

for
a

P
D

A
or

m
obile

phone;e-books;digitalphotos;com
plete

m
ailbox

including
e-m

ailattachm
ents)

82

8.3 Discussion

8.3.3. Trust and Security

In our system, user identification is performed by means of a user name, and
user authentication by means of a secret user password. Both user name and
password are transmitted to the server via a secured communication channel (e.g.,
using SSL [Net96]). Alternatively, the user can choose to identify him or herself
conveniently via fingerprint, removing the need for manually typing a user name or
for using an extra identification badge or tag. This was a feasible option since the
handheld devices we used for prototyping featured a built-in fingerprint sensor.

Initially, we intended to use fingerprints in place of passwords. However, finger-
print sensors only constitute a secure means for user authentication when embedded
in trusted hardware where personal fingerprint information is protected from ille-
gitimate access and tampering [HZ04]. As this is not the case with most fingerprint
hardware that comes with today’s of-the-shelf handheld devices, an impostor may,
with moderate effort, bypass the physical fingerprint sensor and insert another
user’s fingerprint sample (fingerprints are in general easily available from objects
a particular user has previously touched – they then only need to be digitized by
the impostor and transformed into the typically publicly known format used by the
device-specific fingerprint software).

This raises the question of trust in general. When a user possesses several devices
of the same kind, or if devices are shared in a closed group (e.g., among friends or
colleagues), trust is not an immediate concern. However, am I willing to entrust my
private data to a device of unknown origin that may have been tampered with and
therefore be potentially malicious and untrustworthy? A publicly available device
may be spying on me, secretly stealing personal passwords or disclosing confidential
information. It is therefore of prime importance that a user is in a position to clearly
assert that any given device has not been tampered with and can be considered
trustworthy. A promising attempt to tackle this issue is the Trusted Platform
Module (TPM) [Tru03] technology promoted by the Trusted Computing Group.

Alternative methods of secure authentication are one-time authentication schemes,
using one-time passwords as first described by Lamport [Lam81], or utilizing trusted
hardware tokens carried by the user, including smart cards [LC04] or hardware to-
kens similar to the ones described by Corner and Noble [CN02]. Another possibility
for achieving secure authentication is to use challenge-response mechanisms, such
as providing distorted facial images of persons known to the user as a challenge for
which he or she has to provide the correct names, or asking the user to recognize
a known face out of a selection of otherwise unfamiliar faces, as performed by the
Passfaces2 system, for instance.

Another challenge is the protection of data confidentiality with respect to unau-
thorized recovery of personal user data: confidential user data that was deleted
during the release-phase of a temporarily personalized device should not be re-
coverable, or only at high cost. Gutmann [Gut96, Gut01] describes the problems
and potential solutions in greater detail. Here, the availability of a trusted and
tamper resistant hardware module (such as TPM) can also be used to protect a
user’s personal secrets, by providing a secure storage area which can be completely
flushed on demand and which cannot be inspected using memory viewing tools, for
example.

2PassfacesTMby Real User, www.realuser.com

83

Instant Personalization of Handheld Devices

8.4. Prototype Implementation

On the client side, we used HP iPAQ handheld devices of the H5450 series with
PocketPC 2002 installed. The client software was programmed in Visual C++
for Embedded Ver. 3.0. On the server side, we used an Intel-based desktop com-
puter running Windows XP, and Microsoft Visual C++ Ver. 6.0 for programming.
The HP iPAQ H5450 features a built-in Wireless LAN network interface, which
we used for connecting wirelessly to the instant personalization server. The PDA
also contains a built-in fingerprint sensor. For programming the fingerprint hard-
ware on the iPAQ, we used the Biometrics API3 which is freely available as part
of the iPAQ Pocket PC Developer Program. For the communication between the
instant personalization server and individual clients we used TCP/IP connections.
The interaction between clients and the server is performed by means of a propri-
etary protocol that we developed. The protocol mainly concerns user log-on, user
authentication, data synchronization, meta data synchronization (user preferences
and settings of the IPC), and remote release operations.

We implemented a functional prototype of the instant personalization system,
meeting the basic design goals described in Section 8.2. Currently, the user can
choose among four different modules for the instant personalization of the mobile
device: personal tasks, contacts, calendar entries, and personal e-mail settings (for
remote e-mail access using IMAP). Figure 8.3 shows an overview of all implemented
GUI functionality of the prototype system. The arrows indicate GUI dialogue
transitions that are triggered by user input or external events.

For the implementation of the personalization of tasks, contacts, and calendar,
we used the Pocket Outlook Object Model (POOM) as a standardized means of
accessing personal user settings and user data on the handheld device. For the
adjustment of the e-mail client settings, we had to directly manipulate the Windows
CE Registry where all the data about applications, drivers, user preferences, etc.
are stored. Authentication is performed by means of user name and password. The
integration of the fingerprint sensor (especially the processing of fingerprints on the
server side) is still in an experimental stage. Another open task is the integration
of compression and synchronization techniques into the module manager to reduce
the communication load during data transmission.

Future work should include a user-based evaluation of the system, and focus on
the investigation and implementation of the personalization profiles described in
Section 8.2.2 in order to support a more diverse set of handheld user devices.

8.5. Conclusion

Mobile user devices such as mobile phones or PDAs are proliferating in everyday
life, turning into basic commodities that are no longer exclusively sold by specialist
stores only, but increasingly offered in supermarkets and fashion stores alike.

As mass-produced handheld devices become available in large quantities and at
moderate prices, the concept of instant personalization of mobile devices presents
an opportunity to reduce the dependence on single personal devices we permanently
possess in response to the threat of hardware faults and inaccessibility faults. In-

3http://devresource.hp.com/drc/technical_papers/Bioapi.jsp

84

8.5 Conclusion

Start

Timeout for the
automatic release of
the device occurred

Figure 8.3.: Overview of the implemented functionality and sequence of user dia-
logue windows of the instant personalization prototype application

85

Instant Personalization of Handheld Devices

stant personalization can help to increase the accessibility of specialized functional-
ity provided by personalized handheld devices, improve the availability of personal
user data, facilitate periodic data backup and recovery, and support data confiden-
tiality when devices are lost or stolen.

Finally, with an instant personalization infrastructure in place, end-users are pro-
vided with an easy-to-use and efficient tool for prolonging the life cycle of personal
user data and meta data, which often outlive the life cycle of the physical devices
that carry that data. Instant personalization empowers the user to instantly mi-
grate user data and customizations to substitute devices, even in cases where the
original device breaks beyond repair or gets lost or stolen.

8.6. Related Work

In this chapter we presented the goals and requirements of instant personalization
and temporary ownership for mobile user devices, and described an initial prototype
we developed that supports our core concepts on Windows CE devices.

Our work is closely related to the research domain of ubiquitous data access,
where the goal is to achieve reliable anytime, anywhere access to user data by
means of heterogeneous devices.

A prominent approach for ubiquitous data access is the UbiData system by Zhang
et al. [ZHH03], an application-transparent middleware architecture which provides
device-independent access to data from heterogeneous sources. Here, device inde-
pendence relates to the fact that the system allows the user to switch among his
or her various personal devices (such as the personal office PC, laptop, and PDA).
Typically these devices are permanently owned and personalized by the user.

In contrast, we are suggesting a diversification of access to personalized device
functionality and user data by enabling the user to pick any impersonal handheld
device of a certain type, thus considerably increasing the choice of devices from a
small number of personally owned to a potentially unlimited number of available
devices. Further, different from our work, Zhang et al. focus on issues of automatic
and device-independent selection, hoarding, and synchronization of data, but they
are not supporting an instant and temporary personalization of arbitrary mobile
devices. In our approach, instant personalization gives the user not only access to
the specific user data he or she normally uses with a certain type of device (e.g.,
personal calendar for the PDA, personal address book of the mobile phone, etc.),
but also temporarily installs the specific meta-data that is required for the proper
and convenient functioning of the characteristic services and applications provided
by the particular type of device (including customizations, application settings,
passwords, etc.). Another advantage of our approach is that it implicitly provides
the end-user with support for device/data life cycle management by transparently
and instantly performing the migration of the user’s personal data and meta data.
In our approach, we provide additional control options to the user in order to
preserve the confidentiality of personal user data with regard to devices that are
physically unavailable (e.g., due to inaccessibility faults as described in Sect. 4.1.3).
These control options include a manual, timer-controlled, or user initiated and
server-mediated release of physically absent devices, upon which all confidential
user-related data is wiped from the device. This approach is inherently different
from the meta data and profile management in [HH04], where meta data is primarily

86

8.6 Related Work

Figure 8.4.: Horizontal and vertical diversification of data and device access

used for building so-called converged networks in which users can freely use a host
of services from cooperating providers through a single sign-on.

However, the diversification of device access by means of instant personalization
would blend well with ubiquitous data access mechanisms such as used in the
UbiData system, as the first could help to significantly reduce the dependence on
individual personally owned and therefore permanently personalized devices of a
kind. While a person may concurrently use n different types of devices as part of
a “horizontally” diversified ubiquitous data access, each of these device types can
in return be “vertically” diversified by enabling the user to instantly load his or
her device-specific portion of user data and meta data onto any device out of a
virtually unlimited number of devices of the same kind (see Fig. 8.4).

Want et al. proposed a different approach to achieve ubiquitous data access in
the face of user mobility. They use a portable mobile storage device enhanced
with wireless communication capabilities, the Personal Server [WPD+02], which
enables nearby devices to get access to the user’s personal files. Currently, the
Personal Server does not support the instant personalization of mobile devices, but
it could in principle be used as a local personalization server. However, compared
to our approach, the Personal Server constitutes a single point of failure, and in
this respect it suffers from the same shortcomings as any individual mobile device
a user owns and carries along: if it breaks down beyond repair, or in case it is lost
or stolen, all the data on the Personal Server that has been modified since the last
backup is definitely lost. And if the Personal Server is only temporarily unavailable
(e.g., battery is depleted or the user unintentionally left the device behind), the
user has no means of accessing his or her personal data on the spot, either.

87

Instant Personalization of Handheld Devices

There has already been a significant amount of research in the field of personaliza-
tion of services in ubiquitous computing environments [CJ02, LvKSP02, SMPC02,
HT04]. However, here the main focus so far has been on providing personalized
services to mobile devices (such as personalized content delivery, content and ser-
vice adaption, and personalized interfaces for interaction with nearby devices, for
instance) instead of instantly personalizing the mobile devices themselves.

The Microsoft Active Directory service for Windows-based personal computers
supports user mobility within a distributed computing environment inside of an
organization. It provides a single-log-on capability and a central repository for
information, simplifying user and computer management and providing access to
networked resources within a Windows domain. Compared to our work, the Mi-
crosoft Active Directory is a heavyweight infrastructure focusing on centralized user
and computer management, while our approach is lightweight, targeting resource-
limited handheld devices, increasing the accessibility of device functionality and
user data, and protecting user data on personalized devices that are lost or left be-
hind by means of a server-triggered or timeout-triggered data recovery mechanism.

Further related is the field of network computing. Here the main idea is to utilize
a thin client with basic input/output capabilities to control applications executed
on a remote computer. One example hereof is the Remote Desktop technology by
Microsoft for Windows-based computers. Another example is the Virtual Network
Computing (VNC) system [RSFWH98], which provides access to home computing
environments from anywhere and any device via a network connection by using
a simple platform-independent display protocol. In contrast to our work, person-
alization of mobile devices is generally not an issue in network computing, as the
latter is rather aiming at providing an abstraction from the underlying device hard-
ware to achieve device-independence. As a result, the network computing approach
is not suited to exploit particular device-specific functionalities of mobile user de-
vices. Moreover, a thin client usually requires a permanent network connection
while controlling a service on a remote computer, whereas in our approach, a mo-
bile device can operate autonomously and without requiring a network connection
once it has been personalized, thus being unaffected by transient disconnections or
network delay, for instance.

Acknowledgments

The author wishes to acknowledge Lukas Stucki for his work on the implementation
of the instant personalization prototype [Stu04].

88

Part III.

Dependability in Context-Aware
Computing

89

9. Concepts for Dependable
Context-Aware Computing

In this chapter, we elaborate two concepts for enabling fault-tolerant context-aware
computing based on localized cooperation and resource sharing, and on redun-
dant sensor fusion. The concept of super-distribution of smart entities enables
the provisioning of dedicated redundancy that can be exploited for fault-tolerant
location-aware services based on localized resource sharing. Further, we present two
systems for the dependable self-positioning of mobile devices based on redundant
sensor data fusion.

9.1. Dependable Context-Aware Computing
Through Fault Tolerance

A system is context-aware if it uses context to provide relevant information and/or
services to the user, where relevancy depends on the user’s task [DA00]. Further-
more, context can be classified into different categories: computing context (locally
available resources, network connectivity, communication bandwidth, etc.), phys-
ical context (physical properties of the user’s environment, such as temperature,
humidity, lighting, noise level, etc.), and user context (e.g., the user’s profile, loca-
tion, nearby people, the user’s activity, and so on) [DA00].

Accordingly, fault-tolerance mechanisms for achieving dependable context-aware
computing can be categorized according to the type and complexity of context they
are associated with.

9.1.1. Fault-Tolerant Operation by Means of Localized
Cooperation and Resource Sharing

In a ubiquitous computing environment, the local resources that are available as
part of a user’s computing context constitute a valuable source of localized ad hoc
redundancy. Therefore, computing context presents itself to be exploited for the
realization of fault tolerant applications and services executed on mobile devices
based on localized cooperation and resource sharing. For example, a mobile device
could use its computing context to overcome transient memory space bottlenecks
by temporarily storing data on other physically proximate devices.

9.1.2. Fault-Tolerant Context Sensing

Physical context is determined by the physical properties of the user’s environ-
ment. So physical context refers to the immaterial, qualitative state of the user’s

91

Dependable Context-Aware Computing

immediate environment, whereas the computing context is concerned with a ma-
terial, quantitative assessment. Here, fault-tolerance mechanisms typically can be
applied to the process of sensing of physical context. Assuming that a particu-
lar physical context can be sensed accurately and effectively by applying a single
sensor technology (e.g., using a mechanical sensor that directly measures a physi-
cal phenomena), fault tolerance can be achieved by employing classic redundancy,
such as by duplicating or diversifying sensors and using a basic voter unit that de-
termines the presumably correct result. For instance, the sensing capabilities of a
smart portable fire detector can be rendered fault-tolerant by using a set of diverse,
redundant sensors that measure smoke concentration, temperature, and infrared
light intensity – then the failure of any two individual sensors can be tolerated as
long as the remaining sensor functions correctly.

User context generally is concerned with information about the actual activity,
intention, or situation of a user. Like in the case of physical context, some user
context can be directly determined through suitable sensors without the need of
complex processing, such as position (with regard to a coordinate system), accel-
eration, and orientation of the user, for instance. We call this user context basic
user context. Here, established fault-tolerance methods such as replication and di-
versification of sensors can also be applied to increase the reliability of the sensing
process. Hence we will not consider fault tolerant context sensing any further as
part of this dissertation.

9.1.3. Fault-Tolerant Data Fusion and Context Inference

The computation of more complex, higher-level user context usually involves the
drawing of conclusions from different available sources of context information. Typ-
ically this includes both the current computing context, physical context, and basic
user context, as well as the application of problem-specific models and/or knowl-
edge bases to enable semantic interpretation and reasoning.

For instance, to infer that a user intends to print a document on his PDA on a
physically nearby printer at which the PDA is pointed at upon selecting the print
command in the active word processing software, several different pieces of context
have to be combined. For instance, required context knowledge could include (1)
the ID and (2) position of the printer, (3) the deliberate orientation of the PDA
over the last few seconds, (4) knowledge on how to infer and interpret the pointing
gesture (e.g., the orientation of the PDA has to be maintained for a significant
amount of time within certain boundaries), (5) the currently active document,
(6) the communication interface of the printer, and (7) the issuing of the print
command through the user.

To render the process of information fusion and context inference fault-tolerant,
it has to feature redundancy of some kind, such as sensor hardware redundancy,
quality-of-service redundancy, or functional redundancy (cf. Sect. 4.5). For in-
stance, given the earlier Mediacup example of Sect. 3.2.3, a simple semantic model
for detecting a meeting (activity context) is that there are at least two moving cups
filled with warm coffee in the same room with closed doors. The inference of this
higher-level context can be made fault-tolerant by means of a redundant informa-
tion fusion and inference algorithm, with the goal to tolerate the inaccuracy or
unavailability of individual pieces of information. Concretely, the fusion algorithm

92

9.2 Fault-Tolerant Operation Through Localized Cooperation and Resource Sharing

could consider further redundant sources of context information, such as sensors in
the room that detect the noise level, movement, temperature variations, or pressure
sensors embedded in chairs or in the floor, and so on.

9.2. Concepts for Fault-Tolerant Operation By
Means of Localized Cooperation and
Resource Sharing

By enabling the discovery and usage of external resources of physically proximate
devices as part of the local computing context, smart objects and devices can per-
form localized cooperation and collaboration in order to make up for their limited
resources [OMG04, SFV04].

Redundancies with regard to resources found in the computing context of a
device ideally can be tapped and exploited as localized ad hoc redundancy for en-
abling fault-tolerant computing (see Sect. 4.5.5). By allowing the temporary use
of unallocated resources of nearby devices, mobile devices can be put into a posi-
tion to temporarily tolerate transient resource bottlenecks or component failures.
Resource-limited mobile and handheld devices in particular benefit from such a
localized resource sharing, as for them such a procedure may significantly increase
the number and diversity of accessible resources.

We distinguish two types of redundant user-centric resources that can be found in
the local computing context of a mobile user device, and which differ with regard
to constancy and control: volatile redundant resources and dedicated redundant
resources. The utilization of these redundant resources for fault-tolerant context-
aware computing requires different approaches and considerations, as we explain
in the following.

9.2.1. Volatile User-Centric Redundancy: Cooperative Smart
Everyday Objects

Volatile User-Centric Redundancy

The numerous diverse smart objects and devices that are part of the computing
context of a mobile device in a ubiquitous computing environment provide volatile
user-centric redundancy : they form a pool of volatile user-centric devices and ob-
jects whose resources are redundant in numbers and diverse in terms of technology
and functionality. The most basic technical resources these devices share are pro-
cessing capabilities, memory storage, and one or more communication interfaces
such as wired local area networks (prevailingly for stationary objects), Wireless
LAN, Bluetooth, and ZigBee. As devices may be carried on and/or be controlled
by individual users, many resources within the vicinity of a context-aware de-
vice show random characteristics: they are liable to come and go spontaneously,
and form an ad hoc composition [GDL+04] of services, applications, and devices
at runtime with a high volatility of cooperative relationships and topologies (cf.
Section 3.3.10). Cooperation therefore prevailingly takes place between random
partners in an opportunistic and unpredictable fashion.

93

Dependable Context-Aware Computing

Fault Tolerance Based on Volatile User-Centric Redundancy

Mobile devices can make use of volatile user-centric redundancy in order to tolerate
the (transient) unavailability or undersupply of resources (such as memory, energy,
connectivity, for instance). In particular, individual user devices can harness their
local volatile computing context for the realization of localized fault-tolerant oper-
ation. The locality aspect of additional resources used for fault-tolerance purposes
is important since users often depend on the operability of a particular personal
mobile device (which we call primary mobile device) for the carrying out of a spe-
cial task. If the proper operation of a primary mobile device is threatened by faults,
fault-tolerance mechanisms have to acquire any required redundancy from the com-
puting context at the current location. This is in contrast to system-centric systems
such as sensor networks where single devices may be sacrificed for the realization
or optimization of overall system-wide goals.

Fault-Tolerant Mobile Applications By Using Cooperative Smart Everyday
Objects

Due to the unpredictability of ad hoc acquired external resources with regard to
availability and delivered quality of service, the realization of fault-tolerance mech-
anisms for mobile applications based on volatile user-centric redundancy is only
meaningful if the additional uncertainty about resources does not outweigh a po-
tential gain.

To address this challenge, we developed a system that enables applications on
mobile handheld devices to tolerate a number of faults by exploiting their local
volatile computing context. The idea is to empower individual mobile devices to
cooperate with physically nearby devices by means of a device-abstraction (called
“smart object”) and a distributed middleware layer that provides support for fault-
tolerant data transfer and communication services. The concept of a smart object
results in a device-independent service interface that enables ad hoc cooperation
and resource sharing among physically proximate and possibly heterogeneous de-
vices.

In Chapter 10, we describe our fault-tolerance middleware layer based on a smart
everyday object infrastructure in more detail. We further present a prototypical
reference implementation of a fault-tolerant and adaptive patient monitoring sys-
tem that makes use of our middleware.

9.2.2. Dedicated User-Centric Redundancy:
Super-Distribution of Smart Entities

Dedicated User-Centric Redundancy

Rather than to rely on volatile resources that in the worst case may not be avail-
able in sufficient quantities, computerized entities can be deliberately distributed
in a dense, stationary, and redundant fashion over floor and object surfaces to pro-
vide an area-wide infrastructure of dedicated, densely distributed resources. While
the dense distribution of such static dedicated entities causes additional costs for
deployment and maintenance, it has the advantage that these resources can be
taken for granted and controlled by other devices. Furthermore, the immobility

94

9.3 Concepts for Fault-Tolerant Data Fusion and Context Inference

of the distributed entities makes them suitable for persistently storing information
that is characteristic for the respective physical location. This information could
then be directly retrieved by other devices in an ad hoc fashion without need of
infrastructure-based connectivity.

Fault Tolerance Based on Dedicated User-Centric Redundancy

Naturally, static dedicated resources distributed in the environment provide a more
predictable means of redundancy than volatile resources do. Specifically, static ded-
icated resources found in the immediate locality of a mobile device as part of its
computing context can be used in an ad hoc fashion to extend the limited re-
sources of that mobile device. In addition, such static dedicated resources that are
physically distributed can further be used as local carriers of location-dependent
context information. This helps to increase the flexibility, autonomy, and fault tol-
erance of mobile devices, as the dependence of the latter on centralized background
infrastructures is reduced in the process.

In order to enable independent, autonomous devices to benefit from dedicated re-
dundancy, an important challenge is to provide open middleware architectures and
interfaces to these resources, thus respecting the open-world assumption of ubiq-
uitous computing environments to support interoperability and interconnectivity
(cf. Section 3.3.9).

Fault-Tolerant Location-Aware Computing by Means of Super-Distributed
Smart Entities

We have investigated means of using dedicated user-centric redundancy for fault-
tolerant location-aware computing. In the process, we came up with an approach
that employs densely distributed computerized (and therefore “smart”) entities in
the environment for the realization of a fault-tolerant service middleware. The
resulting physical infrastructure we call a super-distributed smart-entity infras-
tructure. The term super-distributed refers to the characteristic that the smart
entities are distributed in a highly redundant fashion.

The investigation of the concept of super-distribution constitutes a central con-
tribution of this dissertation. Due to our extensive amount of work in this area,
we provide a more detailed overview of our investigated research issues and results
in Sect. 9.4.

9.3. Concepts for Fault-Tolerant Data Fusion and
Context Inference

In ubiquitous computing environments, devices may passively interact with their
surroundings by sensing nearby resources and signals. For instance, mobile devices
may sense physical properties such as temperature and humidity, or the presence
and signal strength of radio transmitters, to infer knowledge about their current
place, environmental condition, and contextual situation, or about the activity and
intention of their respective users.

95

Dependable Context-Aware Computing

The dependability of the context sensing process is determined by the robustness
of the applied data fusion and context reasoning mechanisms, and by the depend-
ability of the physical sensing components (sensors) that provide contextual input.

Independent from the expressiveness and quality of a particular applied fusion
procedure, the robustness of its reasoning mechanism generally depends on its
ability to integrate redundant sensory information. Due to the complexity of the
reasoning procedures and the ambiguity of sensory information obtained from in-
dividual sensors, the inference of context often requires the combination of diverse
sensors to improve the certainty of the reasoning [SBG99, GSB02]. If the diverse
sensors available for reasoning are non-redundant, the robustness of the reasoning
itself is low as the failure of individual sensors may lead to utterly false conclusions.
For instance, to determine if a person is drinking from a cup, both the information
that the cup is filled with a liquid and that it is lifted and tilted has to be combined.
However, if each piece of information is analyzed separately, there is a significantly
higher probability of a false reasoning. For instance, a cup may be left behind at
a table even though it is still filled to some level, or a person may just be playing
with an empty cup, turning and tilting it in the process.

9.3.1. Redundant Multi-Sensor Data Fusion

By fusing redundant sources of sensory context information, it is possible to im-
prove the reliability and the availability of a context-aware service. A redundant
sensor data fusion mechanism can use (1) multiple sensors of the same kind to com-
pensate for individual hardware failures (homogeneous hardware redundancy, see
Sect. 4.5.1), or (2) diverse sensors (heterogeneous hardware redundancy or func-
tional redundancy, see Sections 4.5.2 and 4.5.7, respectively) to cope with adverse
environmental conditions that only render single types of sensors inoperative (e.g.,
transient interference caused by a strong disturbing signal disrupting only radio-
based sensors while auditory or visual sensors remain unaffected), (3) or combine
both homogeneous and heterogeneous redundancy at the same time. With regard
to ubiquitous computing environments, an important challenge is to identify and
harness the multitude of diverse devices and technologies found therein for con-
text sensing and derivation. In particular the utilization of natural, commonplace
sources of physical context information, such as light, temperature, humidity, and
sound, should be considered in the process, as the advances in micro-computing
and ubiquitous computing technology finally make it possible to integrate various
miniature sensors even with everyday objects and devices.

The quality of a context-aware system to a large extent depends on the qual-
ity of the applied information fusion and reasoning mechanisms, which are often
specific for a particular problem or application domain. If a context-aware system
is redundant with regard to its achieved quality of service (e.g., it over-fulfills the
effective quality-of-service requirements), it may be able to reduce its delivered
quality of service in order to tolerate the temporary unavailability of sensory in-
put on behalf of some of its sensors (qualitative redundancy, see Sect. 4.5.6). The
study of the expressiveness and validity of context fusion models on the semantical
level and of the corresponding inference mechanisms that enable to draw human-
understandable conclusions from sensory context data is a wide field of research
and beyond the scope of this dissertation.

96

9.3 Concepts for Fault-Tolerant Data Fusion and Context Inference

But what such context inference systems have in common is that, for achieving
dependability, the development of the applied context fusion algorithms should be
fitted with the capability of combining redundant sources of context. This is in par-
ticular important to increase the reliability and availability of mobile applications
that need to directly determine context in situ without the support of a back-
ground service infrastructure. Potential context fusion architectures for ubiquitous
computing should therefore be simple and efficient enough to be also executed on
portable, resource-limited devices such as mobile phones and PDAs, which are cur-
rently increasing massively in numbers (cf. property ubiquity in Section 3.3.3 on
page 18).

9.3.2. Case-Study: Fault-Tolerant Positioning with
Quality-of-Service Guarantees by Means of
Multi-Sensor Data Fusion

We developed a robust positioning system (called iPOS) that employs multi-sensor
data fusion for achieving fault tolerance and adaptability. In the process, we ap-
plied an open data fusion architecture that is lightweight enough to support small,
resource-limited mobile devices (here: personal digital assistants). The data fusion
architecture is extensible in the sense that new position sensing technologies as
well as arbitrary third-party positioning services can easily be integrated with the
system. Further, by using a map model, the system is capable of integrating both
symbolic or geographic representations of position information, as well as local and
global geographic position coordinates. A special feature of the fusion algorithm
is that it is able to provide quality-of-service guarantees (QoS guarantees) under
certain conditions. A description of the iPOS positioning system and its data fu-
sion architecture is presented in Chapter 14. There we also present a prototypical
reference implementation of the iPOS system, which we evaluated by means of
practical experiments.

9.3.3. Case Study: A Self-Calibrating Real-Time Positioning
System Based on Redundant Sensor Fusion and
Context Awareness

The two concepts of localized cooperation and resource sharing and redundant sen-
sor data fusion can also be combined to improve the dependability of a single
system.

We developed a hybrid system that is capable of combining a solar-cell based
positioning technique with a positioning service that makes use of local coopera-
tion and interaction with a super-distributed smart-entity infrastructure. Firstly,
the fusion of the two redundant positioning techniques enables mobile devices to
tolerate areas where one system fails. The redundant positioning capabilities can
further be exploited for increasing energy efficiency by selectively using the system
with the lowest power requirements. Secondly, by making use of location-dependent
context information provided by a super-distributed RFID tag infrastructure, the
accuracy of the calculated positioning estimates of our implemented prototype sys-
tem could be significantly improved by approx. 20% from 28 cm to 22 cm in 80%

97

Dependable Context-Aware Computing

of all calculated estimates. A detailed description and experimental evaluation of
the hybrid system is presented in Chapter 15.

9.4. Super-Distribution of Smart Entities as a
Design Principle for Fault-Tolerant
Location-Aware Computing

In the following sections, we introduce the concept of super-distribution of smart
entities as a design principle for fault-tolerant location-aware computing.

9.4.1. Super-Distribution as a Design Principle

Location information has become increasingly important for various mobile and
portable devices, opening diverse application fields such as travel information,
sight seeing, shopping, entertainment, event information, education, and health
care [MB03]. It can be used to provide the user with location-aware services whose
execution can be dynamically adapted to the characteristics of the user’s partic-
ular context at his or her respective location [CLMZ03]. At the same time, as a
result of ongoing advances in miniaturization and micro-computing, it has become
feasible to distribute small computerized entities in large quantities over object
surfaces [BM04].

Based on these observations, we motivate super-distribution as a design principle
for the realization of reliable and highly available location-dependent services for
mobile devices. The main idea is to distribute small computerized physical objects
in large quantities over object surfaces, such as across floor spaces or walls, to
obtain a dense and highly redundant distribution of “smart entities”. The resulting
smart entity infrastructure then forms the basis for the development of a fault-
tolerant middleware that provides a set of fundamental location-aware services and
abstractions. In return, this middleware serves as a foundation for the development
of dependable location-aware mobile applications.

We chose the term super-distribution in allusion to super distributed objects, a
notion that refers to the large quantities of computerized devices and software
objects equipped with communication capabilities that are typically found in ubiq-
uitous computing environments [OMG04]. One of the research goals in the field of
super distributed objects is to provide a generic middleware that enables such ob-
jects, which may differ significantly in terms of hardware and software capabilities,
to cooperate and interact, forming a vast heterogeneous smart object infrastruc-
ture [FKSK02, SVG+03]. In this context, the term “super distributed” aims at
describing a de facto state or quality of the environment, which is characterized by
a dense and redundant distribution of various heterogeneous (and mobile) devices.
In our case, however, we place particular emphasis on the distribution itself, and on
the qualities of the resulting (stationary) infrastructure that we are able to shape
in the process.

98

9.4 Super-Distribution of Smart Entities as a Design Principle

9.4.2. Super-Distribution of Smart Entities

We define a smart entity (SE) as a physical artifact that is enhanced by embedded
computing technology of some kind. The minimum requirements we demand of a
SE are the following: it has a globally unique identifier and a built-in memory with
data read/write capabilities, both of which can be accessed by physically nearby
devices via wireless ad hoc communication. Examples for smart entities are simple
radio frequency identification (RFID) tags as well as self-powered embedded sensor
nodes.

We define super-distribution of smart entities as the process of deploying and
distributing smart entities in a dense, highly redundant (or abundant) fashion.
We call the resulting infrastructure a super-distributed smart-entity infrastructure
(SDI). In this context, dense means that a mobile device that moves within an SDI
will always find other physical smart entities within ad hoc communication range
for in situ interaction. Highly redundant means that the degree of redundancy is
not deliberately set to a fixed value, but determined by an abundance of entities
found in any physical location of the infrastructure. Abundance refers to a quantity
of entities that significantly outnumbers the amount of entities that, ideally, would
be required for a non-fault-tolerant, non-redundant operation of SDI-based services
in the absence of disturbances.

In the following, we only consider a stationary super-distribution where the in-
dividual smart entities are permanently attached to a substrate (e.g., floor spaces
and object surfaces) at a physical place that is well-defined within a local or global
coordinate system. Of course, smart entities can also be super-distributed on the
surface of mobile physical objects, such as on a table, within a car, or on the floor
space of a boat – in these cases, these smart entities are stationary with regard to
their respective local environment.

From the user’s perspective, interaction with the SDI is performed by means of a
mobile device (MoD). The MoD features a wireless communication interface, which
enables it to communicate in an ad hoc fashion with smart entities in its immediate
vicinity. On each MoD, an independent instance of the SDI service middleware is
installed and executed. A MoD can be carried by a user, or it may be part of
other devices, such as being integrated into a vehicle or into a blind man’s stick,
for example.

9.4.3. Range of Application

In the following, we describe a number of potential application fields that highlight
some opportunities and advantages of an SDI-based services from the perspective
of the user and systems designer.

User-Centric Location-Dependent Services

Within an SDI, users directly interact with the smart entities at their current
location. For geographic guidance and navigation, a MoD can determine its current
position by calculating an estimate from the individual positions stored on nearby
smart entities, or simply look up the current location with the help of a local
map containing the positions of individual smart entities. Users are able to share
information about local points of interest or leave personal messages directly in

99

Dependable Context-Aware Computing

the physical places where the information is most helpful and required. Public
directories, whose entries are physically distributed across the smart entities of the
SDI, provide localized information about room numbers or names of departments,
offices, or personnel, enabling users to find their way unassistedly even in unfamiliar
places and buildings. Besides, users can leave virtual data traces in an ad hoc
fashion on the smart entities passed along the way, permitting friends or colleagues
to follow at a later point in time to places where an activity or meeting is to take
place. By integrating the MoD into a blind man’s stick or into the underside of a
wheelchair, the described services can also be made available to visually impaired
people or persons with walking disabilities. This further enables these users to
share information tailored to their particular needs in situ, such as information
about nearby obstacles, dangerous crossings, handicapped accessible ramps and
gangways, etc.

Dependable and Safety-Critical Services

Adverse conditions or physical damage caused by natural or human factors (e.g.,
earthquakes, heavy weather, fires caused by arson, or terrorist attacks) often lead
to the failure of infrastructure services in buildings or public places, disrupting elec-
tricity, landline telephony, communication networks, and networked computer in-
frastructures. However, by maintaining safety-critical information in smart entities
at the physical places where it is required, SDI-based services remain operational
in physically intact areas of the SDI even when conventional background service
infrastructures collapse or other areas are damaged, as the MoD directly interacts
with local smart entities via short-range ad hoc communication. In addition, an
SDI allows for the provisioning of dedicated emergency services. For instance, by
means of permanent virtual data traces stored on the smart entities of an SDI,
it is possible to provide services that direct users (including professionals such as
firefighters and emergency physicians, or persons with impairments) to the nearest
emergency exit or life saving equipment.

Systems Support for Collaborative Activities

In some cases the activities of individual MoDs can be combined to contribute to
a superordinate task. For instance, MoDs that have a third-party positioning ser-
vice at their disposal can store obtained position readings on the smart entities at
their respective places. Thus the SDI can be “bootstrapped” with position infor-
mation over time through a collaborative effort. Another example for collaboration
is the construction of a global site map of an SDI by joining partial SE mappings
obtained from individual MoDs. Further, an SDI can serve as a vast communal
information space: the individual contributions of users in different physical places
can contribute to the creation of open, community-driven information services and
directories, such as communal shopping-, restaurant-, and city-tour-guides, for in-
stance.

100

9.4 Super-Distribution of Smart Entities as a Design Principle

9.4.4. Radio Frequency Identification as Enabling
Technology

As an enabling technology for smart entities, we decided to used radio frequency
identification (RFID) tags for technical, practical, and economical reasons.

Firstly, RFID tags fulfill the minimum requirements that we demand of smart
entities: they possess a unique identifier and memory storage capabilities.

Secondly, owing to a rapid proliferation of RFID technology, RFID hardware in-
cluding RFID reader devices, antennas, and tags have become increasingly smaller
and cheaper. As a result, the deployment of RFID technology on a larger scale
is about to become both technically and economically feasible. Hitachi, for in-
stance, is about to commence mass production of the mu-chip [Hit06], which is a
miniature RFID tag with a surface area of 0.3 mm2. Further, the Auto-ID Cen-
ter has proposed methods which could lower the cost per RFID chip to approx.
five US cents [Sar01].

Thirdly, the large-scale deployment of RFID tags has not been deeply researched
and poses interesting challenges. In the conventional process of RFID tag deploy-
ment prevailing today, only a limited number of passive tags are placed in the
environment in a deliberate and sparse fashion. Typically, RFID tags are mainly
used for identifying objects [YHAP02, CR03] and for detecting the containedness
relationships of these objects [LF04]. Explicitly placed stationary tags embedded
in the environment also serve as dedicated artificial landmarks. They can be de-
tected by means of a mobile RFID reader and are used to support the navigation
of mobile devices and robots [KBPD97, NLLP03, PFF+03], or to mark places and
passageways [GHM99].

In contrast to conventional means of RFID tag deployment and utilization, we de-
veloped the concept of super-distributed RFID tag infrastructures, which we present
in detail in Chapter 11. Based on the concept of super-distribution, we advocate
massively-redundant tag distributions where cheap passive RFID tags (i.e. tags
without a built-in power supply) are deployed in large quantities and in a highly
redundant fashion over large areas or object surfaces. In doing so, we showed that
the identity of a single tag becomes insignificant in exchange for an increased ef-
ficiency, coverage, and robustness of the infrastructure thus created as a whole.
We further demonstrated that such an approach opens up a whole spectrum of
possibilities for creating novel RFID-based services and location-dependent appli-
cations, including a new means of cooperation between mobile entities. We also
discussed some of the technological opportunities and challenges, with the intention
of stimulating further research in this area.

9.4.5. Fault-Tolerant Service Middleware

Using our results with regard to the super-distribution of RFID tags as a starting
point, we developed a middleware architecture based on super-distributed smart
entities in general. Based on an analysis of fundamental location-aware services that
may be supported by a super-distributed smart-entity infrastructure, we worked
out a layered service middleware architecture. The middleware was designed to
harness the dedicated localized redundancy of the super-distributed smart-entity
infrastructure for achieving fault-tolerant operation of the provided services and
applications.

101

Dependable Context-Aware Computing

In the service middleware, dependability and fault-tolerance aspects play an im-
portant role at two different levels of abstraction: Firstly, the middleware services
themselves had to be robust and fault-tolerant. On the one hand, they had to be
able to tolerate failures of individual smart entities during operation. On the other
hand, the middleware services had to be capable of integrating newly distributed
smart entities with minimal user intervention, to achieve a high serviceability (i.e.,
the ability to undergo maintenance without shutting down the system), and to
minimize maintenance overhead. Secondly, the middleware should enable the de-
velopment and the operation of reliable and highly available location-aware appli-
cations. Here, the main goal was to exploit the locality aspect of a super-distributed
smart-entity infrastructure in order to provide basic services in situ that still func-
tion in the absence of network connectivity or failure of a background computing
infrastructure.

The design of the middleware and the description of its fault-tolerance mecha-
nisms are presented in detail in Chapter 12.

9.4.6. Prototypical Reference Implementation

To assess the practicability and effectiveness of our middleware architecture, we
prototypically realized several exemplary services and applications. For the con-
struction of the prototypical smart entity infrastructure, we chose radio frequency
identification (RFID) as a technology, the suitability of which we already discussed
earlier. Thus the smart entities were represented by passive RFID tags, and the
Hardware Layer in our prototype implementation constituted a super-distributed
RFID tag infrastructure as described earlier in Chapter 11. The reference imple-
mentation based on RFID technology is presented in Chapter 12.

9.4.7. Motivating Scenario

By densely distributing computerized entities over object surfaces, it is possible to
obtain a high degree of redundance and abundance of localized resources in physical
places. The following scenario explains how such super-distributed smart-entity
infrastructures enable the development of fault-tolerant context-aware services and
applications for the average user, minority groups, and specialized professionals
alike.

John is a visually impaired person. He relies on a blind man’s stick
for walking, which features an integrated radio frequency identification
(RFID) reader and an RFID antenna at its tip. The RFID reader is
wirelessly connected to a personal digital assistant (PDA) that John
carries in his pocket. The PDA processes location-dependent data read
from RFID tags that were detected with the blind man’s stick in order
to provide various location-aware services. For instance, any obtained
navigation and local directory information is delivered to the blind user
via an audio interface.

Today John wants to collect his new passport at the registry office sit-
uated in the town hall, at the desk of a Mr Doe. The corridors of the
public town hall building are outfitted with carpets containing a dense

102

9.4 Super-Distribution of Smart Entities as a Design Principle

distribution of RFID tags. The building further features a Wireless-
LAN-based positioning system. As John enters the building, his PDA
informs him that he now has a WLAN-based navigation service and
an RFID-based personnel directory and emergency service at his dis-
posal. Guided by the WLAN-based navigation system, he reaches the
vicinity of the registry office. Now he selects the RFID-based personnel
directory, which enables him to walk along the corridor while obtaining
constant feedback about the titles and the names of the personnel of the
offices he passes. He finally reaches the door to Mr Doe’s office, when
a gas explosion shakes the building and knocks John off his feet. After
some time, John recovers from the blow and gets up, smelling smoke
from fire. Unfortunately the WLAN-dependent navigation system is no
longer responding as the explosion knocked out the electricity and com-
puting infrastructure of the building. However, John is relieved to find
that the RFID-based emergency service is still active: a virtual data
trace stored on the tags of the RFID-tagged carpet leads the way to the
nearest emergency exit. Using his blind man’s stick as a detector, the
PDA continuously informs John that he is getting closer to the exit as
he moves along the corridors. As John takes the wrong turn at a fork,
he is warned that he is moving into the wrong direction, away from
the exit, upon which John returns to the fork and chooses the correct
corridor. At some point John walks upon a carpet that is partially
burned so that some of the integrated tags are no longer functional,
but fortunately the number of remaining operational tags is still high
enough to get frequent tag readings with his blind man’s stick. Finally
he arrives at the exit where he is already received by staff helping him
down the stairs.

In the meantime, the smoke within the building reduced visibility to
below one meter. Thomas, a professional firefighter, is told by radio that
Ms Clarke of the accounting department is still missing on the second
floor. Thomas has a mobile RFID reader and antenna unit integrated
with the soles of each of his boots. The RFID reader is connected to
Thomas’ PDA, on which a visual navigation software is executed. The
navigation system uses a map where the IDs of all RFID tags distributed
across the corridors of the town hall building are recorded. As Thomas
walks along the corridors, the navigation system updates his current
position whenever an RFID tag is detected underneath his boots, even
in areas where the carpet is partly destroyed. He arrives at Ms Clarke’s
office door where he encounters fire. Since the fire extinguishers are not
part of the map of the navigation system, he activates the RFID-based
emergency service called “find nearest fire extinguisher”. Then Thomas
follows the bright arrows that are shown on his PDA indicating the
direction of the nearest fire extinguisher, whose distance is displayed as
being only 10 meters away, and carries it back to Ms Clarke’s office door.
He extinguishes the flames and finds Ms Clarke unconscious nearby her
desk, still unharmed from the flames. Following the shortest escape
route displayed on his PDA, he rescues her to safety.

103

Dependable Context-Aware Computing

104

10. Fault-Tolerant User-Centric
Data Dissemination and
Communication Services
Based on Cooperating Smart
Everyday Objects

In this chapter, we present a fault-tolerant and user-centric service infrastructure
based on cooperating smart everyday objects. The main goal is to exploit local
ad hoc redundancy for enabling fault-tolerant and adaptive operation of users’
resource-limited mobile devices. Concretely, the infrastructure aims at (1) increas-
ing the dependability of data dissemination from mobile user devices to remote
addressees, and at (2) improving the connectivity and energy efficiency of mobile
user devices by using physically proximate smart objects as communication gate-
ways.

In the following, we first further motivate the use of smart objects. Then we
describe the world model and dependability issues of our infrastructure. Finally
we present our prototypical implementation and draw some conclusions.

10.1. Dependable User-Centric Computing Based
on Cooperating Smart Everyday Objects

10.1.1. Cooperating Smart Everyday Objects

Siegemund identified several usage patterns of how smart everyday objects can
cooperate with physically nearby smart objects and handheld devices in order to
overcome resource limitations. He showed that computerized objects can make
use of nearby devices (1) as mobile infrastructure access points, (2) as user inter-
faces, (3) as remote sensors, (4) as mobile storage media, (5) as remote resource
providers, and (6) as user identifiers [Sie04b]. Siegemund further provided a soft-
ware framework for realizing cooperative context-aware services based on smart
objects. It consists of (1) a description language for context-aware services, (2)
a context recognition layer for smart objects, (3) an infrastructure layer for dis-
tributing data among cooperating artifacts, and (4) a communication layer that
adapts networking structures to correspond to the real-world environment of smart
objects.

105

Fault-Tolerant Data Dissemination Based on Cooperating Smart Objects

10.1.2. Fault-Tolerance as an Open Challenge

By providing support for localized cooperation based on the volatile computing
context of a device (or its user), a physical smart object infrastructure can be used
as the foundation for developing adaptive, fault-tolerant applications that make
use of localized ad hoc redundancy. Due to the abundance of computation in
ubiquitous computing settings, cooperation enables smart objects to access even
more resources than they actually require [Sie04b]. So far, the challenge of fault
tolerance and reliability with regard to smart object infrastructures has not been
addressed. According to Siegemund, the question of how the abundance of com-
puting resources in environments populated by large amounts of smart objects can
be exploited for the implementation of more reliable services remains an interesting
research question that requires further work.

10.1.3. Exploiting Localized Ad Hoc Redundancy for
Fault-Tolerant Operation

Siegemund has shown how cooperating smart everyday objects can locally exchange
sensory data via a distributed tuple space and interact with more powerful handheld
devices by exchanging pieces of executable code called Smoblets [Sie04a, SK04].
This allows mobile devices to (1) exploit the computational resources of nearby
handhelds in order to facilitate collaborative context recognition and (2) enabling
graphical user interaction with smart objects by outsourcing user interfaces to
nearby handheld devices.

For these reasons, we consider smart objects a valuable source of localized ad
hoc redundancy. This redundancy can be exploited to provide mobile devices
with fault-tolerant data transfer and communication services. In the following, we
describe the design and prototypical implementation of a fault-tolerant and user-
centric service infrastructure we developed based on cooperating smart everyday
objects.

10.1.4. Dependability Issues Related to Cooperating Smart
Objects

A fault-tolerant user-centric service infrastructure based on smart everyday objects
has to take into account the fundamental dependability challenges stemming from
cooperation among dynamic and autonomous entities.

Volatility of Cooperative Relationships: Smart everyday object infrastructures
are usually highly dynamic and unpredictable with regard to the local avail-
ability of resources. A smart-object-based infrastructure for the delivery of
reliable services based on localized ad hoc redundancy (cf. Chapter 4.5.5) has
to deal with the volatility of cooperative relationships (cf. Chapter 3.3.10).
Smart objects encountered in the vicinity of a mobile device not only are
liable to cease to cooperate momentarily without prior notice, but they may
do so permanently. For instance, mobile devices in general are expected to
encounter smart objects along the way which they will never meet and in-
teract with again. Fault tolerance methods therefore have to consider this
volatile nature of relationships and adapt their functionality accordingly.

106

10.1 Dependable Computing Based on Cooperating Smart Objects

Incentives for Ad Hoc Cooperation: In our world model, we assumed that smart
objects cooperate voluntarily. For closed user groups and settings, this can
be a valid assumption. In open real-world systems, however, one cannot take
it for granted that smart everyday objects are willing to cooperate without
receiving some sort of reward for doing so. An important challenge there-
fore is the creation of incentives for ad hoc cooperation among independent,
anonymous entities.

10.1.5. Dependable User-Centric Data Dissemination

The dissemination of data originating from the user to be transmitted to remote ad-
dressees by harnessing localized ad hoc redundancy provided by proximate smart
everyday objects constitutes a user-centric dependability challenge. Concretely,
we are interested in how personal data collected on the user’s individual device
can be reliably transferred to a specific remote back-end server for performing an
application- and user-specific processing. We therefore consider the data dissem-
ination process to be user-centric. Data dissemination further is a one-way data
transfer: once some particular user data has been transferred, it is no longer of
interest to the individual user (i.e., to the user’s individual devices) and can be
safely discarded.

The focus of a dependable system for user-centric data dissemination lies on the
challenge of how individual users can exploit locally available resources in a self-
centered manner to achieve the goal of a complete and timely data transmission to
a remote communication partner.

This problem is inherently different from the system-centric challenge of ensuring
the persistence and availability of data that is of interest for a larger user commu-
nity, which is addressed by peer-to-peer data and file sharing systems, for instance.
It is also different from the challenge of ubiquitous data access [ZHH03, HH04]
where a user operates on personal data by means of different types of devices in
different locations. Here the main research issues are automatic data selection,
hoarding, and synchronization [HKZ02], and transcoding, with the goal of en-
abling continuous availability of data regardless of user mobility and temporary
disconnection, and regardless of the individual mobile device itself and its data
viewing/processing applications.

10.1.6. Employing Proximate Smart Objects as Local
Communication Gateways

Smart everyday objects can serve as infrastructure access points [Sie04b] to mobile
devices. In particular, cooperating smart objects that feature both short-range
ad hoc and infrastructure-based communication capabilities can be employed by
other mobile devices as local communication gateways that provide connectivity to
remote services.

Mobile user devices that are capable of short-range ad hoc communication can
exploit the communication capabilities of nearby smart objects in different ways:
they can (1) overcome temporary disconnections and (2) save energy by using the
communication capabilities of smart objects to connect to remote services.

107

Fault-Tolerant Data Dissemination Based on Cooperating Smart Objects

10.2. Conceptual Framework

10.2.1. World Model

Our work is based on the following world model. A user carries with him a phys-
ical mobile or wearable user device, which we simply refer to as mobile device
(MoD) in the following. A MoD features short-range ad hoc and infrastructure-
based communication capabilities. Each MoD further has a digital representation
in the form of a virtual counterpart [RSMD04]. The virtual counterpart (VC) of a
MoD permanently resides in the background network infrastructure – typically a
local area network (LAN) or the Internet – under a well-known address and with
a unique identifier. The VC not only serves as communication proxy, but also fea-
tures memory storage, processing, and communication capabilities that enable it to
pro-actively perform management-related and application-specific tasks. Besides,
the user’s environment is populated with diverse physical computerized objects and
artifacts, which we call smart everyday objects, or, in short, smart objects. A smart
object (SO) features processing, data storage, and ad hoc communication capabil-
ities. Each smart object has a unique identifier and address. In the case of mobile
smart objects, remote interaction and communication is also handled by means of
VCs residing in the background infrastructure. A smart object further can have
some means of infrastructure-based communication. The smart objects are cooper-
ative, which means they allow other smart objects or MoDs to make use of some of
their memory storage and communication capabilities that are unused and redun-
dant at the time of a resource sharing request. Concretely, smart objects support
MoDs (1) in the dissemination of data to remote addressees (asynchronous storing
and forwarding of data), and (2) in the communication with remote entities by act-
ing as local communication gateways, with the goal of sustaining local operability
of MoDs in the face of resource bottlenecks. As part of the infrastructure-based
network infrastructure, back-end systems (BE) interact with the MoDs to provide
user-specific applications and services. An overview of the world model and the
involved entities is shown in Fig. 10.1.

10.2.2. Continuous User-Centric Data Dissemination

The dissemination of information to mobile users by delivering information in ad-
vance to physical locations where the user may need it (hoarding) has received con-
siderable attention in mobile and ubiquitous computing research [TLAC95, KP97,
KR99, HKZ02, VTB04]. In our system, however, the flow of information and data
from remote sources to the user as the data sink only plays a minor role – this data
flow is limited to the transmission of configuration information and short mes-
sages, for which a proxy-based approach is sufficient even under weak connectivity
featuring a low bandwidth and a high delay. Instead, we investigate the inverse
operation to hoarding: the user’s MoD is the data source and user-specific informa-
tion is to be transmitted to a specific remote data sink (i.e., the back-end system).
The data transfer from a MoD to a back-end system can be performed directly
using a direct communication link, or indirectly by using proximate smart objects
as intermediaries (see arrows labeled “data” in Fig. 10.1). What is important from
the perspective of the user is that his or her data arrives timely and completely at
the designated addressee. The user is the origin of the data dissemination process,

108

10.2 Conceptual Framework

Legend:
MoD Mobile Device
VC Virtual Counterpart
BE Back-End System
SO Smart Object
SF Data Store &

Forward Service
CG Communication

Gateway Service

physical
world

virtual
world

BE

MoD

data
data

VC

infrastructure-based, wireless (e.g., WLAN)
infrastructure-based, wired (e.g., LAN)

ad hoc, wireless (e.g., Bluetooth)

Communication:

VC

VC

VCda
ta

data

data

SOSF
CG

SOSF
CG

SO SF
CG

Figure 10.1.: World model of the fault-tolerant service infrastructure based on
smart everyday objects

and the addressee is specifically related to the user in some way, which is why we
call this type of data dissemination user-centric.

We further want to ensure that the data dissemination can be performed contin-
uously, which is important in cases where the data collection on behalf of the MoD
is a continuous process. For instance, continuous data collection and dissemination
is typically of importance in surveillance applications, such as medical monitoring
systems (e.g., measuring the heart activity of risk patients) or safety surveillance
systems for small children and elderly people, for instance.

10.2.3. Role of Virtual Counterparts

In our system, the VCs residing in the infrastructure-based network perform the
following functions:

Asynchronous Communication Proxy: A VC can act as an asynchronous com-
munication proxy for remote, infrastructure-based communication. This en-
ables other networked entities to communicate and interact with the MoD
without knowing the current physical location or address of the MoD that
is liable to change over time. The MoD regularly contacts its virtual coun-
terpart upon connectivity in order to retrieve the latest messages or requests
obtained from remote entities. For instance, a back-end system may send
configuration updates to the VC, which the MoD then picks up eventually.

Persistent and Stateful Recovery Proxy: The VC also persistently maintains
the internal state of the MoD, including user data, configurations, and state
information about active cooperative relationships with other mobile or sta-
tionary entities. The VC may outlast the lifetime of an individual physical
MoD. This enables the user to replace the MoD with a substitute (e.g., in

109

Fault-Tolerant Data Dissemination Based on Cooperating Smart Objects

case of a defect or in case of loss) while preserving individual configurations
and internal state information.

Fault-Tolerance Management: The VC is an active software component that
manages various fault-tolerance aspects of its corresponding MoD. It can
proactively interact with other entities, such as with the MoD, with back-end
systems, or with the VCs of smart objects.

10.2.4. Generic Services of the Smart Object Infrastructure

In order to minimize the requirements with regard to the capabilities of smart ev-
eryday objects, we assume that a smart object provides one or both of the following
services:

Asynchronous Data Storing and Forwarding: Based on their memory storage
and infrastructure-based communication capabilities, smart objects provide
the service of temporarily storing data from other smart objects or devices
and eventually transmitting this data to a remote data sink. We refer to
this service as asynchronous store-and-forward service. The point in time
when the data is forwarded depends on the availability of connectivity to
the back-end system. We assume that the smart objects in general do not
behave maliciously or selfishly, but that they transmit any data that they
accepted for storing and forwarding at best effort. This means that if con-
nectivity is given and if the resources of the smart object are sufficient, the
smart object will transfer the data as requested. However, as we consider
the participating smart everyday objects to be independent and part of an
open, fully decentralized ubiquitous computing environment, cooperation is
voluntary and no quality-of-service guarantees are given. As a consequence,
a smart object may discard previously accepted data without further notice
in case of an imminent local resource bottleneck (e.g., memory shortage or
low battery), or in case of a prolonged unavailability of the back-end system.

Synchronous Communication Gateway: By coupling ad hoc and infrastructure-
based communication capabilities, smart objects can serve as local communi-
cation gateways. The corresponding service smart objects can offer to other
smart objects and devices is the establishment of a synchronous communi-
cation link to destinations within the infrastructure-based network, which
we refer to as synchronous communication gateway service. Potential clients
connect to this service via short-range ad hoc communication. For instance,
a MoD can indirectly connect to its VC or to a back-end system to exchange
state information or messages by using the gateway service of a proximate
smart object.

10.2.5. Inter-Relationships Between Entities

We assume that the user is carrying a mobile device that – at times – is liable to
generate or collect a significant amount of data that has to be delivered lossless to
a remote data sink (the back-end). For doing so, the MoD can directly connect to
the remote back-end by means of wireless infrastructure-based communication if it

110

10.3 Architecture of a Fault-Tolerant User-Centric Service Infrastructure

has the required local resources (energy, connectivity) at its disposal. However, in
situations where no direct connectivity to the back-end is available, or when the
energy level of the MoD is too low to maintain long-range wireless communication,
the MoD can also interact in an ad hoc fashion with physically near smart everyday
objects to make use of their data storage and communication capabilities. The
idea is to enable the MoD to (1) save energy by using energy-efficient short-range
communication, and to exploit the local data storage and connectivity of smart
objects (SO) for (2) transferring data to the remote back-end (BE) or for (3)
synchronizing the internal state of the MoD with its VC. In Fig. 10.1, the inter-
relationships between the different entities are visualized by means of arrows.

10.3. Architecture of a Fault-Tolerant
User-Centric Service Infrastructure Based
on Cooperating Smart Everyday Objects

In the following, we outline the architecture of the fault-tolerant and user-centric
service infrastructure based on smart everyday objects, which we developed and
prototypically implemented (see Sect. 10.11).

10.3.1. System Architecture

We developed a layered system architecture for the smart-object-based data dis-
semination infrastructure. An overview of the system architecture is shown in
Fig. 10.2.

10.3.2. Communication Layer

On the lowest level, in the Communication Layer, we find the basic communication
mechanisms employed by smart objects and MoDs. In our system, we used Blue-
tooth [BS06] for short-range ad hoc communication to enable localized interaction,
and Wireless LAN (IEEE 802.11b [WFA06]) for long-range infrastructure-assisted
communication to connect to remote services provided as part of the background
infrastructure (i.e., to connect to services offered by VCs or back-end systems).

10.3.3. Smart Object Layer

The Smart Object Layer provides a service interface for the interaction between
smart objects. It implements the two generic services asynchronous store-and-
forward and synchronous communication gateway described in Sect. 10.2.4. In
addition, it provides additional management functionality for the provisioning, dis-
covery, and the quality-of-service description of the services offered by individual
smart objects. A smart object can possess multiple communication interfaces for
long-range infrastructure-based communication (e.g., a stationary smart object can
be linked to a LAN by wire and possess Wireless LAN or Bluetooth capabilities
at the same time). In this case, the management functions can be used to pa-
rameterize the store-and-forward and communication gateway services during each
individual use to employ a particular available communication interface.

111

Fault-Tolerant Data Dissemination Based on Cooperating Smart Objects

Communication
Layer

Smart Object
Layer

Fault Tolerance
Layer

End-Device Layer

SOSF
CG

BT
WLAN

BT
WLAN

FT FT-1

VC BEMoD

Application Layer AP

wireless communication

SOSF
CG

Legend:
MoD Mobile Device

VC Virtual Counterpart

BE Back-End System

AP Application

FT Fault-Tolerance Management
(Initiation)

FT-1 Fault-Tolerance Management
(Resolution)

SO Smart Object

SF Asynchronous Data
Store & Forward Service

CG Synchronous Communication
Gateway Service

WLAN Wireless LAN Interface
(Infrastructure-Based Comm.)

BT Bluetooth Interface
(Local Ad Hoc Communication)

Figure 10.2.: Layered system architecture of the fault-tolerant service infrastruc-
ture based on smart everyday objects

Each MoD also implements the interface of the Smart Object Layer to be capable
of interacting with smart objects (see Fig. 10.2). The MoD itself can also act as a
smart object and share its resources and capabilities with other devices.

10.3.4. Fault-Tolerance Layer

The Fault-Tolerance Layer manages the fault-tolerance aspects of the data dissemi-
nation process and of the internal state of the MoD. The fault-tolerance procedures
of the data dissemination are different with regard to the data producer or data
source, which in our case is represented by the MoD and its VC, and the data re-
ceiver or data sink, which in our model is represented by a back-end system residing
in the background infrastructure. The developed fault-tolerance mechanisms are
described in Sect. 10.4.

10.3.5. End-Device Layer

The End-Device Layer provides an interface for sending and receiving data asyn-
chronously (data dissemination), and for synchronous communication. It transpar-
ently employs the fault-tolerance mechanisms of the fault-tolerance layer, hiding
the complexity of the fault-tolerance management from applications. We distin-
guish three types of end-devices: mobile devices (MoDs), their virtual counterparts
that constitute the data sources, and back-end systems that represent the sinks of
the data dissemination. Like the back-end systems, the VCs of MoDs also reside
in the background infrastructure (network).

112

10.4 Fault-Tolerance Management of the Fault-Tolerance Layer

10.3.6. Application Layer

The application layer contains applications that interact with MoDs and back-end
systems. Applications can retrieve information received by end-systems, or interact
with MoDs by exchanging messages or changing device settings via the interface
offered by the End-Device Layer. The interaction between an application and the
MoD of a user is mediated by the corresponding VC, which both serves as proxy
and intermediating representative. As an exemplary application, we describe an
implementation of a user-centric and fault-tolerant patient monitoring system in
Sect. 10.11.

10.4. Fault-Tolerance Management of the
Fault-Tolerance Layer

10.4.1. Fault-Tolerance Manager Component

The functionality of the Fault-Tolerance Layer is managed by a fault-tolerance
manager (FTM), which is an active software component. Each of the end-systems
of the End-Device Layer (back-end, MoD, and VC) possess an FTM instance that
performs particular fault-tolerance management tasks.

10.4.2. Fault-Tolerant Data Dissemination by the MoD

On the side of the data source, the FTM on the MoD (1) monitors the state of
the device and detects critical resource conditions, (2) discovers available store-
and-forward services offered proximate smart objects in their different forms, and
(3) performs the selection and execution of one or more store-and-forward services
depending on the current contextual situation. Step (3) involves the splitting of
data into different payloads that are then disseminated in a redundant fashion by
multiple smart objects.

10.4.3. Fault-Tolerance Management between MoD and
Virtual Counterpart

The FTM of the MoD regularly contacts the FTM of the VC to perform the follow-
ing operations: (1) retrieval of acknowledgments received from remote systems for
previously disseminated data units, (2) synchronization of configuration data and
application-specific settings that are mirrored by or were updated in the VC, and
(3) reinitialization of the MoD with the configuration information stored in the VC
in case the MoD loses its internal state due to an energy shortage, malfunction, or
due to the physical replacement of the MoD with a substitute. For the interaction
between the MoD and its virtual representation, we used a proprietary protocol we
developed.

10.4.4. Data Reconstruction at the Back-End Server

On the side of the data sink, the FTM is responsible for the task of (1) putting
together and recombining the redundant data transmissions received from different

113

Fault-Tolerant Data Dissemination Based on Cooperating Smart Objects

smart objects. This is the complementary activity to the data splitting and redun-
dant dissemination performed in step (3) at the data source (see tasks labeled with
FT and FT−1 in Fig. 10.2). The fault-tolerance management in the data sink also
(2) notifies the MoD about obtained or missing data packets by sending negative
or positive acknowledgments to the VC of the MoD, which passes this information
on to the device. Last but not least, the FTM (3) informs any smart object that
tries to forward data that had already been received earlier at the sink from other
smart objects that the data is no longer required. In this case, the concerned smart
objects simply delete the obsolete data, and no duplicate data forwarding occurs.

10.4.5. Adaptive Selection of Communication Interfaces

The FTM further controls the selection and usage of available communication in-
terfaces on the MoD by evaluating the current state of the MoD with regard to
system resources. The FTM also respects semantic knowledge about the situa-
tion of the device (i.e., application-specific parameters that indicate an emergency
situation/priority transmission). In the process, the FTM considers both commu-
nication interfaces for infrastructure-based communication on the device as well as
on nearby smart objects.

10.4.6. Prevention of Imminent Failures

If localized ad hoc redundancy provided by a highly volatile smart everyday objects
infrastructure is employed for the realization of a fault-tolerant data dissemination,
it has to be ensured that the overall dependability of mobile applications does not
suffer from the additional unpredictability and uncertainty introduced by the smart
objects.

For achieving this goal, the FTM exploits the redundancy of the smart object
infrastructure in situations where otherwise (1) data loss or failure of the MoD is
imminent, or (2) where the successful completion of smart-object-based services
can be validated.

Firstly, the FTM monitors the condition of vital resources of the MoD, which in
our case are energy and memory space. If the amount of free memory space or the
battery level drops below a critical threshold, the FTM tries to resolve the resource
shortage by employing locally acquired ad hoc redundancy. Here the dependability
of the system is not diminished by relying on volatile smart objects, as failure of
the MoD would be imminent otherwise. Secondly, if memory space on the MoD is
not critical, the services provided by a smart objects infrastructure can be used in a
safe manner: by waiting for acknowledgments sent by the data sink before deleting
data units on the MoD that were transmitted via store-and-forward services, the
MoD can verify that these data units have been properly transferred and received
at the remote system.

10.4.7. Proactive Situation-Aware Fault-Tolerance
Management

We identified several fault-tolerance mechanisms that are performed according to
the particular contextual situation of the MoD. The situation of the MoD is de-

114

10.5 Internal Classification of Resource Conditions

termined by its internal resource availability (memory, energy), by the available
external resources (services offered by proximate smart objects), and by semantic
requirements of the application that affect the importance of certain tasks.

On the MoD, FTM continuously monitors the internal state and condition of the
device. If the FTM detects a critical condition, it first establishes the computing
context of the MoD (i.e., the available services offered by nearby smart objects).
Then it applies a heuristic that selects and activates fault-tolerance mechanisms
according to the established contextual situation of the MoD.

10.4.8. Semantic Prioritization of Fault-Tolerance
Mechanisms

For rating the urgency of tasks that have to be performed by the MoD in case
of a critical condition, we support semantic prioritization: (1) low priority for
data that can be disbanded in case of resource shortages, (2) normal priority for
data that are to be disseminated eventually without particular timing restrictions
(default value), and (3) high priority for data that has to be disseminated as fast
as possible or before a certain deadline. The priorities have to be set according to
the requirements of a particular application – the prioritization therefore reflects
a semantic application- or user-specific rating. During operation, these priorities
are used by the FTM to establish the semantic situation of the MoD in case of a
critical condition in order to select the appropriate fault-tolerance mechanism.

10.5. Internal Classification of Resource
Conditions

To capture the condition of the resources of the MoD in a human-understandable
way, we introduced a three-step state classification scheme, which we describe in
the following.

10.5.1. Three-Step Resource State Classification
(Green-Yellow-Red)

In our prototype system, we use a three color encoding to indicate the state of
resource availability and the severity of adverse resource conditions:
Green: Indicates a normal resource condition and fault-free operation. The re-

source is available in ample, abundant quantity.

Yellow: Indicates an abnormal resource condition or operation which – if no ac-
tions are taken – can develop into a critical condition (e.g., low memory,
no/weak communication, or energy shortage) that is liable to lead to the
failure of the device. User intervention may be required/requested (e.g., re-
placement/recharging of battery; moving closer to nearby smart objects or
communication hot-spots).

Red: Indicates a critical resource condition or faulty operation liable to cause the
imminent failure of the data dissemination process or of the general oper-
ability of the MoD. The FTM issues a warning to the user according to the

115

Fault-Tolerant Data Dissemination Based on Cooperating Smart Objects

configuration and capabilities of the MoD (e.g., playing an acoustic warning
sound on a loud-speaker; displaying a visual warning message on the on-
device display; sending a short message to the user’s mobile phone, etc.). In
addition, based on the particular applications executed on the mobile device,
the MoD may also attempt to notify concerned back-end systems in high
priority communication mode before the failure occurs.

10.5.2. Classification of Memory and Energy Resource
Conditions

The states of the resources energy, memory space, and connectivity are rated ac-
cording to the resource state categorization described in Sect. 10.5.1. For instance,
with regard to memory storage, the different resource conditions are defined by two
thresholds tmy and tmr : (1) condition green is active if the amount of available free
memory space is plenty, which corresponds to a value above threshold tmy . (2) If
the memory space drops below the value of tmy but remains above tmr , then state
yellow is active, which means that the MoD is expected to run out of memory
space soon. (3) If the amount of memory space drops below threshold tmr , condi-
tion red is active, which signifies that there is hardly any free memory space left
and data loss is imminent. Likewise, the state of the energy level is determined
by two threshold values tey and ter that define the energy levels for a state change
from green to yellow and from yellow to red, respectively. The thresholds can be
determined manually by the user, remotely by a third party, or dynamically by the
applications on the MoD. The thresholds are set as percentage values describing
the proportional quantity of a resource that has to be available. In the prototype
system described below, we set the threshold values tmy and tey for condition yellow
to 20%, and the values tmr and ter for condition red to 5% for describing the state of
the resources memory and energy. That means that if the energy level drops below
5% of the overall capacity of the battery of the MoD, the condition of the energy
supply is considered to be critical (condition red).

10.5.3. Classification of Connectivity Condition

The state of connectivity required for data dissemination and communication is de-
termined by the type of available communication interfaces. Connectivity is in state
green if the MoD itself or at least one proximate cooperating smart object features
infrastructure-based connectivity providing asynchronous store-and-forwarding and
synchronous communication gateway services. It is in state yellow if there is no
direct connectivity to the background infrastructure but if there is at least one
cooperating smart object nearby with store-and-forward capabilities (i.e., data can
be transferred to the smart object and scheduled for later forwarding). In the worst
case the MoD has no connectivity to the background infrastructure, and there is
no smart object nearby that offers a store-and-forward service, which equals state
red.

116

10.6 Fault-Tolerance Mechanisms Based on Proximate Smart Objects

10.5.4. Intuitive Indication of Resource Conditions to the
User

By representing states with colors in the style of a traffic light, the conditions
of device resources can be indicated in an intuitive manner to the user. Green
signifies that currently there is no problem with a resource, yellow indicates that a
resource still is working fine but requires special attention as it may become critical
any time soon, and red signifies that a resource has reached a critical condition
that requires immediate intervention to prevent failure. The visualization of the
resource conditions in such a color-encoding further enables the user to instantly
and easily verify the effect of his or her corrective measures. For instance, after
having moved near networked smart objects, the user can immediately verify the
change of connectivity indicated by the color coding. And in the case of energy,
the color coding allows to inform the user early that the replacing or recharging
of the batteries of a MoD is recommended to be performed “soon” (e.g., charge
overnight), showing resource state yellow, or “immediately” (e.g., replace batteries
immediately), showing resource state red.

10.6. Fault-Tolerance Mechanisms Based on
Proximate Smart Objects

The FTM supports a number of fault-tolerance mechanisms to prevent data loss or
to maintain operability of the device, which we present in the following sections.

10.6.1. Preventing Data Loss by Exploiting Localized Ad
Hoc Redundancy

If the MoD runs out of local memory space while it is collecting or generating data
for dissemination to a remote back-end server, and if the MoD has no or insufficient
connectivity, data loss is imminent. In that case, the FTM exploits localized ad
hoc redundancy offered by proximate smart objects. More concretely, the FTM
makes use of the data storing and forwarding capabilities of nearby smart objects.
To increase the probability of successful (and timely) data dissemination, the FTM
can charge multiple smart objects at the same time with the transmission of the
same data load (payload), as individual smart objects – over which the MoD has
no authority and control – may fail to complete the data transfer.

The number of smart objects that are employed for a single data load (degree
of redundancy) is chosen according to an internal rule-based engine that takes into
account the energy level of the MoD, the priority of the payload (normal or prior-
itized/emergency), the quality of service provided by the individual smart objects
(i.e., free memory space, available communication capabilities for infrastructure-
based communication together with their individual bandwidths and costs of us-
age).

Ideally, the sending of a single payload to several smart objects for dissemination
should be performed via a multicast operation for maximizing the energy efficiency
of the sender (i.e., the MoD), and for keeping the overhead low that increases
with each additional smart object involved in the redundant data dissemination

117

Fault-Tolerant Data Dissemination Based on Cooperating Smart Objects

procedure. In our case, the available short-range ad hoc communication technology
(i.e., Bluetooth) did not support multicast operations for data dissemination but
required a series of one-to-one interactions.

10.6.2. Maintaining Continuous Connectivity

The diverse infrastructure-based communication capabilities of smart everyday ob-
jects can be exploited by a MoD to maintain continuous connectivity at times when
the MoD itself temporarily has no infrastructure-based connectivity.

In our system, if at a point in time the MoD itself lacks infrastructure-based
connectivity but needs to disseminate user data to a remote back-end server at
high priority (i.e., with stringent timing restrictions), the FTM tries to find one
or more smart objects that feature active infrastructure-based connectivity. It
then uses the store-and-forward capabilities of these smart objects and requests
immediate transmission of the data.

The FTM also transparently employs the synchronous communication gateway
services offered by smart objects to save the state of the MoD to the corresponding
VC in case a critical condition has been detected (e.g., prior to an anticipated
power outage), or to send urgent notifications to remote systems. For instance, a
failing device could send a last short warning message to the user’s mobile phone
via an Internet gateway to prompt him to take corrective action.

10.6.3. Increasing Lifetime of MoDs Through Energy-Aware
Communication

Energy generally is a limited resource of portable user devices. To increase battery
lifetime and thus prolong the operability of a MoD, the FTM performs an adaptive
energy management. If the FTM detects a low energy level on the MoD, then it
dynamically switches from using the built-in long-distance communication capabil-
ities to employing the communication capabilities of proximate smart cooperating
objects. The idea is to save energy by using low-energy short-range ad hoc commu-
nication for the interaction with nearby smart objects in favor of direct long-range
infrastructure-based communication that is more energy consuming.

In our case, using Bluetooth1 for local ad hoc wireless communication instead
of Wireless LAN2 for long-distance infrastructure-based communication, energy
consumption can be reduced by up to approx. 80%, for instance).

In our system, the low-power communication capabilities of smart objects are
used in two ways by the FTM: (1) to disseminate data to a remote back-end
via the store-and-forward services of nearby smart objects, and (2) to connect to
the virtual counterpart or to other remote entities for message passing and data
synchronization.

1Bluetooth Class 2 standard [BC06]; worst case peak current consumption of 60 mA at a trans-
mitting power of max. 2.5 mW (4 dBm) and a range of up to 10 m.

2IEEE 802.11b standard [WFA06]; current consumption approx. 300 mA at approx. 100 mW
(20 dBm) transmitting power and a range of approx. 100 m.

118

10.7 Rule-Based Activation of Fault-Tolerance Mechanisms

10.7. Rule-Based Activation of Fault-Tolerance
Mechanisms

In our system, the behavior of the FTM is controlled by a rule-based engine, which
uses a customizable set of rules that select and parameterize fault-tolerant mecha-
nisms according to the situational context of the MoD (i.e., the state of individual
resources and the priority-level of data that is to be disseminated). The syntax of
the rules makes use of the classifications of resource conditions described earlier.
This enabled the creation of human-readable and intuitively editable sets of rules
for individual fault-tolerance mechanisms.

Tables 10.1 and 10.2 show exemplary rules in tabular notation as they are used
in our prototype system described in Sect. 10.11.

10.7.1. Selection of Direct and Indirect Data Dissemination

Table 10.1 declares when the FTM has to use the built-in infrastructure-based
communication capabilities of the MoD (entry true) and when it should rely on
the store-and-forward services offered by nearby smart objects if available (entry
false). The rules consider the state of the energy supply and of the available
memory space of the MoD, and the prioritization of the data to be disseminated.

For instance, we can see in the table that for high priority data, the FTM always
tries to disseminate the data directly via the built-in infrastructure-based commu-
nication interface if the energy level is not yet critical (condition red) or if memory
space on the MoD is critical. The asterisk symbols after the true/false entries in-
dicate that the alternative means of data transfer is selected if the specified data
transfer mode is not available. That signifies that if no direct connection to the
back-end is available due to insufficient connectivity, the FTM will always try to
use nearby smart objects instead. Likewise, if no smart objects are available, direct
data transfer is used if connectivity is available.

In the case of data with normal priority, direct data transfer is only allowed if the
energy level is ample (condition green) and the free memory space is abnormal or
critical (condition yellow or red, respectively). However, the asterisks indicate that
if no direct data transfer is possible, indirect data transfer is to be used instead.
As long as the internal memory of the MoD is in normal condition (green), only
data dissemination mediated by proximate smart objects is allowed. If no smart
objects are available, no data transfer occurs until the resource conditions change
and a new rule applies that may enable direct data transmission. For instance,
if memory is in state red and energy in state yellow, the use of the direct data
transfer capabilities of the MoD is allowed if no indirect store-and-forward services
are available.

For data with low priority, the FTM always requires indirect communication and
data dissemination via smart objects (table not shown). This means that the FTM
accepts the possibility of data loss. For instance, data loss may occur in situations
where the unavailability of smart objects leads to a critical memory condition on
the MoD.

119

Fault-Tolerant Data Dissemination Based on Cooperating Smart Objects

Normal Memory
Energy green yellow red
green false true* true*
yellow false false false*
red false false false

High Memory
Energy green yellow red
green true* true* true*
yellow true* true* true*
red false* false* true*

Table 10.1.: Two rule sets in tabular notation determining the use of direct or indi-
rect data dissemination for normal (left table) and high priority data
(right table). True signifies the selection of built-in communication ca-
pabilities, and false the use of smart objects. Settings marked with an
asterisk are inverted (true→false or false→true) in case the resources
needed for fulfilling the particular rule are unavailable

10.7.2. Determining the Degree of Redundancy of Indirect
Data Dissemination

The rules in Table 10.2 determine the degree of redundancy (redundancy factor)
that is to be applied by the FTM of a MoD when using indirect data dissemination
based on the store-and-forward services of nearby smart objects. The figures in the
table indicate the number of redundant store-and-forward services that the FTM
should employ simultaneously for disseminating one and the same data payload.
The decision is again based on the current internal memory and energy state of the
MoD and on the semantic prioritization of the user data.

For normal priority data, the redundancy factor is zero if the energy level of
the MoD is abnormal or critical (condition yellow and red, respectively) while free
memory is abundant (condition green). This means that in these situations, no data
is outsourced to smart objects until the energy level is back to normal (condition
green). In all other situations, the redundancy factor is set to a factor R ≥ 1,
which means that the store-and-forward services of R different smart objects are
used at the same time for disseminating a particular user data payload.

With regard to high priority data, all redundancy factors have been set to values
≥ 1. This ensures that data is to be disseminated by at least one smart object
in all situations, even if the energy level of the MoD is critical. Further, one can
see that the individual redundancy factors are higher than the ones chosen under
similar resource conditions in the case of data with normal priority.

For data with low priority (table not shown), the redundancy factors are set to 1
for all rules that apply to normal energy level (condition green), and zero otherwise.
That means low priority data is only disseminated when the energy level on the
MoD is normal.

For the selection of smart objects out of a potentially large pool of candidates,
the FTM further uses a heuristic that takes further parameters into account, such
as the costs of individual services (see Sect. 10.8) and the amount of free memory
space on the proximate smart objects. Detailed information about the applied
heuristic can be found in [Geg04].

120

10.8 Incentives for Cooperation Among Independent Smart Objects

Normal Memory
Energy green yellow red
green 1 2 3
yellow 0 2 2
red 0 1 1

High Memory
Energy green yellow red
green 3 4 5
yellow 1 3 3
red 1 1 2

Table 10.2.: Two rule sets in tabular notation for defining the degree of redundancy
applied to the smart-object-assisted dissemination of normal (left ta-
ble, normal priority) or prioritized user data (right table, high priority)

10.7.3. Definition and Maintenance of Rules

The rules for selecting and activating fault-tolerance mechanisms have to be de-
fined for individual MoDs (and their applications) by the respective users or by a
system administrator. In our system, we provide a table skeleton for each rule that
corresponds to the tables shown above. Further, the VC of an MoD maintains a
copy of the set of rules. The VC further supports the remote update of individual
rules via remote procedure calls. Changes to rules in the VC are updated on the
MoD whenever the latter connects to its VC for data and state synchronization.
For the synchronization procedure, we use a proprietary protocol we developed.

10.8. Incentives for Cooperation Among
Independent Smart Objects

For the selection of services offered by smart objects for redundant indirect data
dissemination we also considered cost as a factor (see Sect. 10.7.2). This is based
on the assumption that cooperation among autonomous mobile devices that do
not belong to the same authority (i.e., each MoD is its own authority) requires
some sort of rewarding/payment scheme as an incentive. In our above-mentioned
heuristic for selecting a number of smart objects out of a large pool of available
candidates, we therefore included the cost of services provided by smart objects as a
parameter, assuming the availability of a distributed payment/reward mechanism.

10.8.1. Stimulating Cooperation in Mobile Ad Hoc Networks

The problem of stimulating cooperation in mobile ad hoc networks is a fundamental
challenge: the participating entities (also called nodes) are expected to cooperate
in order to support the basic functions of the network. A major issue is that the
individual nodes are assumed to be selfish, meaning that they try to maximize the
benefits that they get from the network while minimizing their contribution to it.

The usage of payment schemes as an incentive for the fostering of coopera-
tion among autonomous entities in open ad hoc networks has been investigated
in [BH00, BH01, BH03]. The work focuses on a particular instance of the problem
of providing incentives for cooperation: packet forwarding (routing). A virtual cur-
rency called nuggets is suggested as a means of payment among ad hoc cooperating
nodes. Physical nodes in the ad hoc network are equipped with a stock of nuggets.
Each node then “pays” using the nuggets if it originates a data forwarding request.

121

Fault-Tolerant Data Dissemination Based on Cooperating Smart Objects

Two payment models were presented: (1) the Packet Purse Model loads the nuggets
onto the packet and forwards it. The intermediate nodes acquire nuggets from this
packet and then forward the packet. This approach has the disadvantage that the
number of nuggets needed to reach the destination node is not accurately known
in advance. (2) The Packet Trade Model does not load nuggets onto the forwarded
packet, but instead “buys” each packet using nuggets and “sells” it to other nodes
acquiring nuggets. A drawback of this approach is that billing a node does not
discourage senders from flooding packets and overloading the network since they
do not have to pay, thus abusing the ad hoc network consisting of cooperating
autonomous nodes.

The problem of stimulating packet forwarding in self-organizing, mobile ad hoc
networks for civilian applications based on cooperation among independent nodes
has also been addressed in [BH03]. The described approach is using a counter-based
mechanism and trusted, tamper-proof hardware for security protection.

10.8.2. (No) Need for Incentive Systems

Referring to the cooperative relaying of messages in open ad hoc networks consist-
ing of heterogeneous, user-controlled devices, Huang et al. argue that in practice,
the need of incentive systems is likely to disappear in the long run [HCW04]. They
point out that in the case of mobile ad hoc devices, practically the only benefit to
consumers who would not be willing to cooperate would be longer battery lives.
As a consequence, for most users the gain of not participating or even of cheating
is not worth the trouble of modifying their devices or tampering with the software.
They also state that the addition of “excessive complexity” introduced by incentive
systems may “hurt the deployment of ad hoc networks” in general, especially in the
early stages of adoption. Besides, the more devices that do not cooperate (here:
that do not relay messages), the worse the overall performance of the cooperative
system (here: ad hoc network) will be, until it is finally completely useless. It is
conceivable that similar considerations also apply in parts to service infrastructures
based on cooperating smart everyday objects. The problem of stimulating cooper-
ation and the question of the need of incentives, however, is beyond the scope of
this work and requires further future research.

10.9. Support for Disconnected Operation

Our system architecture supports disconnected operation of the MoD with the
assistance of (1) a VC residing in the background infrastructure, and by means of
(2) localized interaction with smart everyday objects.

10.9.1. Maintaining Remote Relationships by Means of
Virtual Counterparts

The VC remains active and reachable even if the physical MoD is temporarily
disconnected from the background network infrastructure. This enables the MoD
to maintain relationships with remote entities even while it has no infrastructure-
based connectivity.

122

10.10 Further Dependability Issues

Data Dissemination Management: The FTM component on the VC manages
acknowledgments received from back-end servers as part of the redundant,
smart-object-mediated data dissemination initiated by the FTM on the MoD.
Whenever the MoD reconnects to its virtual representation, the VC informs
the FTM on the MoD up to which sequence number the data units dissem-
inated by the MoD were already received and can be discarded, and which
individual units are still missing and subject to retransmission.

Message Relaying: The VC accepts messages delivered from remote entities and
passes them on to the MoD upon reconnection. On the MoD, the messages are
delivered to the respective addressees according to the message type specified
in the header. In our system, messages can be addressed to the FTM or
to applications running on the MoD, containing configuration updates (e.g.,
new rules for the activation of fault-tolerance mechanisms as described in
Sect. 10.7) or application-specific instructions, for instance.

10.9.2. Localized Ad Hoc Cooperation

In disconnected state, the MoD uses the memory storage capabilities of proximate
smart objects when outsourcing data for dissemination to the back-end server as
part of its fault-tolerance management. That means that the data dissemination
procedure can be sustained as part of disconnected operation if a time-delayed data
delivery at the back-end server is acceptable.

10.10. Further Dependability Issues

There are a number of further dependability issues related to our system, which
were not in the focus of our work, but which we wish to address briefly in this
section for the sake of completeness.

10.10.1. Data Confidentiality and Integrity

The confidentiality of user data that is outsourced to smart objects for forwarding
can be secured by means of encryption schemes. The MoD can negotiate a key
with the back-end server to be used for the encryption of user data during the data
dissemination process.

The integrity of individual data payloads that are received at the back-end system
can be protected and verified using CRC checksums, for instance.

10.10.2. Access Control

In an ideal open system environment, the usage of smart objects is unrestricted
to MoDs. Each MoD itself in return should also constitute a smart object and
thus participate in the ad hoc resource sharing and localized cooperation. In our
system, we therefore did not consider issues related to access control.

There are situations, however, where the enforcement of access control policies
could be required. For instance, the use of incentive systems may require the
implementation of access control mechanisms. Furthermore, the protection against

123

Fault-Tolerant Data Dissemination Based on Cooperating Smart Objects

denial-of-service attacks may require some form of (temporary) access control to
prevent continuing abuse on behalf of rogue MoDs or misbehaving smart objects.

10.10.3. Device State Recovery and Life Cycle Management
Support

The VC is capable of persistently maintaining the states of the MoD, of its FTM,
and of the applications running on the MoD. This is achieved by means of a periodic
state synchronization with the physical MoD whenever the latter reconnect to its
VC.

If the MoD loses its internal state due to a failure, it can (partially) recover
that state upon reconnection to its virtual counterpart. If the physical MoD is
defect and has to be replaced by a substitute device of the same model, the state
information maintained at the VC can also be used to initialize and bootstrap the
replacement MoD. Thus the VC concept facilitates the life cycle management of
mobile devices.

10.11. Prototype Implementation: A Dependable
and User-Centric Mobile Patient
Monitoring Platform

Based on the system architecture and fault-tolerance management issues described
earlier, we prototypically implemented a system that provides fault-tolerant user-
centric data dissemination and communication services to mobile user devices. In
the following, we give an overview of the implemented services and applications
that in their entirety form a rudimentary mobile patient monitoring platform.

For a more detailed description of the patient monitoring application, including
an in-depth description of the implementation of the Fault-Tolerance Layer and of
the Smart Objects Layer, please refer to [Maz03] and [Geg04].

10.11.1. Application Scenarios

As an exemplary application scenario, we chose a mobile patient monitoring appli-
cation, because this type of surveillance scenario (1) usually benefits from continu-
ous data dissemination, (2) involves small, resource-limited hardware devices that
the user carries on his body, and (3) has strong dependability requirements.

Besides the patient monitoring scenario, there are many other ubiquitous com-
puting applications conceivable where an infrastructure for dependable continuous
data dissemination would be helpful. For instance, other potential applications
are (1) a smart miniature camera which constantly transfers its snapshots to a
photo collection maintained at a remote back-end server, (2) an electronic diary
that continuously stores information received from other smart objects during the
day or diary entries written by the user himself, or (3) a digital pen that instantly
digitizes everything that is written [Mat01b] and sends the data immediately to a
remote database server.

124

10.11 Prototype Implementation: Mobile Patient Monitoring Platform

10.11.2. Exemplary Application Scenario: Ambulant Patient
Monitoring

The intention of the mobile patient monitoring system is to make it possible for
risk patients to be treated ambulatorily rather than stationary in the hospital,
which enables the individual risk patient to lead a more normal life and supposedly
increases his or her quality of life.

Concretely, we assume a risk patient who is equipped with a wearable device
(i.e., the MoD) that continuously collects sensory data about vital aspects of the
patient’s health. This data is continuously transmitted to a back-end server in a
hospital where the data is automatically evaluated to detect critical health condi-
tions that require instant medical assistance.

In response to the monitored health condition of the patient, the doctor from
time to time adjusts the medication for the patient – this information is then
transmitted to the MoD, where it is displayed to the user. The doctor can also
(re-)adjust thresholds that indicate an emergency situation with regard to the
measured values of certain health properties.

In our case, for simplification, the MoD measures the patient’s heart rate, the
value of which is supposed to remain within a certain interval. If the MoD de-
tects that the heart rate exceeds a lower or a higher bound, then it assumes the
occurrence of an emergency situation. As a result, the MoD displays a warning
message to the user, informing him to seek immediate medical treatment, and it
attempts to send an emergency message (high priority) to the back-end server to
call surveillance personnel for help because of a supposedly imminent health threat.

For the detection of unobtrusive health problems requiring a more complex pro-
cessing at the hospital, and for the seamless study of long-term effects of the pa-
tient’s health development, the monitored data has to be transmitted completely
and in a timely manner.

10.11.3. Mobile Patient Monitoring Device

As a mobile patient monitoring device (MoD) we used an HP iPAQ handheld device
of the H5450 series with the PocketPC 2002 operating system. The handheld device
featured Bluetooth and Wireless LAN (IEEE 802.11b) connectivity. The software
on the MoD was implemented using Visual Embedded C++ Version 3.0.

Figure 10.3 shows the graphical user interface (GUI) of the implemented patient
monitoring application executed on the MoD. The GUI contains the following visual
elements: an LED for the condition of the energy level (current setting: green) and
one for the memory condition (current setting: yellow). To the right of the LEDs,
the current communication mode is displayed underneath the label “Connection”
(current value: BT = Bluetooth). On the far right, the current prioritization of
the data is shown (current value: low). In the status window below, the current
fault-tolerance-management activity of the MoD is logged and displayed. The
condition of the energy and memory resources can be manually changed by way
of the modifier-buttons next to the corresponding status LEDs, which enables the
simulation of different resource conditions. Whenever the resource conditions are
changed, the triggered fault-tolerance activities are displayed in the status window.
For instance, in the figure, the list contains entries about (1) the sending of high

125

Fault-Tolerant Data Dissemination Based on Cooperating Smart Objects

priority data, (2) several ad hoc data dissemination attempts where the store-and-
forward services of three smart objects where requested but only one was available,
and (3) an entry indicating that the configuration of the MoD was updated by
using the communication gateway service of a smart entity through a short-range
Bluetooth connection. Below the status window, the current MoD configuration
with regard to the acceptable range of the user’s pulse rate are displayed: the
user’s pulse is considered to be normal when in the range of 40–120. Underneath
the currently advised medication (type and dose) is displayed, and the update
frequency (in ms) that determines how often the MoD reconnects to its VC for
retrieving configuration updates and for synchronizing its internal state. On the
bottom right, the priority level of the data is displayed, and the current average
heart rate of the user (here: 77 heartbeats per minute). The average pulse value
can be edited to simulate situations of normal or critical heart rates. Currently, the
mobile patient monitoring application is not connected to a real heart rate sensor,
but it creates random heart rate values around the specified average value.

Figure 10.3.: Graphical user interface of the mobile patient monitoring device
(MoD)

10.11.4. Back-End Server Application

The back-end server is represented by a Java server application residing in the
LAN at a well-known address. The back-end server contains the logics for fault
tolerance and data management. It also contains methods for receiving data trans-
missions from smart objects or MoDs, and for sending configuration updates or
messages to a user’s MoD. Both incoming and outgoing communication is socket-
based (TCP/IP). Applications can register themselves at the back-end server for
certain data units, based on the ID of the sender and type of data – the required
information is specified in the headers of data units sent by MoDs.

126

10.11 Prototype Implementation: Mobile Patient Monitoring Platform

Figure 10.4.: Monitoring console of the back-end server application

The internal state and activities of the back-end server application during oper-
ation are logged by a graphical monitor application (see Fig. 10.4). On the top of
the GUI, a status bar indicates which user data units have already been received,
and which are still expected. For instance, in the figure, all data units with a
sequence number ≤44 and with sequence numbers 46, 47, 50, 51, and 52 have been
received correctly, while the data units with sequence numbers 45, 48, and 49 are
still missing. Below the status bar, a status window is displayed which lists the
latest operations executed on the back-end server (method GetData for receiving
data units, and method DeleteData for informing smart objects about data units
which can be safely deleted).

10.11.5. Infrastructure-Based Patient Surveillance
Application

The back-end server receives and stores the user data obtained from associated
MoDs. The patient surveillance application performs a continuous monitoring of
the patient’s health condition by interpreting that user data. It enables the medical
personnel at the hospital, who are in charge of looking after the health conditions
of the risk patients equipped with the mobile health monitoring equipment (i.e.,
the MoDs), to perform a remote diagnosis in case of an emergency, or to readjust
the doses of prescribed medication.

For that, we developed and prototypically implemented a simple exemplary
patient monitoring application. Its graphical user interface (GUI) is shown in
Fig. 10.5. The top area of the GUI contains editable fields for setting the doses of
the user’s currently prescribed medication (Panadol and Morphium in our mock-up
application). On the top right, the status of the user’s current heart rate as well
as the resource status of the user’s MoD are displayed. Free memory space on the
MoD is ample (condition green), but the mobile device is about to run out of energy

127

Fault-Tolerant Data Dissemination Based on Cooperating Smart Objects

Figure 10.5.: Graphical user interface of the patient surveillance application

(condition yellow). In the middle area of the GUI, a visual graph illustrates the
long-term development of the user’s heart rate. The panel features an upper and
lower threshold defining the interval of what is considered an uncritical heart rate
for the particular user. Each threshold can be raised or lowered by clicking onto
the two modifier-buttons on the far right. By using the buttons underneath the
display showing the graph, the user can scroll backward and forward in time (by
hours or minutes) to review the history of recorded heart rates and emergencies.
On the bottom of the GUI, the update frequency for the displayed heart rate graph
can be set.

In the figure, the heart rate is currently above the effective upper threshold,
which means that the patient’s current health condition is considered critical. This
is also indicated by a red LED for the pulse status in the top right of the GUI.

10.11.6. Virtual Counterpart

We implemented VCs as stand-alone Java applications that reside in the LAN at
well-defined addresses, and which communicate with other entities via TCP/IP
connections. The public interface of a VC provides two main methods: one for
(1) receiving remote messages from applications and from the back-end server, and
another for (2) receiving incoming synchronization or state recovery requests from
the MoD. For visualization and demonstration purposes, we also programmed a
graphical user interface. It logs and displays the current internal state and recent
activities of a VC (see Fig. 10.6). In the figure, the log indicates that configuration
updates (obtained from the patient surveillance application) were forwarded to the
MoD. Further, the log contains entries that indicate that the state of the MoD has
been periodically synchronized with and saved by the VC.

128

10.11 Prototype Implementation: Mobile Patient Monitoring Platform

Figure 10.6.: Visualization of virtual counterpart activity

10.11.7. Smart Objects

In our prototype implementation, we emulated physical smart objects with net-
worked Java applications. This allowed us to set up and execute an arbitrary
number of smart objects for demonstration purposes. The smart objects were exe-
cuted on different notebook computers featuring both infrastructure-based Wireless
LAN as well as ad hoc Bluetooth connectivity.

In order to visualize the activities and to modify the states of individual smart
objects, we implemented a graphical smart object monitoring application which is
shown in Fig. 10.7. In the top left corner of the corresponding GUI, the current
connectivity status of the smart object is displayed for the Wireless LAN (condition
red = no connectivity) and for the Bluetooth (condition green = connectivity)
communication interfaces. The connectivity status for the different communication
interfaces can be changed by clicking on the LED. Further to the right, two editable
fields enable the user to reset the amount of total and free memory that is available
on the smart object. In the top right corner, the currently effective amount of
total and free memory (which is subject to change over time as the smart object
receives and forwards data obtained from MoDs) is shown. The recently performed
activities of the smart object are logged in a status window below. In the current
situation displayed in the figure, the log shows recent data store (STORE) and
delete (DELETE) operations that were executed by the smart object as a result
of completed store-and-forward requests. The log also shows responses to inquiries
sent by the MoD about the free memory capabilities of the smart object.

129

Fault-Tolerant Data Dissemination Based on Cooperating Smart Objects

Figure 10.7.: Visualization of smart object state and activity

10.12. Conclusion

In this chapter, we presented a system architecture that achieves fault-tolerant op-
eration by means of localized cooperation and resource sharing. The infrastructure
exploits volatile user-centric redundancy provided by cooperative smart everyday
objects, which form part of the local volatile computing context of mobile devices
in ubiquitous computing environments (see Sect. 9.2.1).

Concretely, our system enables mobile, resource-limited devices to harness the
redundant memory storage and communication capabilities of proximate smart
everyday objects for achieving fault-tolerant data dissemination and communica-
tion, and energy-aware operation. The system puts mobile, resource-limited de-
vices into a position to cope with faults stemming from the temporary unavailabil-
ity of infrastructure-based connectivity, as well as with faults caused by resource
bottlenecks concerning memory space and energy. By means of using a virtual
counterpart as recovery proxy, the system also assists the user in recovering previ-
ously backuped settings and configurations in case the personal user device suffers
from a failure that results in the loss of the internal state of the device. Finally,
we presented a prototypical implementation of an exemplary patient surveillance
application, which makes use of our fault-tolerant service architecture based on
cooperating smart objects.

A limitation of the current version of our prototype system is that the smart ob-
ject infrastructure is mainly represented by software processes running on desktop
or notebook computers. Further work is required for developing and implementing
a general smart object interface for a broader range of mobile and stationary devices
as they appear in ubiquitous computing landscapes. In particular, smart object
functionality should be supported by mobile phones, smart phones, and personal
digital assistants, which already today constitute truly ubiquitous technologies (see
Sect. 3.3.3). A further limitation is the local ad hoc interaction based on Bluetooth
technology, which does not scale well to a large number of devices, takes long to
complete, and consumes much energy during device and service discovery [SR03].

130

10.13 Related Work

As part of future work, alternative ad hoc communication technologies such as
ZigBee [Zig06], for instance, should be evaluated.

10.13. Related Work

10.13.1. Smart Objects vs. Super-Distributed Objects

Arbanowski et al. [ASRPZ03] presented a distributed computing environment that
controls and manages large numbers of autonomous and decentralized objects,
which they refer to as Super Distributed Objects (SDOs). The goal is to create
a seamless, human-centered computing environment on the basis of users’ indi-
vidual communication spaces, which provides I-centric services that can adapt to
users’ individual requirements in individual living or working spaces. The notion of
“I-centric” computing is used to emphasize that the system is centered on human
behavior, which in the context of this dissertation corresponds to the notion of
“user-centric” computing.

Super Distributed Objects [OMG04] can be any real physical entity or device,
software component, or service. They are able to manage ad hoc communication
between highly dynamic distributed objects. In the process, each individual SDO
behaves autonomously, providing all necessary functions to enable an ad hoc ser-
vice usage, and it continually interacts with diverse and interconnected objects
while keeping the technology invisible to users. SDOs can further form dynamic
groups (clusters) that provide services in a flexible and decentralized way in het-
erogeneous computing environments. To control all the heterogeneous entities in a
common way, SDOs feature a well-defined open service interface, including various
management interfaces for SDO service discovery, state monitoring, configuration,
and resource reservation.

The so-called “I-centric Communications” approach based on SDOs enables a
flexible ad hoc composition and/or configuration of services according to per-
sonal user preferences, which may change over time: it supports adaptability as
the functionality of I-centric services is constantly adapted according to personal
user preferences (personalization) and acquired knowledge about the environment
(ambient-awareness).

Compared to the smart objects approach by Siegemund [Sie04b], which is con-
cerned with the localized interaction and cooperation between autonomous phys-
ical entities, the “key factor for I-centric Communications” is considered to be
service personalization and less the interaction between individual objects. In the
I-centric Communications approach, applications are envisaged that allow individ-
uals to assemble their service by simple “drag and drop” mechanism: similar to a
LEGO toolbox, the individual should be able to create and to deploy its I-centric
services [PZSA04]. Furthermore, to this time, fault-tolerance aspects of I-centric
services have not been in the focus of SDO research.

10.13.2. Outsourcing of Code and Remapping of
Applications

Marculescu et al. [MZSMM03] suggested techniques for the robust execution of
applications in distributed, embedded failure prone environments such as found in

131

Fault-Tolerant Data Dissemination Based on Cooperating Smart Objects

ubiquitous computing systems: the underlying execution environment consists of
ultra low power, failure-prone wired-network sensors with low-end computing capa-
bilities and possibly faulty communication and computation. The main idea is to
enable applications to make use of the redundancy provided by “hundreds of com-
putational devices” found in networked ubiquitous computing systems for enabling
fault-tolerant operation. The proposed techniques are based on the concept of code
migration: failing applications are remapped onto other hardware in environments
with redundantly deployed hardware. The goal is to achieve (1) adaptability of
applications to changes in the operating conditions (e.g., energy, memory, failures,
etc.) and (2) graceful quality-of-service degradation in order to increase the lifetime
of applications under various types of faults despite scarce energy resources.

The concept of application mapping and remapping could also facilitate the
development of fault-tolerant mobile applications by exploiting localized ad hoc
redundancy provided by smart objects. The Smoblets approach [Sie04a, SK04]
described in Sect. 10.1.3 also enables the outsourcing of executable program code
fragments to proximate physical devices for remote execution. Instead of relying on
a wired sensor network, it uses a distributed tuple space that provides a localized
shared memory space. The Smoblets approach could be modified to provide fault-
tolerant local processing, data management, and the sharing of communication
capabilities. With regard to the user-centric data dissemination, it is conceivable
to upload executable program code onto nearby devices for enhancing a smart
object in an ad hoc fashion with the asynchronous store-and-forward capabilities.

However, the execution of program code obtained from potentially untrusted
third parties constitutes a major security risk with regard to malicious code. For
reasons of trust and security, we do not consider the remapping of application
code onto independent, autonomous devices a viable solution for achieving fault
tolerance in open ubiquitous computing environments.

10.13.3. Heterogeneous Wireless Networks

Related to the idea of employing diverse communication capabilities is the work in
the domain of heterogeneous wireless networks, which investigates means for mobile
devices of using a variety of heterogeneous wireless access technologies. The goal
is to provide support to mobile devices for performing seamless mobility, adaptiv-
ity, bandwidth aggregation, and end-to-end communication [Bha97, HKS04] over
commercially available wireless networks. Further, heterogeneous wireless network
architectures have been proposed that integrate cellular networks with wireless ad
hoc networks [BWLW04, WH04]. Here major research challenges are the devel-
opment of dynamic and adaptive routing protocols. In contrast to heterogeneous
wireless networks, our approach abstracts from low-level communication issues such
as routing and seamless hand-offs. Instead, our work concentrates on the creation of
an application-oriented middleware architecture that employs redundancy provided
by proximate physical smart objects for fault-tolerant, user-centric data transmis-
sion and communication.

132

10.13 Related Work

10.13.4. Sensor Networks

CodeBlue [LMFJ+04] is an ad hoc sensor network infrastructure for emergency
medical care. It is designed to provide routing, naming, discovery, and security for
wireless medical sensors. The system is designed to enable continuous, real-time,
noninvasive, wireless monitoring and tracking of patients. This is achieved by using
an adaptive, multi-hop routing scheme for relaying vital data from patients to a
wired base station (such as a PC or laptop) or directly to handheld devices car-
ried by medical staff [MFJW+04]. In the process, CodeBlue requires a dedicated
physical sensor network infrastructure, which is to be deployed in the area of ac-
tivity, such as in a clinic and hospital environment, or in an ad hoc fashion at a
mass casualty site, for instance. In contrast to such a sensor network approach,
our system does not rely on dedicated sensor nodes as physical service infrastruc-
ture but instead makes use of existing, heterogeneous everyday smart objects that
populate ubiquitous computing environments (e.g., mobile phones, personal digi-
tal assistants, notebook computers, and augmented objects in general that feature
ad hoc and infrastructure-based communication capabilities). Further, we do not
consider multi-hop communication schemes, but instead use smart objects with
infrastructure-based communication capabilities as local communication gateways
for mobile user devices.

IrisNet [GKK+03] is an Internet-scale sensor network service for resource-intensive
data collection and processing. It relies on networked portable computers equipped
with multimedia sensors (e.g., webcams) as so-called sensing agents, and a back-
bone of internetworked desktop computers as organizing agents. IrisNet aims to
provide a software infrastructure for this platform, enabling users to query glob-
ally distributed collections of high-bit-rate sensors powerfully and efficiently. It
envisions the distributed filtering, storing, and sharing of multimedia data on a
planetary scale [CGN+05]. However, IrisNet does not consider support to resource-
limited mobile devices for enabling fault-tolerant, user-centric data transmission or
communication gateway services, as it is the case in our system.

10.13.5. Energy Efficiency of Mobile Devices

There has been considerable work on the energy efficiency of mobile, resource-
limited devices with a focus on the collaborative relationship between the operat-
ing system and applications [FS99, WBB02, FS04] and system-level power man-
agement [RV03, SRS03]. We consider power-efficiency based on the prioritization
of short-range ad hoc communication over long-distance infrastructure-based com-
munication by using nearby smart objects with communication capabilities as local
gateways.

10.13.6. Proxy-Based Recovery for Mobile Devices

Yao and Fuchs describe a proxy-based recovery scheme for wireless applications
running on resource-limited mobile devices [YF00, YF01]. A recovery proxy is used
to monitor the state of the connection of a mobile client to a remote back-end
server. The proxy continuously maintains a copy of the client’s state based on
messages exchanged between the mobile client and the server. The proxy further

133

Fault-Tolerant Data Dissemination Based on Cooperating Smart Objects

sustains the client’s connection to the back-end server when a mobile client unex-
pectedly disconnects. The mobile client itself does not participate in checkpointing
or message logging, thereby saving power, processor cycles, and bandwidth.

In our system, the virtual counterpart (VC) takes over similar tasks as part of
the fault-tolerance management. In contrast to the approach by Yao and Fuchs
where a proxy is non-persistent and mobile clients may migrate from one proxy
to another, the applied VC concept in our system constitutes a permanent virtual
representation with a unique address and identifier – the VC may outlive the phys-
ical representation of the mobile client. Further, in the recovery proxy approach,
only state information related to the message exchange and data transfer between
the mobile client and the back-end server is maintained and restored in the case of
crash failures. The VC, however, provides additional fault-tolerance functionality
by protecting the clients application state and configuration, and by serving as a
intermediate for the remote reconfiguration of the fault-tolerance strategy on the
mobile client.

Acknowledgments

The author wishes to thank Thomas Mazhuancherry [Maz03] and Christian Gegen-
schatz [Geg04] for their work on the implementation of the fault-tolerance mecha-
nisms and of the mobile patient monitoring platform.

134

11. Super-Distributed RFID Tag
Infrastructures

With the emerging mass production of very small, cheap Radio Frequency Identi-
fication (RFID) tags, it has become feasible to deploy such tags on a large scale.
In this chapter, we advocate distribution schemes where passive RFID tags are
deployed in vast quantities and in a highly redundant fashion over large areas
or object surfaces. We show that such an approach opens up a whole spectrum of
possibilities for creating novel RFID-based services and applications, including new
means of cooperation between mobile physical entities. We also discuss a number
of challenges related to this approach, such as the density and structure of tag
distributions, and tag typing and clustering.

11.1. Super-Distribution of Radio Frequency
Identification Tags

Passive RFID tags typically incorporate a miniature processing unit and a circuit
for receiving power if the tag is brought within the field of an RFID reader. The
tags are usually attached to mobile objects such as supermarket goods or other
consumer products, and when interrogated they send their identity to the reader
over distances ranging from a few centimeters up to a few meters, depending on
the type of tag.

RFID tags that are spread across a particular space in large redundant quantities
can in turn be regarded as a “super-distributed” collection of tiny, immobile smart
objects. The term “super-distribution” refers to the fact that a vast number of
tags are involved, similar to the notion of “super-distributed objects” in [OMG04].
Accordingly, we will refer to such a highly redundant tag distribution as a super-
distributed RFID tag infrastructure (SDRI). However, in contrast to the concept of
super distributed objects, which provides an abstraction for ad hoc communication
between physical entities and devices as well as software components and services,
we explicitly focus on the physical distribution of physical entities and on the de-
livery of location-aware services based on the resulting physical infrastructure.

A highly redundant and dense distribution of tiny objects is also a common
characteristic of wireless sensor networks which consist of a large number of very
compact, autonomous sensor nodes. However, the sensor network concept differs
fundamentally from the SDRI approach: in contrast to a fixed structure of inde-
pendent and passive tags as part of an SDRI, wireless sensor networks are based
on the “collaborative effort of a large number of nodes” [ASSC02b]. Further, the
topology of wireless sensor networks may change due to mobility on the part of
its nodes. In addition, wireless sensor nodes carry their own power supply used
to enable active sensing, data processing, and communication with other sensor

135

Super-Distributed RFID Tag Infrastructures

nodes, whereas passive RFID tags only have very limited functionality, generally
restricted to the reading and writing of a small amount of data. Also, compared
to typical wireless sensor networks with nodes communicating over distances of
tens of meters or more, mobile RFID antennas generally operate at a much shorter
range.

By deploying an SDRI in an area, the overall physical space is divided into tagged
and thus uniquely identifiable physical locations. This means that each tag can be
used as an identifier for the precise location it covers, where coverage is pragmati-
cally defined as the reading range of the tag. What we thus obtain can be described
as an approximate “discrete partitioning” of the physical space, of which different
implementations are possible. If the tags of an SDRI are distributed according to a
regular grid pattern, for example, then the partitioning of the physical space itself
can be considered a physical grid of uniquely addressable cells approximating the
concept of a regular occupancy grid, as applied in the field of mobile robot naviga-
tion [Elf89], for instance. If, on the other hand, the tags of the SDRI are distributed
in a random fashion, we obtain an irregular pattern of uniquely addressable cells.
Ideally, these cells are non-overlapping and cover the whole area. In practice, one
can only approximate these properties.

In addition to the potentially massive redundancy of RFID tags, two particularly
interesting qualities of SDRIs are that they enable mobile devices to interact with
their local physical environment, and that such an interaction can be performed
in a highly distributed and concurrent manner. In the following, we explain these
qualities in more detail.

11.1.1. Local Interaction with Physical Places

An SDRI enables local interaction with physical places by allowing mobile objects
to store and retrieve data in the precise geographic location in which they are situ-
ated (by writing to or reading from nearby RFID tags). Independent, anonymous
entities are thus in a position to share knowledge and context information in situ.

One potential application of this quality is self-describing and self-announcing
locations, where mobile devices can gain contextual or topological information on
the spot simply by querying the local part of the RFID tag infrastructure. For
instance, mobile GPS-enhanced vehicles could store position information in the
very place where they obtained it while moving within an SDRI. Once a sufficiently
large proportion of an affected area has been initialized in this manner, other mobile
devices can be helped to recalibrate their GPS receivers, and GPS-less devices can
use this location information in order to determine their position without using a
dedicated positioning system themselves. Position information stored in the SDRI
can also be used to establish a fall-back service in case the primary positioning
service of a mobile device or vehicle is temporarily unavailable, thus increasing the
overall availability of position information in the area. Further, an SDRI facilitates
the definition of arbitrary regions within physical spaces: virtual zones, barriers
and markers can easily be defined by marking particular tags (or the tags along a
border line) in the SDRI accordingly.

Furthermore, by enabling mobile devices to leave data traces, messages, or links
to virtual information (residing in a background infrastructure) wherever they
roam, SDRIs in general support the creation of physical anchor points that can

136

11.1 Super-Distribution of Radio Frequency Identification Tags

serve as local entry points into virtual spaces. It is therefore possible to use the
RFID tags of an SDRI as an alternative medium for implementing physical hyper-
links [Kin02, RB03] in virtual spaces, or as a means of attaching virtual annota-
tions [SDHM03] to physical places.

By providing a means for roaming mobile objects to anchor and thus persistently
store location-dependent sensor information on the spot, SDRIs also constitute a
self-sufficient alternative to services such as GeoWiki [FJB+04] that link virtual
information to geographical addresses. Here the use of an SDRI does not require
explicit knowledge of the current geographic location nor the continuous availability
of a dedicated location service with a high resolution and accuracy.

Figure 11.1.: A mobile object has left a virtual trace on an RFID tagged floor
space. Each tag that is part of the trace contains information about
the identity of the tracked physical entity and indicates changes in
the direction of movement (orientation) of this entity

Mobile objects may also leave virtual traces in the physical space they traverse.
By writing an anonymous ID to writable tags1 in the floor space, a vehicle, for
example, can leave a trace which can subsequently be retraced and followed by
other mobile objects (see Fig. 11.1). These traces could later be overwritten by
other vehicles or persons, so that they would fade away over time. By exploiting
tag redundancy and enforcing suitable tag writing strategies, it should be possible
to prevent the immediate deletion of a newly laid trace by following objects. For
example, a moving vehicle can randomly choose one k tags out of n available
tags per location in order to implement a redundant storing of trace identifiers.
Furthermore, a single tag can store the IDs of several different traces (memory
space permitting).

Further, as SDRIs provide mobile devices with the technical means of dispersing
electronic information throughout the physical environment, they can be employed
as a foundation for systems that have the goal of enabling environment-mediated
human-to-human communication [Gel98].

11.1.2. Global Collaboration Between Mobile Objects

An SDRI can be regarded as a scalable shared medium with (almost) unlimited,
independent, and highly distributed physical “access points”. In this respect, an

1Tags are physically writable if an RFID scanner can be used to write data directly onto the
tags. However, it is also possible to virtually write data onto read-only tags by means of a
supporting background infrastructure, as described in Section 11.1.4.

137

Super-Distributed RFID Tag Infrastructures

SDRI is particularly conducive to supporting global collaboration, where several in-
dependent physical entities work together on a single task in a highly decentralized
and concurrent fashion. This is possible since SDRIs enable mobile devices to store
and access data locally at the precise location they occupy at a given moment, so
that devices situated at different locations within an SDRI can read from or write
to tags simultaneously and independently.

Consequently, SDRIs are well suited for the implementation of a number of col-
laborative applications. Mobile objects that gather location-dependent information
can store that information directly at the respective location by means of the SDRI,
resulting in teamwork between anonymous entities. Such a loosely coupled collab-
oration can be exploited for initializing or “bootstrapping” a particular SDRI with
positional or topological information, for instance. Further, depending on their
capabilities, mobile objects can participate on the fly to achieve such a common
secondary goal while actually pursuing a different primary objective.

Another concrete example of collaboration is the collaborative exploration (map-
ping) of an uncharted territory. Since individual observations are based on globally
unique tag IDs, the different map-making observations of independent mobile en-
tities within a specific area can be unambiguously combined to form a global map.
Such an SDRI-aided collaborative map-making process scales well as it can be
performed by an arbitrary number of concurrent entities in a highly decentralized
fashion.

Of course, for some of the scenarios described to become possible, both techni-
cal challenges (e.g., reading from or writing to RFID tags at high velocities) and
conceptual issues (such as the question of commonly understandable topological
models and ontologies, or the problem of updating information previously stored
in the SDRI in order to reflect changes in the environment) have to be addressed.

11.1.3. Scope of Deployment

So far we have discussed a number of scenarios where SDRIs are deployed over
large floor spaces in order to provide novel means of local interaction and global
collaboration. However, the scope of SDRI deployment is not just limited to such
large-scale scenarios. There are also various situations where smaller-scale SDRIs
have their distinct benefits.

For a table equipped with RFID tags embedded in its surface, for example, the in-
trinsic qualities of SDRIs still apply: such a “small-scale” SDRI also yields uniquely
addressable cells, allowing multiple devices (or users) to interact with different sec-
tions of the tabletop simultaneously. If the tag distribution of the tabletop is known
or if each tag knows its position with respect to the local coordinate system of the
table, a smart object on the table can also easily determine its position with regard
to the tabletop, or derive the relative distance of proximate smart objects on top of
the table by communicating and exchanging particular tag IDs or tag coordinates.
Similarly, a wall whose surface is coated with a layer of RFID tags can be turned
into a “smart notice-board”, featuring support for the positioning of objects that
are attached to it, and providing physical links to virtual information spaces to the
users of the notice-board.

138

11.2 Efficient and Redundant Large-Scale Deployment of RFID Tags

11.1.4. Physical vs. Virtual Tags

If RFID tags support read-write operation, then they obviously enable mobile
devices to store a certain amount of data directly on the physical tags themselves.
As a consequence, a mobile device can read from and write to the physical matter
at its respective location, literally speaking.

Accordingly, if the available physical RFID tags are of a read-only type, a mobile
device cannot directly write data to the tags. However, in this case we can still
use the unique ID of the tags to unambiguously map each physical tag of the
SDRI to a corresponding virtual tag residing in the background infrastructure.
Rather than writing to a physical tag within the direct range of the mobile device,
the device instead wirelessly connects to a virtual representation of the tag. The
virtual tag may either simply provide the basic data read/write operations of a
physical read-write tag, or even augment its capabilities by offering additional
services which cannot be implemented on the small physical tags themselves due
to resource limitations. One distinctive advantage of virtual tags over mere physical
tags is that they don’t suffer from physical resource limitations, enabling us to write
an almost unlimited quantity of data to a virtual representation of the physical tag.

To ensure instantaneous read/write access to virtual tags, continuous wireless
access to a background infrastructure that manages the virtually written tag-data is
needed (if the virtual tag representations are not maintained on the mobile devices
themselves that interact with the SDRI). In this case, the SDRI is no longer fully
self-sufficient.

11.2. Efficient and Redundant Large-Scale
Deployment of RFID Tags

The deployment of large quantities of tiny RFID tags over large areas necessitates
an efficient means of tag distribution. Instead of minutely distributing tags across
an area according to a rigid and well-defined pattern, which typically goes hand in
hand with a time-consuming calibration of the tags, we think that a highly redun-
dant random distribution of tags is often more favorable. Such a random distribu-
tion can be achieved in various ways. For instance, RFID tags could be randomly
mixed with various building materials such as paint, floor screed, concrete, etc.,
which is similar to the idea of mixing computer particles with “bulk materials” as
described by Abelson et al. [AAC+00]. Of course, in some cases such a procedure
requires quite durable and resilient tags. But even if a certain percentage of tags
were to be rendered defective in the process, the number of operable tags could be
controlled by applying the necessary degree of redundancy.

If tags are uniformly distributed in a random manner over large areas, we can
make assumptions about the average tag density and the coverage of the area. In
some cases we can even randomly distribute tags and still maintain a certain regular
distribution structure. By integrating RFID tags at regular intervals into carpet
weaving thread, for instance, it is feasible to weave a complete carpet or produce
carpet tiles that exhibited a regular RFID tag texture (e.g., forming a mesh of RFID
tags as it is the case with the Vorwerk RFID carpet [Vor05]). Even though we would
not know the absolute positions of the tags after an RFID-augmented carpet had

139

Super-Distributed RFID Tag Infrastructures

been laid out in a random fashion, we would still have precise information about
the distances between neighboring tags and about the overall tag density.

Although a random large-scale tag distribution enables a dense and, on average,
uniformly distributed coverage in a comparatively economic and straightforward
fashion, the procedure does pose some challenges. For instance, if the costs per
RFID tag are too high even in mass production, a dense large-scale deployment may
not be economically feasible. Further issues are the durability of RFID tags that
are embedded in a carrier material, and the “bootstrapping” of super-distributed
RFID infrastructures with respect to positioning and the provisioning of location-
dependent context information.

11.2.1. Deployment of RFID Readers vs. Tags

Rather than tagging large areas with small, cheap RFID tags, it is also possible
to distribute RFID reader antennas instead. By integrating an array of stationary
RFID antennas into the floor, as described by [ABO02], it is possible to detect
tags that pass over particular readers, or even track certain tags if the output of
several readers is combined and analyzed. Thus, by simply attaching a passive
RFID tag to a mobile device, the latter is freed from the extra burden imposed by
an energy-consuming RFID scanner.

However, such an approach has several disadvantages compared to the concept
of SDRIs. First, integrating readers or antennas into the floor or into surfaces is
resource-intensive, as quite a large quantity of expensive RFID readers and anten-
nas is needed to achieve a good resolution and coverage. For the continuous opera-
tion of such RFID equipment, additional energized electronic devices are required.
Furthermore, the deployment of the RFID equipment is complex and may require a
considerable amount of construction work, not to mention the costly maintenance
in the event that a device has to be replaced at a later point in time. Also, if the
antennas are embedded into the environment and the mobile entities are tagged
with passive RFID tags, the latter have only a limited means of controlling their
degree of “visibility”. The mobile objects cannot easily prevent themselves from be-
ing detected or tracked by the environment. If, on the other hand, the environment
is being tagged and remains passive, the mobile entity itself is performing the sens-
ing. Consequently, the mobile device remains in control of any interaction taking
place with the environment, thus facilitating the implementation and enforcement
of privacy policies, for example.

11.2.2. RFID Tag Distribution Patterns

In order to accomplish a large-scale distribution of RFID tags, there are a variety
of possible tag distribution patterns to choose from. Typical distribution patterns
include:

• Random uniform distribution: Tags are uniformly distributed over a certain
area in a random manner.

• Regular distribution: Tags are distributed in a regular pattern, but usually
with random tag identification numbers. Typical regular patterns are:

140

11.2 Efficient and Redundant Large-Scale Deployment of RFID Tags

– Grid pattern: Given a grid with edge length d, each non-border tag has
four nearest adjacent neighbors at a distance d and four farther adjacent
diagonal neighbors at a distance sqrt(2) ∗ d.

– Equilateral triangulation pattern: Each tag has six equidistant neighbors
at a distance d.

From the perspective of a mobile object, random tag distribution patterns have
inherently different properties compared with regular patterns. One example is il-
lustrated in Fig. 11.2. We expect there to be other generally advantageous patterns
for the distribution of RFID tags, such as irregular but non-random distribution
patterns, for example. This calls for the investigation of beneficial tag distribution
patterns and their respective properties as part of future research.

Reader

Rea
der

Reader

Rea
der

Rea
der

Reader

Rea
der

Rea
der

ReaderReader

Figure 11.2.: In an area of randomly and uniformly distributed tags, a mobile reader
will come across another tag while moving on a straight path with
probability p > 0 depending on the tag density and the distance
traveled. In regular RFID tag distributions, such as a grid structure,
it is possible that a mobile reader may choose a straight path where
it will never encounter a single tag

11.2.3. Sparse vs. Dense Tag Distributions

The maximum density of an RFID tag distribution that can be achieved in an
SDRI primarily depends on the properties of the underlying RFID technology. A
secondary aspect is the required degree of resolution and the degree of tag redun-
dancy, which can be expressed by the average number of tags that are within the
range of the mobile reader antenna at an arbitrary location, for example.

Sparse Non-Overlay Tag Distribution

If the RFID technology used for the realization of an SDRI does not support col-
lision detection and resolution, only a single tag should be within the range of the
reader antenna at any given location. We call this a sparse tag distribution. In
this case, the maximum tolerable tag density of the SDRI is limited by the char-
acteristics of the available reader antenna. The distributed tags should be spaced
in such a way that each tag exclusively covers an area (typically larger than the
scan range covered by the reader antenna). Otherwise, the tags cannot be reliably

141

Super-Distributed RFID Tag Infrastructures

scanned due to frequently occurring collisions. But even if collision resolution is
available, one might deliberately prefer a non-redundant RFID tag distribution in
order to simplify or speed up tag processing.

Figure 11.3.: Examples of sparse non-overlay tag distributions: a) random b) grid
c) triangular. The circles enclosing the tags indicate the idealized
area in which a specific tag can be detected

However, a sparse, non-overlapping tag distribution has several disadvantages.
Firstly, it results in an inflexible partitioning of the covered area into coarse-grained
cells whose dimensions are defined by the range of the mobile reader antenna.
Secondly, the antenna fields of RFID antennas projected onto a planar surface are
often circular, elliptical, or even irregular. As a consequence, in these cases a non-
overlapping tag distribution would not cover the entire area, but would result in
“blind spots” at the fringes where no tags will be detected at all by such antennas
(see Fig. 11.3). Thirdly, a non-overlapping tag distribution is not redundant, which
means that tag failures cannot be compensated. Even if blind spots at the fringes
of non-overlapping detection ranges can be regarded as negligible transition zones
and therefore as acceptable, the failure of single tags would result in ever larger
areas where no tag can be detected at all.

Dense Overlay Tag Distribution

In order to establish an SDRI with overlapping tag scan ranges, so that multiple
tags can be detected per scan and per location, the RFID system must support
collision arbitration or resolution. In this case, the tolerable tag density is limited
firstly by the technically viable proximity of tags at which these tags still respond
correctly during a scan (and are unaffected by tag detuning [FL04], for instance),
and secondly by the maximum number of tags within antenna range that can be
detected simultaneously and in a reasonably short time by the anti-collision scheme.
Both factors depend on the particular characteristics of the RFID system.

Figure 11.4.: Examples of dense overlay tag distributions: a) random b) grid c) tri-
angular

Dense overlay tag distributions allow us to achieve a fine-grained and complete
tag coverage without “blind spots” (see Fig. 11.4). An important advantage is

142

11.3 Initial Prototype Development and Assessment

the introduction of redundancy with respect to the number of RFID tags that are
detectable per scan at a given physical location. By using an anti-collision system
and a sufficiently high scan range, we can detect several tags per location. A lo-
cation can then be described by the set of all the tags that are detectable at the
respective place. If we detect several tags, we can calculate the center point of their
locations and use that value as a position approximation for the current location
by using localization techniques as proposed in [BHE00], for instance. This has the
benefit of increased robustness with regard to tag failures: if a tag is destroyed or
fails over time, we still detect the remaining functional tags at a location.

11.2.4. Tag Typing and Clustering

Even though each RFID tag in an SDRI has its own unique ID, in certain situations
it may be sufficient to discern only particular categories or types of tags. For the
large-scale deployment of RFID tags within a building, for example, one might
want to use different types of tags in different sections of a building, such as a
tag type A for corridors, a type B for public spaces, a type C for private areas,
and another type D to mark stairways and elevators. So in addition to a unique
tag ID, each tag could also be equipped with an additional data field containing a
predefined type identifier. If the RFID tags supported physical (or virtual) write
access, it would be possible to “impregnate” the desired type identifiers onto tags
after their distribution. Alternatively, tags of a particular type can be grouped and
pre-packed together for efficient deployment.

There are many different fields of application for tag typing and clustering,
such as marking potentially hazardous areas for visually impaired people who are
equipped with a smart cane2 (e.g., to warn the person about an approaching stair-
way), or defining different area categories for mobile robots (e.g., virtual barriers).

11.3. Initial Prototype Development and
Assessment

As part of a first practical assessment of the feasibility and versatility of our ap-
proach, we implemented the prototypes of two SDRI-based applications using the
Hitachi mu-chip [Hit06] and LEGO Mindstorms [LEG06]. The first prototype is a
location-aware autonomous vacuum cleaner [Dom04] equipped with a mobile RFID
reader and antenna, which adjusts its behavior based on tags embedded in the floor
space at its particular location, such as avoiding areas that are marked as off-limits
or staying within an area surrounded by a virtual barrier (consisting of tags that
have been marked accordingly in the teaching mode of the mobile robot).

The second explorative prototype system was a system for collaborative map
making where independent mobile vehicles (each again equipped with a mobile
RFID reader and antenna) explore a previously unknown area (see Fig. 11.5).
Starting from a known position, each vehicle chooses a random path through the

2Goto et al. developed a smart cane with an integrated RFID reader, for instance. It responds to
RFID tags which serve as “data-carriers” embedded in the floor at places of interest [GHM99].
Here an SDRI could provide a fine-grained and complete distribution of data-carriers over
large areas, as opposed to the cumbersome process of deploying such data-carriers selectively.

143

Super-Distributed RFID Tag Infrastructures

Bumper
(Pressure Sensor)

LEGO
Infrared
Transmitter

RFID
Reader

LEGO
RCX

LEGO
Motor

Bumper
(Pressure Sensor)

LEGO
Infrared
Transmitter

RFID
Reader

LEGO
RCX

LEGO
Motor

Bumper
(Pressure Sensor)

RFID
Antenna

Rotation
Sensors

Bumper
(Pressure Sensor)

RFID
Antenna

Rotation
Sensors

Figure 11.5.: Mobile model vehicle built using the LEGO Mindstorms [LEG06]
technology. The vehicle motor and sensors are operated by the LEGO
RCX unit, which receives control commands from or sends status in-
formation back to the LEGO infrared transmitter which is connected
to a laptop computer. The RFID reader is also connected to the
laptop on which the software for reading tags and calculating the tag
positions is executed. The bottom view of the vehicle shows the RFID
antenna, which is mounted approx. 1 cm above the floor, and the two
rotation sensors measuring the revolutions of the back wheels. At the
front of the vehicle, a bumper is connected to a pressure sensor to
detect collisions while the vehicle is in motion

area and keeps track of the tags encountered and the relative inter-tag distances.
The separate tag observations are subsequently merged by means of an efficient
least-squares coordinate transformation algorithm, yielding a global map contain-
ing the absolute positions of known RFID tags. This map can then be used by other
mobile devices for navigation and self-positioning purposes. For the map-making
trials, a sparse random tag distribution on a 0.5 × 0.5 m floor area has been used.
The mobile reader antenna covers an area of about 9 × 6 cm at a distance of about
1 cm above the floor. Using mu-chips equipped with a 4 cm long film antenna
(inlet), a density of about 120 tags/m2 has proven to be sufficient for this type of
application.

We further investigated and demonstrated the effectiveness of the super-distri-
bution concept with regard to small-scale application scenarios. For instance, we
prototypically implemented and evaluated a system for the secure reconstruction of
paper documents that are densely tagged with RFID tags [Pyt04], and an RFID-
augmented jigsaw puzzle game [Boh04b].

11.4. Conclusion

Based on our initial experiences described in Sect. 11.3, we decided to perform
further experiments to explore different tag distribution patterns and tag densities
in practice and to determine their influence on scalability, efficiency, and robust-
ness. Apart from building specific SDRI-based applications for demonstration and
more systematic evaluation purposes, we also used this work as a starting point
for developing a general middleware that provides an efficient and reliable means

144

11.4 Conclusion

of accessing an underlying physical SDRI. We investigated fault-tolerance aspects
such as fault-tolerant read/write operations, an automated maintenance procedure
for the “hot” integration of newly distributed tags during operation, and high-level
services such as location management, self-positioning, and local data sharing. We
were particularly interested in the issue of robustness and the degree of fault toler-
ance that can be achieved through massive redundancy of “super-distributed” RFID
tags. The resulting fault-tolerant service middleware based on super-distributed
smart entities and its prototypical reference implementation are presented in the
following chapters.

Acknowledgments

The location-aware autonomous vacuum cleaner was built by Svetlana Domnitcheva,
Julio Perez, and Matthias Sala [Dom04]. We would further like to thank Marco
Bär for his work on the collaborative map-making prototype [Bär04], and Hitachi
SDL, Japan, for providing us with mu-chips and tag readers.

145

Super-Distributed RFID Tag Infrastructures

146

12. A Fault-Tolerant Service
Middleware for
Location-Aware Systems
Based on Super-Distributed
Smart Entities

In the previous chapter, we presented distribution schemes where passive RFID
tags were super-distributed (i.e., deployed in vast quantities and in a highly redun-
dant fashion) over large areas and object surfaces. In this chapter, we introduce the
concept of super-distribution of smart entities as a generalization of the concept
of super-distributed RFID tag infrastructures, with the goal of providing physical
infrastructure support for the development of reliable and highly available location-
aware applications. We outline a middleware that provides a set of fundamental
location-dependent services where fault tolerance is achieved on two levels. Firstly,
the abundance of smart entities is exploited to compensate for the failure of indi-
vidual smart entities through local data replication, data fusion, and abstractions.
Secondly, the localized interaction of mobile devices with fixed smart entities in
the environment allows for the realization of dependable services that remain op-
erational even in the case of physical damage in other areas of the infrastructure,
and in the absence of network connectivity and of remote services.

12.1. Dependable Location-Aware Services for
Mobile Devices

In recent years, location information has become increasingly important for vari-
ous mobile and portable devices, opening diverse application fields [MB03]. Put
in general terms, location information can be used to provide services whose ex-
ecution can be dynamically adapted to the characteristics of the user’s particular
context at his or her current location [CLMZ03]. At the same time, as a result of
ongoing advances in miniaturization and electronic components, it has become fea-
sible to densely distribute small computerized entities in large quantities in physical
environments or over object surfaces, as we saw earlier in the example of super-
distributed RFID tags in Chapter 11.

Based on these observations and results, we motivate super-distribution as a
general design principle for the realization of reliable and highly available location-
dependent services for mobile devices. The main idea is to distribute small com-
puterized physical objects in large quantities over object surfaces, such as across
floor spaces or walls, to obtain a dense and highly redundant distribution of “smart

147

Fault-Tolerant Service Middleware Based on Super-Distributed Smart Entities

entities”. The resulting smart entity infrastructure then forms the basis for the
development of a fault-tolerant middleware that provides a set of fundamental
location-aware services and abstractions. In return, this middleware serves as a
foundation for the development of dependable location-aware mobile applications.

12.2. Middleware Support for Super-Distributed
Infrastructures

12.2.1. Super-Distribution of Smart Entities

We define a smart entity (SE) as a physical artifact that is enhanced by embedded
computing technology of some kind. As minimum requirements of a SE we demand
that it has a globally unique identifier and a read/write memory, both of which can
be accessed by mobile user devices via wireless ad hoc communication. Examples
for SEs are simple passive radio frequency identification (RFID) tags as well as
self-powered embedded sensor nodes.

In accordance to our earlier definition of super-distribution of RFID tags in
Sect. 11.1, we define super-distribution of smart entities as the process of deploy-
ing and distributing SEs in a dense, highly redundant (or abundant) fashion over
some physical space. We call the resulting infrastructure a super-distributed smart-
entity infrastructure. In this context, dense means that a mobile device that moves
within a SE infrastructure will always find at least one SE within ad hoc commu-
nication range for in situ interaction or cooperation. Highly redundant means that
the degree of redundancy is not deliberately set to a fixed value, but determined
by an abundance of entities found in any physical location of the infrastructure.
Abundance refers to a quantity of entities that significantly outnumbers the amount
of entities that, ideally, would be required for a non-fault-tolerant, non-redundant
operation of SE-infrastructure-based services in the absence of disturbances. In the
following, we assume that the individual SEs are permanently attached to a sub-
strate (e.g., floor spaces or object surfaces) at a physical place that is well-defined
within a local or global coordinate system.

For applications that support mobile users, interaction with the super-distributed
smart-entity infrastructure is performed by means of a mobile device (MoD). The
MoD features a wireless communication interface, which enables it to communi-
cate in an ad hoc fashion with SEs in its immediate vicinity. On each MoD, an
independent instance of the SE infrastructure service middleware is installed and
executed. A MoD can be carried by a user, or it may be part of other devices,
such as being integrated into a mobile phone, a vehicle, or a blind man’s stick, for
example. In our model, interaction exclusively takes place between MoDs and SEs.
At this time we do not consider interaction to take place between the distributed
SEs themselves.

12.2.2. Middleware Support

The dense distribution of smart computerized entities across object surfaces (to
serve as the foundation of a super-distributed service infrastructure) is new in
the sense that its technical and economical feasibility has only recently evolved

148

12.2 Middleware Support for Super-Distributed Infrastructures

owing to technological advances in microelectronics and embedded computing (cf.
Appendix B.3). As a consequence, so far there is little system support for the
development of applications and services based on such a physical infrastructure.

While in general the ad hoc creation of specialized applications based on super-
distributed smart entities is always possible, such a procedure is bound to lead
to closed systems with a narrow, limited scope and functionality. To support the
rapid development of whole classes of applications, a fundamental challenge is to
provide a set of general, basic services that satisfy a broad spectrum of requirements
and needs. The development of reusable, basic services has the advantage that it
greatly facilitates the development of higher-level services and applications.

In order to identify location-dependent services that particularly benefit from
the availability of a super-distributed smart-entity infrastructure, we performed an
analysis of the needs of various ubiquitous computing projects [Pir04]. We further
identified a number of basic building blocks that encapsulate the hardware-specific
aspects of the underlying physical infrastructure, provide low-level services and
abstractions, and mask the complexities of fundamental maintenance and fault-
tolerance management tasks from higher-level services. In a second step, we com-
bined the various services into a layered middleware framework, according to their
respective levels of specialization and universality. The resulting middleware archi-
tecture will be discussed in detail in Section 12.4.

12.2.3. Middleware Employment

From the user’s perspective, interaction with the SE infrastructure is performed by
means of a mobile device (MoD), which features a wireless communication interface
for communicating in an ad hoc fashion with SEs in its immediate vicinity. On each
MoD, an independent instance of the service middleware is installed, executing the
individual middleware services as separate processes. Services can be turned on or
off and configured separately. A MoD can be carried by a user or may be part of
other devices, such as being integrated into a vehicle or into a blind man’s stick,
for example.

The execution of the service middleware on the MoDs themselves (rather than
providing the services as part of a fixed background infrastructure) empowers the
devices to interact with the super-distributed smart-entity infrastructure in an au-
tonomous fashion. In particular, by maintaining information in SEs at the physical
places where it is required, middleware services on a MoD can remain operational
even in the case of physical damage in other areas of the infrastructure, and in the
absence of network connectivity or the unavailability of remote services.

12.2.4. Dependability Issues

For the design and development of our middleware, dependability and fault-toler-
ance aspects played an important role at two different levels of abstraction: Firstly,
the middleware services themselves had to be robust and fault-tolerant. On the one
hand, they had to be able to tolerate failures of individual SEs during operation.
On the other hand, these services had to be capable of integrating newly distributed
SEs with minimal user intervention, to achieve a high serviceability (i.e., the abil-
ity to undergo maintenance without shutting down the system), and to minimize

149

Fault-Tolerant Service Middleware Based on Super-Distributed Smart Entities

maintenance overhead. Secondly, the middleware should enable the development
and the operation of reliable and highly available location-aware applications. Here
the main goal was to exploit the locality aspect of a super-distributed smart-entity
infrastructure in order to provide basic services in situ which still function in the
absence of network connectivity and background computing infrastructures.

12.2.5. Design Goals

An important conceptual design aspect of the realization of a middleware based
on an underlying super-distributed smart-entity infrastructure for providing robust
and reliable location-dependent services to mobile devices was the masking of the
complexity stemming from fault-tolerance management, SE hardware access, and
internal maintenance tasks. For that, it was important to decouple the operation
of the middleware from the availability of individual SEs. The aim here was to
compensate for single faulty SEs without losing the vital information linked to
them, and without disrupting the services that make use of these entities. More
specifically, we identified and implemented the following middleware design goals:

• Hardware Abstraction: The technology-dependent aspects of the underlying
SEs are hidden from higher level services and applications, and abstractions
that are independent from individual physical SEs are provided.

• Fault Tolerance: The redundancy resulting from the super-distribution of SEs
is exploited for the realization of fault-tolerant basic services and operations.

• Self-Organization and Self-Calibration: The services offered by the middle-
ware can perform initialization and calibration tasks autonomously without
explicit user involvement.

• Self-Healing Capabilities: Maintenance tasks are performed autonomously,
reducing the need for manual intervention and servicing to a minimum. For
instance, the middleware supports the integration of additional SEs that are
distributed at a later point in time and without a noticeable service interrup-
tion.

• Transparency: The complexities of fault tolerance, self-organization, and
self-healing mechanisms as well as hardware-specific details are masked from
higher-level services and applications.

• Disconnected Operation: The middleware services maintain a certain func-
tionality even in the absence of network connectivity or during the unavail-
ability of remote networked services.

• Extensibility: The middleware architecture is modular and extensible, facili-
tating the integration of additional services.

12.3. Motivating Usage Scenarios

In the following, we present scenarios that highlight some opportunities and ad-
vantages of services based on a super-distributed smart-entity infrastructure from
the perspective of the user.

150

12.3 Motivating Usage Scenarios

12.3.1. User-Centric Location-Dependent Services

Within a super-distributed smart-entity infrastructure, users directly interact with
the SEs at their current location. For geographic guidance and navigation, a MoD
can determine its current position by calculating an estimate from the individual
positions stored on nearby SEs, or simply look up the current location with the
help of a local map containing the positions of individual SEs. Users are able
to share information about local points of interest or leave personal messages di-
rectly in the physical places where the information is most helpful and required.
Super-distributed public directories (i.e., directories whose entries are physically
distributed across the SEs of the SE infrastructure) provide localized information
about room numbers or names of departments, offices, or personnel, enabling visi-
tors to find their way unassistedly even in unfamiliar places and buildings. Besides,
users can leave virtual data traces in an ad hoc fashion on the SEs passed along
the way, permitting friends or colleagues to follow at a later point in time to places
where an activity or meeting is to take place. By integrating the MoD with a
blind man’s stick or with a wheelchair, these services can also be made available to
visually impaired people or to persons with walking disabilities. In addition, this
enables these users to share information tailored to their particular needs in situ,
such as information about nearby obstacles, dangerous crossings, and wheelchair-
accessible ramps and gangways.

12.3.2. Dependable and Safety-Critical Services

Disasters caused by natural or human factors (e.g., earthquakes, large fire incidents,
or terrorist attacks) often lead to the failure of infrastructure services in buildings
or public places, disrupting electricity and communication networks. However, by
maintaining safety-critical information in SEs at the physical places where it is re-
quired by rescuers, services based on super-distributed smart-entity infrastructures
remain operational in physically intact areas of the super-distributed smart-entity
infrastructure even when conventional background service infrastructures collapse
or other areas are damaged, as the MoD directly interacts with local SEs via
short-range ad hoc communication. In addition, a super-distributed smart-entity
infrastructure allows for the provisioning of dedicated emergency services. For in-
stance, by means of permanent virtual data traces stored on the SEs, it is possible
to provide services that direct users (including professionals such as firefighters and
emergency physicians) to the nearest emergency exit or life saving equipment.

12.3.3. Systems Support for Collaborative Activities

In some cases the activities of individual MoDs can be combined to contribute
to a global task. For instance, MoDs that have a third-party positioning service
(such as GPS) at their disposal can store obtained position readings on the SEs
at their respective places. Thus the super-distributed smart-entity infrastructure
can be “bootstrapped” with position information over time through a collaborative
effort. Another example for collaboration is the construction of a global site map
of a super-distributed smart-entity infrastructure by joining partial SE mappings
obtained from individual MoDs. A super-distributed smart-entity infrastructure
can also serve as a vast communal information space: the individual contributions of

151

Fault-Tolerant Service Middleware Based on Super-Distributed Smart Entities

users in different physical places can contribute to the creation of open, community-
driven information services and directories.

12.4. Middleware Architecture

Based on our analysis of fundamental location-aware services that may be sup-
ported by a super-distributed smart-entity infrastructure (see also Sect. 12.2.2),
we developed the layered service middleware architecture depicted in Fig. 12.1.
While this list of middleware services is not exhaustive, we consider it to be general
enough to accommodate a broad range of location-aware systems and applications.
By means of our chosen modular approach, additional services can easily be added
at a later point in time. The responsibilities of the different layers and the basic
capabilities of their respective services are described in the following sections.

Entity Read/WriteEntity Read/Write

Local
Data Sharing

Local
Data Sharing

Location
Manager

Location
Manager

Position
Manager

Position
Manager

Layer 1: Hardware Abstraction Layer

Layer 2: Core Service Layer

Region
Manager
Region

Manager

Layer 4: Application Service Layer

Layer 3: Higher-Level Service Layer

History
Manager
History

Manager

Generic Directory
Service

Generic Directory
Service

Sensor-Assisted
Pos. Reckoning

Sensor-Assisted
Pos. Reckoning

Advanced Map
Manager

Advanced Map
Manager

Generic Tracing &
Tracking Service

Generic Tracing &
Tracking Service

Device Presence
Manager

Device Presence
Manager

Specialized
Directory
Type X

Specialized
Directory
Type X

Specialized
Directory
Type Y

Specialized
Directory
Type Y

Specialized
Entity-based

Tracing & Track.

Specialized
Entity-based

Tracing & Track.

Specialized
Sensor-assisted
Tracing & Track.

Specialized
Sensor-assisted
Tracing & Track.

Topology
Manager

Topology
Manager

Layer 0: Physical Smart Entity Infrastructure Layer (Hardware Layer)

Collaborative
Map-Making

Collaborative
Map-Making

Basic Position
Reckoning

Basic Position
Reckoning

Basic Map
Manager

Basic Map
Manager

Figure 12.1.: Overview of the middleware for super-distributed smart entities

12.4.1. Hardware Abstraction Layer

The distributed physical SEs in their entirety constitute the physical SE infras-
tructure, which we refer to as Hardware Layer or Layer 0.

The Hardware Abstraction Layer (Layer 1) defines a generic and unifying in-
terface to the underlying physical SE infrastructure, which is represented by the
Entity Read/Write service. Middleware components on higher levels interact with
the physical SEs exclusively through this service, which offers methods for discover-
ing, writing data to, and reading data from nearby SEs. It also enables higher-level
middleware components to write either physically onto the present SEs, or virtually,
using a remote persistent memory space residing in the background infrastructure.
The latter makes it possible to provide resource-limited SEs with arbitrary, poten-
tially unlimited online content and memory space.

152

12.4 Middleware Architecture

12.4.2. Core Service Layer

The Core Service Layer (Layer 2) consists of basic abstractions and generic services
that operate on the physical SE infrastructure through the Hardware Abstraction
Layer:

Local Data Sharing: The Local Data Sharing service enables a MoD to share
data in physical places of the super-distributed smart-entity infrastructure
with other MoDs. Concretely, it offers methods for the fault-tolerant storing
and retrieval of data by writing to/reading from nearby SEs (Fig. 12.2(1)).
Fault tolerance is achieved by replicating information across multiple local
entities, with a configurable replication degree. As a background maintenance
job, the Local Data Sharing service automatically detects newly added SEs
and, if necessary, replicates data from nearby SEs according to the effective
replication settings.

Location Manager: The Location Manager provides a MoD with methods to de-
fine and resolve abstract locations: a Location is defined by the set of station-
ary SEs that are detected in a specified range in the corresponding physical
place, and by a unique identifier (Fig. 12.2(2)). Thus defined Locations are
decoupled from the existence of individual physical entities that typically
have a limited (or shorter) life-time. Locations can overlap to a certain de-
gree, which means that individual SEs may belong to several Locations at
the same time. The valid Location at a particular physical place is then de-
termined by finding the previously defined Location whose set of SEs has the
greatest overlap with the set of locally detected SEs (Fig. 12.2(3)). Taken
together, Locations form a logical partitioning of a SE infrastructure. Lo-
cation identifiers are directly stored on the defining SEs themselves. This
enables other MoDs to identify Locations that have previously been defined
at a physical place.

Region Manager: The Region Manager provides an abstraction for regions, which
enables the logical description of geographic areas of arbitrary shape, based
on the Location abstraction. A Region is defined as a collection of Loca-
tions and is assigned an arbitrary symbolic name. The Region Manager also
provides methods for creating and detecting Regions, and an event-based
notification service where clients can subscribe to occurring Region enter-
ing/leaving events. A global instance of the Region Manager can be used to
make defined Regions known to other MoDs in the super-distributed smart-
entity infrastructure.

Position Manager: The Position Manager offers methods that write position in-
formation (global or local position coordinates) to or retrieve it from physi-
cally nearby SEs. A position is calculated in a well-defined way (e.g., as the
arithmetic mean) from the single positions of all SEs in range of the MoD
executing the service (Fig. 12.2(5)). New position information to be stored
on a SE is merged with the current position information (e.g., by calculat-
ing a new weighted arithmetic mean), respecting the number of previously
combined position values (Fig. 12.2(4)). As a background maintenance job,
newly detected SEs are initialized with available position information.

153

Fault-Tolerant Service Middleware Based on Super-Distributed Smart Entities

Basic Position Reckoning: Based on knowledge about the stationary SE distri-
bution (such as the average distance between entities), Basic Position Reck-
oning service is responsible for providing basic information on the motion of
the MoD running the service, such as estimations for the speed and traveled
distance of the MoD.

Basic Map Manager: The Basic Map Manager service creates geographic maps
of individual SEs based on position information obtained from the Position
Manager or Position Reckoning services. Partial map observations can be
sent to a global service instance residing in the background network infras-
tructure. A global Basic Map Manager instance combines partial maps into a
single global map of the super-distributed smart-entity infrastructure. It also
performs maintenance operations, such as the integration of newly discovered
entities in previously charted areas, as well as the removal of defunct entities
which were no longer detected during subsequent mapping passes.

History Manager: The History Manager allows the user to keep track of certain
activities performed while using the middleware. For that, each middleware
service component can insert logging statements (history events) into the
executable code where applicable. Later, during operation, logging can be
activated or deactivated for individual services by the user. The History
Manager offers methods for retrieving logged history events for a specified
service and a given time interval. For instance, a user may be interested in
the logged readings of the Position Manager service in order to be able to
backtrack his path later on when searching for a personal item that got lost
or was left behind somewhere along the way.

12.4.3. Higher-Level Service Layer

The Higher-Level Service Layer (Layer 3) is represented by a collection of more
specialized services and service templates that are built on top of the core services.
Typically these higher-level services do not directly operate on the underlying SE
infrastructure, but use the abstractions provided by the core services instead. We
identified the following higher-level services:

Device Presence Manager: MoDs can register with the Device Presence Man-
ager service and thus indirectly inform other MoDs about their names, cur-
rent positions, or locations. The Device Presence Manager offers methods for
registering (lease-based registration) and looking up MoDs, and for calculat-
ing distances between MoDs (based on their Locations or positions).

Advanced Map Manager: The Advanced Map Manager manages a geographic
representation of the environment based on abstract Locations and Regions
that were encountered during the movement of the MoD performing the map-
ping. Individual mappings can be shared among multiple MoDs. A global ser-
vice instance manages individual map representations of a super-distributed
smart-entity infrastructure, combines them to obtain a global map model of
the area, and performs map maintenance operations such as the removal of
disbanded region definitions.

154

12.4 Middleware Architecture

0 1 2 3 4 5 6 7 8 9 10 11
X [dm]

0

1

2

3

4

5

6

7

8

Y
[d

m
]

1 2

A

B

C

D

3
(3,5)

(3,5)

(3,5)

(2.5,6)
(2,7)

(2,7)
(2,8)

(2,9)

(2,9)

(2,9)

(-,-)

4

5
Task: Position?

PM: (2,8) as mean!

Task: Current Location?
LM: D by majority vote!

Task: a) Store or
b) retrieve data in-situ!

LDS: Done.

Task: Current Location?
LM: None found, created B!

x

x x

a
a

a

b

b

Figure 12.2.: Functionality of exemplary middleware services: (1) LDS: local data
sharing; (2) Location Manager (LM): defining a new Location; (3)
LM: resolving the current Location; (4) Position Manager (PM): SEs
initialized with position information; (5) PM: calculating an estimate
for the current position

Topology Manager: The Topology Manager service features an API and a graph-
ical front end for defining, maintaining, and visualizing Regions based on a
map model of the physical environment.

Generic Tracing and Tracking: The Generic Tracing and Tracking service pro-
vides a generic framework for placing and detecting data traces. A data trace
consists of a sequence of data objects containing a trace identifier and a times-
tamp. The data objects are stored on the physical and/or virtual memory
of SEs found along the way (tracing mode). A user can reveal a personal
trace identifier to other users, enabling them to use the Generic Tracing and
Tracking service for following the trace (tracking mode).

Generic Directory: Directory services have been recognized as a suitable means
for providing location information to location-aware applications [Maa98]. In
our middleware architecture, we introduced a Generic Directory service which
combines localized information access within the super-distributed smart-
entity infrastructure with directory functionality. For that, the service defines
a generic interface for searching, reading, comparing, adding, modifying, and
deleting entries stored on local SEs.

12.4.4. Application Service Layer

In the Application Service Layer (Layer 4), we find application-specific services and
specialized instantiations of service templates.

155

Fault-Tolerant Service Middleware Based on Super-Distributed Smart Entities

Examples for services on the application level are specialized directory instan-
tiations, such as directories for room facility management or personnel within an
office environment, or directories with information on shops, entertainment facili-
ties and restaurants within a shopping mall. Further examples are enhancements
to middleware services that require additional hardware or third-party services,
such as sensor-assisted tracing/tracking and position reckoning services. Examples
for location-dependent applications based on the SE infrastructure middleware are
navigation systems, which may be based on the Position Manager or Map Manager
services, for instance.

On the application level, it is also feasible to combine different middleware ser-
vices for the delivery of services tailored to specific user groups. For instance,
the positioning and map-making capabilities of the super-distributed smart-entity
infrastructure can be advantageously combined with directory services to provide
customized services for persons with disabilities. In general, the middleware ser-
vices can be favorably integrated within systems that aim at improving the per-
ception of physical surroundings and the interaction with physical locations, such
as with the Chatty Environment [CKR04], a system which provides information
on physical places to visually impaired users by means of speech output and other
feedback mechanisms.

12.5. Middleware Design Aspects

12.5.1. Extensibility

Our middleware, which has been implemented as a prototype (see Sect. 12.6), is
based on an open and modular model: additional services are simply added to
one of the different layers as new separate components, according to the particular
dependencies and the degree of specialization.

12.5.2. Smart Entity Data Management

Some middleware services need to store data on SEs. This has to be performed in a
structured way in order to make it possible to discover and retrieve specific data at
a later point in time. To enable a basic form of data management, our prototype is
based on the concepts of Service Data Units (SDUs) and Smart Entity Directories,
which emulate a basic file system. An SDU encapsulates the data which is required
by a certain service to be stored on a single SE for a well-defined purpose. In other
words, an SDU represents a service-specific atomic data unit. Each SDU further
contains a descriptor which provides information on the type and amount of data
it contains, and meta information (persistence flag, dirty flag, CRC checksum). A
Smart Entity Directory lists all SDUs that are available on a particular SE and
shows the remaining amount of memory space.

12.5.3. Physical vs. Virtual Memory

Ideally, the Hardware Abstraction Layer and thus all higher middleware services
using this layer operate on the physical memory of the SE infrastructure, which we
call physical SE memory access. In practice, SEs only have limited resources at their

156

12.5 Middleware Design Aspects

disposal, which in particular applies to storage capabilities. Further, depending on
the underlying technology for memory storage and wireless communication, the
physical read and write access may be error prone and slow. For these reasons, we
have designed the Entity Read/Write service to also support virtual SE memory
access operations.

The virtual SE memory is maintained in a database residing in the background
network infrastructure or in the Internet, either as a domain-specific or as a global
service. The virtual memory not only mirrors the physical memory of the corre-
sponding SE, but also provides additional, virtually unlimited storage space. Ac-
cess to the virtual memory of a SE is only possible when that entity is physically
present within communication range. Whenever the physical memory of a SE is
modified (i.e., when a service writes one or more data items to the SE), its virtual
representation is updated accordingly.

12.5.4. Fault-Tolerance Management

In our approach, SEs represent the basic abstractions and elementary units of
the super-distributed infrastructure. The temporary unavailability or permanent
failure of SEs therefore is the primary source of faults that has to be dealt with by
the middleware.

By design, redundancy is an inherent quality of SE infrastructures, based on the
distribution of abundant quantities of SEs. In our middleware, this abundance is
instrumented in three ways for achieving fault tolerance:

Local Replication: The locality aspect of a SE infrastructure makes it possible
to locally replicate service data units required for the operation of middle-
ware services over multiple SEs. Thus it is possible to locally increase the
number of replicas of a specific SDU from 1 to N , where N may be defined
statically or calculated dynamically according to the local SE density and a
given replication ratio. The maximum value of N depends on the density of
the SE distribution and on the communication range of the MoD interacting
with the SEs. If N -fold replication is technically feasible, the failure of up
to N − 1 individual SEs can be tolerated by middleware services using local
data replication.

Local Data Fusion: Fault tolerance may also be achieved by means of data fusion
instead of replication, if appropriate. For instance, it is possible for the
Position Manager to interpolate the position coordinates at a certain physical
location by calculating the mean of the individual positions retrieved from
nearby SEs. In this case, the absence or failure of single SEs does not lead to
the failure of the service, but only to a gradual and acceptable degradation of
its quality, as long as the density of the SE distribution does not drop below
a critical value.

Abstractions: Fault tolerance is further achieved by providing persistent funda-
mental abstractions which decouple the interaction between services and the
SE infrastructure from individual physical SEs, which are potentially short-
lived and prone to failures. We have introduced two such abstractions in

157

Fault-Tolerant Service Middleware Based on Super-Distributed Smart Entities

the Core Service Layer, called Location and Region. These abstractions re-
move the dependence of services from single physical entities by mapping ge-
ographic places to redundant sets of SEs rather than to individual SEs. Thus
it is possible to persistently link information and services to well-defined ab-
stract locations and regions rather than to individual entities which are liable
to fail and become unavailable over time.

12.5.5. Smart Entity Infrastructure Maintenance

The individual SEs of a SE infrastructure are liable to fail over time. In the long
run, this leads to a deterioration of the infrastructure as the density of the SE
distribution decreases. A direct consequence hereof is that the replication degree
of data decreases accordingly. Therefore, in order to preserve the fault-tolerance
degree of the middleware services based on the availability of redundant SEs as part
of the super-distributed smart-entity infrastructure, some form of maintenance is
required.

In particular, to keep up the SE density of the SE infrastructure and thus to
sustain readiness of operation, additional SEs have to be replenished (i.e., redis-
tributed) from time to time. Here a major challenge is to support the integration of
newly distributed SEs during runtime, which we refer to as hot-integration of SEs.
The way in which such a hot-integration can be performed depends on whether a
middleware service is stateful, that is it does require data to be stored on the SEs
themselves during operation, or stateless, if it does not depend on such data.

Maintenance of Stateful Services. In our middleware system, stateful services per-
form maintenance and repair tasks in an independent and autonomous manner,
thus displaying self-maintenance and self-healing capabilities:

Replication Maintenance: Services that use replication continuously monitor and,
if necessary, restore the desired degree of data replication per SDU (while the
MoD is idle). The Local Data Sharing service, for instance, performs regular
replication maintenance.

Data Fusion Maintenance: Services which employ local data fusion continuously
seek new uninitialized SEs. Upon detection, these new SEs are initialized with
data according to a well-defined, service-specific data fusion policy which
takes into account the data of surrounding SEs in order to maintain the
continuity of data properties. For example, in an area where the SEs of
the SE infrastructure have been calibrated with position information, the
Positioning Manager initializes newly distributed SEs with the calculated
mean of all individual position coordinates obtained from SEs found in the
vicinity.

Abstractions Maintenance: The Location abstraction is based on sets of SE iden-
tities. These sets have to be kept consistent when “old” SEs cease functioning
and “new” SEs are redistributed over time. It is the task of the Location Man-
ager to dynamically add newly detected SEs to the previously defined and
recorded Locations in global or domain-wide Location Manager databases,
as well as to store existing Location identifiers on new SEs in the respective
Locations.

158

12.5 Middleware Design Aspects

1 2 3 4

Location

Mobile Device

Figure 12.3.: Degeneration of a defined Location due to unsupervised maintenance

Pruning of Smart Entity Records: Some middleware services keep persistent
records of the identities of individual SEs, such as the Location/Region Man-
ager and Basic Map Manager service. In these cases it is important not only
to incorporate the IDs of newly discovered SEs, but to regularly prune the
affected databases in order to remove IDs that are no longer valid (e.g., due
to defunct SEs). For instance, if a certain SE has not been detected dur-
ing a well-defined number of subsequent Location or map updates, it can be
marked as defunct and be removed from the respective databases.

Maintenance of Stateless Services. For stateless services which do not rely on infor-
mation stored on SEs, the hot-integration of newly distributed SEs is trivial. Any
locally detected SE can be utilized without prior initialization. In particular, no
actions for maintaining the aforementioned fault-tolerance properties are required.
With regard to our middleware, this is generally the case for all services which
only require to read the identities of SEs, such as the Basic Map Manager service,
for instance. Further examples are services that only store data transiently on the
SEs, such as the Tracing and Tracking services, where the period of validity of the
data is short compared to the expected lifetime of the SEs.

Measures Against Degeneration. A challenge of the hot-integration of new SEs
is to restrict the area of activity per SDU. For instance, during infrastructure
maintenance, it is non-trivial to determine which SEs belong to the current Location
when new SEs are to be integrated by the Location Manager service, or across which
area an SDU should be replicated by the Local Data Sharing service. Without
special measures, a Location, for example, may degenerate through uncontrolled
growth during maintenance (see Fig. 12.3).

To prevent this kind of degeneration, we have so far identified two strategies.
Firstly, position information stored on SEs can be used to limit the expansion of
the areas defining a Location during maintenance. For that, during the initial
definition of a Location, the MoD uses the Position Manager to obtain the current
position, which is stored along with the label of the Location. During maintenance,
the MoD then uses its current position to decide whether a new SE is to be added
to the set of SEs defining a particular Location. Similarly, replicated SDUs may be
enriched with the original position information to restrict the area of replication.
Secondly, by means of the Position Reckoning services, MoDs can determine their
state of movement and progress, and use this information to maintain a safety
distance between different physical places where maintenance tasks are performed.

159

Fault-Tolerant Service Middleware Based on Super-Distributed Smart Entities

12.5.6. Collaborative Bootstrapping and Maintenance

A super-distributed smart-entity infrastructure can be regarded as a scalable shared
medium with virtually unlimited, independent, and highly distributed physical
“access points”, enabling MoDs to store and access data locally in the very location
they occupy at the particular moment. This property makes the super-distributed
smart-entity infrastructure particularly suitable to support collaborative scenarios
where several independent physical entities work together on a single task in a
highly decentralized and concurrent fashion (cf. Sections 11.1.2 and 12.5.6).

In our middleware for super-distributed smart-entity infrastructures we explicitly
take advantage of this aptitude for collaboration among autonomous entities. In
concrete terms, we exploit it for performing service initialization (bootstrapping)
and maintenance tasks in a collaborative manner:

Collaborative Service Bootstrapping: Collaboration is supported for the bootstrap-
ping of the following middleware services:

Location Manager: The Location Manager on a roaming MoD automatically
defines new abstract Locations whenever the MoD reaches an area within
the SE infrastructure that has not been processed before (Fig. 12.2(2)).
This information is stored locally on the SEs and can be forwarded to a
domain-wide service instance.

Position Manager: MoDs which have access to a third-party positioning
service store obtained position information on nearby SEs (using the
Position Manager) while moving in the SE infrastructure.

Map Manager: MoDs continuously chart areas of the SE infrastructure.
This yields partial map views containing the positions of detected SEs or
of identified Locations. The individual MoDs forward their observations
to a global Map Manager instance residing in the network. There the
partial maps are merged into a global map of the area, which is then
made available for download to MoDs in return.

Collaborative Infrastructure Maintenance: All SE infrastructure maintenance tasks
(including fault-tolerance maintenance) described above can be carried out in
a collaborative fashion by the MoDs: each MoD performs the respective tasks
at its current physical location, independently from the actions of MoDs in
other places.

As we can see, the shared-medium characteristic of the SE infrastructure and its
locality property enable the self-organization (e.g., partitioning the SE infrastruc-
ture into Locations) and self-calibration (updating positioning information stored
in individual SEs) of middleware services over time. Taken together, the individ-
ual localized contributions of independent devices yield a collaborative effort on a
global or infrastructure-wide scale.

12.5.7. Disconnected Operation

A major advantage of services based on a super-distributed smart-entity infras-
tructure is the capability of storing and retrieving data in situ by accessing the

160

12.6 Prototypical Implementation Based on RFID Technology

physical SE memory (locality aspect). Consequently, for services that only require
data stored on locally detected SEs (e.g., IDs of SEs, position coordinates, Location
IDs, trace IDs, etc.), the MoD executing the services does not depend on network
connectivity and remote services, but can operate in an autonomous and discon-
nected manner. Therefore, it will be unaffected by network outages or physical
damage in other areas of the SE infrastructure.

Services that do not require constant remote access and whose local results ob-
tained during offline operation can be unambiguously merged with the data main-
tained at a global service instance can continue performing their local tasks even
in disconnected mode. Once connectivity is reestablished, results of local activities
can be submitted to the global server instance for further processing.

In our specific case, after a period of disconnected operation, the Region Man-
ager, the Map Manager, as well as the Directory services may reconnect to global
service instances residing in the background infrastructure in order to submit newly
defined Regions or created partial maps, or to update directory entries.

12.5.8. Data Consistency

In our approach, data consistency is an issue in the following situations:

Local Access to Physical SE Memory: The Hardware Abstraction Layer manages
concurrent access to individual physical SEs. If that is technically unfeasi-
ble, it is important to detect read/write failures, which may be induced by
interference or mobility and lead to inconsistent states of the physical SE
memory. In our prototype, we use CRC checksums to detect inconsisten-
cies during read/write operations. On error, failed read/write operations are
repeated or the corrupted service data units are reset and reinitialized.

Remote Access to Virtual SE Memory: The virtual SE memory mirrors and ex-
tends the physical SE memory. Data consistency during remote access to
the extended virtual memory is uncritical as the former can be protected
using well-established synchronization mechanisms. Manipulative operations
on the local physical SE memory require the update of the mirrored state of
the SE in the virtual memory.

Remote Access to Global Service Instances: Data consistency is critical for services
whose current operation depends on the results of previous activities carried
out by other MoDs. In our approach, this only concerns the functioning of
the Location Manager: it has to be prevented that multiple Locations with
different identifiers are defined for the same physical place. As a solution, the
Location Manager directly stores identifiers of newly defined Locations on the
SEs at the physical place to inform other MoDs about previously performed
Location definitions.

12.6. Prototypical Implementation Based on
RFID Technology

To assess the practicability and effectiveness of our middleware architecture, we
prototypically realized several exemplary services and applications. As enabling

161

Fault-Tolerant Service Middleware Based on Super-Distributed Smart Entities

technology for the construction of the prototypical SE infrastructure, we chose ra-
dio frequency identification (RFID). As a consequence, the SEs were represented
by passive RFID tags, and the Hardware Layer in our prototype implementation
constituted a super-distributed RFID tag infrastructure as described in Chapter 11.
We therefore use the terms “RFID tag” or simply “tag” synonymously with “smart
entity” in the remainder of this dissertation. The MoD executing the service mid-
dleware software was represented by a notebook computer, to which a mobile RFID
reader and antenna were connected.

12.6.1. Hardware Layer and Hardware Abstraction Layer

As SEs we used ISO 15693 compliant Philips I·CODE (Type 1) transponders [Phi06]
that operate at a frequency of 13.56 MHz. We distributed these tags over an L-
shaped area of the floor space in a pseudo-random way. The RFID tags covered an
area of approx. 6.3 m2, with an average density of 39 tags/m2.

Our realization of the Entity Read/Write service of the Hardware Abstraction
Layer (Layer 1) is based on the RFIDStack [FL05b], which offers a manufacturer-
independent programming interface to applications.

12.6.2. Exemplary Core Services

On top of the Entity Read/Write service, we implemented three essential services
of the Core Services Layer (Layer 2): Local Data Sharing, Location Manager, and
Position Manager. The implementation details are discussed in Sect. 13.3.

12.6.3. Higher-Level Services and Applications

Based on these basic services we also implemented and experimentally evaluated
some higher-level middleware services and applications: services for tracing and
tracking, self-positioning, and collaborative map-making.

The Tracing and Tracking Service features a tracing mode, which enables the
MoD to leave a digital data trace, and a tracking mode, which allows a MoD to
follow a previously laid trace. By using the Local Data Sharing service, trace data
objects are stored in a redundant fashion on the RFID tags at the current position
of the MoD at a well-defined update rate (specified in milliseconds). A more recent
trace data object features a more recent timestamp. A MoD that follows a track
(identified by a unique trace ID) continuously seeks tags containing trace data
objects with the correct trace ID and the most recent timestamp.

The Positioning Service enables the MoD to store position information on or to
retrieve it from individual RFID tags, either using the physical on-tag memory or
a virtual tag database. The position calculation is performed with the assistance
of the Position Manager service.

Based on three test runs at a speed of 50 cm/s for the MoD, the resulting mean
absolute positioning error of the Positioning Service was approx. 15 cm for a density
of 39 tags/m2 of the test area. The maximum position calculation rate was up to
5 Hz using the virtual tag memory, and up to 2 Hz using the physical tag memory.
A screenshot of an implemented graphical front end for the Positioning Service,
which visualizes the positioning procedure, is displayed in Figure 12.4.

162

12.7 Summary

Figure 12.4.: Visualization of the positioning procedure during operation. The solid
dot indicates the position of the MoD that was calculated from the
position information obtained from the tags with the IDs 3F1E, 431E,
761B, 0E1D, 6721. Tag B625 had also been detected in the process
but failed to respond during the position read attempt

We further implemented a prototypical Collaborative Mapping system. It pro-
vides a rotation-sensor-assisted map-making service to independent, autonomous
vehicles that carry a MoD, enabling them to perform the localization and mapping
of RFID tags within the test area. The Collaborative Mapping system further
provides a service for the merging of partial mappings that were constructed inde-
pendently by different vehicles as part of a collaborative effort.

In Chapter 13 we give a more detailed description and an experimental evaluation
of the developed prototypical reference implementations.

12.7. Summary

We described how super-distribution of smart entities can serve as a design principle
for the realization of fault-tolerant location-dependent services. We outlined a
middleware which, by means of a portfolio of location-dependent services, facilitates
the development of dependable location-aware applications for mobile devices based
on super-distributed smart entity infrastructures. We further presented a number
of general middleware design challenges for such infrastructures, and described
concrete solutions for fault-tolerance management, infrastructure maintenance and
bootstrapping, and enforcing data consistency.

In the following chapter, we demonstrate the applicability and feasibility of our
approach. We do so by providing the reader with a detailed description and anal-
ysis of several prototypical reference implementations based on radio frequency
identification (RFID) as an enabling technology.

163

Fault-Tolerant Service Middleware Based on Super-Distributed Smart Entities

12.8. Related Work

Our concept of deploying small computational entities on a large scale on a physical
substrate is related to the idea of mixing computer particles with “bulk materials”,
which Abelson et al. called amorphous or cellular computing [AAC+00]. The
primary goal of amorphous computing is to obtain a “collection of computational
particles” that achieve a “cellular cooperation” as found in biological organisms.

In contrast to this visionary concept, we more concretely aim at doting a clas-
sical physical substrate with smart entities, such as a floor space equipped with a
dense distribution of passive RFID tags, which allows mobile devices to interact in
situ with their physical environment at their respective place. Fundamentally, our
approach is a generalization of the concept of super-distributed RFID tag infras-
tructures, which we introduced in Chapter 11.

A dense and redundant distribution of tiny objects is also a common charac-
teristic of wireless sensor networks, which consist of a large number of small, au-
tonomous sensor nodes. Sensor networks are concerned with the observation and
monitoring of real-world phenomena within a certain environment, typically based
on the collaborative effort of a large number of nodes [ASSC02b]. For achiev-
ing fault-tolerance in the face of hardware failures, sensor nodes are typically
distributed in a redundant manner. In contrast to sensor networks, our work is
concerned with the deliberate augmentation of the physical environment with the
explicit goal of enabling individual mobile devices (and their users) to directly
and locally interact with SEs placed in the physical environment. Communication
between the SEs themselves is much less an issue than in sensor networks.

There have been various projects investigating middleware support for location-
aware services and applications based on wireless networks and on remote services
provided by background computing infrastructures. Two examples for modular
location-aware service and application platforms that are represented by distributed
processing infrastructures based on the CORBA middleware platform as enabling
technology are LASAP [PPZ99] and MiddleWhere [RAMC+04]. An example of
a middleware for location-based services that delivers location-aware content to
mobile users on the basis of Web services and the positioning capability of a wireless
network infrastructure is LORE [CCR+04]. In contrast, our middleware approach
specializes in providing location-aware services to mobile devices in a self-sufficient
manner by relying on physical spaces doted with computerized entities for storing
and retrieving information in situ.

Acknowledgments

The author wishes to acknowledge Vito Piraino for his help with the requirements
analysis of existing location-aware ubiquitous computing systems, and for his work
on the implementation of selected middleware service [Pir04].

164

13. Prototypical Implementation
of a Fault-Tolerant
Location-Aware Service
Middleware Based on
Super-Distributed RFID Tags

In this chapter we provide evidence of the feasibility and effectiveness of the middle-
ware architecture for mobile devices presented in Chapter 12, which employs dense
distributions of small computerized entities for providing fault-tolerant location-
aware services. We do so by describing exemplary implementations based on radio
frequency identification (RFID) as an enabling technology. Firstly, we present
prototypical implementations of the hardware abstraction layer and of selected
core middleware services. The latter enable a mobile device to store and retrieve
data and position information in physical places in a fault-tolerant manner, and
to identify places based on a location abstraction which is robust against failure of
individual tags. Secondly, we investigate the feasibility of some higher-level services
and applications by developing and evaluating prototypical systems for tracing and
tracking, self-positioning, and collaborative map-making.

13.1. Motivation and Background

In Chapter 11, we showed how – different from conventional means of RFID tag
deployment and utilization – massively-redundant tag distributions provide novel
RFID-based services and applications to mobile devices (MoDs). By deploying
cheap passive RFID tags (i.e., tags without a built-in power supply) in large quan-
tities and in a highly redundant fashion over large areas or object surfaces, we
obtained a super-distributed RFID tag infrastructure (SDRI). Based on such an
SDRI, we identified a number of technical challenges and described potential bene-
fits and first prototypical results. The practical relevance of this concept is reflected
in the recent appearance of industrial products that make use of such redundant
RFID tag distributions, such as the “first carpet containing integrated RFID tech-
nology” presented by Vorwerk in cooperation with Infineon Technologies [Vor05].

As a generalization of the SDRI concept, we then proposed super-distribution of
small computerized (and therefore “smart”) entities as a general design principle
for the development of reliable and highly available location-dependent services for
MoDs. For that, we developed a layered service middleware architecture, which we
presented in Chapter 12. This middleware architecture exploits two fundamental
characteristics of the resulting infrastructure for achieving fault tolerance and ser-

165

Middleware Implementation Based on Super-Distributed RFID Tags

viceability: the high degree of redundancy with regard to smart entities (abundance
aspect), and the support for localized interaction between mobile devices and their
immediate physical environment (locality aspect).

Earlier we focused on theoretical middleware aspects. In this chapter, we describe
a number of concrete prototypical implementations based on super-distributed
smart entities, using RFID as an enabling technology. In doing so, our major aim
is to provide first-hand evidence of the practicability and effectiveness of the sug-
gested approach by demonstrating the capabilities and performance of exemplary
middleware service implementations, rather than presenting specific state-of-the-
art solutions for the particular application domains we cover in the process.

In the following sections, we adhere to the terminology proposed above in Chap-
ter 12.2.1, where a smart entity (SE) is defined as a physical artifact that is en-
hanced by embedded computing technology in such a way that it has a globally
unique identifier, a built-in memory with data read/write capabilities, and sup-
port for close-range wireless ad hoc communication. Likewise, we refer to super-
distribution of smart entities as the process of deploying and distributing SEs
in a dense, highly redundant fashion. The resulting substrate is called a super-
distributed smart-entity infrastructure.

13.2. Overview of Middleware Implementation

Our service middleware for super-distributed smart-entity infrastructures described
earlier in Chapter 12 is based on a five-layered architecture (see Fig. 12.1): The
distributed physical smart entities in their entirety constitute the physical infras-
tructure on the lowest level (Hardware Layer or Layer 0). The access to this layer
is controlled by the Hardware Abstraction Layer on the next higher level (Layer 1).
It is represented by an Entity Read/Write (ERW) service, which defines a generic
and unifying interface to the underlying physical SE infrastructure. The Core
Service Layer (Layer 2) consists of fundamental abstractions and generic services
that operate with individual SEs by means of the ERW service. The Higher-Level
Service Layer (Layer 3) is represented by a collection of specialized services and
service templates. These services do not directly operate on individual SEs of the
underlying physical infrastructure but rely on the core services instead. Finally, in
the Application Service Layer (Layer 4), we find application-specific services and
specialized instantiations of service templates.

For our prototypical implementation, we selected a number of exemplary mid-
dleware services based on both a bottom up and top down approach. On the one
hand, we implemented services of the lower layers that provide general basic func-
tionality, which includes the Hardware Layer, the Hardware Abstraction Layer, and
three essential services of the Core Services Layer: Local Data Sharing, Location
Manager, and Position Manager. On the other hand, based on these services, we
investigated the feasibility and practicability of some higher-level services by devel-
oping and evaluating prototypical systems for tracing and tracking, self-positioning,
and collaborative map-making.

In our implementations, the SEs were represented by passive RFID tags. There-
fore, in accordance to the terminology used in Sect. 12.6, we use the terms “RFID
tag” or simply “tag” synonymously with “smart entity”. Further, unless stated oth-
erwise, the MoD executing the service middleware software was represented by a

166

13.3 Basic Middleware Services

notebook computer, to which a mobile RFID reader and antenna were attached to
enable a localized interaction with the SDRI.

13.3. Basic Middleware Services

We prototypically implemented the Hardware Layer consisting of super-distributed
RFID tags, the Hardware Abstraction Layer represented by the Entity Read/Write
service, and three essential services of the Core Service Layer: Local Data Sharing,
Location Manager, and Position Manager.

13.3.1. Hardware Layer: Super-Distributed RFID Tag
Infrastructure Prototype

The RFID hardware we used for the SDRI consisted of ISO 15693 compliant smart
labels (transponders) that operated at a frequency of 13.56 MHz. As transpon-
ders, we employed Philips I·CODE tags (Type 1) [Phi06], with a dimension of
7.5 × 4.5 × 0.1 cm. The I·CODE RFID tags feature 64 byte of physical memory,
which is organized into 16 slots á 4 byte (of which 11 slots are rewritable). This
allowed us to store the data of several middleware services (e.g., Position Manager
and Tracing and Tracking Service) directly on the physical memory of individual
tags during our experiments.

Dimension of plastic foil templates 123 × 128 cm
Mean distance between two adjacent RFID tags 17.5 cm
Standard deviation of tag distribution 2.1 cm
Number of tags per plastic foil template 61 tags/foil
Average area covered by a single RFID tag 258 cm2

Average RFID tag density per square meter 39 tags/m2

Table 13.1.: Properties of plastic foil templates used for building a prototypical
super-distributed RFID tag infrastructure (SDRI)

For building the SDRI, we attached the transponders onto four identical plastic
foils using the same pseudo-random distribution pattern. This yielded four RFID-
tagged templates with equal characteristics as given in Table 13.1.

13.3.2. Hardware Abstraction Layer: Entity Read/Write

For the realization of the Entity Read/Write (ERW) service on the Hardware Ab-
straction Layer, we used the RFIDStack [FL05b], which offers a manufacturer-
independent API to applications and incorporates drivers for various types of RFID
hardware. Based on the RFIDStack, the ERW service provides the interface for
writing data to and reading data from the underlying RFID tags of the SDRI, mask-
ing the complexity and hardware-specific characteristics of the underlying RFID
hardware from the higher service layers. The writing of data can either be per-
formed physically by writing to the physical tag memory, or virtually by storing
the data in the so-called virtual tag memory. The latter is managed by a service

167

Middleware Implementation Based on Super-Distributed RFID Tags

instance of the RFIDStack residing in the Internet, which can be accessed by means
of XML messages sent via a TCP connection [FL05b]. The virtual tag memory not
only mirrors the physical memory of a tag, but also provides an extended storage
space. Our ERW implementation only allows a MoD to access the virtual memory
of a tag if that entity is physically present within communication range.

The ERW service also implements the data management for the physical and
virtual tag memory. It emulates a simple file system for the physical tag memory,
where Service Data Units represent files and the Smart Entity Directory represents
the root directory. A Service Data Unit constitutes a service-specific data unit that
encapsulates the information a service requires to be stored on a single tag for a
well-defined purpose. To detect corrupted data units on tags caused by interrupted,
incomplete write operations, CRC error checking is performed.

In particular, the ERW service provides the following basic methods for accessing
the physical memory of individual tags: listTags, listTagDirectory, writeTag-
File, readTagFile, deleteTagFile. Parameters include tag ID, file type, file data,
and flags that indicate the use of the virtual memory and declare if a file should be
stored persistently or can be overwritten at a later point in time (persistence flag).

13.3.3. Core Service Layer: Local Data Sharing

The Local Data Sharing (LDS) service provides MoDs with an API for sharing
data with other devices in physical places of the SDRI. In doing so, the LDS
service exploits the high tag density in the SDRI for fault-tolerant data storage
by replicating Service Data Units across multiple tags in antenna range at the
current location of a MoD. Data can be shared in situ by using method shareData,
which is parameterized with the service-specific data type and the persistence flag.
Previously shared data can be retrieved by means of the getData method.

The API of the LDS service allows the user to set the replication degree as an
absolute number or as a relative percentage value. These settings apply to the
initial replication and the later replication maintenance procedure. The replication
itself is performed on a best effort basis and its management is hidden from the
service clients. For accessing the tags of the SDRI, the LDS service uses the API of
the ERW service. The LDS service further allows to set a tolerance threshold for the
number of failed tag identify/read/write attempts of the underlying ERW service.
For example, if data is to be read from / written to eight different tags, failed
read/write attempts for two of the tags are tolerated given a tolerance threshold of
25%. This enables the service to deal with known imperfections of RFID systems
(e.g., tags in range may not be detected even if physically present, or read/write
operations may abort [FL04]). When Service Data Units are retrieved from local
tags, the LDS service transparently filters duplicates.

13.3.4. Core Service Layer: Location Manager

The Location Manager (LM) service provides an API to define and resolve abstract
locations. A Location has a unique identifier and is defined by the set of (stationary)
SEs that are detected in a well-defined range of the MoD (i.e., in the range of the
RFID antenna of the MoD) executing the service. The Location identifiers are
directly stored on the defining SEs themselves.

168

13.4 SDRI Tracking and Positioning Prototype

The main contribution of the LM is the getLocation method, which determines
an abstract Location L as the set of RFID tags tagIDSetl detected at the respective
physical place l in the SDRI: L := tagIDSetl := {tagIDt : inRange(t, l, r)}, where
tagIDt is the unique identifier of tag t, and inRange(t, l, r) a Boolean predicate
that equals true iff tag t is within range r of the field of the RFID antenna at place
l and false otherwise. In our prototype system, the range r of the RFID system
was defined by the characteristics of the used RFID hardware. Ideally, the range
of the RFID reader/antenna should be customizable to enable the integration of
different RFID systems with variable characteristics.

If the getLocation method is called to determine the Location of the current
place, then the LM service searches for predefined Location identifiers on all tags
in range r of the antenna (i.e., of the MoD). The Location whose identifier is
stored on the majority of the detected tags is returned as the current Location. In
case no predefined Location is available, or if the number of tags containing the
dominant Location identifier is below a well-defined percentage value T , then the
LM automatically defines a new Location and stores the corresponding Location
identifier on the affected tags. This ensures that adjacent Locations differ in at least
(100 − T)% of the tags, which in return enables a robust and selective Location
detection in situations where individual tags fail to respond temporarily.

13.3.5. Core Service Layer: Position Manager

The main contributions of the Position Manager service are the methods get-
Position and setPosition. The setPosition method enables a MoD to locally
store its current position pM obtained from a third party positioning service on
the physically proximate tags. In doing so, for each tag, the new position pt

new

is calculated as the weighted mean of the position pM of the MoD and the old
position pt

old of the tag, using the number of previous write operations w as a
weight: pt

new := (pM +w·pt
old) : (w + 1). Vice versa, upon calling getPosition, the

Position Manager first scans all tags in antenna range and extracts their individual
position coordinates if available. Then it calculates an estimate for the current
position as the arithmetic mean over all obtained individual tag positions.

13.4. SDRI Tracking and Positioning Prototype

The SDRI Tracking and Positioning prototype provides two main services: laying
and following of data traces, and self-positioning.

13.4.1. Prototype Description

We developed a fully functional SDRI Tracking and Positioning prototype, which
consists of two major hardware components. Firstly, a trolley with the RFID
equipment (RFID reader and antenna) and the MoD (in our case represented by
a notebook computer running the SDRI Tracking and Positioning application).
Secondly, four RFID-tagged templates forming a prototypical SDRI (Fig. 13.1).

The RFID hardware consisted of an ISO 15693 compliant mid range RFID reader,

169

Middleware Implementation Based on Super-Distributed RFID Tags

Notebook computer
running tracking and
positioning application

Trolley

RFID antenna
(not visible)

RFID reader device

Marked test track

SDRI templates

Figure 13.1.: Measurement trolley and prepared test track

and an external mid range RFID antenna.1 The RFID reader supported collision
resolution, which enabled it to simultaneously identify multiple transponders within
antenna range. The RFID antenna was attached underneath the center of the
bottom pane of the trolley, at 10 cm above the floor space. At this distance, the
approximately square operating area of the RFID antenna was about 50 × 50 cm.
For constructing the prototypical SDRI, the four RFID-tagged templates described
earlier in Sect. 13.3.1 were arranged in an L-shape around a corner of a corridor in
our office building (Fig. 13.1). On the templates, we manually marked a test track
for our experiments with a total length of 526 cm.

13.4.2. SDRI Tracing and Tracking Service

The SDRI Tracing and Tracking Service features a tracing mode, which enables
the MoD to leave a digital data trace in the SDRI, and a tracking mode, which
allows a MoD to follow a previously laid data trace. Each mode itself is divided
into a basic and advanced version, which we describe in the following.

Tracing Mode

A basic trace is represented by a sequence of trace data objects (TDOs) stored on
tags of the SDRI. Each trace data object consists of an anonymous trace identifier
(trace ID), which is generated by random, and a timestamp. A trace ID has
only to be unique in the local area where it is applied, but not on a global scale.
Further, all TDOs are flagged as non-persistent, and over time, the SDRI Tracing
and Tracking Service overwrites the oldest TDOs on a tag with newer traces if the
MoD is running low of memory space.

1Manufacturer: Feig Electronic, model: OBID i-scan reader HF ISC.MR100 and OBID i-mid
antenna ISC.ANT340/240

170

13.4 SDRI Tracking and Positioning Prototype

In our prototypical implementation, we replaced the timestamp in the TDO
with a trace counter serving as logical clock to obtain a more compact, memory-
space-saving representation. This was feasible since it is usually only necessary to
locally distinguish the age of detected TDOs belonging to the same trace, which
we achieve by applying a sliding-window approach. In addition, we adapted the
TDO overwrite strategy to selecting a random TDO for replacement, as the use of
logical clocks no longer allows to identify the oldest TDO on a tag. Memory-wise,
we used 1 byte for the trace ID and one for the trace counter (with a window size
of 12) per basic TDO, which fit into a single slot of our physical RFID tag memory.

If tracing is active, new TDOs are stored in a redundant fashion on the RFID
tags at the current position of the MoD (by using the Local Data Sharing service)
at a well-defined update rate (specified in milliseconds). For preventing repetitive
trace updates at the same physical location, which would lead to a discontinuity
of the trace counter values, the IDs of the locally detected tags are cached. A new
TDO is only written to the SDRI if at least K percent of the local tag IDs have
changed. Concretely, we used a trace update rate of 500 ms and set the update
tolerance to K = 50%.

The advanced tracing mode uses position information (e.g., obtained from the
Position Manager or from a third-party positioning service) to create an augmented
trace: the individual trace data objects are augmented with the current information
about direction (orientation), change of direction, and speed of the MoD.

Tracking Mode

The tracking mode of the SDRI Tracing and Tracking Service enables a MoD, the
follower, to follow a trace by detecting the corresponding TDOs in the tags of the
SDRI. We call the MoD that previously laid the trace the forerunner. Initially, the
forerunner has to reveal its randomly chosen trace ID of the trace to the devices
that are to become its followers, and to inform them about potential starting points
for picking up the trace (which are not necessarily equal to the starting point of
the trace).

Once a follower has detected or rediscovered the trace (i.e., tags in the SDRI
which contain a TDO with the forerunner’s trace ID), the follower repeatedly
searches for tags with more recent trace information and moves into this direc-
tion. More precisely, the follower continuously seeks TDOs of the wanted trace ID
with either a more recent timestamp, or with a higher trace counter value (based
on the counter window calculated using modular arithmetic). In our system, the
detected trace counter values for a specified trace are displayed in a graphical user
interface window (GUI). If an RFID tag map of the prototypical SDRI is available,
the GUI visualizes the tags of the trace that have been detected so far, and high-
lights the most recent trace information. In case of an augmented trace, the GUI
also displays the augmented information, such as the current direction and change
of direction (as numerical values and visually by means of an arrow symbol).

13.4.3. SDRI Positioning Service

The SDRI Positioning Service enables the MoD to store position information to
or to retrieve it from individual RFID tags of an SDRI, either using the physical
on-tag memory or a (local or remote) virtual tag database.

171

Middleware Implementation Based on Super-Distributed RFID Tags

Calibration Mode

For the calibration of the SDRI with position information, the SDRI Positioning
Service supports two modes of operation: Firstly, the exact calibration mode allows
the user to calculate the individual tag positions of all RFID tags of an SDRI
template at once, based on two manually entered reference positions per template.
The determined exact tag positions are then stored on the physical tags and/or
in the virtual tag database. The physical tag calibration procedure is supported
by a tool that shows the progress and status of the calibration with the help of a
graphical display.

Secondly, the incremental calibration of the SDRI uses the position information
of a third-party positioning service to update the position coordinates on the indi-
vidual tags by calculating a new weighted mean as described in Sect. 13.3.5. This
procedure can be performed in a collaborative fashion by independent MoDs. In
the process, the accuracy of individual tag position coordinates usually increases
with the number of positions that are stored on the respective tags. As the actual
positions of the MoDs performing the calibration are typically scattered around
individual tags, the errors of the single position values that are averaged tend to
cancel each other out.

Positioning Mode

The implemented position calculation or positioning procedure of the SDRI Po-
sitioning Service is based on the positioning procedure of the Position Manager.
First the tag position coordinates stored on the single RFID tags within antenna
range are retrieved. Then the arithmetical mean of the obtained single tag position
coordinates is calculated and used as the estimated position (x, y, z) of the MoD.

13.4.4. Experimental Results

We performed our experiments by pushing the trolley at a constant speed along
the marked test track (Fig. 13.1). We further calibrated the tags of the SDRI with
local positioning coordinates using the exact calibration tool.

Efficiency of Virtual and Physical Tag Memory Access

For our positioning measurements, we used the virtual and physical tag memory.
For accessing the virtual tag memory, which was maintained in a database on the

MoD itself, it was sufficient for the ERW service to retrieve the IDs of all RFID tags
within antenna range with a single command call (identify). The duration of the
identify command was independent from the number of tags within range, and
took approximately 200 ms on average (using 16 time-slots for multi-tag-detection
as part of the anti-collision protocol of the reader). This enabled a maximum rate
of up to 5 Hz for multi-tag detection and subsequent position calculation.

The efficiency of the physical tag memory was more than one order of magnitude
lower, since our particular RFID hardware required sequential scans for reading
out a data slot from multiple tags: one identify command followed by a separate
read command for each detected tag. In our implementation, we needed two
physical memory slots to store positioning coordinates on a tag. Therefore, for

172

13.5 Collaborative SDRI Mapping Prototype

2600

2650

2700

2750

2800

2850

800 850 900 950 1000 1050 1100 1150

X [cm]

Y
[c

m
]

Exact Run 1 Run 2 Run 3

Figure 13.2.: Three positioning experiments of the SDRI Positioning Service per-
formed at 50 cm/s

attempting to read the two data slots from four RFID tags detected during an
inquiry, the duration of the scan varied from approximately 2 seconds (8 successful
reads), if no errors occurred, to up to 5 seconds (8 failed reads) in the worst case
if all eight sequential read operations failed. These numbers are based on timing
measurements for successful and failed attempts for reading a single data slot, which
for our RFID hardware were approx. 250 ms and 600 ms, respectively. However, by
using a more advanced RFID system that supports the direct and parallel reading
of a data slot from multiple tags in range without a prior identify operation,
the duration of the physical tag memory access can be reduced to the order of
magnitude of the duration of the virtual tag memory access.

Accuracy of the Positioning Procedure

Due to the comparably slow physical tag memory access of our RFID hardware, we
used the virtual tag memory for our experiments. We performed three test runs at
a speed of 50 cm/s, using exact manual measurements of the test track as reference
(Fig. 13.2). The resulting mean absolute positioning error was approx. 15 cm.
Given our specific configuration, the maximum tolerable speed of the trolley is
2.5 m/s, which is determined by the tag inquiry time of approx. 200 ms (required by
the ERW service for determining the tag IDs for accessing the virtual tag memory)
and the length of the antenna field in moving direction of 50 cm.

13.5. Collaborative SDRI Mapping Prototype

The prototypical Collaborative SDRI Mapping system has two main tasks: The lo-
calization and mapping of RFID tags in an SDRI by means of autonomous vehicles,
and the merging of overlapping partial RFID tag mappings, which were constructed
independently from each other by these vehicles as part of a collaborative effort.

173

Middleware Implementation Based on Super-Distributed RFID Tags

We do not aspire to contend with state-of-the-art solutions for the general col-
laborative map-making problem, which has been in the focus of research in the do-
main of mobile robots for decades (cf. the work by Burgard, Fox, et al. [BMF+00,
FBKT00], for instance). Our primary goal is to demonstrate the feasibility and
practicability of using a super-distributed RFID tag infrastructure for the real-
ization of collaborative activities, which is not considered by traditional map-
making systems. In contrast to our approach, RFID tags for positioning have
so far only been used in the function of dedicated artificial landmarks on walls or
floor spaces, providing auxiliary support to dedicated positioning and navigation
systems [KBPD97, NLLP03, HBF+04].

13.5.1. Prototype Description

The Collaborative SDRI Mapping prototype consists of the following components:
(1) a model vehicle, (2) a prototypical SDRI, (3) an on-board vehicle control appli-
cation (for evasive driving and dead reckoning), (4) an off-board RFID tag mapping
application, and (5) a stand-alone collaborative map-merging application for fusing
partial map observations obtained during independent test runs.

The model vehicle was constructed using Lego Mindstorms [LEG06] technol-
ogy. It is self-propelled, featuring two actuated parallel wheels in the back (each
equipped with a rotation sensor and an electrically powered motor) and one castor
wheel in the front for stabilization. A bumper sensor connected to a front bumper
is used for collision detection. An on-board LEGO Mindstorms RCX controller
hosts the software for controlling the motors of the vehicle, and for monitoring the
rotation and bumper sensors. In addition, the model vehicle is equipped with an
on-board RFID reader (Fig. 13.3) and an RFID antenna2 mounted at the bottom
at 1 cm distance from the floor space (Fig. 13.4). Due to the size of the model vehi-
cle, the vehicle control application was executed on a separate notebook computer,
which was connected to the RCX controller and the RFID reader by cable.

For obtaining a prototypical SDRI test area, we evenly distributed 32 mu-chip
inlets across a wooden panel of the size of 50 × 50 cm (Fig. 13.3). This corresponds
to a tag density of 128 tags/m2. Each mu-chip tag features a unique 128-bit ID
stored in its read-only memory (ROM). The test area of was rounded off with a
solid wooden barrier to mark off its boundaries.

The on-board vehicle control application is executed on the RCX controller and
performs the following actions: It triggers an evasion manoeuvre whenever the
bumper sensor connected to the front bumpers reports an obstacle. The RCX con-
trol application also continuously monitors the two rotation sensors and calculates
the current position by means of a basic dead reckoning algorithm. The RFID
tag mapping application is executed off-board on the notebook computer. The ap-
plication is connected to the RFID reader and continuously maps detected RFID
tags, using the latest dead reckoning position information obtained from the RCX
controller of the model vehicle as reference position.

The collaborative map-merging application merges overlapping partial map ob-
servations, which were created during independent map making runs, with a single,
gradually growing comprehensive map of the area. The map merging algorithm uses

2Manufacturer: Hitachi Kokusai Electric Inc., model: reader MRE200 No. 1010 and antenna
PA1-2450AS

174

13.5 Collaborative SDRI Mapping Prototype

Figure 13.3.: Model vehicle with mu-
chip reader on top of
the Lego RCX, within the
prototypical SDRI tagged
with mu-chip RFID inlets

Figure 13.4.: Bottom view of the model
vehicle prototype showing
the wheel configuration,
front bumper, and the mu-
chip antenna

an affine coordinate transformation between two arbitrary maps with different lo-
cal (or global) coordinate systems. The transformation is unambiguously defined
by a translation vector and a rotation angle given two or more overlapping tags
(i.e., tags that are contained in both maps). The affine transformation is calculated
numerically using a least squares metric for minimizing the overall transformation
error.

13.5.2. Experimental Results

Experimental Method and Validation

Four map-making test runs were carried out in our test area of 25 dm2. Starting
from a random position (which served as the origin of the local coordinate system
for the measurement), the model vehicle drove along a straight trajectory within
the SDRI at a constant speed of 3.6 cm/s. Whenever the vehicle’s bumpers hit
the encircling barriers, the vehicle stopped and performed an approx. 90-degrees
turn on the spot, and resumed its straight movement. While driving, the off-board
application recorded the tag IDs together with the corresponding local position
coordinates of the tags detected by the RFID reader on the vehicle. The posi-
tion coordinates were obtained from the dead reckoning program running on the
vehicle’s RCX controller. Each test run lasted approx. 90 seconds, during which
the vehicle performed 6 turns (each of which took approx. 6 seconds). Thus, on
average, the vehicle covered a distance of approx. 200 cm per test run.

To validate our experimental results, we have manually measured the exact local
position coordinates of all RFID tags in the test area as a reference. To assess
the quality of an experimental RFID tag map, we calculated the overall minimum,
maximum, and mean absolute tag localization error. For an individual tag, the
localization error was determined by calculating the Euclidean distance between
its estimated position and its corresponding exact reference position.

175

Middleware Implementation Based on Super-Distributed RFID Tags

Dead Reckoning Error

The driving distance of the model vehicle was approx. 0.33 cm per rotation sensor
increment. The average absolute error of the dead reckoning algorithm for an ap-
prox. 90◦ turn of the vehicle on the spot was about 4%, and its lateral drift approx.
± 7 cm per meter during straight driving. When considering several consecutive
turns, the occurring negative and positive errors partly annihilate each other, lead-
ing to a lower effective error. In our case, the overall error of six consecutive turns
was reduced to approx. 1.4 %, which corresponds to an accumulated drift of only
about 2 cm per meter of straight driving.

Tag Localization Error

The specific RFID antenna we used detected tags inside an area of approximately
6 times 9 cm around its center point, at 1 cm distance from the floor space. Since
each mu-chip of our SDRI test area covered an area of approx. 78 cm2, only one tag
was within antenna range at a time. Therefore, whenever the model vehicle took
its current reckoned position as a position estimate for a detected RFID tag, the
error caused by the uncertainty about the exact tag position within the antenna
field (i.e., tag reception area), which we refer to as tag localization error, added to
the dead reckoning error.

In our prototype system, the tag localization error equaled the distance between
the center of the tag reception area of the antenna and the center point of the mu-
chip inlet. Concretely, given that the center point of the vehicle is also the center
point of the RFID antenna tag reception area, the mean tag localization error
amounted to approx. 2.7 cm. In the worst case, if a detected tag was situated in
one of the corners of the tag reception area, the resulting maximum tag localization
error was approx. 5.4 cm.

Tag Mapping Error

During the mapping, the deviation eTP of experimentally measured tag position co-
ordinates from the true coordinates, which we call tag mapping error, is determined
by two factors: the error eDR of the dead reckoning system (which is proportional
to the distance traveled since the initial starting position was set), and the tag
localization error eTL, which depends on the properties of the RFID hardware and
RFID tag distribution: eTP = eDR + eTL.

Evaluation of Mapping Procedure

As a result of the four map-making test runs, four partial maps were created. In
the process, on average 11 tags were detected per test run, and 21 different tags
were detected altogether. Each two created maps overlapped in two or more tags.
The resulting tag mapping errors for the tags of each partial map in comparison
to the tags of the exact reference map are shown in Table 13.2. The average tag
mapping error over four experiments was 4.1 cm, with little variation (standard
deviation σ = 1.4 cm). The overall maximum tag mapping error remained below
8 cm.

176

13.5 Collaborative SDRI Mapping Prototype

Std. dev. of
Partial map #Tags Min. error Max. error Mean error mean error

1 10 2.5 cm 6.7 cm 4.3 cm 1.3 cm
2 9 1.0 cm 5.2 cm 3.2 cm 1.3 cm
3 11 1.9 cm 7.3 cm 4.3 cm 1.8 cm
4 14 2.0 cm 7.9 cm 4.4 cm 1.3 cm

Average: 11 1.9 cm 6.8 cm 4.1 cm 1.4 cm

Table 13.2.: Tag mapping errors of four experimentally constructed partial maps

Evaluation of Map Merging Procedure

To assess the robustness of our map merging procedure with regard to the order in
which overlapping maps are merged, we have joined the four partial maps in differ-
ent sequential orders and compared the resulting minimum, mean, and maximum
tag mapping errors.

Std. dev. of
Merged maps #Tags Min. error Max. error Mean error mean error

1+2 15 1.5 cm 8.1 cm 3.9 cm 1.5 cm
1+3 15 1.4 cm 9.2 cm 5.2 cm 2.5 cm
1+4 21 1.0 cm 10.0 cm 4.7 cm 2.4 cm
2+3 17 1.0 cm 7.1 cm 4.0 cm 1.8 cm
2+4 16 1.2 cm 7.9 cm 4.1 cm 1.6 cm
3+4 18 1.3 cm 8.0 cm 4.2 cm 1.9 cm

Average: 17 1.2 cm 8.4 cm 4.4 cm 2.0 cm

Table 13.3.: Tag mapping errors of pairwise merged partial maps

In a first step, we merged the individual maps pairwise. The results show a slight
increase of the mean tag mapping error to 4.4 cm, with a higher variability (σ =
2.0 cm), as shown in Table 13.3. The mean absolute tag mapping error increased
slightly to 8.4 cm, with a new overall maximum error of 10.0 cm. The results differ
significantly for each pairing of partial maps. An explanation for this observation
is that – at this stage – a better map merging result can be expected for maps that
have more tags in common.

Std. dev. of
Merged maps #Tags Min. error Max. error Mean error mean error
(1+2)+(3+4) 21 0.5 cm 7.6 cm 3.8 cm 1.8 cm
(1+3)+(2+4) 21 1.6 cm 7.6 cm 4.2 cm 1.6 cm
(1+4)+(2+3) 21 0.8 cm 7.7 cm 3.9 cm 1.8 cm

Average: 21 1.0 cm 7.6 cm 4.0 cm 1.7 cm

Table 13.4.: Tag mapping errors of maps obtained after two consecutive merging
operations

In a second step, we merged the previously paired maps. The resulting errors
are shown in Table 13.4. We can see that the mean tag mapping error stabilized

177

Middleware Implementation Based on Super-Distributed RFID Tags

at 4.0 cm, with a lower standard deviation than in the case of the original partial
maps. A stabilization can also be observed with respect to the minimum and max-
imum errors. The maximum tag mapping error after two consecutive map merging
operations has even dropped below the initial values to 7.7 cm. Apparently, inde-
pendently from the merging order, the errors with opposite signs tend to partially
cancel each other out as the estimated tag positions of all available partial maps
are eventually combined.

13.6. Conclusion

Based on the service middleware architecture for super-distributed smart-entity
infrastructures described in Chapter 12, we prototypically implemented basic mid-
dleware layers and services with the help of RFID technology: the Hardware Layer,
the Hardware Abstraction Layer, and the three essential core services Local Data
Sharing, Location Manager, and Position Manager. We demonstrated the applica-
tion of these services by developing and evaluating systems for tracing and tracking,
positioning, and collaborative map-making.

The SDRI-based tracking and positioning system was implemented on top of
two core middleware services, which rendered it fault-tolerant with respect to in-
dividual tag failures: (1) the tracking and positioning system redundantly stores
trace data objects in physical places using the Local Data Sharing service, and (2)
it exploits the data fusion capabilities of the Position Manager, which allows the
service to tolerate the unavailability of single tags by interpolating the position
coordinates of the MoD at a physical location. By means of experimental evalu-
ation we demonstrated that our positioning service provides an average accuracy
of approx. ±15 cm at walking speed in our prototypical SDRI with a tag density
of 39 tags/m2. We consider this a promising result and a strong indication for
the practicability and effectiveness of our approach, in particular considering that
we used off-the-shelf RFID equipment that was not optimized for use in mobile
environments.

The prototype system for the collaborative mapping of super-distributed smart
entity infrastructures used mu-chip RFID tags as smart entities and low-cost ro-
tation sensors for implementing the dead reckoning system. We experimentally
evaluated an application for merging partial SDRI mappings created independently
by autonomous MoDs. We observed that the mean tag mapping error stabilized
on the level of the corresponding errors of the original individual mappings, in-
dependent from the order in which the mappings were combined. The maximum
and particularly the minimum tag mapping errors were even reduced in the pro-
cess, which we consider evidence for the feasibility of our approach. We conclude
that the collaborative mapping prototype provides an encouraging example for the
general idea of employing super-distributed smart entities as a substrate for the
realization of collaborative activities.

As part of future work, means for performing the dead reckoning itself with
the help of a purely SDRI-based middleware service should be investigated in or-
der to free the MoD from its dependence on the rotation sensors. To date we
developed and simulated several dead reckoning techniques based on single- and
multi-reader configurations (see [Zwe04] for preliminary results). In addition, the
mapping system should be further developed to make use of the Location abstrac-

178

13.6 Conclusion

tion provided by our Location Manager implementation in order to improve the
robustness against individual tag failures.

Acknowledgments

We wish to thank Vito Piraino for his work on the implementation of the SDRI mid-
dleware prototype [Pir04]. We also wish to acknowledge Nicola Oprecht for his work
on the implementation of the SDRI Tracking and Positioning prototype [Opr05],
and Marco Bär for his work on the Collaborative SDRI Mapping system [Bär04].
We further acknowledge Thomas Zweifel for his help in the implementation and
simulation of RFID-based dead reckoning techniques [Zwe04].

179

Middleware Implementation Based on Super-Distributed RFID Tags

180

14. iPOS: Fault-Tolerant
Self-Positioning with QoS
Guarantees Based on
Multi-Sensor Data Fusion

In this chapter, we describe the architecture of iPOS (short for iPAQ POsitioning
System), a fault-tolerant self-positioning system with quality-of-service guarantees
for resource-limited mobile devices [Boh07a]. The architecture is based on a prob-
abilistic data fusion algorithm that is capable of efficiently combining the location
information obtained from an arbitrary number of location sensors. As proof of
concept, we present a prototypical implementation and discuss an experimental
evaluation of the iPOS system.

14.1. Motivation and Background

Ubiquitous computing technology has become increasingly wide-spread in public
places and even in private homes. For instance, wireless communication infras-
tructures such as Wireless LAN (WLAN) or Bluetooth have become quite pop-
ular in airports, train stations, and public buildings, and not only as substitutes
for expensive wired networking [GBPK02]. Simultaneously, other typical perva-
sive computing technologies such as radio frequency identification (RFID) have
become commonplace in industrial and commercial facilities, such as in manufac-
turing plants, museums and department stores [RFI03].

14.1.1. Location-Aware Computing and Positioning

Considering emerging ubiquitous computing applications, context awareness has
become a major field of research [CK00]. Here, the general idea is that a broad
range of applications may benefit from the capability of adjusting to their current
situation and to the prevailing circumstances [Nel98, DAS01]. Context awareness is
particularly important to mobile devices, whose local computing context, physical
context, and user context is subject to change frequently and spontaneously (see
Chapter 9.1). Furthermore, location information has been identified to remain “the
single most important piece of context used in ubicomp applications” [ABO02].
This is mirrored in the large number of mobile location-aware ubiquitous computing
systems [HB01] that have been conceived over the years, and in the ongoing research
efforts in the area [SLP05]. Many of these systems require knowledge about the
position of mobile objects and devices, as it is the case with the Lancaster mobile
tourist guide [DCME01] and other indoor navigation systems [Son98, RS00].

181

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

While outdoor positioning systems are mainly based on cellular networks, sa-
tellite-based technologies [KOB01], and radio signal propagation, many indoor lo-
cation systems rely on different technologies, often of a single kind, such as on
Wireless LAN signal strength measurements [BP00], radio beacons [KWS02], video
analysis [RS00], infrared beacons [Son98], or ultrasonic sound [WJH97].

14.1.2. Dependability Challenges

There are several issues that have to be addressed by location-aware systems.
Firstly, computing systems for location awareness and positioning that are solely

based on one technology are prone to service disruption and interferences, because
the unavailability or failure of the single underlying technology leads to a com-
plete failure of the service as a whole. Therefore, the dependence on a single type
of hardware can be considered a major drawback with respect to reliability and
availability aspects.

Secondly, many currently available location systems do not fully exploit the
sources of location information that are readily available in existing ubiquitous
computing environments. Thus these location systems are not able to take ad-
vantage of various new sources of location information that are – as a side-effect –
implicitly provided by the infrastructure. While technologies such as RFID, WLAN
or Bluetooth may have been invented with a certain primary application in mind
(e.g., to be used for object identification or wireless data transfer), these technolo-
gies often leak location information during operation. Furthermore, the majority
of existing location systems require the deployment of specialized hardware, such
as grids of customized infrared or ultrasonic beacons, GPS receivers, etc., leading
to additional costs.

Thirdly, the number of small microcomputer-equipped objects and mobile devices
is about to increase significantly with the realization of the ubiquitous computing
vision. If these devices have to be enabled to benefit from new positioning and
location sensing techniques, it is particularly important to cope with the resource
limitations and constraints these devices impose on potential positioning systems.
Therefore, there is a strong need for adaptive and efficient positioning mechanisms
that take into account the shortcomings of small, resource-limited devices.

14.1.3. Contribution

We present a robust and scalable probabilistic positioning system which addresses
a number of shortcomings of common ubiquitous computing location systems. The
positioning system is based on a novel sensor modeling technique in combination
with a lightweight multi-sensor data fusion architecture, which is explicitly tai-
lored to operate efficiently and autonomously as a stand-alone service on small
resource-limited devices. The fusion architecture is modularized and supports the
integration of an arbitrary number of sensors and external third-party positioning
services. Further, our positioning system is suited to work with standard off-the-
shelf sensor hardware that is typically found in ubiquitous computing environments,
thus allowing to exploit existing ubiquitous computing infrastructures for position-
ing. A special feature of our developed data fusion algorithm is that it provides,
under certain conditions, applications with quality-of-service (QoS) guarantees.

182

14.2 Fundamentals

14.2. Fundamentals

There are many systems available that use dedicated hardware infrastructures for
localization and positioning. The most widely used system today is the Global
Positioning System (GPS), which is restricted to outdoor positioning. Since the use
of dedicated hardware is often very costly, both for the infrastructure and dedicated
components in end-user devices, it is desirable to use features of already existing
installations for localization. Communication technology such as wireless networks
(WLAN, Bluetooth) or identification systems (RFID, barcodes) come in handy for
that purpose. One of our goals is the exploitation of this existing infrastructure for
determining the location of objects. Features of wireless communication such as
signal propagation time or signal strength are promising candidates. Identification
systems where the location of one component is known (such as a stationary RFID
reader) provide us with immediate position information.

In our system, we distinguish two types of location information according to
Hightower and Boriello [HB01]: (1) physical positions (or geographic positions)
that are represented by a tuple of spatial position coordinates with regard to a
well-defined local or global coordinate system, and (2) symbolic locations, which
describe abstract ideas of where something is, such as “in the office” or “next to the
printer”.

14.2.1. High-Level Sensor Fusion

Basically, there are three possible levels on which to perform sensor fusion [HL01]:
on raw sensor data, on features extracted from raw data, and on the decision level.

Fusion on raw sensor data is only possible if the domain of all sensors is the same,
i.e. they are of the same type and measure the same quantity. In our approach, the
fusion of raw sensor data is supported, but the fusion process has to be performed
within a module representing a sensor, and the outcome of that process would be
regarded as the measurement of a single (logical) sensor. As an example, consider
multiple RFID tags located on the same object. Each tag, when recognized by an
RFID reader, would provide a location of the object. But since this location is the
same for all tags—the location of the RFID reader—the locations can simply be
collapsed into one.

Feature extraction is a technique that reduces the amount of data produced
by a sensor and abstracts away all information that is irrelevant for the task at
hand—in case of a positioning system, only information relevant to determining
the current location is retained. Multiple sensors (working on different domains)
can be combined after relevant features have been extracted from the raw data.
On the one hand, feature extraction for RFID tags makes no sense, since RFID
tags immediately yield an object’s location. Therefore, data obtained from RFID
tags and WLAN data cannot be fused on the feature level. On the other hand,
for data obtained from Bluetooth and WLAN receivers such as signal strength
information, feature level fusion may be suitable. In its current state, our system
does not support data fusion on the feature level directly, since no component for
feature extraction and combination is incorporated. However, data fusion on the
feature level can again be accomplished in the sensor modules themselves.

In our system, sensor fusion is performed mainly on the decision level, in so

183

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

far that each sensor module provides the system with a set of possible values
(object locations) represented as a probability distribution. These distributions
are combined to compute a new probability distribution that represents the most
likely location of the object. This approach facilitates a modular and extensible
system architecture. The number and different classes of sensors are not limited.
Processing the sensor data can be performed remotely (i.e., not on the object
itself) and pushed to the object in the form of an internal location event. When
single sensors fail (or are shut off due to power saving efforts), the quality of the
localization is affected, but the system as a whole remains functional. If the quality
of the positioning dropped to room-level accuracy, for instance, it would still serve
applications for which it is sufficient to get regular updates on the position whenever
the user enters another room, being indifferent to all intermediary positions of the
user.

14.2.2. Map Knowledge

The existence of a map model is an important aspect in our approach. The map
model serves two main purposes. First, it provides a frame of reference within
which all sensor data is interpreted and combined with help of a data fusion algo-
rithm. Second, it provides applications with symbolic and sub-symbolic location
information, such as “near table” or “at coordinates (x, y) in room Z”, respectively.

In our system, a map is internally represented as a 2-dimensional grid with a
fixed cell size where the cell size can be chosen individually for each map. A cell is
represented by a data structure, which contains the following information:

• a value for the probability that the mobile device is located within this cell
(cell occupancy probability);

• probability values for movement into the eight adjacent cells, and for staying
in the cell (transition probabilities).

There are also cells of a special type (inherited from the standard type) that mark
the transition to another map; this allows switching to other maps when the object
leaves the area of the current map.

In the domain of mobile robotics, the use of probabilistic occupancy grids for
positioning and navigation is an established technology, which has been successfully
employed [Elf89, Bal96, BFH97]. A particular strength of the grid-based approach
is that it allows us to model the uncertainty of location information, which is
induced by mobility of people and their devices, in an intuitive way. While for
stationary objects a calculated position retains its validity over time, this is not the
case for moving devices. Instead, the significance of a calculated position diminishes
more rapidly the faster the device is moving, and the uncertainty of what the
true position actually is increases accordingly if no further location information
is available. Further, the use of a grid facilitated the development of a fusion
algorithm that is sensitive to the topology of different places: the algorithm respects
walls and obstacles by setting the corresponding cell transition probabilities to zero
in the grid.

In our system, we model the growing uncertainty of previously calculated posi-
tions in the absence of further sensory input by repeatedly recalculating cell occu-
pancy probabilities on our cell grid according to a simple motion model.

184

14.3 System Architecture

The map model is used throughout the localization process. In a learning or
initialization phase, symbolic locations are linked to map coordinates. During us-
age of the positioning system, map knowledge is exploited in various ways. For
instance, walls are considered during the recalculation of cell occupancy probabil-
ities. When a new position is to be determined, the outcome of the positioning
process generally is a list of locations, ordered by probability. Again, map knowl-
edge can be exploited in order to eliminate certain points from that list: a point can
be located outside of a building or blocked by walls and therefore be unreachable
(plausibility validation), or exceed a maximum allowed distance from the last valid
position (outlier detection).

14.3. System Architecture

In the following, we describe the design goals and architecture of our map-based,
multi-sensor data fusion system that enables a fault-tolerant self-positioning of
mobile, resource-limited devices.

14.3.1. Design Goals

The mobile positioning system we developed and prototypically implemented real-
izes the following design goals:

• Fault Tolerance: The system is capable of tolerating the temporary or per-
manent failure of individual location sensing components (location sensors).
This is achieved by means of a redundant fusion architecture that enables the
system to exploit the redundant heterogeneous sources of location informa-
tion found in the vicinity of the mobile device performing the self-positioning.

• Adaptability: The fusion architecture is designed to perform an adaptive
resource management. It enables the system to dynamically load or unload
location sensing components during runtime, according to availability and
coverage.

• Self-Sufficiency: The positioning system is in a position to operate in a self-
sufficient manner on a mobile device (MoD) without the need of a background
service infrastructure or a centralized remote server by using locally available
resources.

• Extensibility: The modular design of our sensor fusion architecture makes it
possible to easily integrate additional location sensors and location technolo-
gies at a later point in time.

• Interoperability: By using a uniform internal representation of location infor-
mation our systems enables the integration of arbitrary third-party position-
ing services.

• Versatility: The positioning system is capable of integrating both geographic
position information and symbolic location information. Symbolic location
information is resolved into geographic information with the help of map
models. Local and global geographic position information can be processed

185

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

by means of coordinate system transformations and the use of the global
WGS-84 [Eur06] standard as reference system.

• Quality-of-Service Guarantees: By discriminating “reliable” from “unreliable”
location sensors in our model, our fusion algorithm is in a position to provide
certain quality-of-service guarantees during operation.

• Support for Resource-Limited Mobile Devices: We provide a lightweight im-
plementation of our fusion architecture that proved to perform well on small,
resource-limited MoDs.

14.3.2. Architecture Overview

The positioning system we developed is executed on the MoD whose position is
to be established during operation. The main architectural components of the
positioning system are the resource manager, the fusion engine, the map handler,
the internal event abstraction layer, and the sensor plugins (see Fig 14.1).

Mobile Device
Positioning System

Resource Manager

Device 1

Device 2

File System

Sensor
Plugins

Sensor
Event
Queue

Position
Event
Queue

Fusion
Engine

Maps

Position
Event
Server

Map
Files Internal

Clients

External Servers External Clients
Initial Thread

Module Thread

Map
Handler

External Servers

Figure 14.1.: Overview of the architecture of the positioning system

In the context of our work, a sensor may be either a physical device or an
application that in turn preprocesses the location information of other physical
devices or applications. The sensor hardware or application can either be part of the
MoD itself or constitute an external resource, such as a remote server, for instance.
A sensor plugin is associated with one specific type of sensor. It preprocesses and
transforms sensory location information into an abstract representation of position

186

14.3 System Architecture

estimates we call sensor events. Each sensor event contains an absolute position
with respect to a given two-dimensional map model. New sensor events generated
by sensor plugins are written into an internal sensor event queue for later retrieval
and further processing.

The core component of the system is the fusion engine, which processes sensor
events to calculate the current position of the MoD. During each iteration of the
positioning calculation, the fusion engine takes out the most recent sensor events
from the sensor event queue and combines them by means of a map-assisted prob-
abilistic sensor-fusion algorithm. The maps required in the process are obtained
with the help of the map handler component, which can retrieve maps stored on
the local file system or download them from a remote server. The output of the
fusion engine are time-stamped position events, which are stored in the position
event queue. From that queue, the position event server takes out the most recent
position estimates and makes them available to local or remote clients by means of
a socket-based querying interface.

The resource manager is responsible for managing the different components of
the positioning service, including the initialization, loading and unloading of com-
ponents during runtime. In particular, the resource manager controls the operation
of the sensor plugins, initializes the event queues and the map handler, starts the
position event server, and controls the operation of the fusion engine.

14.3.3. Map Model

The map model we used in our system consists of a two-dimensional equidistant cell
grid with square cells of equal size (e.g., cells of 0.5 m2 or 1.0 m2). Each cell within
a grid is defined by an unambiguous cell index, and by a set of geographic position
coordinates. The position coordinates may be local with regard to the map, or
global according to the WGS-84 standard [Eur06]. In our current implementation,
it is assumed that the map is planar with a fixed z-coordinate for all cell position
coordinates in a particular map. The specification of two global coordinates for
two local reference positions in a map defines a coordinate transformation between
local and global positions.

Each cell further contains a set of probability values for the transition to up to
eight neighboring cells, where each value can be set to zero for indicating obstacles
or walls. A special type of cells called transition cells are used to connect a map
to other maps. The map model further supports the placement of objects onto
cells. An object has a unique symbolic identifier and a geographic position which
is determined by the cell onto which the object is placed. It is possible to create
arbitrary types of objects, each of which contains a number of specific attributes.

For instance, an object of type “Radio Beacon” may represent a physical radio
transmitter and contain attributes for its ID and its transmission range in meters,
whereas an object of type “WLAN-RSS-Tuple” may represent a symbolic location
identifier that is associated with a received signal strength (RSS) measurement of
nearby Wireless LAN access points that was performed at the corresponding physi-
cal position, together with attributes describing the configuration of the measuring
tool.

The map model also provides a set of basic methods for processing maps, such
as for joining and intersecting areas of a map, and for looking up and modifying

187

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

cells or objects within a map. For facilitating map operations, the map model
introduces a Region abstraction, which is defined as a set of cells, and the Clip
abstraction, which is defined as the Region containing all cells that have an occu-
pancy probability greater than zero concerning the current location of the MoD.
The main idea of the Clip is to narrow down the number of significant cells that
have to be considered during the map-assisted fusion process in order to enable an
efficient position calculation on resource-limited mobile devices.

14.3.4. Sensor Event Model

Sensor plugins generate sensor events. We say that a sensor event fired when it
was created by a sensor plugin.

For each type of sensor, a separate class of sensor events is defined that share
common global properties. A sensor event contains location information in the form
of either a symbolic location identifier or a geographic position. A sensor event con-
taining symbolic location information we refer to as symbolic sensor event. Like-
wise, a sensor event containing geographic position information we call a geographic
sensor event.

The location information provided with a sensor event defines the (geographic)
center point of that sensor event. For sensor events featuring a symbolic location,
the corresponding center point is determined with help of the map model described
earlier in Sect. 14.3.3. For that, each class of symbolic sensor events is assigned a
separate class of objects in the map model. Then each symbolic sensor event of
that class is linked to an object of the corresponding object class with the same
individual symbolic identifier. Any such object has to be added to the respective
grid map during the learning or initialization phase of the positioning system.
Obviously, the mapping of sensor events to objects in the map model is bijective.
Therefore, with the help of the map model, it is possible to decide a priori which
symbolic sensor events can possibly occur within the mapped area. In particular,
it is also possible to determine the symbolic sensor events that did not fire (i.e.,
where not created by sensor plugins) during an iteration of the sensor event fusion
process. We exploit this ability to increase the accuracy of our position calculation
(see Sect. 14.4).

Concerning shared properties, each class of sensor events contains a range prop-
erty. Together with the individual center point, the range defines the spatial area
of influence of a single sensor event in the two-dimensional map model, which cor-
responds to a Region in the map model. Thus the range of a sensor event class
is a measure of the accuracy of the corresponding sensor plugin and its provided
location information. In the following, whenever we speak of the intersection or
union of sensor events, we refer to the intersection or union of the respective Re-
gions spanned by these sensor events. We also say that a sensor event covers an
individual cell if that cell is part of the Region of the sensor event. Each sensor
event class further contains a property blocking, which indicates whether the area
of influence of the sensor event is affected by obstacles or walls.

For instance, a sensor plugin for sensing nearby radio beacons may create a sensor
event containing the symbolic identifier of a detected beacon as symbolic location
identifier. Then, by means of the map model in which a corresponding beacon
object was placed earlier and named accordingly, the geographic position of the

188

14.3 System Architecture

cell containing the beacon object is taken as the geographic position of the radio
beacon. Alternatively, in case the detected beacon already transmits its physical
position, no further map lookup is required to establish the center point of the
corresponding sensor event. For example, given a maximum range of 10 m for the
type of radio beacon, the area of influence of the sensor event during the map-based
fusion process is determined by identifying all cells within that range, starting from
the center point. In the process, if the sensor event is blocking, only cells that are
in line of sight from the center point are considered.

14.3.5. Las-Vegas and Monte-Carlo Sensor Events

Depending on the type of sensor, position estimates vary in terms of accuracy and
reliability. In our system, we discern two categories of sensor plugins: (1) unreliable
sensor plugins, which we call Monte-Carlo sensor plugins, and (2) reliable sensor
plugins, which we call Las-Vegas sensor plugins. Likewise, we refer to a sensor
event generated by a Monte-Carlo or Las-Vegas plugin as Monte-Carlo or Las-
Vegas sensor event, respectively.

The semantics of the Las-Vegas and Monte-Carlo sensor plugins follow the se-
mantics of the behavior of randomized algorithms. A Monte-Carlo sensor plugin (in
short: MC-plugin) shows a deterministic behavior in so far that it always returns
a result upon request, in our case location information encapsulated in a Monte-
Carlo sensor event (in short: MC-event), but the resulting position information is
liable to be erroneous and possibly false. In contrast, a Las-Vegas sensor plugin
(in short: LV-plugin) displays the following indeterministic behavior: it does not
always return a Las-Vegas sensor event (in short: LV-event), but if it does, the
provided location information is correct in the following sense: it is guaranteed
that the actual current position of the MoD lies within the boundaries determined
by the known accuracy and area of influence of the respective Las Vegas sensor
event.

A typical class of LV-plugins are plugins that detect the presence of radio beacons
for which the maximum range (i.e., the maximum distance from which a beacon
can still be detected) can be safely and accurately determined. Consequently, if a
beacon of that type is detected, the current position of the MoD is known to be
within the area of influence of the beacon (i.e., within the physical area in which the
beacon can be detected). The knowledge of the maximum range yields an upper
bound for the positioning error (which equals the maximum distance between any
two physical positions within the range of the beacon). The upper bound for the
positioning error can be interpreted as an upper bound for the accuracy value of
the sensor (a higher metric accuracy value actually means a lower accuracy).

Based on this model, if multiple beacons (which may belong to different classes
and therefore feature different ranges) are detected by the corresponding LV-
plugins, then the current position of the receiver (i.e., the MoD) by definition
has to lie in the intersection of the individual areas of influence of the involved bea-
cons. In the map model, this results in a Region that is equal to or smaller than
the Region covered by the beacon with the smallest range. This implies that the
resulting accuracy for the intersection of multiple beacons is higher (i.e., better)
or equal to the one of the beacon with the highest accuracy (and with the lowest
accuracy value). A further implication of the reception of multiple LV-events is

189

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

that the current Clip (i.e., the Region containing all cells that are candidates for
the current position of the MoD, see Sect. 14.3.3) can be narrowed down to the
intersection of the Regions of all received LV-events.

A typical example for MC-plugins are plugins that rely on received signal strength
(RSS) measurements of all detected senders in the vicinity of the MoD, and which
determine the best match out of previously empirically learned RSS patterns for
a number of reference positions by means of a nearest neighbor metric, for in-
stance. Obviously, in case the signal strength values for some of the senders vary
significantly (e.g., due to interference or mobile obstacles temporarily blocking or
reflecting the signals), the calculated best match possibly yields a reference posi-
tion that is far off the true best match for the actual current position of the mobile
device. In the absence of LV-events, due to the inherent inaccuracy of MC-events,
the Regions of any detected MC-events have to be joined with the current Clip to
obtain the new Clip. In the best case, the new Clip equals the old one in case no
new cells were added. In the worst case, if the Regions of the MC-events and the
Clip are pairwise disjoint, the Clip grows by the number of cells contained in the
Regions of the corresponding MC-events.

14.3.6. Probability Distributions for Las-Vegas and
Monte-Carlo Sensor Events

For each type of sensor plugin and associated sensor event class, a probability
distribution has to be defined that describes the likelihood that the MoD is located
at a certain cell in the grid map model given that a certain sensor event was
detected. We modeled this probability distribution in the form of p(e, c), where
c represents the cell for which the position probability has to be calculated, and
e the sensor event that was detected. The probability function for each sensor
plugin (or the associated sensor event class) can be derived from a formal model
(e.g., based on signal propagation), or from empirical measurements (e.g., based
on signal strength measurements at different physical locations).

Once the probability distribution functions for the sensor event classes have been
defined, the probability that the MoD is located at a cell c if a reliable LV-event
eLV was observed is given by

P (“MoD is located at cell c”|eLV) =

{
pLV (eLV , c), if covers(eLV , c) = true;
0, otherwise.

covers(eLV , c) is a predicate that evaluates to true if cell c is an element of the
Region of cells spanned by the given LV-event eLV , and false otherwise. We can
see that whenever the predicate is false because cell c is outside the area of influence
of a detected reliable sensor event, then the position probability for that cell c and
the given LV-event eLV is zero.

The probability that the MoD is located at a cell c given an observed unreliable
MC-event eMC is given as

P (“MoD is located at cell c”|eMC) = pMC(eMC , c) ≥ δ, with δ > 0.

In the case of unreliable MC-events, the position probability for any cell c derived
from an unreliable sensor event is always greater than zero. This reflects the un-

190

14.4 Probabilistic Sensor-Fusion Algorithm

certainty about the error-prone location information provided by MC-events. Fur-
thermore, keeping MC-probabilities greater than zero ensures that position proba-
bilities obtained from unreliable MC-events can be safely multiplied with position
probabilities obtained from reliable LV-events without nullifying the product (see
fusion engine below). In our system, the value of δ is defined as a lower bound for
probability values (minimum probability unequal to zero) – all probability values
in the grid model that fall below the value of δ are treated as probability zero.

14.4. Probabilistic Sensor-Fusion Algorithm

In this section, we describe the formal mathematical models and elements that
constitute the foundation of our sensor-fusion algorithm used for positioning.

14.4.1. Calculation of the Clip

To recalculate the Clip between one iteration of the positioning procedure and
the next, first any available LV-events are considered, and then the obtained MC-
events.

1. Processing of Las-Vegas Events: According to the modeling of LV-events, the
MoD is known to be located within their spheres of influence. Therefore,
if LV-events are available during an iteration of the positioning system, the
Clip containing the cells that are candidates for the current position of the
MoD is recalculated as the intersection of the Regions spanned by the in-
dividual LV-events. Afterwards, the occupancy probabilities in the new clip
are normalized to sum up to 1.

2. Processing of Monte-Carlo Events: Since MC-events are inherently unreli-
able, they cannot be used to narrow down the Clip during the computation
of the position of the MoD. Instead, depending on the availability of LV-events
during a single iteration of the event fusion process, the Clip is updated ac-
cording to the following rules:

a) No LV-events available: The Clip is recalculated as the union of all cells
contained in the Regions of the available MC-events and normalized.

b) Some LV-events available: The Clip obtained in step 1 is used as the
new Clip without further modification.

14.4.2. Processing Las-Vegas Sensor-Events

For each cell c in the Clip, the probability that the MoD is situated in cell c at
iteration t (denoted as Ct = c) is calculated using the available LV-events. We call
this probability LV-probability, and denote it with term PLV (Ct = c).

Let eLV
i , i = 1, . . . , k, be k LV-events that fired and cover a cell c in the map

model, and let eLV
i , i = k + 1, . . . , n, be n − k symbolic LV-events that did not

fire but which also cover cell c. Further, let pLV
i (eLV

i , c) be the position probability
of cell c given that LV-event eLV

i has fired. Then we calculate the LV-probability
PLV (Ct = c) as shown in Eqn. 14.1.

191

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

PLV (Ct = c) := PLV
F (Ct = c) ∗ PLV

N (Ct = c), (14.1)

with

PLV
F (Ct = c) :=

k∏
i=1

pLV
i (eLV

i , c) (14.2)

and

PLV
N (Ct = c) :=

n∏
i=k+1

[
P (fires(eLV

i , c) = false)
]
. (14.3)

In the process, Eqn. 14.2 fuses all fired LV-events that cover cell c by calculating
the product of the respective probabilities. The result is multiplied with the term
displayed in Eqn. 14.3. The latter term represents a negative feedback, penalizing
the known existence of symbolic LV-events covering cell c that did not fire, thus
reducing the overall position probability of cell c. Ideally, the probability for an
LV-event eLV

i to fire for a cell c that is covered by the sensor event when the MoD
is located at that cell should equal one (Eqn. 14.4).

P (fires(eLV
i , c) = true) = 1, with covers(eLV

i , c) = true. (14.4)

However, in practice, the location sensing performed by the sensor plugins is
liable to be negatively affected by technical or environmental disturbances, such
as signal interference or signal blocking, for instance. To account for such distur-
bances, we introduced an uncertainty factor εLV

i , which models the probability that
a sensor event LV i that should fire under ideal conditions given that the MoD is
located at cell c does not fire:

P (fires(eLV
i , c) = true) := 1− εLV

i , with covers(eLV
i , c) = true, (14.5)

which can also be phrased as P (fires(eLV
i , c) = false) = εLV

i . (14.6)

The value of εLV
i has to be established for each sensor plugin, either with the

help of a theoretical model or by means of empirical measurements (calibration).
Generally, the probability that a sensor event does not fire even though the MoD
is located on a cell in range of that sensor event should be comparably small to
ensure the usefulness of the corresponding plugin: 0 < εLV

i � 0.5.
Table 14.1 provides a summary of the probabilities that an LV-event eLV fires

according to its area of influence, assuming that the MoD is located at cell c of the
grid map model. The table also summarizes how this knowledge is exploited in our
system.

P (fires(eLV , c) P (fires(eLV , c)
covers(eLV , c) = true) = false) Purpose/Benefit

true 1− εLV εLV Fault-tolerant sensing
false 0 1 Clip recalculation

Table 14.1.: Probability that the LV-plugin of type LV running on the MoD located
at position c creates the Las-Vegas sensor event eLV

192

14.4 Probabilistic Sensor-Fusion Algorithm

14.4.3. Processing Monte-Carlo Sensor-Events

For each cell c in the Clip, the probability PMC(Ct = c) that the MoD is situated
in cell c at iteration t (denoted as Ct = c) is calculated based on the available
MC-events. We call this probability MC-probability.

Let eMC
i , i = 1, . . . ,m, be m MC-events that fired and cover a cell c in the map

model. Further, let pMC
i (eLV

i , c) be the position probability of cell c given that
MC-event eMC

i has fired. Then the MC-probability PMC(Ct = c) is calculated
according to Eqn. 14.7.

PMC(Ct = c) := PMC
F (Ct = c), (14.7)

with

PMC
F (Ct = c) :=

m∏
i=1

pMC
i (eMC

i , c). (14.8)

The unreliability of MC-events implicates that there is no reliable information
on potential MC-events that also cover cell c but did not fire. Consequently, we do
not find a term PMC

N (Ct = c) in Eqn. 14.7.

14.4.4. Probabilistic Map-Based Fusion of Position
Information

The LV-probabilities and MC-probabilities calculated from LV- and MC-events
during iteration t are fused with the existing position probabilities P (Ct−1 = c) that
were calculated during the previous iteration with index t − 1. This is achieved
by multiplying the probabilities PLV (Ct = c) and PMC(Ct = c) obtained from
Eqn. 14.1 and 14.7, respectively, with the old position probability P (Ct−1 = c) for
each cell c in the Clip:

P (Ct = c) := P (Ct−1 = c) ∗ PLV (Ct = c) ∗ PMC(Ct = c) (14.9)

The position probabilities P (Ct−1 = c) of previous iterations are stored in the
respective cells of the map model. These probabilities are generally referred to as
cell occupancy probabilities. The cell occupancy probability of a cell c in the grid
model states the likelihood that the MoD, which is to be positioned, is located at
that cell.

By fusing the occupancy probabilities of previous iterations with the newly ob-
tained location information, a continuity of the positioning is achieved, assuming
that subsequent positions of the MoD are spatially proximate. Further, it enables
the system to provide position estimates even in case no sensor events are available.

An invariant of the grid map model is that the overall occupancy probability
values for all cells sum up to one. In our case, that means that all the occupancy
probabilities of the cells in the Clip sum up to one, as the Clip by design contains
all the cells of the active maps that feature a non-zero occupancy probability.

For that reason, at the end of each iteration of the probabilistic map-assisted
data fusion procedure, any new obtained cell occupancy probabilities are stored
in the respective cells of the corresponding map models and normalized to sum
up to one. The normalization effort is limited to all cells contained in the Clip,
as the occupancy probabilities for all other cells outside the Clip are zero (which

193

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

is taken care of on the fly by the methods provided for managing the Clip). The
methods operating on the Clip further guarantee that all cells in the Clip maintain
a probability greater or equal to a threshold δ > 0 when new cells are added
to the clip or when probability values decrease during the fusion process. This
maintenance may also require that the threshold δ > 0 is dynamically adapted to
the lowest probability value of a cell found in the Clip.

14.4.5. Mobility Heuristic in Absence of Sensor Events

In case that there is no new location information in form of sensor events available
during an iteration step, we update the cell occupancy probabilities in the map
model according to a simple mobility model and a mobility heuristic.

The mobility heuristic works as follows: With the help of the cell transition
probabilities stored in each cell, we repeatedly recalculate the cell occupancy prob-
abilities (see Sect. 14.2.2) for each cell in the Clip. Let Ct−1 be the position of

By transformation of Equation 11, the term a(s1, s2, . . . sn) can be isolated:

a(s1, s2, . . . sn) =
∑

i

s(s1, xi) · s(s2, xi) · . . . · s(sn, xi) · p(xi) (12)

As a result, all right-hand side terms of Equation 7 are known, and Equation 1 is solved.
Now the final step of the fusion-based position derivation procedure, after the fu-

sion procedure has terminated and the probability distribution on the cell grid has been
updated, is the determination of the cell which is the best fitting choice for the new cur-
rent position of the mobile device. This position derivation is performed by means of a
heuristic which reduces the cell search space to one single cell. The heuristic searches
for the cell with the highest position probability on the currently active grid map(s)
within a maximum distance of the cell representing the last known device position. The
heuristic includes plausibility checks that reduce the search space to positions that can
actually be reached within the 2-dimensional model (i.e., by considering walls and a
maximum movement rate), starting from the current position.

To prevent great leaps between subsequently calculated positions, the system allows
to set an average motion speed which is then used to compute intermediate positions
that gradually approach the latest position derived by the fusion algorithm. For instance,
the black marker in Figure 3 does not jump to the newly calculated position. Instead, it
gradually approaches the new position at the specified movement rate, e.g. matching the
walking speed of the person carrying the device, thus smoothing the transition between
calculated positions.

xj

= n0,j
n1,j

n2,j n3,j n4,j

n5,j

n6,jn7,jn8,j

Fig. 4. Cell xj with neighboring cells ni,j (0 ≤ i ≤ 8)

Cell Grid Probability Degradation. At the end of either event processing procedure,
for all cells in the cell grid a defined decay function is calculated to account for the
gradual increase of position uncertainty over time (if no new probabilities are added).
Let Xt be the position at time t and ni,j (0 ≤ i ≤ 8) the neighboring cells of cell xj

(see Figure 4). Then the decay function is applied to the position probability of each

11

Figure 14.2.: Cell xj = n(0, j) and its neighboring cells n(i, j), (1 ≤ i ≤ 8)

the MoD at iteration t − 1 and ni,j (1 ≤ i ≤ 8) the neighboring cells of cell xj

(see Figure 14.2). Then the mobility heuristic function is applied to calculate the
new cell occupancy probability P (Ct = xj) of each cell xj in the current Clip as
described in Equation 14.10.

P (Ct = xj) :=
8∑

i=0

(P (Ct−1 = ni,j) ∗ P (Ct = xj|Ct−1 = ni,j)) (14.10)

In the equation, P (Ct = xj|Ct−1 = ni,j) is the probability of a transition from the
neighboring cell ni,j at iteration t− 1 to cell xj at iteration t, while P (Ct−1 = ni,j)
denotes the cell occupancy probability of cell n(i, j) at iteration t− 1.

Initially, the transition probabilities for each cell are defined as follows: let w
be the number of neighboring cells (including the cell itself) that can be reached,
then the transition probability for these transitions is uniformly set to 1

w
, favoring

no particular direction. For all remaining directions, e.g., in case the neighboring
cell is blocked by a wall or does not exist, the transition probability is set to zero.
Later, these cell transition probabilities can be adjusted according to characteristic
personal movement patterns acquired during a learning phase, for example, as we
investigated and prototypically implemented in [Sch03].

194

14.4 Probabilistic Sensor-Fusion Algorithm

The number of executions r of the above mobility heuristic on the cells of the
Clip is determined separately for each map that is involved, based on the specified
mobility model. The mobility model comprises parameters for the assumed average
movement speed v of the MoD, and for the currently set frequency of position
calculations f (e.g., 1 Hz). Based on these parameters, the metric distance d is
calculated as d := v

f
. The value d serves as an estimate for the distance the MoD

may have moved while no location information was provided by the sensor plugins
of the positioning system since the last iteration step. Then, given a map model
with the side length a of its cells in the cell grid, the number of executions of the
mobility heuristic on the respective map is calculated as r := dd

a
e.

During the execution of the mobility heuristic, after the completion of each it-
eration, the Clip is updated as follows: every cell outside the Clip that has been
allotted a sum of probability values greater than the current minimal probability
threshold δ is added to the Clip. As a final step, after all iterations were performed,
the updated occupancy probability values of all cells in the Clip are normalized.

Literally speaking, the application of the mobility heuristic ensures that the cell
occupancy probabilities in the grid wear off over time when no sensor events are
provided by the sensor plugins. The aim of the heuristic is to emulate the expected
increase in uncertainty about the position of the MoD due to the absence of new
pieces of location information.

14.4.6. Position Derivation

The final step of each iteration of the probabilistic sensor fusion algorithm is
the derivation of the estimate for the position of the MoD. For that, we apply
a maximum-likelihood heuristic that searches for the cell with the highest position
probability (i.e., the highest cell occupancy probability) in the current Clip. Taking
the most recent position estimate (cell cinit) as a starting point in the grid map
model, the heuristic searches for the cell cmax with the highest occupancy proba-
bility P (Ct = cmax). In doing so, the heuristic only considers cells that are within
a maximum distance d from cell cinit and reachable in the map model (i.e., not
blocked by walls).

The value of d is determined by means of the mobility model described in
Sect. 14.4.5: d := v

f
, with the assumed average movement speed v of the MoD

and the frequency of position calculations f as parameters.

14.4.7. Operation of Probabilistic Fusion Engine

As we have seen, the probabilistic fusion engine plays a pivotal role in our position-
ing system. Running on top of a two-dimensional map model, the fusion engine
during each iteration step takes the sensor events stored in the sensor event queues,
fuses their location information based on the algorithm described in Sect. 14.4, and
stores the resulting position events in the position event queue (see Fig. 14.3).

The flow of control of the probabilistic fusion engine and the integration of the
different parts of the fusion algorithm is shown in Fig. 14.4.

195

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

Fusion
Algorithm

Las Vegas
EventQueue

Monte Carlo
EventQueue

Position
EventQueue

Maps

SensorEvent

SensorEvent

PositioningMap

PositionEvent

Figure 14.3.: Data flow of the probabilistic map-based position fusion procedure

LV-events
> 0

MC-events
> 0

YES

NO

Absence of sensor
events: Update Clip and

cell occupancy
probabilities in the grid
model by applying the

mobility heuristic.

Clip := Union of the
Regions of all MC-

events

Clip := Intersection of
the Regions of all LV-

events

NO
YES

MC-events
> 0

LV-event
processing: Update

cell occupancy
probabilities for all
cells in Clip using

available LV-events.

MC-event
processing: Update

cell occupancy
probabilities for all
cells in Clip using

available MC-events.

YES

Clip normalization:
Normalize cell
occupancy
probabilities in Clip.

NO

Write new position
event into position

event queue.

Read LV- and MC-
events from sensor

event queues.

INITIALIZATION

NEXT
ITERATION

Position derivation:
Estimate position
using the maximum-
likelihood heuristic.

Figure 14.4.: Control loop of the probabilistic map-based fusion engine

196

14.5 Complexity Analysis

14.5. Complexity Analysis

The complexity of one iteration of the fusion algorithm is determined by the number
and type of available sensor events.

14.5.1. Fusion of Las-Vegas Sensor Events

Let eLV
1 , . . . , eLV

k be k LV-sensor events obtained from LV-plugins SLV
1 , . . . , SLV

k

with ranges nLV
1 , . . . , nLV

k (given in number of cells). Then the number of cells to
be processed by the algorithm is defined by the size of the Clip, which by definition
is obtained by intersecting the Regions of the LV-events. Consequently, the Clip is a
subset of the smallest Region Rmin, Clip ⊆ Rmin, with |Rmin| ≤ (2 ∗mink

i=1(n
LV
i))

2.
This means that in the case of LV-events, the number of cells to be processed by
the algorithm is determined by the most accurate sensor event with a Region Rmin

containing at maximum (2 ∗ nLV
min)2 cells.

By determining the maximum possible range NLV for an LV-event, NLV :=
maxk

i=1(n
LV
i), we can specify the upper bound (2NLV)2 for the amount of cells

to be processed. Defining constant cLV as cLV := (2NLV)2, then the worst case
complexity of fusing k Las-Vegas sensor events is O(cLV) and therefore constant
with regard to the number of necessary cell occupancy updates. The complexity
in terms of number of multiplications per cell occupancy update is O(k) in the
worst case, as the number of multiplications per cell equals the number of obtained
LV-events that cover that cell.

14.5.2. Fusion of Monte-Carlo Sensor Events

Let eMC
1 , . . . , eMC

j be j MC-sensor events obtained from MC-plugins SMC
1 , . . . , SMC

j

with ranges nMC
1 , . . . , nMC

j in number of cells. Further, let NMC be the maximum
range of all MC-events, NMC := maxj

i=1(n
MC
i).

If k > 0 LV-events were also obtained during the current iteration of the fu-
sion process, the Clip size is not affected by additional MC-events. Accordingly,
the worst case complexity of fusing k Las-Vegas sensor events and j Monte-Carlo
sensor events remains constant with O(c) number of cell occupancy updates, with
c := (2N)2 and N := max(NLV , NMC). The complexity in terms of number of mul-
tiplications per cell occupancy update is O(k+j) in the worst case, as the number of
multiplications per cell c equals the number of obtained LV-events and MC-events
that cover that cell.

If no LV-events were obtained during an iteration of the fusion process, the Clip is
recalculated as the union of all Regions of the MC-events. With the maximum range
NMC for MC-events, we can specify the upper bound j ∗ (2NMC)2 for the amount
of cells to be processed, as in the worst case the Regions of the j MC-events are
disjoint. Defining constant cMC as c := (2∗NMC)2, then the worst case complexity
of fusing j Monte-Carlo sensor events is linear with O(j ∗ c) = O(j) number of
cell occupancy updates. The complexity in terms of number of multiplications per
cell occupancy update is O(j) in the worst case, as the number of multiplications
per cell equals the number of obtained MC-events that cover that cell. However,
the number of multiplications per cell is reciprocally proportional to the number
of cells that are covered by the j MC-events (i.e., the Clip size), since a smaller

197

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

overlap of the Regions of the available MC-events results in fewer multiplications
per cell.

14.5.3. Upper Bound for the Range of Sensor Events

Theoretically, sensor events can have ranges of arbitrary size. However, in practice,
the ranges of sensor events remain within certain boundaries. The reason for that
is that the contribution of a single sensor event to the overall fusion process be-
comes less significant and meaningful the higher its range is, because the occupancy
probabilities get increasingly spread and unfocused with increasing range: a higher
range goes hand in hand with a quadratic increase of the corresponding maximum
Region spanned in the map model. Therefore sensor event ranges beyond a certain
point are disadvantageous and unjustifiable, and it is desirable to limit the maxi-
mum range of sensor events. This is straightforward for sensing hardware that per
se requires a limited range due to technical limitations.

Otherwise, if a physical sensor technology would require sensor events with a
range higher than a desired maximum range Nmax, it is preferable to build a logic
sensor plugin instead which preprocesses the physical sensor data (e.g., by com-
bining multiple measurements) and then creates a sensor event with a lower, more
appropriate range. In our case, for instance, we created an MC-plugin based on
received signal strength analysis for long-range Bluetooth beacons (BTnodes). As
a result, the Bluetooth RSS MC-plugin reduced the range of the sensor events to
approx. 5 m as opposed to the range of approx. 30 m that the BTnodes feature
when used as individual radio beacons.

We conclude that it is feasible to assume an upper bound Nmax for the range of
sensor events, independent of the physical properties of the sensing technology.

14.5.4. Practical Considerations

In Sect. 14.5, we argued that it is feasible to assume an upper bound Nmax for the
range of sensor events, and that under this assumption the sensor-fusion process
has linear complexity. In Table 14.2, we listed various sensor technologies that
are typically found in today’s ubiquitous computing infrastructures, and for which
we implemented sensor plugins to be used with our positioning system. For each
sensor class, we have denoted the characteristic range in meters, and the corre-
sponding range in number of cells for different cell sizes. Looking at the data, we
can see that all the sensor types are suited to support a sensor event range between
fifty centimeters and 20 meters, which we still consider practicable for our system.
Therefore, in our case, we could determine a concrete upper bound Nmax for the
range of sensor events of Nmax = d20 m/cell sizee = 20 for a cell size of 1 × 1 m.

14.6. iPOS Positioning System Prototype

We prototypically implemented a fully functional prototype of the positioning sys-
tem according to the system architecture presented in Sect. 14.3. We named the
prototype system iPOS, which stands for iPAQ POsitioning System. iPAQ refers
to the type of mobile device (MoD) we used for prototyping: the MoD was rep-
resented by a personal digital assistant (PDA) of type HP iPAQ, H5450 Series,

198

14.6 iPOS Positioning System Prototype

Sensor class Range [m] n2.0 n1.0 n0.5

Barcode tags 0.5 1 1 1
Passive RFID tags 0.5–1 1 1 1–2
Bluetooth RSS 5 2.5 5 10
Bluetooth beacons 10/20*/100** 5/10/50 10/20/100 20/40/200
Active RFID beacons 3/10/20*/50** 2/5/10/25 3/10/20/50 6/20/40/100

Table 14.2.: Typical sensor event ranges per sensor class and range. nl denotes the
corresponding sensor event range measured in number of square grid
cells with a cell border size of l meters. The range of sensor events ob-
tained by a Bluetooth-RSS-based plugin is defined by the performance
of the used algorithm and influenced by the characteristics of the par-
ticular distribution of Bluetooth senders in the environment. In our
case, given a regular grid of Bluetooth beacons with 2 m side length,
we obtained a range of 5 m for our Bluetooth RSS MC-plugin. The
range of our active RFID equipment could be adjusted by configuring
the transmission power of the reader and the sensitivity of the tags.
For our positioning system, we considered a sensor event range of 10 m
and below as optimal, ranges up to 20 m as acceptable (*), and ranges
beyond 20 m as inappropriate (**)

running the PocketPC 2002 (WinCE 3.0) operating system. The iPAQ PDA fea-
tured wireless LAN connectivity and a PCMCIA slot extension.

The implementation of the iPOS system is based in parts on an earlier imple-
mentation of a probabilistic positioning system [BV03], which was running on a
laptop computer and not yet fully optimized for the execution on resource-limited
mobile devices. While we could reuse large parts of the map model and of the
plugin system, we revised the fusion algorithm and introduced the concept of reli-
able and unreliable sensor events. This significantly improved the effectiveness and
performance of the fusion procedure in the iPOS system by reducing the number of
cells that have to be examined as potential candidates for the position of the MoD.
Further, we provided a new resource manager component and event processing
layer, as well as an improved programming interface for processing maps, sensor
events, and occupancy probabilities.

For the iPOS prototype system, we employed passive and active sensing tech-
nologies for providing location information to the MoD. Here passive means that
the MoD can make use of the passive sensing technologies in a self-sufficient manner
without the need of relying on infrastructure-based services – the MoD performs
and controls the sensing autonomously. In contrast, we call a sensing technology
active when it is managed by a third-party entity, which is beyond the control
of the MoD – an active sensing infrastructure senses the MoD and provides any
acquired location information by means of a well-defined network service interface
(e.g., a Web service or RMI interface).

199

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

14.6.1. Passive Location Sensing Infrastructure

The passive sensing infrastructure consisted of (1) active RFID beacons (i-Q8 tags
by Identec Solutions), (2) Bluetooth-enabled sensor nodes (BTnodes, www.btnode.
ethz.ch), and (3) densely distributed passive RFID tags. For the latter we used
the existing SDRI prototype described in Sect. 13.3.1. An overview of the passive
sensing hardware is shown in Fig. 14.5.

BTnode (Bluetooth-enabled)

Active
RFID
Tag

SDRI
Positioning

Trolley

SDRI Infrastructure

Figure 14.5.: Passive location sensing infrastructure: active RFID tags, active Blue-
tooth enabled sensor nodes (BTnodes), and densely distributed RFID
tags represented by our super-distributed RFID tag infrastructure
(SDRI) prototype (see also Sect. 13.3.1)

14.6.2. Active Location Sensing Infrastructure

The active sensing infrastructure was represented by two RFID gates. In our
setting, an RFID gate consisted of an RFID antenna connected to an RFID reader
device, which was controlled by an RFID gate application running on a notebook
computer. Whenever the RFID gate application detected the presence of a passive
RFID tag in the field of the RFID antenna it monitored, it created a time-stamped
RFID-gate-event containing the symbolic location identifier (or alternatively the
geographic location) of the RFID gate and the ID of the detected RFID tag. The
RFID-gate-event was then forwarded to a tuple space managed by a centralized

200

14.6 iPOS Positioning System Prototype

server that provided a socket-based communication interface. Clients were able to
connect to this interface in order to retrieve RFID-Gate-events for a given RFID
tag ID.

Ridel5000
Passive RFID

Antenna Internetworked
RFID Gate
Application

Servers

Figure 14.6.: Active location sensing infrastructure: two prototypical RFID gates
consisting of (1) RFID antenna, (2) RFID reader, and (3) RFID gate
software running on a notebook computer

For each RFID gate, we employed a RIDEL5000-I RFID long range reader in
combination with an ANTMR5000 medium range loop antenna by Softronica S.A.
Each RFID gate was connected to a notebook computer with Wireless LAN con-
nectivity, on which the RFID gate software was executed (see Fig. 14.6). As smart
badges we used Philips I·CODE RFID tags (Type 1) [Phi06].

14.6.3. iPOS Client

On the client side, the iPAQ PDA executing the positioning system was equipped
with an i-Card3 PCMCIA RFID Reader by Identec Solutions, to enable the detec-
tion of the active RFID beacons. Further, the PDA was connected to a BTnode,
which it employed for discovering nearby BTnodes in the environment (using the
Bluetooth discovery procedure). Figure 14.7 shows the client hardware setup. Fur-
ther, for the interaction with the SDRI infrastructure, we used the SDRI Positioning
System described in Sect. 13.4.3 as a reference positioning service. The iPOS posi-
tioning software on the PDA wirelessly connected to the SDRI positioning service,
which was executed on a separate notebook computer mounted on the trolley of
the SDRI Positioning System (see Fig. 14.5). The iPOS positioning software was
implemented in Java. It was executed on the iPAQ device with the help of the
CrE-Me 4.0 Java Virtual Machine by NSICOM, which supports a broad range of
Java classes and libraries as of JDK Version 1.3.1.

201

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

HP iPAQ
H5450

Identec
i-Card3

BTnode

Serial
Cable

Figure 14.7.: Mobile iPOS client (MoD) with i-Card3 PCMCIA reader and BTnode
connected by serial cable

14.6.4. Implemented Sensor Plugins

We implemented the sensor plugin components as independent, active modules
that are managed by the resource manager component. In the following, we list
the sensor plugins we developed and implemented based on the available sensing
technologies. An overview of the sensor plugins and their configurations is shown
in Table 14.3.

Sensor Type Range/Accuracy Blocking
Active RFID Beacons LV ±3 m yes
Bluetooth Beacons LV ±30 m yes
SDRI Prototype LV ±0.3 m yes
RFID Gate LV ±0.5 m yes
Dead-Reckoning LV ±1.0 m yes
Generic LV-Plugin LV * *
Active RFID RSS [2-m-grid] MC ±5 m yes
Bluetooth RSS [2-m-grid] MC ±5 m yes
WLAN RSS MC ±10 m no
Generic MC-Plugin MC * *

Table 14.3.: Overview of implemented sensor plugins. The entries marked with an
asterisk depend on the characteristics of the used sensor hardware or
third-party positioning service, respectively

Las-Vegas Sensor Plugins

LV-plugins are designed and configured in such a way that they generate sensor
events that are considered reliable in the following sense: it is guaranteed that the
user’s MoD is always situated within the areas of influence of the LV-events.

202

14.6 iPOS Positioning System Prototype

Active RFID LV-Plugin: This LV-plugin treats active RFID tags as individual
radio beacons. For every detected active RFID tag, the plugin creates an
LV-event containing the ID of the tag as symbolic location identifier. Conse-
quently, each such beacon has to be inserted as an object into the map model
at the cell that corresponds to the physical location of the beacon, to enable
the fusion algorithm to resolve the geographic positions of the sensor events
during the fusion process. The range of the plugin depends on the transmis-
sion power of the tags and on the sensitivity of the reader, both of which
were configurable in our hardware. We used a configuration that limited the
transmission range of the active RFID tags to below 3 m. That means the
positioning accuracy per beacon was better than ±3 m. The radio signals of
the active RFID tags we used were blocked by walls. Therefore the sensor
events were configured as blocking.

Bluetooth LV-Plugin: The functionality of the Bluetooth-based LV-plugin is the
same as for the active RFID-based LV-plugin: each Bluetooth sender (here:
BTnode) is treated as a radio beacon and its Bluetooth MAC address used
as symbolic location identifier. Again, each Bluetooth beacon has to be in-
serted into the map model. The Bluetooth radio signals of our BTnodes were
blocked by walls. Therefore the corresponding sensor events were configured
as blocking. A reliable upper bound of the transmission range of the BTnodes
was experimentally evaluated to 30 m and set accordingly in the correspond-
ing sensor event class. As a result, the accuracy of ±30 m of the Bluetooth
beacons was much lower than the one of the active RFID beacons.

SDRI Positioning LV-Plugin: We also created an LV-plugin that makes use of
the SDRI Positioning System described earlier in Sect. 13.4.3, which directly
provides location information in the form of geographic position coordinates
at a rate of approx. 1 Hz. The SDRI Positioning LV-Plugin connected to the
SDRI Positioning service via a wireless network connection and created an
LV-event for each position obtained from the SDRI Positioning service. Fur-
ther, based on the given hardware configuration and tag distribution density
of the prototypical SDRI, the range of the LV-plugin was set to 0.15 m, and
the sensor events were configured as blocking.

Note that while the SDRI Positioning System currently consists of a consider-
ably large trolley equipped with RFID equipment and a notebook computer,
the long-term goal is to make the hardware smaller and wearable. For in-
stance, we envision to integrate the RFID antenna and reader in the user’s
shoes and to transmit the scanned RFID data wirelessly to the user’s PDA
for further processing (i.e., positioning).

RFID Gate LV-Plugin: The RFID Gate LV-plugin is the only plugin we imple-
mented that makes use of a background service infrastructure: the LV-plugin
has to connect to a central server and ask for any recent RFID-gate-event
that contains the user’s RFID badge ID as identifier (see Sect. 14.6.2 and
Fig. 14.6). For our experiments, we placed the RFID gates such that they
covered the area of a single cell of 1 m2 in the map model, which corresponds
to a range of approx. 0.5 m of the respective sensor events. Since RFID

203

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

tags cannot be detected through walls, the sensor events were configured as
blocking.

Dead-Reckoning LV-Plugin: The trolley that carried the SDRI Positioning Sys-
tem (see Sect. 13.4.3) was also equipped with a set of rotation sensors along
the middle axis. These sensors were monitored by a dead-reckoning service
which, starting from a known initial position, could estimate the current po-
sition based on the rotation sensor readings. The dead-reckoning service fea-
tured an accumulated drift of below 2% with respect to the driven distance,
given a slow walking speed and a straight trajectory. We implemented an
LV-plugin based on this dead-reckoning service, setting the range to 1.0 m to
account for the drift assuming a test track of approx. 40 m length. The sen-
sor events were configured as blocking. However, during the practical exper-
iments, the dead-reckoning hardware based on low-cost LEGO Mindstorms
technology proved to be to fragile and susceptible to mechanical defects in the
face of several sharp 90-degree turns and a comparably high walking speed.
Therefore we decided not to rely on the Dead-Reckoning LV-Plugin during
the practical evaluation of the iPOS system.

Generic LV-Plugin: By means of the Generic LV-Plugin, arbitrary third-party
positioning services that exhibit Las-Vegas characteristics (see Sect. 14.3.5)
can be easily integrated with the iPOS system. For that, a new Generic LV-
Plugin instance is created, and its class-specific range and blocking property
(see sensor event model in Sect. 14.3.4) are set according to the character-
istics of the third-party positioning service. The thus obtained LV-plugin
encapsulates any location information obtained from the third party posi-
tioning service into the internal iPOS sensor event format, which then can be
processed by the fusion engine.

Monte-Carlo Sensor Plugins

MC-plugins generate sensor events that are possibly erroneous with regard to the
location information they carry. This means that the user’s MoD is not necessarily
situated within the area of influence of MC-events.

Abstract RSS MC-Plugin: We implemented an abstract MC-plugin based on re-
ceived signal strength (RSS) measurements of radio signals. The basic mode
of operation is as follows: In a learning mode, a number of reference positions
are learned and stored in the map model using unique symbolic identifiers.
Each reference position corresponds to a vector of signal strength tuples of
the kind <sender, received signal strength> (RSS vector). Later, in position-
ing mode, the MC-plugin first measures the signal strength values of all radio
transmitters that are received at the current physical location. Then, in a
second step, the MC-plugin compares the obtained RSS vector with the RSS
vectors stored in the previously built database of reference positions. With
the help of a least-squares-metric, the reference position whose RSS vector
exhibits the minimum error compared to the current RSS vector is chosen
as the current position of the MoD. Obviously, the quality of the positioning
depends on the quality of the reference positions. In particular, if no refer-
ence position close to the true current position of the MoD is available, or

204

14.6 iPOS Positioning System Prototype

if the RSS measurements are distorted, the reference position chosen by the
MC-plugin as best match for the current position is liable to be wrong or far
off the mark. For this reason, this type of plugin is considered unreliable.
The abstract RSS MC-plugin cannot be used directly – instead, it serves
as a template for the implementation of RSS plugins based on a particular
radio technology. For the creation of a working plugin, only the method that
performs the RSS measurements has to be implemented.

Active RFID RSS MC-Plugin: This MC-plugin is an instantiation of the Ab-
stract RSS Plugin. The implementation of the method performing the RSS
measurements is based on a native C++ library for accessing the I-Card3
PCMCIA reader, which was integrated via the Java Native Interface. The
range of the plugin depends on the transmission power of the tags and on
the sensitivity of the reader, both of which were configurable. To be able to
receive multiple tags per measurement, we used a tag configuration that, as
part of an experimental evaluation, resulted in a range of up to 5 m of the
plugin (given a grid-like distribution of the tags with 2 m distance between
adjacent tags in the test area). The radio signals of the active RFID tags we
used were blocked by walls. Therefore the sensor events were configured as
blocking.

Bluetooth RSS MC-Plugin: This MC-plugin is an instantiation of the Abstract
RSS Plugin. For performing the RSS measurements, the plugin communicates
with the connected BTnode via a simple protocol using the serial port. On the
BTnode, we used the standard bt-cmd utility for performing the Bluetooth
discovery. The radio signals of the BTnodes were blocked by walls. Therefore
the sensor events were configured as blocking. We further determined a range
of approx. 5 m (given a grid-like distribution of the tags with 2 m distance
between adjacent tags in the test area).

Wireless LAN RSS MC-Plugin: As part of the original positioning system, we
also had implemented and tested a sensor plugin based on Wireless LAN RSS
measurements [PS03]. The plugin featured an accuracy of approx. 10 m.
Since the radio signals of the Wireless LAN access points (i.e., the radio
transmitters) reached through walls, the sensor events were configured as
non-blocking. However, due to a lack of suitable device drivers, we could not
access the signal strength values of the Wireless LAN interface on our iPAQ
handheld device. As a result, we were not able to port this plugin to the
PocketPC platform and use it during the practical experiments we describe
in Sect. 14.7.

Generic MC-Plugin: By means of the Generic MC-Plugin, arbitrary third-party
positioning services that exhibit Monte-Carlo characteristics (see Sect. 14.3.5)
can be easily integrated with the iPOS system. For that, a new Generic MC-
Plugin instance is created, and its class-specific range and blocking property
(see sensor event model in Sect. 14.3.4) are set according to the character-
istics of the third-party positioning service. The thus obtained MC-plugin
encapsulates any location information obtained from the third party posi-
tioning service into the internal iPOS sensor event format, which then can be
processed by the fusion engine.

205

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

Auto-Insertion of LV-Event-Objects into Map Models

The availability of self-describing LV-events (i.e., Las-Vegas sensor events that con-
tain their own physical position) can be exploited for the self-organization of map
models: the system can be configured to automatically create a suitable map ob-
ject and insert it into the map model upon the first detection of a self-describing
LV-event. Such an auto-insertion or auto-mapping would significantly reduce the
maintenance overhead caused by the need of manually inserting LV-event-objects
into the corresponding map models. However, this feature has not been imple-
mented yet in the current version of the iPOS prototype system.

14.6.5. Management Tools

To facilitate the creation and maintenance of map models, we developed a graphical
map builder and topology editor that allows the user to create or edit maps. The
topology editor also allows the user to place and name objects in the map, to draw
walls, and to insert transition cells that link a map to another map (Fig. 14.8).

Figure 14.8.: Snapshot of the topology editor application

The map builder has been enhanced by a simulation mode that allows the manual
emulation of sensor events, which proved suitable for preliminary testing of new
heuristics and algorithms for positioning. We have also realized a monitor applica-
tion that allows to continuously track the position of a MoD, mark its position on
the associated map, and visualize the current occupancy probability distribution
in the grid map (Fig. 14.9).

The functioning of the management tools is fully decoupled from the operation of
the positioning system – they may resided anywhere in the network. This permits
to run only those components on a resource-limited MoD which are indispensable
for positioning.

206

14.7 Experimental Evaluation

Figure 14.9.: Snapshot of the monitor application

14.7. Experimental Evaluation

14.7.1. Experimental Setup

In preparation of our practical experiments, we deployed our hardware for the
sensing infrastructure in the corridor of our office building at ETH Zurich. We also
created a grid map model of the corridor with square cells of 1 m2 size.

The BTnodes serving as Bluetooth senders and the active RFID tags were dis-
tributed in a grid with 2 m distance between adjacent entities, with a displace-
ment of 1 m between the two grids. The map model was updated by inserting
BTnode- and active-RFID-objects into the map at the respective positions as shown
in Fig. 14.10. An area of the corridor was also covered with densely distributed
RFID tags (see area shaded in grey in the figure), using our RFID-tagged SDRI
foil templates described in Sect. 13.3.1. In the figure, we can also see the locations
of the map objects placed for the two RFID gates (i.e., the areas covered by their
antenna fields), marked with grey rhombuses (diamonds) in the grid map model.
The map objects for the reference positions that were learned for the Bluetooth
RSS MC-Plugin are marked with small squares in the map model. We further laid
out a test track of 38 m, which started in a side hall and led in a loop through the
prepared corridor as displayed in Fig. 14.10. Images of the actual deployment of
the hardware infrastructure are shown in Fig. 14.5 and Fig. 14.6 in Sect. 14.6.

We further developed a sampling tool based on the map builder application to
assist us in performing the practical measurements. It operates as follows: by
clicking onto a cell in the displayed map model, a time-stamped entry is stored in
a log file containing the true position coordinates of the cell according to the map
model, the current position estimate calculated by the iPOS positioning system,
and the deviation between the two position values (see Fig. 14.11). During the
experiments, the sampling tool was executed on a separate notebook computer, so
that it could be operated by a second person different from the person carrying

207

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

Figure 14.10.: Excerpt of the grid map model showing the experimental setup and
test track

the MoD executing the iPOS application. The sampling tool retrieves the position
estimates from the iPOS positioning server running on the MoD via a TCP/IP
over Wireless LAN connection.

a

b
P

Q

Figure 14.11.: Calculation of the positioning error epos between a reference position
P and the corresponding position Q estimated by the iPOS system:
epos :=

√
a2 + b2. The geographic position coordinates of P and Q

are defined by the center point coordinates of the respective cells in
the grid map model

14.7.2. Experimental Method

The PDA running the iPOS application was put on top of the trolley that also
carried the SDRI Positioning System. One person pushed the trolley along the
test track marked in Fig. 14.10, while a second person initiated the samples at
well-defined locations. For the synchronization of the sampling with the trolley
movement, we used a metronome, which set a 1 Hz audible beat.

We performed experimental measurements based on two different ways of travers-
ing the test track:

(A) Stop-And-Go Mode: The person pushing the trolley advances one meter (i.e.,
one cell in the model) every five seconds, by walking for two seconds to the

208

14.7 Experimental Evaluation

next position and waiting for three seconds before moving on. Each waiting
position corresponded to a cell in the map model, which in practice was
achieved by using the regularly deployed active RFID and BTnode beacons
as indicators for the center points of the respective cells. At the end of each
waiting phase, the second person initiates a sample for the current position
using the sampling tool described in Sect. 14.7.1.

(B) Continuous Mode: The person pushing the trolley advances at a constant
speed of 0.4 m/s, while the second person takes position samples with the
sampling tool after every two meters of distance the trolley has covered.

The precision of position estimates of the iPOS system is defined by the cell size
in the grid map model, which was 1 m2 in our experimental setting. Therefore,
the inherent average position error eavg of position estimates was approx. 0.35 m,
given that the iPOS system returns the coordinates of the center point of the cell in
which the MoD is thought to be located (Eqn. 14.11, with xavg = yavg = 1

2
∗ 1

2
m).

The inherent maximum position error emax is 0.71 m, in case the true position is
situated in one of the corners at the maximum distance from the center point of
the cell (Eqn. 14.12, with xmax = ymax = 1

2
m).

eavg :=
√

xavg
2 ∗ yavg

2 =

√
(
1

2
∗ 1

2
m)

2

∗ (
1

2
∗ 1

2
m)

2

=
1

4
∗
√

2 m ≈ 0.35 m (14.11)

emax :=
√

xmax
2 ∗ ymax

2 =

√
(
1

2
m)

2

∗ (
1

2
m)

2

=
1

2
∗
√

2 m ≈ 0.71 m (14.12)

This means that the precision of the iPOS positioning system based on our exper-
imental setting was 0.35 m in 50% and 0.71 m in 100% of all position estimates.

14.7.3. Experimental Results

We performed six positioning experiments based on different combinations of sensor
plugins. An overview of the experimental configurations and the obtained position-
ing results is displayed in Table 14.4. For the experiments in stop-and-go mode
(mode A), we performed five test runs per configuration, collecting 39 samples per
run, which resulted in an overall number of 195 samples. For the experiments in
continuous mode (mode B), five test runs were performed and 20 samples were
collected during each run, yielding a total of 100 samples per configuration. The
SDRI Positioning LV-plugin and the RFID Gate LV-plugin were modeled with
the accuracy of one cell each. The Active RFID LV-Plugin was modeled with an
accuracy of five meters.

The detailed test results for each experiment are shown in Figures 14.12–14.17.
Each figure shows the minimum, average, and maximum positioning error for each
positioning sample taken along the test track during the respective experiment –
apart from Fig. 14.17, which only displays data obtained from a single test run.

14.7.4. Interpretation

By comparing experiments number 1 and 2 based on the same configuration of
LV-plugins, we can see that the accuracy of the iPOS positioning service in the

209

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

Exp. Config. Active Plugins Mode #Runs n α [m] σ [m]
1 1 Active RFID LV

RFID Gate LV
SDRI Pos. LV A 5 195 1.14 0.97

2 1 Active RFID LV
RFID Gate LV
SDRI Pos. LV B 5 100 1.64 1.14

3 2 Active RFID LV A 5 195 1.44 1.01
4 2 Active RFID LV B 5 100 3.03 2.80
5 3 Active RFID LV

RFID Gate LV
SDRI Pos. LV
Bluetooth RSS MC A 5 195 1.25 1.25

6 4 Bluetooth RSS MC A 1 39 6.66 3.62

Table 14.4.: Overview of experiments based on different combinations of sensor
plugins. For each experiment, n describes the number of collected
samples, α the average error in meters, and σ the standard deviation
of the error in meters

stop-and-go mode is 30% higher compared to the continuous mode. With regard
to the map model, the accuracy of 1.14 m with a standard deviation of about 1 m
for the stop-and-go mode can be interpreted as follows: the average error amounts
to approx. one cell in horizontal or vertical direction, with a standard deviation of
one cell. Likewise, the error for the continuous mode in experiment no. 2 can be
interpreted as amounting to approx. one cell in diagonal direction of the correct
cell in the grid, with a standard deviation of approx. one cell.

We found that the main reason for the decline in accuracy with increased mobility
was the short delay between the creation of the sensor event and the processing in
the fusion engine, which in particular affected the location information obtained via
wireless connection from the SDRI Positioning LV-plugin and from the RFID Gate
LV-plugin. We can see in Fig. 14.12 and 14.13 that the average error approximately
doubles at those places along the path where the SDRI Positioning and RFID Gate
plugins were encountered by the MoD.

This observation also holds true for the results obtained using only the Active
RFID LV-plugin for positioning (Fig. 14.14 and 14.15): the average error of the
continuous experiment (experiment no. 4) increased by approx. 110% in compari-
son to the stop-and-go experiment (experiment no. 3), with an even higher increase
of the standard deviation.

The stop-and-go experiment based on the active RFID tags modeled as a reliable
LV-plugin further shows that the average and maximum accuracy of the majority of
position estimates calculated by the iPOS fusion engine were contained in the range
of the corresponding LV-plugin. The reason for the outliers around the distance of
11 m and 32 m we identified as timing problems due to temporary delays in the
event processing and fusion procedure on the resource-limited mobile iPAQ device.
The timing problem should be addressed by introducing an explicit task scheduling,
or by increasing the safety margin of the ranges defined for the LV-plugins.

Comparing the performance of the Active RFID LV-plugin in experiments no. 3

210

14.7 Experimental Evaluation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

AVG
MIN

MAX

Path [m]

E
rr

or
 [m

]

SDRISDRIRFID Gate RFID Gate

Figure 14.12.: Positioning errors for experiment no. 1, configuration no. 1, mode A.
Plugins: Active RFID LV-plugin, RFID Gate LV-plugin, and SDRI
Positioning LV-plugin (runs = 5, n = 195, α = 1.14 m, σ = 0.97 m)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

AVG
MIN

MAX

Path [m]

E
rr

or
 [m

]

SDRISDRIRFID Gate RFID Gate

Figure 14.13.: Positioning errors for experiment no. 2, configuration no. 1, mode B.
Plugins: Active RFID LV-plugin, Bluetooth LV-plugin, RFID Gate
LV-plugin, and SDRI Positioning LV-plugin (runs = 5, n = 100,
α = 1.64 m, σ = 1.14 m)

211

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

AVG

MIN

MAX

Path [m]

E
rr

or
 [m

]

Figure 14.14.: Positioning errors for experiment no. 3, configuration no. 2, mode A.
Plugins: Active RFID LV-plugin (runs = 5, n = 195, α = 1.44 m,
σ = 1.01 m)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

AVG

MIN

MAX

Path [m]

E
rr

or
 [m

]

Figure 14.15.: Positioning errors for experiment no. 4, configuration no. 2, mode B.
Plugins: Active RFID LV-plugin (runs = 5, n = 195, α = 3.03 m,
σ = 2.80 m)

212

14.7 Experimental Evaluation

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

AVG
MIN

MAX

Path [m]

E
rr

or
 [m

]

SDRISDRIRFID Gate RFID Gate

Figure 14.16.: Positioning errors for experiment no. 5, configuration no. 3, mode
A. Plugins: Active RFID LV-plugin, Bluetooth LV-plugin, RFID
Gate LV-plugin, SDRI Positioning LV-plugin, and Bluetooth RSS
MC-plugin (runs = 5, n = 195, α = 1.25 m, σ = 1.25 m)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Path [m]

E
rr

or
 [m

]

Figure 14.17.: Positioning errors for experiment no. 6, configuration no. 4, mode A.
Plugins: Bluetooth RSS MC-plugin (runs = 1, n = 39, α = 6.66 m,
σ = 3.62 m)

213

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

and 4 with the overall performance of the multi-plugin experiments no. 1 and 2, we
can see that the accuracy of the fusion process is indeed determined by the accuracy
of the most accurate active LV-plugin at a time. In our case, this concerned the
stretches along the test track where the areas of influence of the RFID Gate LV-
plugin and of the SDRI Positioning LV-plugin were entered by the MoD.

Finally, we performed an experiment where we added the Bluetooth RSS Plugin
to the plugins of configuration 1 (experiment no. 5, configuration no. 3). Here we
can see that the overall accuracy has slightly decreased in the average case, with a
few outliers with regard to the maximum positioning error. The reason for this ef-
fect was that the Bluetooth RSS MC-plugin on its own proved to be very unreliable
and inaccurate, as the exemplary positioning results of experiment no. 6 displayed
in Fig. 14.17 show. And this unreliability of the MC-plugin had a pronounced
negative effect whenever only MC-events and no LV-events were detected, as the
Clip was then recalculated based on the potentially very inaccurate MC-events. In
the experiment based on LV-plugins only, the Clip was only extended according to
the mobility heuristic and not changed completely in the absence of LV-events. To
address this issue, we decided to change the Clip calculation procedure in the case
that only MC-events are obtained to joining the existing Clip with the Regions of
the MC-events rather than replacing the Clip with the union of the Regions of the
MC-events (see Sect. 14.4.1).

Initially we also planned to perform experiments using the Active RFID RSS MC-
Plugin in addition to the plugins of configuration 1. However, this was technically
infeasible since the Active RFID LV-Plugin and Active RFID RSS MC-Plugin could
not be employed in parallel on the MoD: both plugins make use of the same RFID
antenna hardware and driver and required incompatible settings concerning the
sensitivity and range of the antenna field.

14.8. Discussion

In the following, we discuss our experimental results according to the taxonomy
for assessing location technology proposed by Hightower [HB01], which considers
scalability, cost, recognition and limitations. We further assess the performance
and dependability of the system, and suggest a number of improvements as part of
future work.

14.8.1. Scalability

A major advantage of the iPOS positioning system is its extensibility, which is
achieved by means of an open plugin architecture and the support of global po-
sitioning coordinates according to the WGS-84 standard [Eur06]. This makes it
possible to integrate arbitrary location sensing technologies and third-party posi-
tioning services alike with little effort. For that reason, the iPOS system scales well
in terms of versatility and variety of supported location sensing technologies.

Owing to the extensibility of the system architecture, the iPOS system is in a
position to exploit a large number of sensor technologies and sensing infrastruc-
tures as they are present in ubiquitous computing infrastructures. For instance,
the system can interface existing positioning services as well as extract location in-
formation from wireless network infrastructures, Bluetooth hotspots, RFID-tagged

214

14.8 Discussion

carpets (e.g., [Vor05]), or stationary sensor networks. The iPOS system therefore
also scales well with regard to cost as a factor.

The iPOS system also scales well with respect to the number of sensor plugins
that can be operated in parallel, despite the application of a grid-based map model.
The main limiting factor for the number of supported active plugins is the amount
of available system resources on the MoD, as the number of cells that have to be
processed in the map-assisted fusion engine is constant in the presence of LV-events,
and increases linearly with the number of MC-events (or MC-plugins) that have
to be processed in case no LV-events are available. Further, in the worst case, the
number of multiplications per cell in the Clip increases linearly with the number of
obtained sensor events. Besides, in our system the normalization of the occupancy
probabilities is performed on the fly during the fusion process and does not pose a
performance issue. As a result of the low overhead and complexity, the positioning
architecture is particularly suited for the execution on lightweight, resource-limited
mobile devices.

Concerning the maintenance of the map model, the system is further capable
of performing a form of self-organization: if an LV-plugin creates an LV-event
that already contains geographic position information in addition to its symbolic
location identifier, a corresponding LV-object can be automatically inserted into
the map model. This has two advantages. Firstly, the newly mapped LV-event can
now be considered during the negative feedback calculation in the fusion engine (see
Sect. 14.4.2). Secondly, the Region of the mapped LV-event can be precalculated
and stored with the map model, increasing the efficiency of the fusion procedure
on the resource-limited mobile device during runtime.

Finally, the iPOS plugin architecture scales well with regard to the physical
distribution of sensing hardware. Physical or logical sensors can be distributed
across various devices, as long as these sensors feature a socket-based interface and
network connectivity. Then a sensor plugin can be created for the iPOS system
that accesses the external sensor by means of a wireless network connection. Thus
resource-limited devices can outsource sensor hardware and remain in a position to
perform robust positioning based on multi-sensor fusion. For instance, in our iPOS
prototype system, the SDRI Positioning LV-plugin executed on the MoD connected
wirelessly to an external computing device that ran the SDRI Positioning service
and controlled the RFID reader/antenna hardware.

14.8.2. Cost

Principally, the iPOS system can be configured to make use of any readily available
hardware (on the mobile client executing the iPOS system) or infrastructure (in
the user’s environment) that can be exploited for location sensing and positioning.
Therefore, in general, the usage of the iPOS system does not result in extra costs.
For instance, a PDA featuring Wireless LAN and Bluetooth connectivity can use
these available radio interfaces for location sensing. The purchase of additional
location sensing hardware, such as a mobile RFID reader or a GPS receiver module,
for instance, may be considered if the needs of the user require it and/or if the
physical support infrastructure is already available (e.g., a grid-like or random
distribution of stationary radio beacons as part of a sensor network).

215

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

14.8.3. Recognition

Our experimental results indicate a good accuracy of the fusion-based positioning
system in comparison to the accuracy of the individual sensing technologies.

Based on our developed fusion algorithm and the explicit modeling of reliable
sensor events, the iPOS system further is capable of providing quality-of-service
(QoS) guarantees. Firstly, the fusion engine guarantees that overall accuracy of
the fusion process is at least as good as the accuracy of the most accurate LV-event
that was part of the input during one iteration. Secondly, given that the LV-
plugins were modeled with care and the positioning system does not suffer from
timing or synchronization problems, the iPOS system can provide QoS guarantees
with regard to the achieved accuracy if at least one LV-plugin generates sensor
events: the position of the mobile device is guaranteed to be within the area that
corresponds to the current Clip in the map model. This knowledge can be used to
inform applications using the positioning service about the currently guaranteed
quality of service, that is about the currently guaranteed accuracy in case that
LV-events are available, or about the lack of such QoS guarantees if only unreliable
MC-events are fed into the fusion engine of the iPOS system.

14.8.4. Limitations

Time Synchronization and Task Scheduling

During our experiments, we recognized time synchronization as an important chal-
lenge with regard to the processing of sensor events. If the clocks of the computers
involved in the generation of sensor events are out of sync, it can happen that the
fusion engine dismisses new sensor events as too old or considers outdated sensor
events to be up-to-date. This can result in a degraded quality-of-service and lower
dependability of the probabilistic fusion process. A possible solution is to employ
explicit time synchronization mechanisms and to perform task scheduling for a bet-
ter coordination of active plugins and the fusion engine. A further possible solution
is to increase the ranges of time-critical sensor events to account for a certain ac-
ceptable maximum delay. In our case, we manually calibrated the clocks of the
different computers involved in the event generation process (i.e., the computers
controlling the RFID gates and the SDRI Positioning service) before carrying out
the experiment, but this is not a practical solution in real-life application scenarios.

Flexibility of the Grid Map Model

An implementation-specific limitation of our system is the use of a fixed cell size per
map. Variable cell sizes would allow a more fine-grained resolution for specific areas
of a map if needed. It would also avoid an unnecessarily high cell density in areas
where applications are satisfied with less precise position information, thus further
reducing memory consumption and computational complexity. Nevertheless, in our
system, using fixed cell sizes proved not to be a significant disadvantage: the iPOS
system is targeted at existing location sensing technologies and infrastructures that
are generally found in ubiquitous computing environments. These location sensing
technologies often feature a limited accuracy that is lower than the precision of
the iPOS system even when using a relatively large fixed cell size of 1 m× 1 m or
beyond.

216

14.8 Discussion

14.8.5. Performance

Given our experimental setting and configurations, the mobile handheld we used
was in a position to calculate position updates at a rate of up to 1 Hz. We consider
this a very good result, especially since a higher update rate was not practical as
the maximum response rate of our sensor plugins themselves was approx. 1 Hz
or below. A profiling of the iPOS system running on the handheld device showed
that the delay caused by the map-based fusion processing was negligible as long
as sensor events were obtained regularly (keeping the Clip at a small controllable
size).

Only in cases when the mobility heuristic was applied repeatedly for a longer
period of time without any sensory input in between, the Clip would grow beyond
a size where the recalculation of the cell occupancy probabilities negatively affected
the position update rate. To address this issue, we suggest to suspend the appli-
cation of the mobility heuristic and the calculation of position estimates whenever
more than I consecutive iterations yield no location information in the form of
sensor events, and to resume operation as soon as new sensory input is available.
The value of I should be calibrated during practical experiments and set to the
value up to which the application of the mobility heuristic does not significantly
affect the performance of the iPOS system, which in large parts depends on the
computing power of the mobile device. Furthermore, the value of I should not be
chosen too high – else the quality of the iPOS position estimates is liable to suffer
due to the increase of uncertainty about the user’s true position when repeatedly
no new location information is obtained from the sensors.

14.8.6. Dependability

Liveness

The iPOS system returns position estimates as long as sensor input is available
from the sensor plugins during subsequent runs of the positioning algorithm. In
the process, the Clip management ensures that the Clip only contains cells with an
occupancy probability greater than a minimal threshold δ, and that the probabil-
ities of all cells in the Clip sum up to one. The Clip management further ensures
that the Clip is never empty. Consequently, the heuristic for calculating a position
estimate will always return an estimate as long as sensor events are available. So
the liveness of the positioning system is ensured as long as at least one of the sensor
plugins is functioning.

Safety

On the one hand, if only unreliable sensor plugins (i.e., Monte-Carlo sensor plugins)
provide sensor events, then the iPOS system does not guarantees the correctness
of its position estimates with respect to accuracy. In this case, no safety properties
are assured.

On the other hand, if reliable sensor events (i.e., Las-Vegas sensor events) are
available, the iPOS system provides quality-of-service guarantees with regard to
the achieved accuracy, given that the LV-plugins were modeled correctly and the
positioning system does not suffer from timing or synchronization problems: then
per design the position of the mobile device is guaranteed to be correct, which

217

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

means it is within the area that corresponds to the current Clip in the map model.
The system in this case satisfies the safety property that the accuracy of position
estimates is guaranteed to be within certain well-defined boundaries.

Adaptability

The resource manager of the iPOS system can dynamically load and unload sensor
plugins during runtime. This provides the basic functionality for controlling energy
consumption or computational load caused by the active sensor plugins on the MoD.
This way it is also possible to adapt the desired degree of positioning accuracy
during operation according to the requirements of the clients of the iPOS system.

Fault Tolerance

Due to the probabilistic nature of the positioning algorithm and the high-level
sensor fusion applied in the process, the failure of individual sensor plugins leads
to a graceful degradation of the quality (i.e., accuracy) of the position estimates.
Our fusion algorithm is robust in terms of tolerating the failure of single sensor
plugins. The absence of sensor plugins only affects the quality of the positioning,
but as long as there is some sensory input available, the positioning algorithm stays
“alive” and continues to generate position estimates, maximizing the availability of
the service. If a highly accurate sensor-plugin failed and the overall accuracy of
position information dropped from cell level to room level, for instance, applications
that are satisfied with rough position estimates would still be fully functional.

The iPOS system further tolerates the temporary absence of all sensory input by
applying a mobility heuristic that adjusts the cell occupancy probabilities in the
grid model to account for the uncertainty introduced by a potential movement of
the MoD (see Sect. 14.4.5).

Additionally, even in case all sensory input temporarily fails to appear, movement
heuristics and dead reckoning techniques can be applied to get a rough picture
of the location of the object, such as by counting the number of footsteps of a
walking person [VMKA02], for example. Alternatively, the momentary absence
of all sensory input can be compensated by deploying heuristics for a short-time
position prediction.

The system is also resilient to sensors providing inaccurate data. Location in-
formation gained from such sensors is mapped to unreliable sensor events that
reflect the corresponding uncertainty of the provided location information (see
Sect. 14.3.5). Even false sensor data or outliers that occur sporadically (e.g., due to
transient interference) are tolerated by the position fusion engine, as the derivation
of position estimates is performed with the help of a maximum-likelihood heuristic
that considers the reachability of new positions based on a mobility model and
using the last estimated position as a starting point (see Sect. 14.4.6).

Privacy

In many contexts, location information is considered as sensitive information [HS02].
In our system, concerns about the privacy of location information are addressed by
focusing on the use of locally acquired sensor information, that is information which
is passively available and requires no external requests or service infrastructures.

218

14.9 Conclusion

Thus, by enabling the user to configure the iPOS system to solely rely on local loca-
tion sensors, the system can be prevented from introducing new channels by which
location information about the MoD itself is revealed to the surrounding environ-
ment. However, in some cases such a policy is difficult to enforce due to technical
restrictions. For instance, a node communicating over Wireless LAN reveals its
location (to a certain degree) to the base station, which cannot be prevented by
our system.

14.8.7. Future Improvements

The development and implementation of further sensor plugins that make use of
“classic” location sensing technologies such as GPS or GSM, which are already
truly ubiquitous today, is an important requirement. This is necessary in order to
increase the practicality and coverage the iPOS system (e.g., in outdoor scenarios),
and to make it more suitable for daily use.

Moreover, in the prototype system, the map handler currently loads new maps
from the local file system. Here a mechanism for discovering local map servers and
for dynamically loading missing maps should be implemented, especially to cover
previously unknown areas for which no maps have been preloaded on the MoD.

With regard to the adaptability of the system, we are envisioning the creation of
new sensor plugins on the fly. Based on the generic plugin templates, a plugin could
be instantiated and activated automatically during runtime whenever a location
sensing hardware or third-party positioning service becomes available. This would
require some sort of discovery or notification mechanism for the iPOS system to
become aware of such new resources, possibly including a meta description language
defining the properties of the respective location sensing technology (e.g., range and
blocking property, symbolic identifier/class name for the type of sensor, names of
associated maps, and so on). Such a mechanism would enable the iPOS system
to create adapters for using previously unknown location sensing technologies or
services that are encountered by the MoD along the way.

Another interesting option for future work is the porting of the iPOS system onto
a mobile smart phone platform, where existing GSM, Bluetooth, and potentially
also Wireless LAN and Near Field Communication interfaces could be exploited
for location sensing. The increasing proliferation of smart phones makes them a
challenging target platform, with a large user base for user studies.

14.9. Conclusion

We have presented a positioning system for ubiquitous computing that emphasizes
the robustness and fault tolerance of the core functionality, namely self-localization
of a “smart object” or mobile device. This is achieved by means of redundant loca-
tion sensing and data fusion. The system architecture allows for simple integration
of multiple sensors due to the loose coupling between the acquisition of sensory
location information and the fusion-based positioning algorithm. The open plugin
architecture facilitates the integration of arbitrary location sensing technologies and
existing third-party positioning services. Further, by using a grid map model, the
iPOS system is capable of integrating both symbolic or geographic representations
of position information, including local and global geographic position coordinates.

219

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

A special feature of the fusion algorithm is that, by distinguishing and model-
ing reliable and unreliable sensor plugins, it is able to provide quality-of-service
guarantees for positioning results under certain conditions.

Moreover, the iPOS system focuses on using an existing communication and
identification infrastructure rather than dedicated hardware for localization. This
has the advantage of avoiding additional cost for installation and maintenance.
Nevertheless, our system can easily be integrated with a dedicated positioning in-
frastructure (e.g., a super-distributed RFID tag infrastructure). This makes the
iPOS system also suitable for environments where certain areas require high lo-
cation resolution, accuracy and precision. By using a unified internal format for
sensor events that abstracts from the sensing mechanisms used in the different
sensor plugins, our system supports a seamless transition between areas where dif-
ferent positioning technologies are available, including smooth hand-offs between
indoor and outdoor areas.

Finally, as a proof of concept, we presented and experimentally evaluated a
prototype implementation of the iPOS system.

14.10. Related Work

14.10.1. Non-Redundant Positioning Systems

An overview of (indoor) positioning systems for ubiquitous environments and their
relation to robot positioning is given in [HB01]. There are numerous systems based
on dedicated hardware, such as cameras [KHM+00, RS00, dI01], infrared bea-
cons [WHFG92], ultrasonic emitters [WJH97, PCB00], pressure sensors [AJLS97,
OA00], and special hardware for dead reckoning [VMKA02]. Some effort has also
been invested in systems that require no additional hardware to locate objects.
The RADAR project [BP00] draws location information from the signal strength
of WLAN installations. In our system, we used basically the same approach for
our Bluetooth RSS MC-plugin. Abowd et al. [ABO02] use biometric sensors and
RFID for immediate location updates.

14.10.2. Grid-Based Positioning Systems

Grid based positioning is a standard technique for robot positioning [BFH97,
FBDT99, FBT99]. While the basic mathematical techniques are applicable also
in positioning for ubiquitous computing environments, the goal is quite different.
In ubiquitous computing, positioning of people (or their devices) is prevalent, thus
different sensors are used, and many applications don’t require a high degree of ac-
curacy (an accuracy of approximately one meter is often sufficient, or only symbolic
location information is necessary). Further, the traditional grid-based positioning
systems are not particularly suited or adapted to be used on small, resource limited
mobile devices, as they typically rely on a fully equipped mobile robot with much
more powerful processing and sensing capabilities.

220

14.10 Related Work

14.10.3. Non-Redundant Multi-Sensor Positioning
Architectures

Data fusion for positioning in wireless networks is discussed in [KOB01] with an
emphasis on lower levels. Since that work is based on measurements such as time
of arrival and time difference of arrival, it is not directly applicable to indoor
positioning. However, such techniques can be incorporated in our system in order
to increase the accuracy of position information drawn from outdoor sensors.

Anne et al. combine the strong identification of RF-based location sensing (RFID
and Wi-Fi) with the accuracy of computer vision-based-tracking to provide a new
solution for multi-scale and multi-target indoor location sensing [ACDP05]. The
system was designed to make use of an existing sensing infrastructure. Its main goal
is to support indoor location-based applications that feature strong precision and
scalability requirements that usually cannot be met by any single of the location-
sensing technology used in the process.

14.10.4. Redundant Multi-Sensor Positioning Architectures

The Location Stack model proposed by Hightower et al. in [HBB02] provides a
universal, multi-layered design abstraction for location-aware ubiquitous comput-
ing systems. It provides a framework which allows the integration of arbitrary
fusion techniques. Their practical implementation [GLHB03] is based on Bayesian
filtering mechanisms for the data fusion layer, including Kalman- and particle fil-
ters [FHL+03]. While Kalman filters are computationally efficient, they require
accurate sensors with comparably high update rates, which is not the case with
the kind of sensors we typically find in today’s ubiquitous computing environments
(cf. Table 14.2). Particle filters have been successfully applied to mobile robot
localization, and especially the application of real time particle filters [KFM03]
appears to be a promising approach with improved resource-efficiency. The com-
plexity of particle filters, however, reduces their suitability for the use with small,
resource-limited mobile devices. In our approach, in contrast, we concentrated on
providing a lightweight fusion-based positioning architecture with low overhead.
As a consequence, the iPOS system was deliberately tailored for the operation on
small, resource-limited devices. Furthermore, our fusion algorithm is well suited to
work with standard sensors available in typical ubiquitous computing environments
and does not require specialized dedicated hardware such as laser range finders or
ultrasound badges, for instance. In this context, however, integrating our fusion
algorithm with a low overhead version of the Location Stack for explicit support
of mobile devices could be an interesting option.

The COMPASS location system [KB05] is a more recent positioning architecture
that also takes up the idea of fusing different sensors with the help of a probabilistic
fusion algorithm. Similar to our work, they calculate a combined probability distri-
bution function (PDF) based on the location information obtained from individual
sensors. Instead of using a map model, the PDF is built upon a Cartesian coordi-
nate system. The architecture also features a plugin based design and targets mo-
bile resource-limited devices. The COMPASS location system is further designed
to include a so called translator service that is capable of translating probabil-
ity distribution functions or coordinates into meaningful location identifiers such
as building names or room numbers. A formal model of the fusion architecture

221

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

and the positioning procedure was not presented. Further, so far no prototypical
implementation and experimental evaluation of the system is available, but a pro-
totype system that includes two plugins (PS and an accelerator plugin) has been
announced as work in progress.

Pfeifer describes a number of fundamental aspects and challenges of redundant
positioning in general [Pfe05]. In the process, an abstract comprehensive architec-
ture for redundant positioning is outlined and discussed. However, the approach
lacks a formal model of the suggested fusion architecture. Further, no prototypical
implementation or experimental evaluation of the architecture is provided.

14.10.5. Centralized Multi-Sensor Positioning Architectures

The iPOS system operates autonomously on a “smart object” and provides appli-
cations that are executed locally with location information about that same object.
In contrast to this decentralized approach, the Location Service [ABO02] is a cen-
tralized service providing access to location information about arbitrary entities. It
supports a variety of sensors, but doesn’t emphasize fusion of data acquired from
these sensors. Rather, it seems to consider all sensor input as accurate, though
possibly not being complete (e.g., lacking orientation information). By merging
different sensor data, it generates complete location updates for tracked objects.
The most significant difference to our work is the Location Service’s global avail-
ability, i.e. it is built to supply all applications with location information, not only
the tracked object itself. From a reliability point of view, such a centralized service
constitutes a single point of failure, which is not suitable for critical applications.

Leonhardt and Magee suggested a theoretical fusion architecture for multi-sensor
location tracking [LM98] based on a formally defined, hierarchical location model.
The fusion algorithm can identify overlaps among location sightings and exploit
them for increasing the accuracy of location estimations. While the fusion and
abstraction of location information is carried out by the clients, the system relies
on a central repository for locations and location-objects. An initial prototypical
implementation of the location service in the form of a “specialized database” was
briefly outlined, which allowed to verify the location model but suffered from some
challenging performance and scalability problems.

Baus et al. presented a resource-adaptive mobile navigation system [BKW02].
However, their complex 3D-model-based (indoor) navigation service is not running
on the tracked device itself, but resides in the background infrastructure instead.
The mobile client is mainly used for user input and as portable display. Also,
resource-adaption is limited to presentational aspects with respect to the quality
of graphical output to the user.

14.10.6. Multi-Sensor Context-Awareness Architectures

Further related is work on multi-sensor context-awareness architectures, where the
main goal is to make mobile devices and smart artifacts aware of their physical,
situational, and user-related context in general, or to provide location-aware con-
tent. In doing so, the challenge of fusing location information for the positioning of
mobile devices is not addressed. Examples for such multi-sensor context-awareness
architectures and middleware platforms are [CSG99, PPZ99, GSB02, RAMC+04].

222

14.10 Related Work

Acknowledgments

The author wishes to acknowledge Harald Vogt for several fruitful discussions on
the fusion algorithm and on the modeling of (un-)reliable sensors.

The author also wishes to acknowledge a number of students who contributed
considerably to the development and prototypical implementation of the iPOS sys-
tem and its earlier predecessor system. Most notably are the contributions of
Christian Schär [Sch02], who worked on the design and implementation of the orig-
inal positioning system, René Gallati [Gal04], who implemented large parts of the
resource manager and positioning API of the iPOS system, and Marco Feriencik
and Matthias Leumann [FL05a], who implemented the revised iPOS fusion engine,
completed the porting of the positioning platform to accommodate the particu-
larities of the iPAQ PocketPC platform, and helped with the final experimental
evaluation of the iPOS positioning prototype. Further, the author thanks Danat
Pomeranets and Stephan Schneider for their work on different sensor plugins [PS03],
and Simon Schlachter for his work on movement patterns and position prediction
based on the grid map model of the positioning system [Sch03].

223

iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion

224

15. LuxTraceRT: Real-Time
Positioning and
Self-Calibration Using Indoor
Lights and RFID

No navigation system provides zero error or 100% coverage. By using multiple nav-
igational systems in parallel helps to mask areas where one system fails or, by cross
comparison (between a number of systems), increase accuracy and reliability. To
investigate this, we combine two novel navigational technologies: radio frequency
identification (RFID) and light sensors.

In this chapter, we present our work on LuxTraceRT (short for LuxTrace Real-
Time), a context-aware self-calibrating real-time positioning system. LuxTraceRT
is a further development of LuxTrace [RAT05], a system that provided first evidence
for the feasibility of using solar modules as a low-cost alternative for measuring
distance in indoor-settings. The original LuxTrace system uses a light intensity
model for the mapping of position displacements to light intensity values. LuxTrace
then applies measured light intensities of overhead light sources to its internal model
to determine the current displacement offset of a mobile host (i.e., a mobile device or
a person) carrying the solar cell. By repeatedly executing this procedure, LuxTrace
makes it possible to estimate the position of the mobile host for movements along
straight trajectories.

The original LuxTrace [RAT05] system was limited to offline operation and re-
quired manual intervention for building the used light intensity models. The Lux-
TraceRT system, in contrast, has been designed as a self-contained application,
capable of calculating position estimates in real-time during runtime. Further,
LuxTraceRT is able to learn new models on-the-fly in order to adapt to changes in
lighting conditions when moving to a different location. In addition, LuxTraceRT
makes use of a super-distributed RFID tag infrastructure as a source of location-
dependent context information, which is used for enabling self-calibration of the
positioning service, and for improving the quality of learned models. The combina-
tion of two positioning techniques (based on solar cells and super-distributed RFID
tags) helps to mask areas where one system fails in order to improve reliability and
availability, and provides a low-maintenance solution for increasing coverage and
energy efficiency.

To evaluate our approach, we performed a number of practical experiments with
our prototypical LuxTraceRT implementation. Our results demonstrate that the
LuxTraceRT system retains its effectiveness in comparison to the original LuxTrace
system even when applied under more practical conditions.

225

LuxTraceRT: Real-Time Positioning Using Indoor Lights and RFID

15.1. Motivating Scenario

Owing to advances in micro-engineering, it has become possible to integrate ever
more sensor hardware on small embedded computing platforms. Accordingly, the
number of diverse physical phenomena of the environment that can be sensed by
a single device is increasing. By combining sensors that complement each other
in a redundant manner with regard to a certain task, the diversity of sensing
capabilities can be exploited by means of multi-sensor data fusion with the result
of achieving a fault-tolerant and adaptive system behavior. In the following, we
describe a general factory scenario where non-contiguous areas of super-distributed
RFID tags are combined with light intensity measurements using a solar cell for
providing an adaptive, context-aware positioning system capable of self-calibration
in real-time.

An electric forklift truck is equipped with an on-board navigation com-
puter that guides the forklift driver to quickly find specific locations
(i.e., shelves or goods) on the large factory grounds. In order to enable
the truck to establish its position within the factory area, two com-
plementary technologies are used: RFID and solar cells. For that, the
navigation unit on the forklift truck is connected to an RFID reader
and antenna attached to the underside of the vehicle, and to solar cells
mounted on its roof. The area in which the truck operates consists of
large factory halls with long straight corridors, and passages between
these corridors and halls. Each corridor features artificial lighting from
evenly spaced light tubes. The floor space of all passages between fac-
tory halls or corridors are equipped with a layer of densely distributed
RFID tags. Each individual tag knows its position coordinates with re-
gard to the local factory map (i.e., the position coordinates are stored
in the physical memory of the respective tags).

If the forklift truck passes over an RFID-tagged area, it determines its
position within the factory map by averaging the tag position coordi-
nates of the RFID tags detected underneath the vehicle. Alternatively,
based on a previously learned light intensity model, the forklift vehicle
uses the solar cell measurements for positioning along straight corri-
dors. A display in the driver’s cabin shows a map of the factory area
and highlights the current position of the forklift as well as the position
of the driver’s chosen destination.

As the spacing of the lights in different corridors may vary, different
light intensity models are required. Therefore, whenever the forklift
truck enters a new corridor, it uses its RFID-based positioning service
as a reference for learning a new light intensity model on the fly. It
further optimizes learned models by adjusting their period lengths. The
period length equals the distance between adjacent light tubes, and this
information is also stored on the RFID tags at the entrance to each
corridor.

While driving through long corridors towards a certain shelf, the navi-
gation system on the electronic forklift truck turns off the RFID reader
and uses the solar cell input for reckoning its positioning. The solar cell

226

15.2 Design Goals

sensor is several orders of magnitudes more energy efficient than the
RFID system. This helps the vehicle to extend its battery lifetime, and
as a direct result of that also the overall operation time. Whenever the
forklift truck gets near a passage to another corridor with potentially
different lighting conditions, the RFID system is activated so that the
light intensity model can be recalibrated. Thus the use of the exist-
ing lighting infrastructure for positioning during straight driving along
corridors increases the coverage of the navigation system within the
factory area while minimizing the additional hardware costs for the
RFID equipment, as only the critical passage areas need to be fitted
with RFID tags. Finally, in areas where the availability of positioning
information is critical, both the RFID and the solar cell system can
be used in parallel to achieve fault tolerance in situations where one
system fails.

15.2. Design Goals

The initial LuxTrace development focused on finding a suitable mathematical
model for describing the intensity of light tubes at arbitrary points in a room
or hallway, and on using that model for deriving displacement and context infor-
mation [ART05, RAT05]. With regard to positioning, the developed algorithms
used in the LuxTrace project are capable of estimating position displacements on
straight trajectories using a single solar cell mounted at a constant height, based on
a model describing light intensity along a corridor with evenly spaced fluorescent
tubes. The model is simplified in so far that it assumes ideal light sources without
reflector and diffusor, and without reflections from walls and object surfaces.

A drawback of the initial LuxTrace system was that the light intensity models
used for positioning had to be created offline, requiring manual optimizations and
post-processing. As a consequence, the calculation of position displacements had to
be performed off-line, after the experimental measurements of the solar cell voltage
values were completed on the test track.

The primary aim of LuxTraceRT was the development of a more practical pro-
totype system in comparison to the original LuxTrace offline system. The Lux-
TraceRT system was designed to support real-time operation, enabling the train-
ing of new models on the fly for inferring position estimates at run time. A sec-
ondary aim was the improvement of the performance of the system by incorporating
location-dependent context information.

Using RFID technology contributed to achieving these aims by providing a ref-
erence positioning service, and by delivering location-dependent topology informa-
tion in situ. The latter enabled the self-calibration of the LuxTraceRT positioning
service, and the optimization and adaption of learned models.

Overall, the design goals of LuxTraceRT were the following:

• Real-Time Operation: Model building and position estimation in real-time
based on solar cell voltage measurements using a single solar module as main
sensory input.

• Adaptability : Adaptive behavior in environments with different lighting con-
ditions by means of continuous self-calibration using a third party positioning

227

LuxTraceRT: Real-Time Positioning Using Indoor Lights and RFID

service if available.

• Context/Location Awareness : Self-calibration by exploiting context informa-
tion about the physical location. Such information included the metric dis-
tance between light sources (for determining the exact length of one period of
the light tube intensity model) and parameters for the normalization of light
intensities (such as the maximum intensity at a certain reference height).

• Fault Tolerance through exploitation of functional redundancy of an available
solar cell: in addition to its primary usage of generating energy, the solar cell
was employed for positioning. Further, in combination with an RFID-based
positioning service, the general availability of position information was im-
proved and the spatial coverage of the combined positioning system increased.

15.3. System Architecture

The LuxTraceRT system consists of three main architectural parts: (1) sensor data
acquisition and preprocessing, (2) reference positioning, and (3) real-time model-
building and position estimation (Fig. 15.1).

Reference System
Interface

Reference Position
Logger

Hardware Interface

Data Acquisition

Data Container

Preprocessor

Solar Cell
Reference Positioning

System

Real-Time
Model Builder

Real-Time Position
Estimator

LuxTraceRT Position Logger

LuxTraceRT

Figure 15.1.: Architecture of the LuxTraceRT system

The data acquisition software process continuously samples the digitized voltages
from the solar cell module via an A/D converter, which serves as hardware inter-
face. The samples are stored in a persistent data container, which is monitored
by a preprocessor software process that detects peaks and lows with regard to the
developing of the light intensity voltages.

The main component of the reference positioning part is the reference position
logger. Through the reference system interface, it continuously polls the service
of an arbitrary third-party reference positioning system, timestamps the received
positions, and stores them for later retrieval. The reference position logger further
uses linear interpolation to determine intermediate positions for timestamps where
no direct position information has been stored.

228

15.4 System Design Aspects

The core components of the LuxTraceRT architecture are the real-time model
builder, which is responsible for training new real-time models based on the data
made available by the sensor data acquisition and preprocessor units, and the
real-time position estimator, which calculates position estimates with help of the
currently active model. The position estimator loads newly built models during
runtime upon availability, thus performing a continuous real-time self-calibration
of the LuxTraceRT system.

15.4. System Design Aspects

In the following, we discuss a number of relevant design aspects of the LuxTraceRT
system in more detail.

15.4.1. Extracting Context from Indoor Lights

Advantages of extracting context data from indoor lights are that this infrastructure
may be used without modification (i.e. the technology is minimally invasive) and
this source of context data is generally untapped. Solar cells as sensors for wearable
computing are attractive firstly as their low number of “pixels” (e.g., 1) implies that
limited processing power may be sufficient. Secondly, as solar cells can be produced
in thin (< 1 mm) low weight layers on a flexible substrate in a number of colors they
better match garment specifications than other sensing devices. A third benefit of
solar cells is that they can be used as a sensor and an energy harvesting device,
thus contributing to the restricted energy available on mobile devices and wearable
electronics.

15.4.2. Integration of LuxTraceRT with RFID Technology

The decision of employing RFID technology as a complementary technology to the
LuxTraceRT system has two major advantages. Firstly, it provides us with a ro-
bust and accurate reference positioning service. Secondly, by densely distributing
RFID tags in transition areas where the lighting condition changes, which requires
that the mathematical light intensity model is adapted accordingly, we can use the
memory capacity of these tags for the provisioning of additional location-dependent
information in situ. Secondly, the combination of a low-power light sensors with
RFID technology, which has power requirements that are several orders of magni-
tudes higher, demonstrates the possibility of using LuxTrace as a low-power sub-
stitute for positioning systems with significantly higher energy demands, and as a
low-cost means to improve the coverage and availability in areas where the opera-
tion of the primary positioning service is technically or economically infeasible.

15.4.3. Using Context-Information for Self-Calibration and
Model Adaptation

Apart from providing location information for the self-positioning of mobile entities,
the use of a super-distributed RFID tag infrastructure makes it possible to store
arbitrary context information in situ, enabling the realization of self-describing
locations (see Chapter 11). In our particular case, we are not only able to store local

229

LuxTraceRT: Real-Time Positioning Using Indoor Lights and RFID

or global positioning coordinates on the single tags of the RFID infrastructure, but
also more detailed information about the topology of location-dependent lighting
infrastructures. Such information can include the distance of adjacent light sources,
which can be used for the correction of the period length of a learned model. The
RFID tags can also provide mobile devices with information on the maximum light
intensity per light source at a certain height, which facilitates the adaption and
re-calibration of models for the use with solar modules that are placed at different
height levels. Ultimately, complete pre-learned models can be stored on the tags
of the RFID infrastructure at different physical locations, if the storage capacity
of the tags is sufficiently high. This would significantly increase the autonomy of
the system by removing the need for connectivity and decreasing the dependence
on background service infrastructures.

The RFID tags of the super-distributed RFID tag infrastructure may further
be used for providing users with virtual hyperlinks to additional online content
residing on a database in the background network infrastructure [WFGH99]. A
compromise between retrieving information from a remote database and reading
all data from the local physical tag data memory is to provide the mobile device
with its own pre-loaded tag database, which can be tailored for the use with certain
applications as well as for certain geographic areas and buildings.

15.4.4. Positioning Procedure

LuxTraceRT uses the following procedure for calculating positions: the current
position p(t) at time t > 0, relative to a given starting point p(0), is determined by
multiplying the period length l of the model with the number of complete periods
m(t) that so far have been detected while moving from light source to light source
along the straight trajectory. Then the displacement offset o(t), which corresponds
to the estimated displacement for the current period, is determined by looking
up the respective value in the model, based on the most recent light intensity
measurement (voltage value) as input (see Fig. 15.2).

The displacement offset is unambiguously defined since the rising and falling
flank in the model can be distinguished by considering previously detected highs
and lows. The complete equation for the position calculation is given in Eq. 15.1.

p(t) := p(0) + m(t)·l + o(t) (15.1)

The LuxTrace approach so far only considers straight trajectories for positioning.
This implies that the estimated positions are 1-dimensional, measuring the distance
along a straight path.

For our experiments, we used a local two-dimensional coordinate system where
the x-axis was aligned with the trajectory. Therefore p(t) provided an estimate
for the x-coordinate of the current position, while the y-coordinates remained
constant. The local position coordinates can be transformed into the format of
arbitrary coordinate systems. In our system, we implemented coordinate trans-
formations for obtaining global positioning coordinates according to the WGS-84
standard [Eur06].

230

15.5 Experimental Setup

0 0.5 1 1.5 2 2.5 3 3.5

0.5

1

1.5

2

2.5

Distance Offset [m]

V
ol

ta
ge

 [
V

]

Figure 15.2.: Exemplary LuxTraceRT model used for estimating displacements off-
sets

15.5. Experimental Setup

The main goals of the experiments were twofold. The first goal was to evaluate the
accuracy and robustness of the self-calibrating real-time LuxTraceRT positioning
system. The second goal was to analyze the effect of applying context information
about the physical location for improving the quality of the models. In our case
we used knowledge about the distance between light tubes in order to correct the
period of the learned models.

15.5.1. LuxTraceRT Prototype

We developed a fully functional LuxTraceRT prototype based on the architecture
described in Section 15.3.

The sensor hardware and the A/D converter used in the experiments are the
same as the ones used during the earlier LuxTrace experiments [RAT05].

We have used the RFID positioning system described in Chapter 13.4.3 as a
reference positioning service. It consists of two major physical components: Firstly,
a trolley equipped with an off-the-shelf RFID tag reader and with an RFID antenna,
which is mounted at the bottom of the vehicle. Secondly, a prototypical super-
distributed RFID tag infrastructure, which provides a dense distribution of RFID
tags across certain areas of the floor space. The basic operating principle of the
RFID positioning service is as follows: it first reads the tag position coordinates
stored on the single RFID tags within antenna range. Then the position (xe, ye)
is computed as the arithmetical mean of the obtained single positions as denoted
in Eq. 15.2, where (xi, yi) are the position coordinates of n RFID tags detected
during one scan pass, with i = 1 . . . n.

(xe, ye) := (

∑n
i=1 xi

n
,

∑n
i=1 yi

n
) (15.2)

231

LuxTraceRT: Real-Time Positioning Using Indoor Lights and RFID

The RFID hardware consisted of a mid range RFID reader1, and an external
mid range RFID antenna2. As transponders, we employed Philips I·CODE [Phi06]
high-frequency (HF) tags3, with a dimension of 7.5 × 4.5 × 0.1 cm.

The LuxTraceRT equipment was added to the RFID positioning trolley (Fig 15.3).
The RFID antenna, not visible in the figure, was attached underneath the bottom
pane, at 10 cm above the floor space. At this distance, the approximately square
operating area of the RFID antenna was about 50 × 50 cm.

Black Box with Solar Module

Notebook executing LuxTraceRT
and RFID Positioning Service

Trolley

A/D Convertor

Battery for RFID Reader

RFID Reader

RFID Tag Template

Notebook acquiring Solar Cell Voltages

Fluorescent Light Tubes

RFID Antenna (underside)

Figure 15.3.: Measurement trolley and prepared test track

For our experimental setup, we used the super-distributed RFID tag infrastruc-
ture prototype described in Chapter 13.3.1, which consisted of four RFID-tagged
templates with an average tag density of 39 tags/m2. An overview of the properties
of the used RFID templates is given in Table 13.1.

For our practical experiments we chose an office corridor of similar type as the
one used for the LuxTrace series of experiments, with light tubes of identical type,
arrangement, and light emitting characteristics. To establish our prototypical super
distributed RFID tag infrastructure, we installed the four available RFID-tagged
foil templates along the length of the corridor. Then we defined the test track by
laying out a measuring tape along a distance of 10 m, starting at the beginning of
the first RFID template (Fig. 15.3). This tape passed directly underneath the light
tube centers. The exact layout of our experimental setup is shown in Fig. 15.4.

The photovoltaic solar module4 used for the experiments is the same as used
for the original LuxTrace system, and it consists of an amorphous silicon thin film
deposited on glass. The photovoltaic solar cell was mounted on the trolley at a
height of 144.5 cm above the floor, and at 93 cm from the ceiling of the office
corridor.

1Manufacturer: Feig Electronic, model: OBID i-scan reader HF ISC.MR100
2Manufacturer: Feig Electronic, model: OBID i-mid antenna ISC.ANT340/240
3Manufacturer: Philips Semiconductors, model: I·CODE (Type 1)
4Manufacturer: RWE SCHOTT Solar, model: ASI 3 Oi 04/057/050

232

15.6 Experimental Results

(0,0) (123,0) (370,0) (493,0)

(123,128) (246,128) (493,128) (616,128)

SDRI-
Template 1 124

370 370

Trajectory, 10 m

x

y

SDRI-
Template 2

SDRI-
Template 3

SDRI-
Template 4

Figure 15.4.: Experimental setup: placement of light tubes and RFID-tagged foil
templates (all coordinates and distances in cm). The test track start-
ing at position (0,60) is indicated as a red arrow

15.5.2. Experimental Method

We limited the observation range during the model learning procedure to a single
low-high-low cycle of light intensities, as it is desirable to minimize the length of
the corridor needed for the training of new models.

The placement of the RFID templates was chosen in a way that allowed us to
obtain RFID position information in the critical sections halfway between adjacent
light tubes, which is necessary to enable an accurate detection of low points in the
measured light intensity.

All practical experiments were performed by pushing the measuring trolley at
a constant walking speed of approx. 0.34 m/s (60 steps per minute, pace set by
means of a metronome) along the test track.

In order to assess the positioning errors of the LuxTraceRT system under realistic
conditions, each trained model would ideally be validated by comparing its position
estimates to the actual trajectory along the test track a number of times, exposing
it to a different light intensity trace during each pass.

For practical reasons, we experimentally measured and recorded multiple light
intensity data streams along the test track. We then replayed these recorded exper-
imental data streams in a simulation mode and compared them with the different
recorded reference positioning data streams. We used this feature to simulate fur-
ther experiments and thus obtain additional results, for example by cross-combining
data streams from different experiments. We also employed the simulation mode for
analyzing the effect of correcting the period lengths of the real-time models during
the model-building process, and for optimizing the peak-detection algorithm.

15.6. Experimental Results

15.6.1. Evaluation of RFID Positioning System

We have evaluated 5 experiments with the RFID positioning prototype, which was
mounted onto the trolley together with the LuxTraceRT system. On average, 67
position estimates were obtained per test run along the 10 m test track of which
4.92 m were covered with RFID tags.

The mean absolute RFID positioning error for the five experiments was 10.2 cm,
with a standard deviation of 4.3 cm.

233

LuxTraceRT: Real-Time Positioning Using Indoor Lights and RFID

period abs.per. max.pos. max.neg. mean max.abs. mean abs.
Model dev. dev. POEE POEE POEE POEE POEE

1 3 3 29 −16 −2 29 9
2 −13 13 27 −29 −8 29 12
3 −2 2 37 −21 −3 37 12
4 0 0 33 −20 −1 33 12
5 9 9 34 −17 2 34 12

average −0.6 5.4 32.0 −20.6 −2.4 32.4 11.4
std. dev. 8.1 5.4 4.0 5.1 3.6 3.4 1.3

Table 15.1.: Period and position offset aberrations of five real-time generated Lux-
TraceRT models with variable period lengths, compared to the origi-
nal LuxTrace model: effective and absolute deviation of period lengths
from true period length; positive and negative maximum, and mean
POEE; maximum and mean absolute POEE. (All values in cm)

The absolute position estimation error (APEE) over the five experiments was
below 16 cm in 70%, below 18 cm in 80%, below 21 cm in 90%, and below 23 cm in
95% of all RFID position measurements. The overall maximum APEE was 26.3 cm.

For comparison, the reference positioning service used for building the original
LuxTrace model featured a cumulative position estimation error of below ±2%
compared to the traveled distance. With regard to our test track of 10 m length,
the maximum cumulative LuxTrace reference positioning error is in the range of
±20 cm, and for a single model period of 3.70 m in the range of ±7.4 cm.

15.6.2. Comparison of LuxTraceRT Models with Original
LuxTrace Model

The original LuxTrace model was the result of merging the data from 10 experimen-
tal measurements of two subsequent light intensity periods, which were stretched
to match the correct distance of 3.70 m between adjacent light tubes.

As the LuxTraceRT system only uses the solar cell voltage data obtained from
a single period to train a new model, we compared the position offset estimation
error (POEE) of the experimentally generated real-time models relative to the
offset obtained from the LuxTrace offline model for given light intensity values.

We performed five practical real-time model training experiments with the Lux-
TraceRT system on our prepared test track. We then analyzed the aberrations of
the period lengths of the models, and the relative errors of the position offsets in
comparison to the original LuxTrace model.

An overview of the resulting relative position offset estimation errors (POEE)
is shown in Table 15.1. The measured absolute POEE amounted to 11.6 cm with
little variation over all five evaluated models, considering a comparably low stan-
dard deviation of 1.3 cm, with an average maximum deviation of over 32 cm.
Figure 15.5 shows an example LuxTraceRT model with visible deviation from the
original LuxTrace model.

The data of Table 15.1 also shows that the models built by the real-time model
builder differ significantly with respect to their period length: the absolute period

234

15.6 Experimental Results

0 0.5 1 1.5 2 2.5 3 3.5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Distance Offset [m]

V
ol

ta
ge

 [
V

]

LTOL
LTRT−VP

Figure 15.5.: Exemplary LuxTraceRT model compared with the original LuxTrace
model

deviation from the true period length was approx. 5 cm, with a standard devi-
ation of approx. 5 cm. In our case this meant that without period correction,
the LuxTraceRT positioning procedure as defined in Section 15.4.4 suffered from
a cumulative error of 5 cm on average (based on the five experimental real-time
models), and of 13 cm in the worst case (based on the particular LuxTraceRT
model depicted in Fig. 15.5), per each 3.70 m of traveled distance.

15.6.3. Effect of Period Correction on LuxTraceRT
Positioning Accuracy

We observed a constant distance between the adjacent light tubes in the corridor in
which we made our experiments as well as between the light tubes in the corridors of
other buildings at ETH Zurich. In case this distance is known, any model created in
such an environment can be transformed into a corrected model that has the correct
period length. We refer to such corrected models as fixed period (FP) models. To
evaluate the performance of corrected FP models, we firstly executed the real-
time position estimator separately with each of the five experimental LuxTraceRT
models with variable period (VP) lengths. We performed four experiments with
each model in simulation mode, by feeding in four different light intensity data
streams (voltage values), which had been recorded with the measuring trolley along
the test track.

In a second step, we corrected the period width of the five LuxTraceRT models,
by stretching the models according to the displacement of the actual period length
from the true period length (which was exactly 3.70 m for our office corridor). The
resulting five LuxTraceRT models with fixed period lengths were again evaluated
using the four light intensity data streams.

For the analysis, we calculated the absolute and mean position estimation errors
(PEE) for the position estimates that we obtained from the different simulated ex-
ecutions of the real-time position estimator. A summary of the results is presented
in Table 15.2.

235

LuxTraceRT: Real-Time Positioning Using Indoor Lights and RFID

Variable max. pos. max. neg. mean max. abs. mean abs.
Period PEE PEE PEE PEE PEE
average 26.2 −33.8 −9.0 42.8 17.5
std.dev. 19.8 12.1 13.6 10.7 6.0

Fixed max. pos. max. neg. mean max. abs. mean abs.
Period PEE PEE PEE PEE PEE
average 24.5 −31.6 −9.5 33.5 13.9
std.dev. 6.8 7.9 7.0 6.2 4.2

Table 15.2.: Averages and standard deviations for maximum positive, negative, and
mean PEE values, and for maximum and mean absolute PEE values
of simulated positioning experiments with five LuxTraceRT models,
each with variable and fixed period length, using four recorded solar
cell voltage data streams as input

Applying the period correction did not significantly improve the mean position
estimation error (PEE) itself, which even slightly increased from 9.0 cm to 9.5 cm,
but significantly reduced its standard deviation by nearly 50% from 13.6 cm to
7.0 cm. The same observation holds true for the average maximum positive and
average maximum negative errors. This stabilization effect was caused by a general
harmonization of the maximum and mean absolute errors as a result of the period
correction. This manifested itself in a noticeable reduction and stabilization of the
maximum and mean absolute PEE: the maximum absolute PEE sank from 42.8 cm
to 33.5 cm, with a significantly lower standard deviation of 6.2 cm compared to
10.7 cm. The mean absolute PEE diminished from an average of 17.5 cm to 13.9 cm,
together with a 30% decrease of the standard deviation.

We conclude that period length correction significantly improved the accuracy of
the positioning procedure. It further resulted in a neutralization of the cumulative
error component e in the positioning procedure, which was caused by an incorrect
period length l′ := l + e in Eq. 15.1 in Section 15.4.4, with l being the true period
length.

15.6.4. Comparison of Positioning Accuracy Between
LuxTraceRT and LuxTrace

We compared our results for LuxTraceRT mentioned above with those of the orig-
inal LuxTrace system.

Figure 15.6 shows the measured cumulative absolute positioning errors for the
LuxTraceRT system with variable and fixed period lengths, as well as for the orig-
inal LuxTrace system.

Based on this data we can make the following observations: The LuxTraceRT
system with VP models (LTRT-VP) has a significantly lower performance in com-
parison compared to the LuxTraceRT system using FP models (LTRT-FP) and
the original LuxTrace system (LTOL). Nevertheless, for the quantiles ≤80%, the
maximum error of the LTRT-VP system does not exceed the maximum errors of
the other two systems by more than 8 cm.

Comparing the LTRT-FP system with the LTOL system, we can see that the

236

15.7 Discussion

0.1 0.2 0.3 0.4 0.5 0.6
0

10

20

30

40

50

60

70

80

90

100

APEE [m]

Pe
rc

en
ta

ge
 o

f
C

as
es

LTOL
LTRT−VP
LTRT−FP

Figure 15.6.: Cumulative absolute positioning errors of LuxTraceRT using VP mod-
els (LTRT-VP) and FP models (LTRT-FP), and of the original Lux-
Trace offline system (LTOL)

maximum absolute positioning error of the LuxTraceRT system employing period
length correction is only marginally bigger than the error of the original LuxTrace
system (LTOL) for the 60%–90% quantiles. For the 80% and 90% quantiles, for
instance, the accuracy of position estimates remain below 22 cm and 26 cm for the
LTRT-FP system, and below 21 cm and 25 cm for the LTOL system. We consider
these results an indication for the effectiveness and robustness of the adaptive real-
time system.

15.7. Discussion

We assess the results of the practical experiments with respect to the location
technology assessment taxonomy proposed by Hightower in the Location Stack
project [HB01] that considers scalability, cost, recognition, and limitations.

Scalability: A scalability factor related to cost is that as the solar cell devices and
the passive RFID tags are relatively cheap, it can be anticipated that the
number of these devices, both solar cells on the body and RFID tags in the
environment, should not be a limiting factor. For the purely solar cell based
LuxTrace system, a wide application range of office and manufacturing hall
environments can be expected. The combined LuxTraceRT system improves
on the scalability of LuxTrace, as full coverage with both the solar cell and
RFID systems is not required. Also, as RFID tags are fixed, they help to
reduce the risk of drift from the solar cells.

Cost: For the LuxTrace system consisting of a solar cell and acquisition unit, a
low cost implementation can be achieved. The global cost of the LuxTraceRT
system includes incremental RFID hardware, installation, and maintenance.
For a wearable device, for instance, we would anticipate that one or more
antennas built into the shoe(s) would be used. This receiving device would be

237

LuxTraceRT: Real-Time Positioning Using Indoor Lights and RFID

the highest power (Watt) incremental sensing device, and overall design would
seek to minimize its duty cycle by switching when possible to the solar cell
system (Milliwatt) only. The corollary of such reduced power consumption is
reduced mass, volume and cost for the battery; such components often have
the highest values of the latter criteria in mobile systems.

A scenario minimizing the installation cost of the RFID tags is achieved,
when they would be delivered as part of the carpet in a new building. Such
tags could also be retrofitted under the existing carpet by using foils as they
were used in the experiments of this work. A further way to minimize cost
would be to install the tags only at intersections (e.g., corridor-corridor or
corridor-room).

Further hardware costs are avoided as indoor lights and on-body computers
(e.g., mobile phone) are generally available; incremental maintenance costs
of the system would be minimal assuming that lighting infrastructure is not
significantly changed and bulb replacement service(s) exist.

Recognition: We have shown that recognition has not suffered despite the more
practical scenario of the online model training and position estimation applied
in the LuxTraceRT system. Furthermore, combining the solar cell and RFID
system improves reliability by supporting calibration of one system against
the other. In this way our work presents a simple but robust feature fu-
sion approach of the two systems. We manage the navigation system energy
consumption and accuracy as follows: For maximum accuracy we can use
both systems whilst for energy saving or for wearable computing scenarios,
we selectively use only the lowest power (solar cell based estimator) system.

Limitations: The reported experiments focused exclusively on indoor applications
in the absence of natural light. While this is sufficient for many room and
corridor scenarios further work is necessary to determine the restrictions in-
curred from natural light sources.

15.8. Conclusion

We presented a concept to support dependable location tracking for indoor wearable
or mobile applications using solar cells and a super-distributed RFID tag infras-
tructure. We developed a combined system consisting of a displacement estimator
based on light sensing and the information collection from carpet-like RFID tags
distributed in the environment.

The displacement estimator learns new lighting schemes online if RFID context
information is available. We found that the accuracy of the combined LuxTraceRT
system was similar to the accuracy of the original LuxTrace system. Using real-time
trained models with variable period lengths, the positioning accuracy achieved by
the LuxTraceRT system was better than 28 cm in 80% of all calculated estimates
on straight trajectories. By incorporating context information (distance between
adjacent tubes) from the RFID infrastructure, this accuracy improved to less than
22 cm in 80% of all measurements. This compares well to the accuracy of less
than 21 cm for the original LuxTrace system under comparable conditions (80%
quantile).

238

15.9 Related Work

We conclude that for the controlled conditions in which we experimented, the
use of solar cells alone is generally sufficient. An example application for the offline
LuxTrace system would be a linear displacement measurement on a track. However,
for location tracking applications with less prior knowledge (e.g., spacing of lights,
starting position, less predictable trajectories) the combined LuxTraceRT system
may prove more accurate and practical.

With regard to dependability, the LuxTraceRT system provides an example for
exploiting functional redundancy: in the LuxTraceRT system, solar cells are not
only employed for energy generation, but also for the generation of location in-
formation derived from light intensity measurements, which then was used for
calculating position estimations. Further, the LuxTraceRT system serves as an
example of a hybrid system that integrates the two concepts of redundant-sensor
data fusion and localized cooperation for achieving fault-tolerant behavior. Firstly,
by combining the solar-cell based positioning system with RFID positioning capa-
bilities, we obtain a redundant information fusion system. Secondly, by making
use of location-dependent context information obtained from a super-distributed
RFID tag infrastructure, we could significantly improve the quality of service of
the model-building and of the position estimation process.

15.9. Related Work

The limitations of existing technologies are related to a number of factors including
coverage, cost, and location estimation accuracy. Satellite navigation for indoor
application is unsatisfactory in all three categories given that it is generally not
available indoors, is relatively expensive, and the error of the Global Positioning
System (GPS), for example, is of the order of 15-20 m [Get93]. This error can be
reduced to 1-2 m by error correction using the European Geostationary Navigation
Overlay Service [Bre03]. The European Galileo [EC05] system, planned to be
commercially available by 2008, targets a global accuracy on the horizontal plane
of up to 4 m for safety of life services and mass market applications, and up to
1 m for commercial applications. Galileo may offer horizontal accuracy in the
centimeter-range by means of locally augmented signals [EC03]. Numerous other
location tracking technologies exist that rely on absolute position estimations, such
as radio frequency identification (RFID) tags [NLLP04] or wireless communication
systems [VWG+03, AKS04]. Generally these technologies rely on a supportive
infrastructure. Relative position information include ultrasound [AAA97], and
inertial sensors [VMKA02]. These systems suffer from continuous drift since no
re-calibration mechanism is integrated.

Acknowledgments

The author wishes to acknowledge Martin Burri for his work on the implemen-
tation and experimental evaluation of the LuxTraceRT prototype system [Bur05].
The author further wishes to thank Oliver Amft and Julian Randell for fruitful
discussions on design aspects of the original LuxTrace system.

239

LuxTraceRT: Real-Time Positioning Using Indoor Lights and RFID

240

Part IV.

Social Perspective on
Dependability

241

16. The Social Dimension of
Dependability in Ubiquitous
Computing

Life without computers is unimaginable for most of us today – embedded processors
monitor the condition of high-risk patients around the clock, they control central
heating in buildings, air conditioning in tunnels, and they safely guide airplanes
between continents. The potential economic benefits of ubiquitous computing are
certainly key factors for the further proliferation of information technology, such
as novel indoor and outdoor positioning systems, ubiquitous communication plat-
forms, and unobtrusive monitoring installations. This technology will form and
shape the foundations of future ubiquitous computing landscapes.

As more and more objects and environments are being equipped with ubiqui-
tous computing technology, the degree of our dependence on the correct, reliable
functioning of the deployed devices and microcomputers including their software
infrastructures is increasing accordingly. Today, in most cases, we are still able to
decide for ourselves whether we want to use devices equipped with modern com-
puter technology (e.g., by choosing manual control for our central heating, or by
deciding not to carry a mobile phone if we dislike the constant accessibility its
usage implies). But in a largely computerized future, it might not be possible
to escape from this sort of technologically induced dependence. This leads to a
number of fundamental social challenges for future ubiquitous computing systems.
Privacy [Lan05], for example, is a very prominent challenge. However, the more
thoroughly “computerized” our environment becomes, the more basic attributes of
the world we live in will subtly change, such as its reliability, accessibility, and
transparency. In the following, we attempt to identify these dependability-oriented
concerns and try to address ethical and social implications of future ubiquitous
computing landscapes.

16.1. Reliability

As we have seen earlier in Chapter 3, the vision of ubiquitous computing describes
systems that aim at working in the background, discreetly and unobtrusively help-
ing us to carry out our tasks. Since our needs and circumstances can change over
time, such systems must be able to adapt themselves dynamically to the current
situation (see Sect. 4.6). In doing so, one crucial basic requirement is reliability in
the broadest sense of the word. In addition to ensuring dependability from a tech-
nological point of view as described in Chapter 4, a complex and highly dynamic
system must also remain manageable and controllable, and must retain the ability
to predict (and, to a certain extent, verify) that the system is behaving correctly.

243

The Social Dimension of Dependability in Ubiquitous Computing

16.1.1. Manageability

It is far from clear that implementing large-scale ubiquitous computing scenarios
involving potentially millions of smart, adaptive devices, is simply a question of
scaling up existing toy examples. As the number of interacting objects increases
massively, it has to be ensured that the services and applications based on these
objects still are able to meet their original requirements. And, above all, it is
important that it remains possible for people to understand and control a highly
dynamic ubiquitous computing world involving such large numbers of individual
objects and devices.

16.1.2. Predictability

Today’s technical infrastructures, such as the phone system, television, and elec-
tricity, are relatively easy to use, even for people with no special qualifications.
This also entails the ability to detect malfunctions: for example, if you lift a tele-
phone receiver and do not hear a dial tone, it is immediately evident that the phone
(either the handset or the landline) is not working properly. However, this type of
predictability of system behavior can no longer be taken for granted in a ubiquitous
computing landscape, as systems are expected to function without users noticing
their presence. This will make fault detection and diagnosis fundamentally diffi-
cult, especially for the layman [ECPS02]. Additionally, users might continue to
rely on a failed service (e.g., an automated backup service or the self-diagnostics of
a smart product) without noticing, thus possibly increasing the damage done until
the problem is finally discovered.

16.1.3. Dependability

Incorporating computing and communication technology into everyday artifacts re-
quires ever-decreasing form factors and minimal energy consumption. This makes
it difficult to use hardware redundancy in such systems, even though the envisioned
unobtrusive and ubiquitous use of these systems implies much harsher surroundings
than, say, an everyday indoor environment. We have already seen some alternative
concepts and mechanisms earlier which help to overcome service interruptions and
device failures, such as localized resource sharing (Sect. 9.2), fault-tolerant data
fusion techniques (Sect. 9.3), instant personalization of mobile devices (Sect 6.4),
and the explicit diversification of system functions, which can provide fully inde-
pendent ways of carrying out the same task, preferably based on separate sets of
system resources wherever feasible (Sect. 6.3).

16.1.4. Conclusion

The power outages that affected not only large parts of the USA and Canada but
also Italy and some other countries in 2003 have demonstrated our dependence on
existing technical infrastructures, in this case the power grid. With the constant
goal of saving costs, any industry-built ubiquitous computing infrastructure is liable
to run a high risk of forgoing safety for the sake of efficiency, possibly resulting in
brittle systems that will work only sporadically. Ensuring the reliability of such
systems in the broadest sense therefore is a crucial challenge.

244

16.2 Delegation of Control

16.2. Delegation of Control

In order to minimize the need for human intervention in complex, highly dynamic
environments, new concepts for delegating control are necessary – automatic pro-
cesses should take care of routine tasks in a dependable manner, but also provide
accounting mechanisms for monitoring the increasingly complex control flows. Con-
trol and accounting mechanisms are important tools for determining who is in con-
trol of an autonomous system, and who is responsible if something goes wrong. At
the same time, however, the autonomy of artifacts is also limited by their reliance
on the technical infrastructure.

16.2.1. Content Control

If smart objects provide information about themselves, this raises the question of
who guarantees the objectivity and accuracy of the statements made. For exam-
ple, smart products might be used to tie customers more closely to traders by
making these products recommend the purchase of other goods produced by the
same trader. In a certain sense, smart objects are becoming media representing
a particular “ideology” (e.g., that of the product’s manufacturer, or the politically
motivated opinion of a consumer protection organization). For instance, a con-
sumer protection institute could use its own electronic directory to map a smart
product label onto information other than that which the producer intended (for
example, to warn of allergies to ingredients). And maybe more importantly, this
raises further questions: for instance, who will decide what a smart toy tells the
children, potentially shaping the children’s opinions without their parents’ knowl-
edge. Tempting children to buy additional toys would only be the most obvious
strategy – a much more serious threat could be the moral values induced by smart
toys during play.

16.2.2. System Control

It is similarly conceivable that automobiles or other products, as components of
an ambient intelligence network, would no longer feel completely “loyal” to their
owners, but would instead enforce the guidelines of insurance companies, manu-
facturers, or the judiciary. For example, a smart car might refuse to open the
door for its driver because he or she has stopped in a no-parking zone. One fun-
damental question is about when an intelligent device should obey human orders,
and when it should follow its own “convictions”. While such a no-parking system
might be desirable for congested cities, some kind of manual override mechanism
would obviously be needed for emergency situations, e.g., when rushing a seriously
injured person to hospital (and trying to park in front of it). Even if a system
were designed to only make suggestions, it would still find itself treading a fine line
between inspiration and frustration, between obliging helpfulness and pigheaded
patronization [Sat01].

16.2.3. Accountability

If autonomous objects such as the previously mentioned smart doll start taking
decisions on their own (e.g., buying new clothes), legal guidelines need to be drawn

245

The Social Dimension of Dependability in Ubiquitous Computing

up in order to resolve who is ultimately responsible for these business transac-
tions. Smart assistants might order unwanted plane tickets, smart fridges excessive
amounts of food – in both cases the automated system might have performed ac-
cording to specification, though neither the original programmers nor the layman
user would be able to understand its reasoning. Providing the user with a de-
tailed explanation of completed transactions is only part of the solution, especially
when monetary damages are involved. It may look appealing to simply shift the
responsibility and liability onto the end user by changing the license agreements of
smart objects accordingly in the small print, but it is questionable whether such a
procedure would prove tenable if taken to court.

16.2.4. Conclusion

Similar discussions to the ones described above, involving the questions of account-
ability and content control, are already taking place in the context of the World
Wide Web. For example, questions regarding the right to possess and use certain
prestigious domain names [DNH04, Bit05] can be compared to the issue of content
control (i.e., who is allowed to resolve a certain URL stored in the RFID tag of a
product), while national laws trying to control digital copyright as well as freedom
of speech [Ele06] might already set standards regarding the future “freedom” of
smart devices to obey their owners.

16.3. Social Compatibility

Another fundamental challenge for ubiquitous computing systems is their social
compatibility. If we, as humans, want to be capable of participating in highly
dynamic systems, the parameters of these systems will have to be adjusted ac-
cordingly. System behavior relating to particular aspects should retain a certain
transparency and inertia, allowing humans to detect and adjust to changes. On
the other hand, it should be taken into account that an all-encompassing ubiqui-
tous computing landscape must also meet the needs and requirements of as broad
a section of society as possible, especially if participation in such a computerized
landscape is practically mandatory.

16.3.1. Transparency

In a future full of smart objects, we may not only have the ability to shop just about
anywhere at any time, we may also be compelled to buy just about everywhere,
all the time: ubiquitous computing makes it possible to implement novel pay-per-
use models based on everyday objects equipped with sensors and communications
capabilities. Furniture, for instance, could monitor its usage (e.g., a sofa could
count the number of persons that sit on it, the persons’ weight and seating time)
and create a monthly itemized billing statement. The ubiquitous application of
pay-per-use schemes, however, might incur a large number of micropayments, e.g.,
for bus or theater seats we have sat on, pages of books or newspapers we have
read, or clothing we have worn. Irrespective of technical feasibility, this prompts
the question of how we could keep track of the resulting number of short-term
contracts and the countless associated micropayments, let alone retrospectively

246

16.3 Social Compatibility

check the legitimacy of these transactions. Not only would it be extremely tedious
and unrealistic to manually check thousands of transactions, it is also questionable
to what extent inappropriate items could be identified and rejected, and to what
extent legitimate payments could be unambiguously and indisputably allocated
to the responsible party. Dynamic insurance rates that may vary according to
the style of driving [CH04, Cor06] constitute another example of a potential loss of
transparency, especially if the underlying assessment methods changed dynamically
without warning, or if they were unknown or too complicated to be understood by
the user.

16.3.2. Knowledge Sustainability

Most information in our everyday life today remains valid for an extended period
of time, such as food prices in our favorite supermarket, or prices for public trans-
port, for example. It is this inertia of information that permits us to use acquired
knowledge and prior experiences to cope with future situations and tasks. In a
highly dynamic world, the sustainability of knowledge risks being lost – an experi-
ence that was valid and useful one minute could become obsolete and unusable the
next. Such a loss or accelerated devaluation of long-term experiences could, in the
long term, contribute to an increased uncertainty and lack of direction for people
in society.

16.3.3. Fairness

Detailed cross-marketing based on ubiquitous computing promises tailor-made of-
fers that virtually eliminate unwanted advertisements. However, a specific offer
may be withheld from a particular consumer for one of two reasons: either the
offer was not worth the consumer, or the consumer was not worth the offer. David
Lyon, Professor of Sociology at Queen’s University in Canada, calls this process “so-
cial sorting” – “Categorizing persons and groups in ways that appear to be accurate
and scientific, but which in many ways accentuate differences and reinforce existing
inequalities” [Lyo01]. People not matching a certain ‘desirable’ profile might have
to pay much higher prices, as they do not qualify for any of the existing discounts,
which might in turn reinforce the non-matching patterns.

16.3.4. Universal Access vs. Digital Divide

The natural interfaces envisioned in ubiquitous computing scenarios certainly have
the opportunity to overcome many of today’s accessibility problems, such as the
issue of small screens and keypads of modern mobile phones that often prevent
elderly people from using them [Gon01]. Today many projects in the field target
elderly and physically disabled people in particular, providing them with electronic
“memory aids”, reading aids, orientation and navigation systems [Mak01, CKR04],
for instance. These projects might pave the way for a universal design [Ste01] that
considers the needs of minorities and marginal groups early in the design stage.
Intelligent interfaces and the concept of ubiquitous information access are often
seen as key developments for bridging the digital divide, where different sections
of the population have different abilities to participate in the information society.

247

The Social Dimension of Dependability in Ubiquitous Computing

However, having more information opportunities does not necessarily mean more
justice or freedom, simply because the potential dependencies and opportunities
for manipulation would be so numerous they could overwhelm individuals, making
it even more difficult to assess the trustworthiness of the source of the informa-
tion. Information that was uncritical or sponsored by advertisers (and therefore
one-sided) could become available free of charge, while independent, high-quality
information would cost money, thus widening the digital divide even further. Since
ubiquitous computing is not just about information itself, but is inherently linked
to real-world objects, these new means of access and content control could easily
lead to the digital divide becoming a real and perceivable rift in our everyday lives.

16.3.5. Conclusion

In history, the development of regulatory, social, and ethical standards tends to lag
considerably behind the rapid proliferation of pioneering technological inventions,
as was the case with the invention of the assembly line and mass production at the
beginning of the 20th century, and with the appearance of the global Internet in
the 1980s, for example. In an emerging future of ubiquitous computing systems,
one exciting question is whether we will be aware of the impending pitfalls and
tackle them in an early (design) phase, where we still have the means to shape the
envisaged systems according to fundamental social and ethical requirements, or if
there is a need for yet another social revolution that subsequently brings about
necessary adaptations by force.

16.4. Acceptance

The fundamental paradigm of ubiquitous computing, namely that computers dis-
appear from the user’s consciousness and recede into the background, is sometimes
seen as an attempt to have technology infiltrate everyday life unnoticed by the
general public in order to circumvent any possible social resistance [Ara95]. Yet
beyond any perceived sinister motives (which might be easy enough to counter),
a widespread public acceptance of ubiquitous computing also rests on issues of an
almost philosophical nature, such as the fundamental nature of smart objects or
our changing relationship with our environment.

16.4.1. Feasibility and Credibility

Many philosophers and social scientists identify a prevailing self-confident and
technophile attitude among scientists in the field of ubiquitous computing [Ada00],
where the non-critical anticipation of future technological developments almost at-
tains the characteristics of a metaphysical prophecy. Others doubt the credibility
of the envisioned scenarios, e.g., when ambient intelligence is said to simplify our
lives, help us save time, and relieve us of laborious tasks. While this assertion has
been constantly repeated throughout the twentieth century by the consumer goods
industry, adding “smart machines” everywhere will not help to overcome the exist-
ing pattern of hurry, rush, stress, and separation from other people, but will only
increase their efficiency [Win99]. Such criticism may build up and induce a serious
credibility gap, reducing the acceptability of ubiquitous computing technologies.

248

16.4 Acceptance

16.4.2. Artifact Autonomy

Networked everyday objects embedded in a ubiquitous computing landscape lose
part of their autonomy and, with this, exhibit an increased dependence on the
infrastructure. For users, this reduces the “object constancy” of the objects that
surround them, as the example of electronic books made from smart paper shows:
reading such a book may presuppose a regular connection to a server (license server,
user account server, etc.). Because of this, an e-book appears to be more error-prone
and less autonomous than a “normal” book, which can always be read, whereas
the electronic one can only be read if the required background infrastructure is
functioning and reachable.

16.4.3. Impact on Health and Environment

It is hard to predict the impact that a large-scale use of ubiquitous computing
technology would have on our environment in terms of raw material consumption,
energy consumption, and disposal. For example, if all supermarket goods were
equipped with smart labels in the future, billions of these tiny and individually
quite harmless chips would end up in the household garbage. On the other hand,
the remote identification capability provided by smart labels would enable informa-
tion on products to be made available throughout their entire life cycles, permitting
the different materials in waste products to be efficiently identified and separated.
It is also not yet fully understood whether, and to what extent, electromagnetic ra-
diation (e.g., produced by wirelessly communicating smart objects) could affect our
physical health. A vision involving myriads of everyday objects and wearable “in-
formation appliances” that communicate wirelessly with each other thus gives due
cause for concern, as its potential adverse environmental effects could permanently
influence the lives of future generations [LSM+03].

16.4.4. The Relationship between Man and the World

From a philosophical point of view, the vision of ubiquitous computing fundamen-
tally changes the environment in which we live: “By this weaving of extensions of
ourselves into the surroundings, significant parts of the environment lose important
aspects of their otherness and the environment as a whole tends to become more
and more a subservient ‘artifact’. This artifact, which the world immediately sur-
rounding us becomes, is almost entirely ‘us’ rather than ‘other’. In this sense, the
surrounding world has almost disappeared.” [Ara95]. Similarly, Adamowsky stip-
ulates that our inability to handle the physical world in a flexible enough way will
force us to replace it by digital surrogates – equivalents of particular aspects of the
real world in the digital world, implemented in the form of models, simulations, and
virtual counterparts – which will ultimately lead to a transformation, dislocation,
substitution, and the loss of fundamental properties relating to the world [Ada00].

16.4.5. Conclusion

Dryer et al. [CCS99] conducted two empirical studies to examine the theoretical
relationships between system design for mobile computing, human behaviors, social
attributions, and interaction outcome. In their conclusion, they express “doubt that

249

The Social Dimension of Dependability in Ubiquitous Computing

our inevitable future is to become a machinelike collective society. How devices are
used is not determined by their creators alone. Individuals influence how devices
are used, and humans can be tenaciously social creatures.” They conclude “Given
the importance of social relationships in our lives, we may adopt only those devices
that support, rather than inhibit, such relationships.” With the substantial amount
of skepticism related to technology, such findings seem to counterbalance the im-
mediate threat that a thoroughly computerized future appears to hold. However,
apart from personal prejudices, the wide range of social consequences that ubiqui-
tous computing may have will certainly need to be addressed in future systems and
debates. These challenges are of fundamental importance and may ultimately even
have a decisive influence on the large-scale acceptance of ubiquitous computing
technologies and environments.

16.5. Living in a World of Smart Environments
and Augmented Objects

The augmentation of everyday objects and physical spaces with sensing, computing,
and communication capabilities per se has a priori no negative implications. In the
following, we focus on the augmentation aspect of ubiquitous computing, pointing
out benefits, problems, and possible technical solutions.

16.5.1. Benefits of Smart Spaces and Augmented Objects

As we have seen in the previous chapters, augmented real world objects and smart
spaces can contribute to the realization of novel services and applications that are
to the benefit of the individual and the society as a whole. An individual per-
son, for instance, may consider the provisioning of context-dependent information
while moving through smart environments (e.g., tour guides, navigation systems,
or virtual collaborative work spaces) convenient and helpful. Furthermore, every-
day environments augmented by ubiquitous computing technology can also provide
means to alleviate the difficulties and disadvantages of marginal groups who find
themselves at the fringe of society. Projects targeting elderly and physically dis-
abled people enable such persons, who are often neglected as marginal groups, to
participate more actively and autonomously in everyday life. A concrete exam-
ple is the Chatty Environment [CR03, CR04] – a context-aware application which
helps visually impaired people to orient themselves in new, unknown environments,
thereby enabling them to lead a more independent life. Furthermore, the digital
augmentation of real-world objects can help to compensate for deficiencies of cogni-
tively challenged people. An augmented jigsaw puzzle we developed, for example,
may not only help children or people with cognitive deficiencies to solve complex
puzzles, letting them partake in the experience and feeling of achievement, but it
also facilitates to match the capabilities of unbalanced players by providing aids to
the “weaker” players [Boh04b].

250

16.5 Living in a World of Smart Environments and Augmented Objects

16.5.2. Soft vs. Hard Augmentation

Intelligent interfaces and the concept of ubiquitous information access are often
seen as key developments for bridging the digital divide caused by the situation
where different sections of the population have different abilities to participate in
the information society (see also Sect. 16.3.4). One way of preventing the further
development of a digital divide lies in ensuring that an augmentation of real-world
artifacts with information processing and communication capabilities does not be-
come an end in itself. Instead, the expected benefits should, from the beginning, be
weighed against potential negative side-effects. It may be advisable to deliberately
stop the augmentation process at some point before the original fundamental qual-
ities and characteristics of the augmented physical object are threatened to be lost.
Then the result is a soft augmentation that preserves knowledge sustainability: the
original object used to work this way and it still does after the augmentation. This
is opposed to a hard augmentation that fundamentally alters the mode of usage or
properties of an augmented object. A soft augmentation has the advantage that it
empowers the user to deliberately opt out and revert to the classical unaugmented
utilization of the object if desired. Another advantage of a soft augmentation is
that the usability of the augmented object is still sustained even in case of a tech-
nical failure of the augmented functionality. If, however, the inherent qualities and
functionality of the original object are irrevocably changed, the usability of the
augmented object may largely depend on the availability and proper functioning
of the technologies used in the augmentation process [Boh04b].

16.5.3. Open Ubiquitous Computing Systems

Another solution to the problem of creating a digital divide is to adhere to the open-
world assumption that constitutes a fundamental property of ubiquitous computing
systems (see Sect. 3.3.9). By designing ubiquitous computing systems to be truly
open, it is possible to share the potential benefits with marginal and unprivileged
user groups. For instance, the concept of super-distributed smart entities, which
we introduced earlier in Sect. 9.4.2, can serve as a design principle for building
open, user-centric service infrastructures. For instance, the location-aware services
and applications we described in this dissertation are open to the general public,
explicitly including elderly persons or people with disabilities who often suffer from
disadvantages caused by their physical or mental deficiencies (see Sect. 9.4.3.

16.5.4. Coping with Novel Dependencies

Despite their potential benefits, the application of ubiquitous computing technolo-
gies for the augmentation of physical objects and for the realization of ubiquitous
information environments is very likely to induce new societal and technological
dependencies. In particular, as the number of smart devices and interacting objects
in our environment increases, the technical dependability of the thus provisioned
services becomes an important issue. Traditionally, a user explicitly works with
dedicated computer equipment which often consists of reliable quality components.
With the expected coming of the ubiquitous information society, however, users
find themselves suddenly acting right in the middle of a computerized smart en-
vironment. They have to cope with being caught in a crossfire of mass-produced,

251

The Social Dimension of Dependability in Ubiquitous Computing

low-cost smart artifacts and spontaneously interacting objects, each of which is
prone to malfunctions due to technical defects or depleted batteries, for example.

16.5.5. Technical Contributions and Solutions

The introduction of new dependencies and the potential social problems they in-
duce raises the question whether there exist technical solutions to counter such
difficulties, such as employing physical redundancy, for example. However, as incor-
porating computing and communication technology into everyday artifacts requires
small form factors and minimal energy consumption, it is often impracticable to
employ hardware redundancy on the single devices to increase the fault tolerance
and robustness of smart object infrastructures.

We think that one possible answer to these challenges can be found in alternative,
more user-centered concepts and mechanisms that overcome service interruptions
and device failures. For instance, we have presented systems that make us of an
explicit diversification of system functions. By providing fully independent ways of
carrying out the same task, preferably based on separate sets of system resources
wherever feasible, the user’s dependence on individual technologies and services
can be reduced.

Further, as low-cost individual devices are prone to technical defects and mal-
functions, the concepts we presented earlier such as the super-distribution of smart
entities, localized interaction with cooperative smart objects, or the instant person-
alization of handheld devices, help to increase the availability of services and device
functionality with regard to the individual user, at his or her particular location.
We strongly believe that the explicit shaping of ubiquitous computing infrastruc-
tures around the individual user, the tailoring of ubiquitous computing systems
to suit the needs of inexperienced individuals and advanced users alike, constitute
paramount challenges and design goals of ubiquitous computing.

16.6. Conclusion

“Everything will be connected to everything else,” but “no one has any idea what
all those connections will mean” [Luc99]. This criticism on the one hand indicates
a perceived lack of focus when it comes to ubiquitous computing applications, but
also points at a deficiency in terms of understanding the consequences of deploying
ubiquitous computing systems in the real world. Fundamental questions are how
we will use “smart things” in our everyday lives, when we should switch them on or
off, what smart things should be permitted to hear, see, and feel, and whom they
should be allowed tell about it. Whether the consequences of ubiquitous computing
systems concern the protection of personal data, the implications for the macro-
economy, or social acceptance – developers of ubiquitous computing systems can
profit greatly from a careful evaluation of the consequences of such technology
within the framework of established concepts from the fields of sociology, economics,
and jurisprudence.

Although predicting the future is difficult, if not impossible, the above discussion
allows us to guess at a few of the possible implications of a wide-scale use of
ubiquitous computing technology. However, in order better to understand how
far emerging ubiquitous computing systems can and should influence our everyday

252

16.6 Conclusion

lives, it is important to identify and address the great challenges of technical and
social change, and of their environmental sustainability. Our goal is to help steering
the development in ubiquitous computing in a direction that has more in common
with Weiser’s optimistic vision of the 21st century than with the depressing mix
of consumer terror and police state conjured up by Steven Spielberg in his movie
“Minority Report” [Dic56]. The user-centric dependability challenges we identified
and described in this dissertation, and the solutions and concepts we presented to
address these dependability challenges, contribute to achieving this goal.

Acknowledgments

The author wishes to thank Vlad Coroama, Marc Langheinrich, Friedemann Mat-
tern, and Michael Rohs for the many fruitful discussions and helpful suggestions
about potential social dependability challenges and implications of ubiquitous com-
puting.

253

The Social Dimension of Dependability in Ubiquitous Computing

254

Part V.

Summary and Conclusion

255

17. Summary and Conclusion

In this final chapter, we recapitulate and summarize the major contributions of
this dissertation, and round off our work with a brief conclusion.

We would like to point out that the major contributions of this thesis have
also been published in journals, conference and workshop articles as well as re-
search deliverables, most notably [BCL+03a], [BCL+03b], [Boh03], [BV03], [RB03],
[BCL+04a], [BCL+04b], [BM04], [Boh04a], [Boh04b], [CBM04], [Boh06], [Boh07a],
[Boh07b], and [RABB07]. Furthermore, there are several student projects and
Master’s theses within the scope of this dissertation which also dealt with concepts
presented in this thesis. Of particular relevance are [Kai01], [Sch02], [Maz03],
[Bär04], [Geg04], [Pir04], [Stu04], [Bur05], [FL05a], and [Opr05].

17.1. Main Contribution

In this dissertation we provided a systematic study of the problem of user-centric
dependability in the context of ubiquitous computing, which so far has not been
researched deeply in the research community.

We first reviewed conventional dependability issues and methods for achieving
fault tolerance in the domain of distributed computing, and described the vision
and background of ubiquitous computing. Then we performed an analysis of fun-
damental characteristics of ubiquitous computing in general, which showed that
ubiquitous computing systems feature challenging technical boundary conditions
such as a high degree of distributedness, heterogeneity of resources, and system
dynamics, and an unprecedentedly high level of user-centricity.

Based on our initial analysis, we discussed the application of conventional de-
pendability methods in ubiquitous computing, and we investigated different means
of redundancy that can be employed for achieving fault tolerance in highly dis-
tributed and dynamic ubiquitous computing systems. We also showed that con-
cepts for dependability in ubiquitous computing have to be user-centric and de-
signed to deal with novel types of faults.

17.2. Individual Contributions

We focused on the investigation of dependability methods for two principal fields
of research in ubiquitous computing, which are human-computer interaction, and
context- and location-aware computing.

257

Summary and Conclusion

17.2.1. Concepts for Dependable Human-Computer
Interaction

With regard to human-computer interaction, we showed that the accessibility of
user interface devices poses a novel dependability challenge. Addressing this chal-
lenge, we described two concepts that enable users to harness the diversity and mul-
titude of devices found in ubiquitous computing environments, and which reduce
the users’ dependence on individual devices or technologies: Firstly, the concept of
input/output diversification, which enables users to make use of diverse user inter-
face devices for controlling and interacting with a surrounding smart environment.
Secondly, instant personalization, a concept that enables users to personalize arbi-
trary mobile devices on demand, thus making personal user devices interchangeable
and overcoming the barriers of exclusive personal use and ownership that oppose
the sharing of ubiquitous handheld devices among larger user groups.

17.2.2. Concepts for Dependable Context-Aware Computing

With respect to context-aware computing, we showed that the dependability of mo-
bile devices and applications can be improved by exploiting the redundant resources
found in the immediate vicinity (locality). Concretely, we presented concepts that
enable resource-limited mobile devices to achieve fault-tolerant operation in the
case of temporary unavailability of diverse computing resources, based on local-
ized redundancy acquired in an ad hoc fashion from the local computing context:
localized cooperation and resource sharing and redundant multi-sensor data fusion.

The concept of localized cooperation and resource sharing enables mobile devices
to tolerate resource shortages during operation by acquiring additional resources
through localized cooperation with volatile smart everyday objects, or by using the
resources and services provided by a dedicated physical infrastructure consisting
of super-distributed smart entities. In the smart-object-based approach, we pre-
sented a generic middleware layer that enables mobile devices to exploit the mem-
ory storage and communication capabilities of proximate computerized entities for
fault-tolerant data dissemination and communication. Here ubiquitous computing
devices take on the role of local service providers and communication gateways.
In the case of super-distributed smart entities, we showed how a dense and highly
redundant distribution (i.e., super-distribution) of computerized entities over phys-
ical spaces can be turned into a powerful infrastructure for the creation of reliable
and highly available location-dependent services. In the process, we described the
design of a fault-tolerant service middleware architecture. We also presented a
concrete realization of the concept based on radio frequency identification as an
enabling technology. As a proof of concept, we presented and experimentally eval-
uated a prototypical implementation of our middleware.

We further showed that for mobile devices and applications that rely on knowl-
edge about their current contextual situation for providing situation-aware services,
it is essential that the process of context sensing and inference itself is robust and de-
pendable. We elaborated the concept of redundant multi-sensor data fusion, which
exploits redundancies in sensing capabilities for maintaining a minimum quality of
service even if individual sensors temporarily fail or become spontaneously unavail-
able while operating in highly dynamic ubiquitous computing environments. As a
case-study, we presented the iPOS system, a redundant multi-sensor data fusion

258

17.3 Conclusion

architecture that enables autonomous mobile clients to determine their geographic
position and/or symbolic location in an adaptive and fault-tolerant manner.

Finally, we demonstrated how the above approaches can be profitably combined
into a single hybrid system. For that, we presented and evaluated a positioning
system which combines light intensity measurements by means of a solar cell with
position information obtained from a super-distributed RFID tag infrastructure for
enabling fault tolerance, self-calibration, and adaptability.

17.2.3. Social Dependability Challenges

We showed that the pronounced user-centricity of ubiquitous computing systems
and applications leads to a number of social challenges and implications that reach
beyond mere technical dependability issues. We discussed a number of fundamental
social challenges with regard to reliability in the broadest sense, including the issues
of delegation of control, social compatibility, and acceptance.

17.3. Conclusion

User-centric dependability is a novel challenge closely connected to the paradigm
of ubiquitous computing, where the user finds him or herself pushed from the
fringes into the center of computing systems. In this dissertation, we described
and investigated various facets and challenges of user-centric dependability, and
we motivated the relevance of this emerging field of research in the context of
mobile and ubiquitous computing. We further presented a number of concepts
that we think are appropriate to address some of these user-centric dependability
challenges. In addition, as proof of our concepts, we described and evaluated
several prototypical demonstrators and reference implementations. Finally, the
author wishes to express his hope that this dissertation may serve as a valuable
starting point and catalyst for future research in the field.

259

Summary and Conclusion

260

Part VI.

Appendix

261

A. Dependability

In the following, we give a short overview of the vast field of dependability in dis-
tributed computing. In large parts, we follow the explanations and observations of
Jalote, according to his book on “fault tolerance in distributed computing” [Jal94].

A.1. Definition

Dependability is conventionally defined as the trustworthiness of a computer sys-
tem such that reliance can justifiably be placed on the service it delivers [Lap85,
Lap92a]. In this context, the service delivered by a system is its behavior as it is
perceived by its users, while the user may be human or another physical system.

Laprie further defines fundamental attributes which emphasize different, com-
plementary properties of dependability. Firstly, these attributes of dependability
serve to express the properties that are expected of a dependable system. Secondly,
they allow the system quality resulting from the impairments and the means op-
posing them to be assessed. The most significant attributes of dependability are
reliability, availability, safety, and security [Lap85, Lap92a]. Reliability deals with
the property of continuity of service, availability with readiness for usage, safety
with avoidance of catastrophic consequences, and security with prevention of unau-
thorized access and/or handling of information.

A.2. Terminology

A.2.1. Distributed Systems

When modeling processes in the real world, one often finds that different sub tasks
have to be carried out in different locations, looking at production chains in man-
ufacturing plants for instance. Hardware and software may therefore be physically
distributed and operate self-sufficiently on local tasks. For a distributed system
to be in a position to achieve a common global task efficiently, the different dis-
tributed pieces of hardware have to be able to reliably communicate to be in a
position to cooperate and coordinate the different sub tasks of the superordinate
process. But although the data, software, and hardware of a distributed system
may be distributed across several locations, the distribution itself and the complex-
ities involved with it are typically masked from the user, to whom it appears as if
the system components were united, acting as a single entity.

Traditionally, distributed systems are viewed in two ways, either as defined by
its physical components, or as defined from the point of view of processing or
computation. In the first case, we speak of the physical model of the system, and
in the latter case of the logical model.

263

Dependability

The physical network of a distributed system consists of many computers, which
are also called nodes. The nodes are geographically at different locations, and
connected with each other by means of a communication network, through which
they communicate with each other by exchanging messages. Further, all nodes
are autonomous entities. Each node is equipped with a processor, which has some
private volatile memory, a private clock that is used for coordinating the internal
execution of instructions, a network interface through which the node is connected
to the communication network, and software that governs the sequence of instruc-
tions to be executed on the node. These components of a node are considered to
be atomic. Fault-tolerance mechanisms in distributed systems aim at masking the
failure of some of these components to prevent the entire distributed system from
failing. Often a distributed system is modeled as consisting of nodes and of a com-
munication network as the basic components. In this case, the main component
failures that have to be addressed by fault-tolerance mechanisms are the failure of
a node and the failure of the communication network.

The logical model concentrates on the applications viewpoint of distributed sys-
tems: a distributed application consists of a finite number of concurrently executing
processes that cooperate with each other to perform some task. A process is defined
as the execution of a sequential program, which in return is a list of statements or
instructions. Further, concurrent processes can either be executed on a single pro-
cessor, or in parallel on different nodes in the system, which is the more interesting
case for a distributed application. The interactive behavior between concurrent
processes can be categorized as independent, competing, or cooperating. Indepen-
dent means that the processes work on disjoint sets of objects (hardware resources
and data), which is conceptually equal to physically separate sequential processes.
Concurrent processes are competing if they share resources but at the same time
do not exchange information between themselves. This corresponds to a set of
independent processes. Cooperating processes are characterized by an exchange
of information which is either based on message passing or on using shared data
objects. In the context of distributed systems as they are traditionally seen, only
message passing is possible, as no shared data is allowed, and processes are usually
considered to be cooperating. From the applications point of view, the underlying
network is treated as a fully connected network, assuming the physical network is
connected. This implies that a message can be sent from one node to any other
node, which is supported by suitable communication protocols. Consequently, the
network topology is not considered at this level. The logical connection between
any two processes which interact by means of message passing is called a channel.
A channel is assumed to have infinite buffer, to be error-free, and to deliver mes-
sages in the order that they have been sent (which is ensured by the underlying
communication protocols).

In the logical model, the performance of the system is usually described with
respect to applying time bounds [MS92]: If a correctly working system always per-
forms its intended function within a finite and known time bound, it is called syn-
chronous ; otherwise, it is called asynchronous. Similarly, a communication channel
is synchronous if maximum message delay is known and bounded; otherwise it is
called asynchronous. A processor is synchronous if the time for executing a se-
quence of instructions is finite and bounded, otherwise it is called asynchronous.
The main advantage of synchronous systems is that the failure of a component can

264

A.2 Terminology

be detected by means of a “timeout”, which means that a response is not obtained
within some defined time bound.

Failures that occur in the physical system can cause the failure of components
in the logical system: If a physical node fails, it may cause the failure of some
processes, which can be considered as logical nodes. Similarly, the failure of com-
munication lines in the physical network may cause the failure of logical channels.
According to Jalote, the primary goal of fault tolerance is to “preserve some prop-
erties in the logical model despite some failures in the physical model” [Jal94].

A.2.2. Faults and Errors

The dependability of a system is threatened if faults in components of the system
occur. Faults are the cause for errors which in return are liable to lead to subsequent
failure. A failure manifests itself by a system behavior that is not compliant with
the specifications, the latter being an agreed description of the system’s expected
function and/or service.

Faults and their sources are extremely diverse. They can be classified according
to their nature (accidental or intentional), their origin (phenomenological cause:
physical phenomena or human-made; system boundaries: internal or external;
phase of creation: design or operational), and their persistence (permanent or
temporary). Note that a physical or human made external fault is considered a
design fault, because it should have been foreseen and considered during the design
phase.

Laprie defines an error as that part of the system state which is liable to lead
to subsequent failure. An error is always the consequence of a fault, but whether
it actually leads to a failure depends on three major factors [Lap92b]:

• System composition, especially with respect to the nature of existing redun-
dancy, which may either have been introduced intentionally to provide fault
tolerance, or which may have been introduced unintentionally and which may
lead unexpectedly to the same results as intentional redundancy.

• System activity, during which an error may be overwritten before it creates
any damage.

• The definition of a failure from the user’s viewpoint, which may vary consid-
erably for different users, because what one user considers a failure may be a
bearable nuisance for another.

Consequently, faults, errors and failures can be considered the impairments to
the dependability of a system, potentially leading to an undependable system on
whose services reliance cannot or will not any longer be placed.

A.2.3. Classification of Faults and Failures

In distributed systems, the major components are processors, communication links,
clocks, nonvolatile storage, and software. In the system model, these components
are seen as atomic. Fault tolerance normally aims at tolerating failures of these
components, with the major goal of ensuring the continuity of service on behalf of
the distributed application even in the presence of failures.

265

Dependability

A well established method of classifying the faults that may occur in distributed
systems is based on how the faulty component behaves when it fails is to distinguish
the following four failure categories [Jal94]:

1. Crash fault: A fault that effects that the component halts or loses its internal
state, without undergoing any incorrect state transitions.

2. Omission fault: A fault that results in a component not to respond to some
inputs.

3. Timing fault: A fault that causes a component to respond either too early or
too late. This fault is also called performance fault.

4. Byzantine fault: An arbitrary fault which causes the component to behave
in a totally random manner during failure. This category subsumes the so-
called incorrect computation fault, where a component does not have any
timing fault but produces an incorrect output to the given inputs.

The four categories form a hierarchy where the category with the higher enumer-
ation number contains all categories with lower numbers. Consequently, the crash
fault is the simplest and most restrictive, and the Byzantine fault the most complex
and general fault.

Incorrect
Component Crash Omission Timing Computation Byzantine
Processor ++ + +
Communication
Network + + + + +
Clock + ++ +
Storage Media + + + +
Software + + + ++ +

Table A.1.: Major distributed system component categories and the fault categories
by which they are commonly affected. Faults that are common for a
component are indicated by ’+’ or ’++’ (the latter signifying the most
prominent fault type for the category if applicable)

Typically a crash fault is assumed for a processor that stops, or else a Byzantine
fault.

A communication network may show any of the fault types, such as crash faults
if it does not deliver messages, omission faults if messages get lost, timing faults
if messages are significantly delayed, incorrect computation faults if messages are
corrupted, or Byzantine faults if it behaves in a totally arbitrary fashion.

The most common fault of a clock is that it runs too slow or too fast (timing
fault), but it may also stop and always show the same time (omission fault), or
display a totally arbitrary behavior (Byzantine fault).

Storage media may suffer from crash faults (data cannot be read/written any
more), timing faults (data arriving late), omission faults (some data inaccessible),
and incorrect computation faults (corrupt data).

266

A.2 Terminology

Software components may show any kind of fault behavior, but the most interest-
ing fault type is the incorrect computation fault, resulting in wrong computations
on behalf of the software, which are typically also called software design faults.

An overview of distributed system components and the fault categories by which
they are commonly affected is shown in Table A.1.

There are also notions for describing the behavior of a component in response to
a detected fault. A system component is considered fail-safe when it places itself in
a safe operating mode in the event of a failure, or fail-soft if it continues to provide
partial operational capability in the event of certain failures [IoEEE90]. In case a
failure occurs, the behavior of an affected component is called fail-stop behavior
if the component stops executing without performing any incorrect actions, losing
its internal state and the content of any associated volatile storage data, and if the
failure of the component can be detected by other components. The importance
of fail-stop behavior of components for the realization of fault-tolerant systems has
been underlined by Schlichting et al. in their work on so called fail-stop proces-
sors [SS83], which embody the described fail-stop characteristics. In this context,
they have also defined a k-fail-stop processor as a computing system that still be-
haves like a fail-stop processor as long as no more than k components of the system
fail.

A.2.4. Classification of Fault-Tolerance Methods

The development and maintenance of dependable computing systems calls for suit-
able means. According to Laprie, dependability can be achieved by the combined
utilization of a set of methods that can be classified into the following four groups:

• Fault Prevention: methods to prevent the occurrence or introduction of faults;

• Fault Tolerance: methods to provide a service complying with the service
specification even in the presence of faults;

• Fault Removal : methods to reduce the presence (in terms of number or seri-
ousness) of faults;

• Fault Forecasting : methods that estimate the present number, the future
incidence, and the consequences of faults.

Fault prevention and fault tolerance are used to provide a system with the ability to
deliver a service complying with the specification, thus constituting “dependability
procurement”. In contrast, fault removal and fault forecasting are more concerned
with the “validation” of the dependability of the system.

Fault prevention tries to eliminate as many sources for faults as possible before
the system is put in regular use without the deployment of redundancy. Fault
tolerance, in contrast, uses protective redundancy [Jal94] to automatically mask
failures and to avert system failure in case some components fail. Note that fault
tolerance requires redundancy – without the employment of redundancy of some
kind, a system cannot become fault-tolerant [Gär99].

267

Dependability

A.2.5. Safety and Liveness

For assessing the usefulness of dependability measures applied to distributed sys-
tems, usually two major classes of system properties describing the system behavior
are analyzed, which are called safety and liveness [Lam77].

Formally, a safety property is characterized by specifying when an execution e is
not safe for a property p (which means it is not contained in a safety property p). In
other words, if e /∈ p, then there must be an identifiable discrete event within e that
prohibits all possible continuations of the execution from being safe. So a safety
property is expressed by a set of “legal” system configurations, and a distributed
program that has been proven to be safe will always stay within this set of safe
states. In this context, a property of a distributed program is defined as a set of
system executions, whereby an execution of a distributed program is given by an
infinite sequence e = c0, c1, c2, . . . of global system configurations. Consequently, a
distributed program always defines a property in itself, which is the set of all system
executions that are possible from its starting configuration. A specific property p
is said to hold for a distributed program if the set of sequences defined by the
program is contained in p. The informal interpretation of a safety property is that
it states that some specific unwanted and irremediable “bad thing” never happens
within a system [Gär99].

A liveness property informally states that some “good thing” will eventually hap-
pen during system execution [Gär99], thus capturing notions of “progress”. For-
mally, a liveness property is defined as a property for which every partial execution
is live [AS85], with a partial execution of a system being considered live for prop-
erty p if and only if it can be extended to still remain in p (i.e., further system
configurations can be added to the execution space without violating the safety
property). According to Gärtner, the most common example of liveness in dis-
tributed systems is termination [Gär99], where a certain goal (the “good thing”) is
reached eventually (without making a forecast as to when this will actually be the
case).

A.2.6. The Consensus Problem

Fundamental to many basic fault-tolerance mechanism for distributed systems is
the consensus problem: it lies at the core of protocols handling synchronization,
reliable communication, resource allocation, task scheduling, reconfiguration, repli-
cated file systems, sensor reading, and other functions [BDM93].

The basic and simple idea of consensus is to share information among a group
(or population) of processing elements (PEs), and if possible, to do so in a fault-
tolerant manner. Even if a part of the PE population is acting faulty or maliciously,
the fault-free PEs still should be able to consistently agree on and produce cor-
rect results. So consensus is required whenever several components or processes
have to decide on a correct result in the presence of faulty results or malicious
components/processes.

In distributed operating systems, consensus procedures are used on different lay-
ers. Firstly, if time is to be used for detecting untimely messages of an underlying
unreliable communication medium, for diagnosing faulty processors, or for agreeing
on the correct sequence of computations and a correct result, consensus about a
particular time value needs to be established among the fault-free PEs. Secondly,

268

A.2 Terminology

with this knowledge it is then possible to establish reliable communication links be-
tween two arbitrary processors, which involves consensus on the set of information
and the transmission order of that set. Thirdly, by means of established reliable
communications, consensus on the diagnosis of the system can be reached by all
fault-free processors, which is required for a consistent reconfiguration of the overall
system after a fault [BDM93].

Consensus among several processors can be reached by means of n-modular re-
dundancy (NMR): With NMR, n PEs perform the same task, which enables the
masking of t faulty PEs, with n > 2t+1, by taking a majority vote of the n results.
However, this is achieved at a great cost of resources while the throughput (jobs per
unit time) is limited to the throughput of a single PE. By identifying the fault-free
PEs in a reliable fashion, it is possible to increase the throughput of the n-processor
system, since the faulty processors can be ignored in the task scheduling process
in favor of the fault-free ones, removing the need to mask them instead. Thus, if
a diagnosis of faulty processors can be performed reliably, the performance gain
factor of the system over the original NMR technique is given by the number of
fault-free PEs [BDM93]. The diagnosis itself, that is the detection and location of
faulty processors and the dissemination of that information among the fault-free
processors, has to be correct, too. However, achieving a reliable diagnosis is often
very costly, since the fault status of a system may be obsolete as soon as it is cal-
culated, as faults may trigger recovery procedures, for example, which means that
NMR techniques may still be needed if the costs for diagnosis and recovery are too
high.

The implementation of NMR requires a voting mechanism that combines the
n results into a single output, and the reliability of this mechanisms is obviously
related to reliability of any process using the output. Therefore, if multiple pro-
cessors rely on the output of the NMR system and the subsequent computations
of these processors must be consistent, then every processor must be able to agree
on the output of the NMR system [BDM93].

Obviously, the reliability of any process that uses this output is directly related
to the reliability of the voting mechanism. If a single process is using this result,
then it is sufficient for it to act as its own voter as the voting process will fail exactly
when the process fails. But when (1) multiple processors rely on the output of the
NMR system and (2) their subsequent computations must be consistent, then every
processor must be able to agree on the output of the NMR system. Since a single
point of failure is unacceptable for the voting procedure, the voting mechanism
itself must be distributed. This leads to the so-called Byzantine Generals Problem,
or Byzantine agreement, which explores solutions of the consensus problem given
the need for a reliable and fault-tolerant distributed voting process [BDM93].

A.2.7. Byzantine Agreement

A fundamental challenge of reliable distributed computer systems is the handling
of malfunctioning components that give conflicting information to different parts
of the system. It has been shown that the challenge of reaching an agreement
among distributed computing entities upon a single correct value in the presence
of malicious or faulty entities is equivalent to the so-called Byzantine Generals
Problem [LSP82]. Abstractly, the agreement problem of distributed entities or

269

Dependability

processes can be mapped to the problem of a group of distributed Byzantine gen-
erals who have to agree on a common battle plan. This problem is known under
the name of Byzantine agreement. The generals are located on different sides of
the enemy city and can only communicate by means of messengers. However, one
or more of the generals may be traitors who try to sabotage the battle plan by
confusing other generals about the actual battle decision. Now the problem is to
find an algorithm that ensures that all loyal generals will reach agreement even in
the presence of traitors. It could be shown that this problem is solvable using only
forgeable oral messages (e.g., the messenger can lie about the true content of the
oral message) if and only if more than two thirds of the generals are loyal. With
unforgeable written messages, the Byzantine Generals Problem is even solvable for
any number of generals and possible traitors [LSP82].

The original Byzantine Generals Problem can be weakened by allowing the pro-
cesses to agree upon an incorrect value if a failure occurs, which is consequently
called Weak Byzantine Generals Problem. Here an agreement can still only be
reached if fewer than one third of the processes are corrupted. However, unlike the
original problem, it has been shown that an approximate solution for the Weak
Byzantine Generals Problem exists that can tolerate an arbitrary number of fail-
ures [Lam83].

A.2.8. Reliability and Availability

The main goal of any fault-tolerant system is to increase the reliability and avail-
ability of a system. In practice, these two attributes are often expressed by means
of statistical terminology. For defining reliability, the lifetime of a system, which
is equivalent to the time to failure of the system, is considered as a random vari-
able. According to Jalote, the reliability of a system at a time is defined as the
“probability that the system is operational at that time instance” [Jal94]. The ex-
pected life of a system is given by the expectation of the reliability function, which
is also called mean time to failure (MTTF). Since faulty components are gener-
ally repaired or replaced, a system may either be in one of two states, which are
“working” or “under repair”. Based on this observation, instantaneous availability
of a system at a time can be defined as the “probability that the component is
working correctly at that time”. The only difference between this definition and
the definition of reliability is the consideration of system repair – if there was no
repair, the two definitions would be equal. The expected time it takes to repair a
faulty component is called mean time to repair (MTTR). Steady state availability,
which is generally just called the availability, is defined as the “limit of instanta-
neous availability as time tends to infinity”, which represents the fraction of the
time the system is operational. The thus defined availability of a system can be
expressed by means of MTTF and MTTR as MTTF/(MTTF+MTTR). Obviously,
the availability of a system is independent of the distributions of the lifetime and
repair times.

A.3. Hardware Fault-Tolerance

The lower level of computing systems is represented by the hardware on which the
system software and processes are executed, while system software and applications

270

A.3 Hardware Fault-Tolerance

are part of the higher levels. On the lowest hardware level, we find basic units such
as gates, transistors, or integrated circuits (ICs). Higher hardware levels contain
more advanced units such as processors or arrays of memory cells.

As a rule, faults that lead to the failure of a hardware component have a physical
cause. Physical failures of hardware can already occur during fabrication (e.g.,
faulty hardware parts, break in connections, short-circuits between lines, improper
doping, impurities in packaging, etc.), or they may occur with the passage of time
(e.g., short-circuits, breaks, shift in threshold voltages).

A.3.1. Hardware Fault Models

The effects of physical failures can be specified by means of an abstract fault model,
which maps the manifold possible physical failures to a limited number of abstract
higher-level faults. In the following, some common fault models are listed that
differ in the level of abstraction from the underlying hardware:

• Gate-level fault models are very frequently used in hardware fault-tolerance to
describe detailed physical failures with respect to the gate-level structure of
a circuit. An example is the classical stuck-at fault model. This fault model
assumes that physical failures lead to the permanent state of 0 or 1 of the
affected logic gates. This captures bonding failures and circuit breaks, which
are considered the most common failures in small ICs [Jal94]. The stuck-
open fault model captures an observed “memory effect” of circuits, which
is usually due to a break in a line of CMOS transistors, and which may
cause combinational circuits to act like sequential circuit, for instance. If a
transistor permanently conducts, this is called a stuck-on fault. Further gate
fault models are the bridging fault model describing short-circuits between
adjacent lines, and the delay fault model, describing a delay of a gate or a
path, which in return may cause a circuit to produce incorrect logic output
values.

• Function-level fault models are modeling failures at the level of functional
modules, which includes functional blocks (N input lines are logically com-
bined and the result is provided on M output lines), multiplexers, iterative
logic arrays. Ideally these fault models include the effects of physical failures
of faults at the gate level.

• Memory fault models for the main memory (Random Access Memory, RAM)
of computer systems addresses faults such as memory cells that are stuck
at 0/1, couplings between cells that makes them change values together, or
changes in the memory state of some cells that are affected by changes in
other memory cells.

A.3.2. Basic Techniques

Some of the most commonly used techniques to support hardware fault-tolerance
are triple/N modular redundancy, dynamic redundancy, coding, and self-checking
circuits.

271

Dependability

Triple Modular Redundancy

Triple modular redundancy (TMR) was first suggested by Von Neumann and is
considered the most commonly known technique for hardware fault-tolerance. Its
characteristic is that a hardware unit is rendered fault-tolerant by triplicating it:
three units work in parallel on the same task, and the three outputs are processed
by a voting element, which performs a majority vote. Thus, TMR can completely
mask the failure of one hardware unit, without explicit need of error detection and
recovery mechanisms. The TMR scheme depends critically on the voting element.
Therefore, the voting element is typically a simple circuit with low complexity,
which can be built in a highly reliable fashion. A more general approach is to
replicate the hardware unit N times instead of 3 times, with N > 3, which is called
N modular redundancy (NMR).

Dynamic Redundancy

Another basic technique for hardware fault-tolerance is called dynamic redundancy.
Here a system consists of several units of which only one is operating at a time,
while the others are serving as spare units (“spares”) that can be “switched in”
by a switching circuit when a faulty circuit is detected (which is then “switched
out”) [Lal85]. A dynamic redundancy system is further called cold-standby system
if its spares are only powered up on demand (“cold” start) when needed to replace
the faulty active component which is then powered down. In a hot-standby system,
all units are active and operating simultaneously, and their outputs are compared.
If the outputs match, then an arbitrary output is chosen. Otherwise, the faulty
component is detected and disabled, reconfiguring the system that it uses the results
from a non-faulty component [Lal85]. The most common hot-standby system is
the so-called duplex system, where two units are executed in parallel, and the
output results are continuously compared. In case of an output mismatch, diagnosis
routines are launched to locate the fault, upon which system can be reconfigured.

The main difference in dynamic redundancy compared to the TMR (or NMR)
approach lies in the way a faulty unit is detected and removed. TMR is particularly
suited for transient faults were no components have to be replaced, and performing
fault detection is not necessary for achieving fault tolerance. In contrast, a key
challenge of the dynamic redundancy approach is to detect the failure of a unit,
which commonly is achieved by means of periodic tests, self-checking-circuits, and
watchdog timers [Jal94].

Coding

A further important means for achieving hardware fault-tolerance (and reliable
communication) is coding. Here the basic idea is to add redundant check bits to
the information such that errors in some bits can be detected or corrected. This
provides a mechanism for performing structural checks for verifying the structural
integrity of data. The process of adding check bits is called encoding, and vice versa,
the reverse process of extracting data from the encoded data is called decoding.
Some commonly used codes in hardware fault-tolerance are Hamming codes, cyclic
redundancy codes, and Berger codes.

Hamming codes use a more general method of parity bits: multiple parity bits are

272

A.3 Hardware Fault-Tolerance

added in a way that each parity bit determines the parity of a well-defined subset
of information bits by means of the exclusive-or (XOR) operation. Hamming codes
can detect and correct bit errors, the number of which depends on the number of
parity bits used and on the Hamming distance of the code. The Hamming distance
of a code is defined as the minimum number of bit positions in which any two code
words differ. Further, for a Hamming code with Hamming distance d, which can
detect D bit errors and correct C bit errors, the relation d = C+D+1 is always true,
with D ≥ C. A code using a single parity bit, for example, has a Hamming distance
of 2, and can only detect single bit errors. A significant property of hamming codes
is that the overhead given by the number of parity bits decreases relatively as the
length of the protected information word is increased. A typical field of application
for Hamming codes is the area of semiconductor memories.

Cyclic redundancy codes (CRCs) are applied to blocks of data rather than to in-
dependent words. CRCs are characterized by a so-called generator polynomial G(x)
with some degree k. For encoding a data block, this data block is first transformed
into a polynomial: this is achieved by adding term xj for all bit positions j of a bit
string where the bit has the value 1. Then the thus obtained polynomial is divided
(modulo 2) by the generator polynomial. This results in a final remainder of k + 1
bits which forms the CRC checksum and is added to the data block. To verify
the integrity of a data block (CRC check), the data bits are again divided by the
generator polynomial, and the remainder is compared to the previously calculated
CRC checksum. A mismatch signifies that one ore more bit errors have occurred.
Decoding is achieved by simply removing the k +1 bits of the CRC checksum from
the data block, if no errors have occurred. CRCs can detect all single bit errors,
and all burst errors of a length less than k. In addition, all other bit errors that
are not divisible by the used generator polynomial can be detected.

Berger codes count the number of zeros (0s) in the data word and append this
number a checksum to form the code word. Given a code word size of k bits, this
requires log2(k) extra bits. Berger codes are known to be optimal for the detection
of unidirectional errors, where all the erroneous bits change from 1 to 0 or vice
versa from 0 to 1, even if these errors affect the check bits, given that the original
information and the check bits can be separated. There is also an alternative
version of the Berger code that counts the 1s instead of the 0s.

Self-Checking Circuits

Performing error detection by using a coding scheme requires the presence of a
so-called checker which verifies whether an encoded word is valid or not. A typical
usage scenario for the application of a checker is to verify the coded output of
functional circuits. However, if the checker itself is faulty, it may happen that
errors in the coded output are not detected. The goal of self-checking circuits
therefore is to detect errors in the output of the functional circuit as well as to
detect faults in the checker itself. Although there are no general techniques for
designing self-checking checkers [Jal94], some techniques have been proposed for
the synthesis of self-checking combinational and sequential circuits [JW93].

273

Dependability

A.4. Fundamental Dependability Concepts

A.4.1. Basic Building Blocks

Jalote divides classic fault-tolerant distributed systems into different levels of ab-
straction [Jal94]. On the lowest abstraction layer, right on top of the underlying
distributed system, basic building blocks are described that are frequently needed
for the realization of more complex fault-tolerant services. These building blocks
include abstractions of fail-stop processors [SS83] (i.e., processors that simply stop
functioning and which do not perform any incorrect actions when a failure oc-
curs), stable storage (i.e., the content of a stable storage is not lost or corrupted
in the presence of failures) [BJM+91, SS83], reliable communication [BJ87, Bir93],
synchronized clocks [LMS85], and failure detection [ACT00]. The next level are
the abstractions of reliable and atomic broadcast [GS97, KHTK00] and multi-
cast [SBS91], which are usable for supporting one-to-many communication and
which in return require the basic services of reliable point-to-point message deliv-
ery and fail-stop processor abstractions. These two levels provide building blocks
for higher fault-tolerant services. The simpler ones among these are consistent
state recovery [Koh81, HR83, SY85] to reach a consistent system state [BG95] if
any error occurs, and atomic actions [Ree83, Rom01] to ensure the atomicity of
operations and transactions [LS81] even in the presence of failures. Jalote defined
a user-defined action as “a sequence of primitive operations or steps which are ex-
ecuted indivisibly by the hardware”. Consequently, a user-defined atomic action
either completes fully, or it appears that the system has not performed any action
at all, which is achieved by recovery mechanisms that undo or redo the operations
that are part of the atomic action in case a failure occurred. Established recovery
concepts are checkpointing, and commit protocols.

A.4.2. Data Replication and Resiliency

An action is considered resilient to failures if it can still be completed successfully
even when failures occur in the system, thus masking those failures. This is differ-
ent to the concept of atomic actions where an action is rolled-back (or repeated)
in the presence of failures. Naturally, if a data object is only residing on a single
node, nothing can be done to prevent an action to fail if the respective node fails.
Therefore data objects have to be replicated on multiple nodes to achieve redun-
dancy, which is a prerequisite for tolerating failures. So while data replication can
be used to achieve resiliency against failures, it also introduces new problems of
consistency and replica management. One requirement is that concurrent actions
performed on replicas is equivalent to a correct execution on non-replicated data,
which is equivalent to a serial execution of actions on non-replicated data. The
correctness property is therefore also called the one-copy serializability criterion,
and the corresponding methods to enforce the criterion are called replica control
algorithms. Since the one-copy serializability criterion also requires that different
copies of a data object are in a mutually consistent state, so that each user action
gets the same view of the data object, replica control mechanisms are also called
consistency control mechanisms.

Replica control mechanisms can be divided into so called optimistic and pes-
simistic approaches. Optimistic approaches have the optimistic hope that opera-

274

A.4 Fundamental Dependability Concepts

tions that are executed in different network partitions will not conflict, and if they
do, that these conflicts will be resolved at a later point in time. Pessimistic ap-
proaches prevent inconsistencies from occurring by limiting access to data [Jal94].

An example for an optimistic approach is the use of so-called version vectors,
where files are treated as basic data objects used for replication. Each copy of a
file is associated with a version vector, which keeps track of updates originating
at different nodes that were performed on the respective copy, and which can be
used to resolve different copies if the version vectors do not conflict. If partitioning
occurs and conflicting updates were performed, the version vectors of the different
copies in different partitions diverge, requiring manual conflict resolution.

Established pessimistic approaches are primary site, active replication, and vot-
ing. The primary site approach supports k-resilient data objects, which means
that operations on the data can still be performed if up to k nodes in the system
fail. This requires that the data is replicated on at least k +1 nodes in the system,
with one node acting as the primary node and the rest as backups. In case of a
read request, the primary site returns the requested data. In case of an update
(write) request, the primary site sends the request to at least k of its backups, and
afterwards it performs the operation and returns the result. All backups perform
the update operations as received from the primary site. Now if up to k sites fail,
the scheme can mask the failure, otherwise, if more than k sites fail nearly simul-
taneously, it cannot be masked (since the degree of replication is only k + 1). In
case the primary site fails, a new primary site is elected among the backups.

In the active replication approach, which is also called state machine approach,
there is no primary node. Instead, all replicas are active simultaneously, which
requires that they remain mutually consistent and maintain the one-copy serial-
izability property [Jal94]. This can be achieved by using atomic broadcasts, for
instance. Again, for achieving k-resiliency, data has to be replicated on at least
k+1 nodes. Since any replica can service any request, it is required that all replicas
process the same request in the same order and in the same state so that all will
reach the same result in order to preserve one-copy-serializability. This requires the
satisfaction of the agreement property, for which Byzantine agreement protocols
can be used, and of the order property, which can be achieved by total ordering
based on unique identifiers.

Replica control can also be achieved by voting, which means that an operation
is only performed on replicated data after it has been collectively decided on by
replicas through voting. Thus the voting algorithm prevents the concurrent execu-
tion of conflicting operations. The advantage of voting-based methods is that – in
contrast to the primary site and active replication approach – they not only mask
node failures, but also communication failures. Voting mechanisms can further be
static (all parameters are fixed), or dynamic (some parameters may be adapted
dynamically as failures and recoveries take place in the system). One example for
static voting is weighted voting, where each copy of a replicated data object is al-
loted certain votes. For performing a read or write operation, a node has to collect
a read quorum of at least r or a write quorum of at least w votes. Here, w has
to be greater than half the total number of votes, and r + w greater than total
number of votes, in order to prevent the intersection of any two write quorums, or
of any read and write quorum, respectively. An optimization and generalization
of this approach is hierarchical voting. An example for dynamic voting is dynamic

275

Dependability

reassignment of votes. Here, if nodes fail, the votes to the nodes are reassigned
such that the effect of the failed notes is compensated.

A.4.3. Process Resiliency

In distributed applications where different processes are cooperating to perform a
task, all processes that are executing on a single node fail and stop if the node
itself fails. In case other processes depend on the failing process, this may lead
to the failure of the entire distributed computation even if all the required data is
available. Therefore, the goal of process resiliency is to ensure that a distributed
computation proceeds even if some of its constituent processes fail. For separate
processes that do not communicate with other processes, simple checkpointing can
be used to save consistent states of the process regularly. In the case the process
fails on a node, only this process needs to be rolled-back, and it can simply be
restarted on some backup node from its last checkpoint. However, when processes
communicate and depend on each other, more complex schemes are required to
achieve process resiliency.

If a system uses (synchronous) remote procedure calls, where one procedure A
calls another procedure B and suspends until the call to B returns, these calls can
be made resilient to node failures. This can be achieved by applying the primary
site concept, using one primary process and one or more backup processes for
processing procedure calls, yielding a procedure similar to the one used for resilient
data replication.

Alternatively, the remote calls themselves can be replicated. An example for
this is the so-called circus approach, where a module offering a certain procedure
is replicated on many nodes. The set of module replicas is called a troupe. So each
module is represented by a troupe, which can act as a server troupe and receive
procedure calls from another troupe, or act as a client troupe and make calls to
other troupes in return. Whenever a module (or its client troupe) makes a call to
a remote module (the server troupe), each member of the client troupe sends its
request to each of the procedures of the server troupe. This yields one-to-many
calls from the perspective of a procedure of a client troupe, and many-to-one calls
from the viewpoint of the replicated server procedures, and overall results in a
many-to-many call from client troupe to server troupe. The desired semantics of
the many-to-many call are normally that each member of the server troupe executes
each request exactly once, and that each member of the client troupe receives all
the results (exactly-once execution). Depending on the kind of failures that have
to be tolerated, a client may just take one of the results (in the case of fail-stop
processors), or perform a voting (in the case of Byzantine failures). Either way,
in the replicated call approach, the client members have the capability to perform
error detection or even error correction.

If processes pass messages among one another in an asynchronous way, resiliency
against process failures can be achieved by checkpointing and rolling-back the whole
system to earlier consistent states. Alternatively, message logging can be used to
recover lost messages, which then requires only the failed process to roll-back to be
restarted on a different node using the previously saved checkpoint.

276

A.5 Fault-Tolerant Software

A.5. Fault-Tolerant Software

Software is a totally conceptual entity that has no physical properties. As a conse-
quence, software faults cannot be the cause of physical faults but are always design
faults [Jal94]. This means that software faults are always the result of incorrect
design or erroneous programming (“bugs”) caused by human errors in the software.
Hence, the goal of fault-tolerant software is to cope with design faults in software
components. Note that, strictly speaking, fault-tolerant software is different from
software fault-tolerance, since the latter comprises all techniques for fault tolerance
that are supported in software, which also includes those techniques that are de-
signed to handle failures in hardware components. However, in literature, the two
terms are often used interchangeably as they are not standardized and used loosely.

Techniques for fault-tolerant software can be classified according to the kind of
distributed system they are targeting. This can either be a uniprocess system,
where a single process is executing the software that has a design flaw, or a mul-
tiprocess system where multiple processes are communicating with each other by
means of message passing.

The development of countermeasures against incorrect design and programming
of software represents a general challenge of distributed computing and its sub-
domains. In this dissertation, however, we do not consider software design faults
(and thus fault-tolerant software). Instead, we focus on the investigation of de-
pendability challenges that are intrinsic and fundamental to ubiquitous computing
in particular.

277

Dependability

278

B. Ubiquitous Computing

In the following sections, we first describe the fundamentals of ubiquitous com-
puting and its related disciplines. Then we give an overview of major technical
challenges of ubiquitous computing as they are perceived in the research commu-
nity today, with the main emphasis on human-computer interaction, context-aware
computing, and sensor networks.

B.1. Vision

Mark Weiser described the vision of ubiquitous computing as the goal of “enhanc-
ing computer use by making many computers available throughout the physical
environment, but making them effectively invisible to the user” [Wei93b]. He con-
cluded that “the most profound technologies are those that disappear. They weave
themselves into the fabric of everyday life until they are indistinguishable from
it” [Wei91].

Weiser further stated that – unlike virtual reality – “ubiquitous computing en-
deavors to integrate information displays into the everyday physical world”, that it
aims at augmenting “the nuances of the real world”, envisioning “a world of fully
connected devices, with cheap wireless networks everywhere”. In contrast to con-
ventional computing systems, ubiquitous computing explicitly aspires to transform
the real world in every day life situations, by providing the technical and con-
ceptual means for enabling anytime, anywhere, anyhow computing. This view is
also supported by leading IT experts, as former IBM CEO Lou Gerstner indicated
during his keynote speech at CeBIT ’98 in Hanover, Germany [Ger98]: “The next
milestone is what we call ’pervasive computing.’ [. . .] Chips are getting so small
and inexpensive, they’re being embedded in everything: cars, appliances, tools,
doorknobs, clothes. Most significantly, all these tiny intelligent devices will be
interwoven in the global fabric of computing and communications.”

B.2. Background

In the following, we give an overview of other areas of computing that are related
to ubiquitous computing, together with a brief discussion of their fundamental
research challenges as they are perceived in the research community today.

B.2.1. Distributed Systems

Distributed algorithms and systems have been the subject of intense development
since the 1980s. Generally speaking, distributed (computer) systems qualify all
computer applications where several autonomous computers, processors or pro-
cesses cooperate in some way, as defined by Tel [Tel00], for example. Tel gives a

279

Ubiquitous Computing

number of examples where distributed systems are required instead of sequential
systems:

• Information exchange, e.g., e-mail or World Wide Web;
• resource sharing, e.g., printer and file sharing;
• increased reliability through replication, e.g., RAID storage systems;
• increased performance through parallelization, such as multiprocessor systems,

for instance; and
• simplification of design through specialization, such as modular design tech-

niques, for example.

Practically, the process of decentralization of computing power and resources was
first initiated with the development of the microprocessor, which “burst the shrine”
of the prevailing monolithic mainframe systems, and which laid the foundations for
the proliferation of personal computers in the office and home environments in com-
bination with local area networks [Sat01, HMNS01]. This process was accompanied
by advances in hardware, software, and large-bandwidth communications technolo-
gies, such as client/server architectures, universal Web browsers, and distributed
databases, which promoted distributed computing. Thus it became possible for
parts of a database to be stored and maintained at different locations, for users to
take advantage of economical or specialized processing at remote sites, for decision-
makers to collaborate across computer networks to make decisions, and for large
archives to offer access to their data to anyone connected to the Internet.

Today, distributed systems are no longer limited to local systems, but they be-
come distributed globally, making extensive use of the Internet, an effect which
Milenkovic et al. called Internet Distributed Computing [MRK+03]. They argue
that the Internet itself is in the process of evolving into a “distributed computing
platform of unprecedented scale”, which includes “Internet uses” based on peer-
to-peer and grid computing. And the process of decentralization is expected to
continue, which is currently manifesting itself in the appearance of ubiquitous (or
pervasive) computing, as Hansmann et al. explain [HMNS01]: The computer is
“irresistible on its way to push all limits and is getting omnipresent”, eventually
becoming a “part of everyday life and an inevitable component when perform-
ing a variety of private and business related tasks”. Beyond the era of personal
computing, ubiquitous computing makes “information access and processing easily
available for everyone from everywhere at any time”, enabling users to “exchange
and retrieve information they need quickly, efficiently, and effortlessly, regardless
of their physical location”.

As Satyanarayanan [Sat01] points out, this ongoing progress of ubiquitous com-
puting systems largely benefits from many areas of distributed systems which are
“foundational to pervasive computing”. According to Satyanarayanan, this is in
particular the case with respect to the classic distributed systems research fields of
remote communication (e.g., protocol layering and remote procedure calls), fault
tolerance (such as atomic transactions and two-phase commit protocols), high avail-
ability (including optimistic/pessimistic recovery and replication strategies), remote
information access (such as caching, distributed file systems, and distributed data
bases), and security (such as mutual authentication based on encryption). Future
distributed system challenges include the support of mobile code, multimedia data

280

B.2 Background

streams, user and device mobility, and spontaneous networking [CDK00]. Scala-
bility, quality of service, and robustness issues with respect to partial component
failures are expected to become key issues. In the process, many emerging essential
techniques will be incorporated into the area of ubiquitous computing [MS03].

B.2.2. Embedded Computing

The forthcoming realization of the ubiquitous computing vision asserts itself in the
continuing progress in the development of small and cheap computing and com-
munication technologies [HMNS01], which largely benefits from the technological
advances in the domain of embedded computing [Mat05]. As the power of micro-
processors, storage capacities and communication bandwidth rapidly increase, it
becomes technically feasible to build ever smaller, cheaper and more abundant
computers. This development ultimately results in the creation of so called “smart
things” which not only have access to the Internet and its plentiful resources, but
which also are increasingly capable of autonomous cooperation and interaction with
each other [Mat03].

Embedded computing systems can be defined as special-purpose computer sys-
tems which are completely encapsulated by the devices they control. An embedded
system usually has specific requirements and performs pre-defined tasks, unlike a
general-purpose personal computer. Important examples where embedded sys-
tems are employed are sensor networks, fly-by-wire systems, engine control (e.g.,
for improved fuel efficiency and lower emissions in automobiles), medical implants
and monitoring systems, avionics (e.g., navigation and collision avoidance), smart
homes and work spaces, and space control. But there are also more mundane ex-
amples of how embedded systems pervade our everyday life environment, spanning
the whole spectrum of electronic devices and products, such as electronic toys, mul-
timedia entertainment systems, mobile (smart) phones, digital alarm clocks, and
even toasters and coffee machines with built-in or embedded computer systems.

Research Challenges. The following are characteristic areas of research and de-
velopment as they are perceived today in the research community of embedded
computing [Ano01, Tec04, JEC05]:

• Embedded hardware support: The core of an embedded system is the used
hardware platform and technologies. On the one hand, this comprises the
development of miniature, low-power digital signal processors (DSPs), micro-
processors, and systems-on-a-chip. On the other hand, it is related to research
in the area of hardware specification, synthesis, modeling, simulation, analy-
sis, including the investigation of aspects of power-awareness, reliability and
fault-tolerance, security, functional verifiability, and performance modeling.

• Embedded software: Embedded hardware cannot be operated without suit-
able embedded software that takes full advantage of the provided hardware
capabilities, and which defines the program tasks and services to be exe-
cuted on the hardware platform. The development of embedded software
comprises the study of compilers, assemblers and cross assemblers for pro-
gramming, including aspects of memory management, object-oriented pro-

281

Ubiquitous Computing

gramming, virtual machines, scheduling, concurrent software, distributed and
resource aware operating systems, and middleware support.

• Embedded system architecture: Apart from basic hardware and software sup-
port, advanced concepts are required for building more complex embedded
system architectures. Related challenges include the investigation of het-
erogeneous multiprocessor systems and reconfigurable platforms, as well as
communication issues, protocols, on-chip network capabilities, and embedded
microcontrollers.

• Hardware/software co-design: The particular properties of embedded systems
(such as miniature size, low power, and resource constraints) demand spe-
cial tools and methodologies supporting the design and development process.
This includes the development of tools for testing and debugging, specifica-
tion and modeling, and design representation. It also requires the study of the
interaction and interrelationship between architecture and software design, of
algorithms, design concepts, software synthesis and re-use, and a theoretical
analysis and exploration of the available design space and its boundaries.

• Real-time systems: Embedded systems often have to meet great demands on
response time and real-time operability. Therefore, an important research
field is the investigation of real-time related aspects such as software, dis-
tributed real-time systems, real-time kernels, real-time operating systems,
multitasking, and task scheduling.

• Testing and verification: Due to size and hardware restrictions, the testing
and verification of the design and proper functioning of embedded computing
platforms is a challenge. This includes issues related to the design-for-test,
design verification, test synthesis, built-in self-test, embedded testing, and
verification for embedded and system-on-a-chip systems.

• Application-specific processors and devices: Embedded computing platforms
can be tailored for performing tasks with high performance and efficiency.
Typical areas for dedicated, application-specific processors and devices are
network processors, real-time processors, media and signal processors, appli-
cation specific hardware accelerators, reconfigurable processors, low power
embedded processors, bio/fluidic processors, and communication processors
(such as for Bluetooth and ZigBee). It also includes complete products such
as handheld devices, for instance.

• Wireless ad hoc communication and networking: Prominent research issues
are theoretical boundaries (throughput, optimal routing strategies, multi-
hop-protocols), technical challenges such as robustness and quality-of-service
guarantees, efficient low-level protocols and hardware technologies for efficient
single-hop wireless ad hoc communication.

• Sensor networks: Embedded computing technology and platforms provide
the hardware and software backbone of sensor networks. As embedded com-
puting moves from working in closed, isolated systems towards communicat-
ing, networked, distributed solutions and open application platforms, research

282

B.2 Background

challenges also comprise the domains of wireless and ad hoc networking tech-
nologies, methods of self-organization, architectures, protocols, software, and
applications. Recently sensor networks have attracted considerable attention
in research and industry alike and become an independent research domain.
For an overview of research issues and challenges related to sensor networks,
please refer to Section B.6.

• Dependability: Embedded systems are threatened by enormous security is-
sues which challenge their technical and economical viability. This calls for
security technologies, concepts and architectures with respect to software
and hardware. A particular concern is the rapidly growing complexity of
embedded systems, which on the one hand is caused by the enormous tech-
nological advances such as in the field of nanotechnology, and on the other
hand by a significant increase in heterogeneity: there is an ever growing vari-
ety of transducer devices, sensor technologies, actuators, interactive screens
and displays, input and output devices (speech, handwriting, implicit in-
put based on context awareness and activity recognition), computing devices
and smart appliances, and communication issues (standards, protocols, radio
frequency). Further dependability challenges are complexity management,
fault containment, and control of dynamic and highly distributed embedded
systems [Rus01b, Rus01a, Kop04], the delivery of quality-of-service guaran-
tees, reliable real-time communications, and methods for energy preserva-
tion [RV03] and harvesting. A particular challenge is the development of safe
embedded software [Lev02], as the complexity of most embedded software
limits the ability to assure safety and to prevent hazardous behavior.

• Emerging new topics and challenges: New challenges for next generation
embedded computing systems arise from new technologies, such as nano- and
biotechnology, new engineering principles, and new application domains, such
as embedded Internet tools and ubiquitous computing in general.

B.2.3. Mobile Computing

Mobile computing can be considered as the logical forerunner of ubiquitous com-
puting. Since motion is an integral part of everyday life, ubiquitous computing
technology must support mobility. If this is not the case, a user will be acutely
aware of the technology by its absence when he moves [Sat01]. Back in 1994, For-
man and Zahorjan described an impending paradigm shift from using self-contained
and statically networked computers to the employment of portable computers ca-
pable of wireless networking [FZ94]. They referred to this emerging technology as
mobile computing, identifying its most distinguished feature as being the “elimina-
tion of time-and-place restrictions”, granting the user “access to digital resources
at any time, from any location”. More generally speaking, computing can be con-
sidered to be mobile if it can occur in moving locations, such as in vehicles, on
aircraft, or carried on the body. Due to the mobility aspect it is impracticable to
use wired communication among mobile entities, making wireless communication
particularly important for mobile computing. Ubiquitous computing, in compari-
son, takes this development even further by transforming the user’s environment
as a whole into a conglomeration of smart computerized objects and devices, which

283

Ubiquitous Computing

not only aggravates the problems of mobile computing, but which also introduces a
number of additional challenges and research issues, as we explain in the following
sections.

Research Challenges. Talking about mobile computing challenges, Forman and
Zahorjan [FZ94] stated that the expected increase in utility, versatility and flexibil-
ity of future mobile computing systems brings about its own particular problems
and challenges, stemming from “three essential properties of mobile computing:
communication, mobility, and portability.” Especially the mobility aspect intro-
duces four novel key constraints in comparison to traditional distributed computing
systems: an unpredictable variation in network quality, lowered trust and robust-
ness of mobile elements, limitations on local resources imposed by weight and size
constraints, and concern for battery power consumption [Sat96].

Because of the strong need for wireless connectivity in mobile computing, mobile
networking was early recognized as an important issue, including the study of
reliable and efficient ad hoc protocols and high-performance techniques [Sat01].
In general, wireless communication is characterized by “lower bandwidths, higher
error rates, and more frequent spurious disconnections”, which can also lead to
an increase in communication latency [FZ94]. Hence important challenges related
to wireless communication are low bandwidth, high variability of the available
bandwidth, heterogeneity of networks and protocols, and the (in)security of wireless
links.

There are further technical challenges arising from mobility, as described by
Satyanarayanan [Sat01], for example. Firstly, there is the issue of mobile informa-
tion access, which includes the areas of disconnected operation, bandwidth-aware
file access, and selective control of data consistency. Secondly, mobility-induced
changes in the availability of resources enforce the need for adaption [Sat96], pro-
viding support for adaptive applications by means of proxy-based transcoding and
adaptive resource management, for instance. Thirdly, due to an increased de-
pendence of mobile computers on location-specific context information, location
sensitivity is another important area. Here the focus lies on location sensing and
location-aware system behavior, which recently has become the explicit target of
location-aware computing research. Mobile devices may require location-dependent
information for the dynamic reconfiguration of their services according to the par-
ticular location-dependent resources and services whose availability may again be
static or dynamically changing [FZ94], calling for location-aware services and ser-
vice configuration.

A further mobility-induced challenge is address migration for mobile devices
that frequently change their physical location and, in the process, also change
their network address while roaming between different network domains. Never-
theless, in the last decade there has been significant effort put into the development
of networking protocols with special support for device mobility, such as mobile-
IP [Per98] and enhancements of the IPv6 protocol [QLIM01].

Forman and Zahorjan further consider “migrating locality” an issue, arguing that
physical distance does not necessarily reflect network distance, so that a small ac-
tual movement could lead to a disproportionate growth of the communication path,
which could potentially result in longer latency and a higher risk of disconnections
“when crossing network administrative boundaries.” However, the latter has not

284

B.2 Background

proven to become a real concern today, as longer communication paths within
today’s evolved high performance networks are not significantly affecting latency.

The third key objective of mobile computing according to Forman and Zahorjan
is to achieve a high degree of portability of hand-held mobile computers. This leads
to further challenges that have their origin in the portability constraints imposed
by size and resource limitations. The most prominent constraint is low power, as
batteries typically constitute the largest single source of weight in a portable com-
puter. This remains a crucial issue today, especially since the development rate of
more powerful and more compact batteries is still far behind the development rate
of computer hardware and circuits. To alleviate the problem, power consumption
should be minimized in the first place, either by designing power-aware computer
components and system-level energy saving techniques [Sat01] (e.g., adaptive power
saving mechanisms that allow to turn off idle system components or to temporarily
reduce the clock speed of the processor), or by developing power-efficient applica-
tions.

Another important issue in the context of portability is the increased risk of
physical damage, unauthorized access, loss, and theft, which may result in breaches
of privacy or total loss of data. As a solution, Forman and Zahorjan suggested to
minimize the essential data kept on the portable device, to use encryption, and to
employ data synchronization and replication mechanisms. Further challenges are
small user interfaces and small available storage capacities, both of which are direct
results of the size constraints typical of portable devices.

B.2.4. Peer-to-Peer Computing

Peer-to-peer (P2P) computing constitutes a more recent domain that shows some
overlap with ubiquitous computing research. P2P computing systems are generally
characterized by the direct sharing of computer resources (such as content, CPU
cycles, storage and bandwidth) in a decentralized manner [ATS04]. More precisely,
peer-to-peer (P2P) computing can be defined as a “network-based computing model
for applications where computers share resources via direct exchanges between
the participating computers” [Bar02]. One finds a considerable number of further
definitions of “peer-to-peer” in literature, which are mainly distinguished by the
“broadness” they attach to the term. However, there is a general understanding
about the “fundamental actions that P2P enables users to do”, which are the sharing
of resources, and collaboration [Bar02]. Resources that can be shared generally
are files (e.g., music, video, etc.), compute-cycles (such as it is the case in the
SETI@home [SET05] application), services (e.g., messaging and security), storage
space, and information. P2P-based collaboration is an innovative, evolving area,
including direct exchange between peers, peer-intermediated transactions, granting
access to resources (as in SETI@home), and any kind of interaction that is formed
through policies in P2P-based online communities.

P2P-based systems were initially built to implement file-sharing systems that
spanned Internet-like environments, with a focus on searching and routing as-
pects, and the integration of hash-map-like functionalities (mapping keys to loca-
tions) [DM04] in distributed settings. P2P computing systems generally abstract
from the underlying hardware, assuming a logical model with interconnected pro-
cesses as logical nodes. These logical nodes are able to self-organize into network

285

Ubiquitous Computing

topologies, capable of accommodating transient populations of nodes while main-
taining acceptable connectivity and performance without requiring the interme-
diation or support of a global centralized server or authority. Regularly recurring
connectivity and availability of the distributed physical nodes, which are linked by a
communication network, is usually taken for granted. In contrast, ubiquitous com-
puting systems explicitly change or extend the quality of physical objects [Mat03]
to provide novel services based on the collaborative effort of these augmented smart
objects. In doing so, smart objects often collaborate in an ad hoc fashion, commu-
nicating via short-range ad hoc wireless links rather than via infrastructure-based
communication networks.

Peer-to-peer architectures have been employed for a variety of different applica-
tion categories, which include the following classes of P2P applications [ATS04]:

• Communication and collaboration. This category includes systems that pro-
vide the infrastructure for facilitating direct, usually real-time, communica-
tion and collaboration between peer computers. Examples include chat and
instant messaging applications.

• Internet service support. A number of different applications based on peer-to-
peer infrastructures have emerged for supporting a variety of Internet services.
Examples of such applications include peer-to-peer multicast systems.

• Distributed computation. This category includes systems whose aim is to take
advantage of the available peer computer processing power (CPU cycles).
This is achieved by breaking down a computing-intensive task into small
work units and distributing them to different peer computers that execute
their respective work units and return the results. Central coordination is
invariably required.

• Database systems. Considerable work has been done on designing distributed
database systems based on peer-to-peer infrastructures.

• Content distribution. Most of the current peer-to-peer systems fall within the
category of content distribution, which includes systems and infrastructures
designed for the sharing of digital media and other data among users.

Research Challenges. Decentralization is a key attribute of P2P, which conse-
quently puts communication and connectivity at the heart of P2P computing. The
development of platform-spanning communication protocols and standards suitable
for P2P applications is a fundamental requirement. Here, a particular challenge
is the consideration of firewalls and existing Network Address Translation (NAT)
technologies, which restrict or hamper direct access to the internal systems and
resources of organizations [Bar02].

The distributed sharing of resources and the dynamics of the P2P environment
raises further fundamental issues of P2P computing. Once communication is en-
sured between peers, the next challenge to be addressed is how these resources
can be unambiguously named and efficiently searched, found, and delivered, con-
sidering that nodes, users, and resources come and go. This requires the study of
adaptive discovery mechanisms for exploring and detecting available resources in
a dynamically changing environment, directory services that manage information

286

B.2 Background

about discovered resources, and search mechanisms that allow users to efficiently
locate the particular resources they are interested in [Bar02]. Further, since re-
sources such as files may change their locations frequently or be replicated across
multiple peers, there is a need for P2P naming schemes that provide names that
are independent from physical locations, and supporting content-based references
and discovery procedures.

An open issue is interoperability between P2P systems. For most established
P2P systems, interoperability is not (yet) an issue. However, in the long run, in-
teroperability would strongly facility the migration or development of new P2P
applications, because these systems could directly rely on the available basic ser-
vices [Bar02]. As a result, development time could be reduced, and the potential
user community for new applications would be bigger from the start, increasing
the chance that the provided P2P services will actually establish themselves and
be used by a larger community.

A key problem of P2P systems is the lack of cooperation (free riding) among par-
ticipating nodes. A paramount challenge is the development of incentive techniques
for peer-to-peer networks, which is a difficult task considering the large populations,
high turnover rate of nodes, the symmetry of interest, zero-cost identities, and the
possibility of collusion among nodes or “traitors” [FLSC04].

Since P2P computing provides mechanisms for direct and content-rich exchanges
between users, P2P can also be considered a tool for creating online communi-
ties [Bar02]. Since P2P communities are dynamic (individual members may choose
to join and leave at any time), these communities have to be self-organizing, enforc-
ing certain policies and rules of conduct even in the absence of a central authority.
Furthermore, the members of a community usually have a shared common inter-
est, which determines the nature of the exchanges, shared resources, and the access
granted to those resources. In such a setting, each peer should be able to control
the access permissions granted to other peers. So an important research challenge
is the development of concepts for the formation and management of users and
communities that enable a strong local autonomy of the user. Since it cannot
be expected that peers are connected all the time, P2P applications need to be
particularly resilient and fault-tolerant to deal with the intermittent presence of
peers. More generally, peer-to-peer architectures require the “ability to treat insta-
bility and variable connectivity as the norm, automatically adapting to failures in
both network connections and computers, as well as to a transient population of
nodes” [ATS04]. This “fault-tolerant, self-organizing capacity” calls for an “adaptive
network topology that will change as nodes enter or leave and network connections
fail or recover, in order to maintain its connectivity and performance”. Mechanisms
are therefore required that ensure a high availability of resources, which can be
achieved by means of data and process replication across peers, for example. This
also requires fault-tolerant routing and information retrieval mechanisms [ADS02].
A further challenge is to ensure that critical content remains available during net-
work failures, and that the content can be accessed with sufficient performance,
which can be achieved by concepts that move content closer to where it is being
used, for instance. Furthermore, with potentially many copies of the same content
distributed across different peers of the P2P network, ensuring and maintaining
content coherency and synchronization is a non-trivial challenge. This problem is
aggravated by temporary losses of network connectivity, and by the temporary or

287

Ubiquitous Computing

permanent unavailability of one or more peers.
Among the highest ranked concerns with regard to P2P computing, however, are

counted security [CDG+02] and lack of trust [Bar02]. Peers are often connected
for long periods of time, offering resources and services to other, often unknown,
untrusted and potentially malicious peers. Basic security requirements are peer
authentication (to know and control who is accessing a system), authorization (to
control what a peer is allowed to do on a system), and data integrity (protection
against tampering with data).

As P2P communities grow in numbers of peers, the amount of offered resources
and the number of requests for accessing those resources increases accordingly. This
causes challenges with regard to performance and scalability. The performance of
a P2P system to a large extent depends on the available network bandwidth, and
latency. The latter is of particular importance with regard to real-time applications,
such as instant messaging, or online gaming. Scalability may become an issue
with regard to central or distributed naming schemes, and with directory services,
including searches and resource discovery [Bar02].

B.2.5. Grid Computing

A not so closely related modern branch of distributed computing research is called
grid computing. Computational grids are distributed systems that enable the large-
scale coordinated use and sharing of geographically distributed resources, consti-
tuting “ensembles of distributed, heterogeneous resources” [Cas02]. Computational
grids have emerged as popular platforms for deploying large-scale and resource-
intensive applications, and currently large collaborative efforts are undertaken to
provide the necessary software infrastructure. In contrast to highly dynamic and
diverse ubiquitous computing systems, grids are based on persistent, standards-
based service infrastructures, often with a high-performance orientation [FKT01].
However, there are ongoing efforts of integrating the mobile wireless computing
world with computational grids [PHD02].

The technical foundations of grid computing are found in the tremendous tech-
nological progress, leading to a nearly annual doubling of data storage capacity and
network performance (relative to computer speed). At the same time, computer
power “only” doubles at a rate of approx. every 18 months, and thus is “falling be-
hind storage” [Fos02]. Foster argues that, if networks outpace computers at this ex-
pected rate, communication becomes essentially free. As a consequence, it suggests
itself to “exploit this bandwidth bounty” by imagining “new ways of working that
are communication intensive, such as pooling computational resources, streaming
large amounts of data from databases or instruments to remote computers, linking
sensors with each other and with computers and archives, and connecting people,
computing, and storage in collaborative environments that avoid the need for costly
travel”.

But as Foster points out, the Grid goes beyond sharing and distributing data and
computing resources. If offers scientists new and more powerful ways of working.
According to Foster, examples of this are:

• Science portals, making advanced problem-solving methods easier to use. For
example, sophisticated packages can be invoked remotely from Web browsers
or other simple, easily downloaded “thin clients”, or they can be run remotely

288

B.2 Background

on suitable computers within a Grid. Such science portals are currently being
developed in biology and computational chemistry, for instance [Fos02].

• Distributed computing, by employing high-speed workstations and networks
as a means to yoke together PCs within an organization to form substantial
computational resources.

• Large-scale data analysis, by harnessing distributed computing and storage
resources. An advantage hereof is that the natural parallelism inherent in
many data analysis procedures makes it feasible to use distributed resources
efficiently. Further, for various technical and political reasons, assembling
these resources at a single location often appears impractical, whereas the
collective institutional and national resources of a bigger number of insti-
tutions participating in large-scale experiments can provide these resources.
These communities can then not only share computers and storage, but also
analysis procedures and computational results.

• Computer-in-the-loop instrumentation, enabling a quasi-real-time analysis
which greatly enhances an instrument’s capabilities. Many scientific instru-
ments such as telescopes, synchrotrons, and electron microscopes that gener-
ate raw data streams would benefit from such a real-time analysis: it makes it
possible to respond to observed phenomena while they are still active, which
is not possible if the raw data is archived for subsequent a posteriori batch
processing. An example for this is the ability to zoom in on active solar flares
that are brief and sporadic while they occur.

• Collaborative work, enabling the aggregation of human expertise along with
data and computing power. This would allow collaborative problem formula-
tion and data analysis, which is important to Grid applications, by researchers
who are working in different, possibly remote physical locations.

General Research Challenges. Foster described authentication, authorization,
and policies to be among the most challenging issues in Grids [Fos02]. He argues
that while traditional security technologies are concerned primarily with securing
the interactions between clients and servers, the situation is more complex in Grid
environments, where the distinction between client and server tends to disappear.
In Grids, an individual resource can act as a server one moment (as it receives a
request) and as a client at another (as it issues requests to other resources). This
leads to a number of interesting requirements of Grid systems, such as:

• Single sign-on, allowing a user to authenticate him or herself only once and
then assign to a computation the right to operate on his or her behalf for a
specific period, rather than requiring him or her to re-authenticate on each
occasion a single computation needs to access other distributed resources.
One way for achieving this capability is the creation of a so-called proxy
credential.

• Mapping to local security mechanisms, enabling the integration of different
local security solutions found at different sites, such as Kerberos and Unix.
By mapping to these local solutions at each site, local operations can proceed
with appropriate privileges.

289

Ubiquitous Computing

• Delegation, enabling computations that span many resources, and which re-
quire the creation of subcomputations (or subsidiary computations) that may
themselves generate requests to other resources and services, possibly creat-
ing additional subcomputations, and so on. Authentication operations – and
hence further delegated credentials – are involved at each delegation step, as
resources determine whether to grant requests and computations determine
whether resources are trustworthy. An important challenge is to limit the
risk that credentials are acquired and misused by an adversary, which is the
greater the further these delegated credentials are disseminated.

• Community authorization and policy, since resources (and users) need to be
able to express policies in terms of other criteria, such as group membership,
as it is infeasible for each individual resource to keep track of community
membership and privileges. One possible solution is to identify resources
with a cryptographic credential issued by a trusted third party together with a
community authorization system that allows the delegation of policy decisions
to a community representative.

Concerning the importance and impact of Grid computing in the future, Foster
claims that “it will surely take longer than some expect before Grid concepts and
technologies transform the practice of science, engineering, and business, but the
combination of exponential technology trends and R&D advances [. . .] are real and
will ultimately have dramatic impacts”. He further predicts that “in a future in
which computing, storage, and software are no longer objects that we possess, but
utilities to which we subscribe, the most successful scientific communities are likely
to be those that succeed in assembling and making effective use of appropriate
Grid infrastructures and thus accelerating the development and adoption of new
problem solving-methods within their discipline”.

An underlying analogy describing the vision of Grid computing was given as
early as 1965, likening the Grid to the electrical power grid [Fos02], providing ac-
cess to computation and data in an “easy, pervasive, standard way as plugging in
an appliance into an outlet” [Cas02]. Here it shows that with the underlying goal
of providing a pervasive, ubiquitous infrastructure, it is reasonable to suppose that
grid computing offers some definite points of contact with the domain of ubiquitous
computing. This expected potential for synergies at the interface between ubiqui-
tous computing and grid computing has already moved into the focus of research.
One idea, for instance, is to integrate mobile wireless devices into the computa-
tional grid. Phan et al. describe the challenge of “harvesting the increasingly
widespread availability of Internet connected wireless mobile devices such as PDAs
and laptops to be beneficially used within the emerging national and global com-
putational grid” [PHD02]. They argue that, due to inherent resource limitation,
the integration of mobile wireless consumer devices into the Grid initially seems
unlikely and unprofitable. But in the long run, due to their potentially enormous
numbers, mobile devices form an untapped abundance that could be successfully
integrated into grids, by means of a proxy based, clustered system architecture, for
example.

Vice versa, assuming the availability of a ubiquitous, easy to tap Grid infrastruc-
ture, Grid computing could provide valuable resources and services to resource-
limited mobile devices and smart objects in ubiquitous computing environments,

290

B.3 Ubiquitous Computing Technologies

enabling the development of more efficient, powerful, and dependable applications.
However, this topic is beyond the scope of this dissertation and should be addressed
as part of future ubiquitous computing research.

B.3. Ubiquitous Computing Technologies

The continuing advances in microelectronics and embedded computing lead to a
degree of miniaturization of computer technology that enables the development
and production of microprocessors, memory, wireless communication technologies,
sensors, and energy sources of ever decreasing form factors and weight [Mat05].
Together with novel input/output devices, these technologies can be considered
the enabling technologies for the realization of ubiquitous computing systems and
applications.

Owing to their miniature size, their low energy consumption and their low price,
microprocessors, memory modules, communication chips, and sensors can be em-
bedded into a broad range of everyday life artifacts. This way it has become feasible
to even render inanimate, traditionally non-electronic things into “smart” computer-
ized objects capable of executing certain services and applications. Thanks to their
added communication capabilities, smart objects are able to interact and cooperate
with other smart objects, either by means of ad hoc communication with physically
proximate objects residing in the immediate vicinity, or by infrastructure-based
communication with remote objects that are connected to a (local) Wireless LAN
or to the (global) Internet. Ultimately, such smart cooperating objects are expected
to form the basis for the emergence of an Internet of things [Mat05].

B.3.1. Wireless Communication

Interaction and cooperation between distributed computing devices requires com-
munication among those devices. Further, portable, mobile devices that are not
connected by wire to a communications network while being stationary or in tran-
sit need some means of wireless communication to be able to interact with other
(mobile or immobile) devices.

The two most popular and widespread mediums for wireless communication be-
tween computing devices are infrared (IR) light and radio frequency (RF).

IR-based communication can be considered the forerunner of standardized wire-
less communication technology. IR technologies are particularly suited for short dis-
tance wireless communication channels with low-to-medium data throughput [Bak04].
IR communication systems are simple to build and design, low-priced, and provide
a stable connection without creating possibly harmful interference. This enables
their deployment in areas sensitive to RF interference such as hospitals and air-
craft [NTT03]. Directed IR communication can further be of particular interest for
the use with mobile, portable devices, since it provides a “point & shoot” capability.

Using IR communication typically allows transmission rates up to 4 Megabits/s,
with envisioned future data rates in the range of up to 100 Megabit/s [IDA05].
However, in everyday computing equipment such as laptops or PDAs, IR hard-
ware with a maximum transmission rate of only 115.2 kbit/s is most commonly
used [Bak04]. A disadvantage of IR communication in comparison to RF com-
munication is that it only supports point-to-point communication. Further, for

291

Ubiquitous Computing

achieving the potential higher data rates with acceptable error rates, the IR sender
and receiver have to be aligned to enable direct line of sight communication.

With the development of RF-based wireless communication technologies the
alignment and line of sight restrictions of IR communication were overcome. At
the same time, significantly higher data rates became possible, reaching the order
of magnitude of Gigabit/s. The breakthrough of wireless RF-based communica-
tion was achieved with the introduction of the IEEE 802.11 family of wireless
networking standards, which are commonly referred to as Wireless LAN (WLAN)
or Wi-Fi (short for Wireless Fidelity) technology [WFA06]. Wi-Fi networks based
on the IEEE 802.11b standard, featuring data rates up to 11 Mbit/s, have become
commonplace in public places and spaces. The further development of wireless
communication standards resulted in even higher data rates of 54 Mbit/s (IEEE
802.11g) and beyond. The appearance of portable, mobile devices created a de-
mand for energy-efficient short range communication technologies with particular
suitability for wireless ad hoc communication. This led to the development of
specialized short-range wireless communication technologies and protocols, such as
Bluetooth [BS06], and ZigBee (IEEE 802.15.4) [Zig06], for example.

B.3.2. Embedded Computing Technologies

The technologies that enable embedded computing comprise the whole spectrum of
computer hardware, with a strong focus on miniaturization and power-efficiency. In
the following, we give a brief overview of typical embedded computing technologies,
which are usually employed in ubiquitous computing systems:

• Microprocessors, such as digital signal processors (DSPs), systems-on-a-chip,
generic and customized microprocessors based on very/ultra large scale in-
tegration (VLSI/ULSI) architectures, and field programmable gate arrays
(FPGAs).

• Small-scale data storages, such as highly integrated memory chips, stand-
alone memory storage devices such as compact-flash cards, secure digital
cards, microdrives, and USB memory sticks.

• Highly integrated circuits for ad hoc communication, networking, and inter-
facing, such as wireless RF communication chips supporting Wi-Fi (IEEE
802.11x), Bluetooth, and ZigBee; communication interfaces and bus architec-
tures, such as serial and parallel ports, Universal Serial Bus (USB), Firewire,
and the Inter-IC (I2C) multi-master bus.

• Displays, such as light emitting diodes (LEDs), thin film transistor (TFT)
displays, and more recently also flexible organic [Kid99] or polymer [Hel00]
displays.

• Sensors, such as miniature video cameras, microphones, accelerometers, gy-
roscopes, pressure sensors, and sensors for temperature, humidity, light in-
tensity, and electrostatic capacity.

• Actuators, such as miniature switches and controls, and communication-based
remote notification, logging, messaging, and auditing mechanisms.

292

B.3 Ubiquitous Computing Technologies

• Sensor nodes, i.e., autonomously operating small-scale sensor platforms, such
as BTnodes [BKM+04] and the Mica wireless platforms (also known as
Berkely Motes) [HC24], for instance.

This list is not and cannot be exhaustive, since embedded computing technologies
and their potential application in the context of ubiquitous computing constitute
an actively evolving field. It is expected that, in the long run, the realization
of various technologies that today are still being considered utopistic or exotic
will become practical and feasible, such as holographic storage media, or Gigabit
wireless communication technologies, for instance [Mat05].

B.3.3. Smart Everyday Objects

Everyday life objects and artifacts that are augmented with embedded computing
capabilities have gained considerable importance in ubiquitous computing scenar-
ios. The process of augmentation changes or extends the quality of the original
objects, such as their mode of functioning, usage, capabilities, etc., thus rendering
them “smart” [Mat03] in some way. Siegemund [SFV04] gives a concrete definition
for such smart everyday objects (in short: smart objects), which he defines as every-
day artifacts augmented with small sensor-based computing platforms. Such smart
objects can perceive their surroundings through sensors, and collaborate with peers
using short-range wireless communication technologies, which makes them aware
of their environment. They further provide context-aware services to users or other
smart objects in ubiquitous computing environments.

According to Siegemund, the computational capabilities of smart objects are
usually very limited, because their embedded computing platforms have to be small
and unobtrusive. And since smart objects often do not possess conventional I/O
interfaces such as keyboards or displays, their means of interaction with users are
very restricted. Furthermore, due to their limited energy resources, smart objects
mainly support short-range communication technologies only.

Siegemund showed that some challenges imposed by these resource restrictions
can be overcome when nearby smart objects are able to spontaneously cooper-
ate, and to access the capabilities of nearby handheld devices. This is especially
true for ubiquitous computing environments where people are expected to carry
personal devices and smart objects with them. Siegemund describes an architec-
ture that allows the exploitation of the features of nearby handheld devices in an
ad hoc fashion [SFV04]. As a result, he identified the following means by which
computer-augmented everyday artifacts can make use of handhelds: (1) as mobile
infrastructure access point, (2) as user interface, (3) as remote sensor, (4) as mobile
storage medium, (5) as remote resource provider, and (6) as weak user identifier.
Siegemund further developed an architecture that supports the local cooperation
of smart objects based on distributed tuple spaces [Sie04a].

This view of super distributed interacting objects is congruent with the idea
of interconnected smart objects of ubiquitous computing, such as described by
Weiser and Brown [WB97], for instance, stating that “Ubiquitous Computing is
fundamentally characterized by the connection of everyday things in the real world
with computation”.

The Object Management Group (OMG) [OMG05] is in the process of proposing
the standardization of smart objects, for which they use the term super distributed

293

Ubiquitous Computing

object (SDO) [OMG04]. In contrast to smart everyday objects, which explicitly
refer to physical entities that locally interact and share data, the SDO approach
aims at a more general view on smart objects: an SDO provides an abstraction for
both software and hardware entities with a focus on the flexible ad hoc composition
and/or configuration of services. Quoting from the “Platform Independent Model
(PIM) & Platform Specific Model (PSM) for Super Distributed Objects (SDO)”:

A Super Distributed Object (SDO) is a logical representation of a hard-
ware device or a software component that provides well-known function-
ality and services. One of the key characteristics in super distribution is
to incorporate a massive number of objects, each of which performs its
own task autonomously or cooperatively with other objects. Examples
of SDOs include abstractions of devices such as mobile phones, PDAs,
and home appliances, but are not limited to device abstractions. An
SDO may abstract software component and act as a peer in a peer-to-
peer networking system. SDOs provide various different functionalities
(e.g., TV set, refrigerator, and light switch) and abstract underlying
heterogeneous technologies. They are organized in an ad hoc manner
to provide an application service in mobile environments [OMG01]. For
other characteristics in super distribution, please refer the Super Dis-
tributed Objects Whitepaper [OMG01].

Today, there are several resource interconnection technologies such as
Universal Plug and Play, HAVi, OSGi, ECHONET, and Jini. They
are, however, restricted to specific platforms, network protocols, and
programming languages or they focus on limited application domains.
No common model-based standards exist to handle various resources
in a unified manner independently of underlying technologies and ap-
plication domains. The objectives of this specification are to abstract
the existing resource interconnection technologies into a higher layer,
define their information, and computational models in the layer, and
make objects defined in the models interoperable. This specification
does not address access control or security aspects.

The use of SDOs has been proposed for the ad hoc creation or adaptation of so
called I-centric services based on personal user preferences [FKSK02, ASRPZ03,
PZSA04], for instance.

B.3.4. Object Identification Technologies

As a rule, the coordination of the interaction of highly distributed smart entities
requires some means of discrimination. More precisely, it is vital to be in a posi-
tion to uniquely identify single entities, in order to be able to unambiguously relate
responsibilities, functionalities, and data to entities. For instance, networked de-
vices require a unique address identifier to enable point-to-point communication,
and mobile phones have globally unique phone numbers that enable other mobile
phones to contact individual devices among millions of others.

In ubiquitous computing environments, we find the following means of object
identification:

294

B.3 Ubiquitous Computing Technologies

• Unique address identifiers used for networking and in communication proto-
cols. Examples are logical IP network addresses, and physical MAC addresses
of hardware communication interfaces, such as found in networked systems
using Ethernet, Wireless LAN, or Bluetooth communication technologies. In
order to retrieve the address identifier of an object, the inquiring object has
to have the same communications interface at its disposal, and it has to be
possible to establish a communication path between the two entities, either
directly via ad hoc communication or indirectly via network connectivity.
The usage of address identifiers is therefore only an option in settings where
both the inquiring and the inquired entities are equipped with corresponding
communications technology and connectivity.

• Visual Codes. Visual codes (or synonymously: visual tags) are attached to
physical objects and generally require line of sight for reading. Prominent
examples of such visual codes are one-dimensional barcodes (read by means
of an infrared scanner), or two-dimensional codes, such as the Sony Cyber-
Code [RA00] or the VisualCodes [Roh04] developed at ETH Zurich, which
can be scanned and detected by means of low-cost off-the-shelf video cam-
eras. The tags themselves usually consist of black and white patterns that
encode the ID and sometimes additional meta information that allows the
reading device to determine the alignment and distance of the tag with re-
spect to the reader. Typical tag patterns are stripes in the one-dimensional
case (barcodes), and two-dimensional patterns of black and white squares in
the case of visual codes. The advantage of visual codes over address identi-
fiers is that the first require no computing or communication capabilities on
behalf of the visually tagged objects, apart from the tag itself. On the other
hand, the scanning of visual codes requires special hardware on behalf of the
entity performing the detection.

• Radio Frequency Identification (RFID) tags. Radio frequency identification
technology has become a replacement for barcodes in many industrial set-
tings. RFID tags are also attached to physical objects that do not need to
have computing and communication capabilities of their own. The advantage
of RFID tags over visual tags is that they require no line of sight, and no
particular orientation of the physical tag with respect to the detector. RFID
tags can also be detected over larger distances (up to several meters). Fur-
ther, if collision detection and resolution is supported by the RFID hardware,
multiple tags can be detected in one sweep.

There are two categories of RFID tags: active and passive tags. Active RFID
tags have their own power source, typically a battery, which enables them
to actively listen and respond to scanning requests. When enhanced with
sensory capabilities, active tags can be transformed into simple sensor nodes
that allow to monitor and transmit additional information along with their
respective tag IDs. For example, it is thus possible to keep track of physical
properties (e.g., temperature and humidity) of perishable goods pallets tagged
with enhanced active RFID tags (such as tags of the Identec IQ series [IDE05],
for instance).

Passive RFID tags, in contrast, possess no active power sources of their own.

295

Ubiquitous Computing

Instead, when inside the range of an RFID antenna during tag detection, a
passive RFID tag draws and uses energy from the antenna field in order to
send back its tag ID according to a well-defined signaling and transmission
protocol, which may further include mechanisms for collision arbitration and
resolution. For an in-depth discussion of RFID technologies and applications,
refer to Finkenzeller [Fin03], for instance.

B.4. Human-Computer Interaction

B.4.1. Definition

Human-computer interaction (HCI) is “a discipline concerned with the design, eval-
uation and implementation of interactive computing systems for human use and
with the study of major phenomena surrounding them” [HBC+96]. An overview of
fundamental topics related to the design and analysis of human-computer interac-
tion systems is given in Fig. B.1.

Figure B.1.: Overview of topics in human-computer interaction (Source: [HBC+96])

Hewett et al. state that viable human interfaces are more technology-sensitive
than many parts of computer science, especially because human-computer inter-
action involves “transducers” between humans and machines, and because humans
are sensitive to response times [HBC+96]. They also observe that human-computer
interaction is particularly affected by “the forces shaping the nature of future com-
puting”, among which they count the following trends:

• Decreasing hardware costs leading to larger memories and faster systems.

• Miniaturization of hardware leading to portability.

296

B.4 Human-Computer Interaction

• Reduction in power requirements leading to portability.

• New display technologies leading to the packaging of computational devices
in new forms.

• Assimilation of computation into the environment (e.g., VCRs, microwave
ovens, televisions).

• Specialized hardware leading to new functions (e.g., rapid text search).

• Increased development of network communication and distributed computing.

• Increasingly widespread use of computers, especially by people who are out-
side of the computing profession.

• Increasing innovation in input techniques (e.g., voice, gesture, pen), combined
with decreasing costs, leading to rapid computerization for people previously
left out of the “computer revolution”.

• Wider social concerns leading to improved access to computers by currently
disadvantaged groups (such as young children or the physically/visually dis-
abled).

According to Hewett et al., one consequence of the above developments is that
“computing systems will appear partially to dissolve into the environment and be-
come much more intimately associated with their users’ activities”. Obviously, this
development quintessentially is congruent with the anticipated effects and implica-
tions of emerging ubiquitous computing systems and environments.

B.4.2. General Research Challenges

Based on the described trends, Hewett et al. expect HCI research challenges in the
following fields [HBC+96]:

• Anytime, anywhere accessibility of services by means of ubiquitous commu-
nication. Computers will communicate through high speed local networks,
nationally over wide-area networks, and portably via infrared, ultrasonic,
cellular, and other technologies. Data and computational services will be
portably accessible from many if not most locations to which a user travels.

• High functionality systems. Systems will have large numbers of functions as-
sociated with them. There will be so many systems that most users, technical
or non-technical, will not have the time to learn them in the traditional way
(e.g., by reading thick manuals).

• Mass availability of computer graphics. Computer graphics capabilities such
as image processing, graphics transformations, rendering, and interactive an-
imation will become widespread as inexpensive chips become available for
inclusion in general workstations.

297

Ubiquitous Computing

• Mixed media systems. Systems will handle images, voice, sounds, video, text,
formatted data. These will be exchangeable over communication links among
users. The separate worlds of consumer electronics (e.g., stereo sets, VCRs,
televisions) and computers will partially merge. Computer and print worlds
will continue to cross assimilate each other.

• Interfaces for high-bandwidth interaction. The rate at which humans and
machines interact will increase substantially due to the changes in speed,
computer graphics, new media, and new input/output devices. This will lead
to some qualitatively different interfaces, such as virtual reality or computa-
tional video.

• Large and thin displays. New display technologies will finally mature enabling
very large displays and also displays that are thin, light weight, and have low
power consumption. This will have large effects on portability and will enable
the development of paper-like, pen-based computer interaction systems very
different in feel from desktop workstations of the present.

• Novel means of embedded computation. Computation will pass beyond desk-
top computers into every object for which uses can be found. The envi-
ronment will be alive with little computations from computerized cooking
appliances to lighting and plumbing fixtures to window blinds to automobile
braking systems to greeting cards. To some extent, this development is al-
ready taking place. The difference in the future is the addition of networked
communications that will allow many of these embedded computations to
coordinate with each other and with the user. Human interfaces to these em-
bedded devices will in many cases be very different from those appropriate
to workstations.

• Group interfaces. Interfaces to allow groups of people to coordinate will
be common (e.g., for meetings, for engineering projects, for authoring joint
documents). These will have major impacts on the nature of organizations
and on the division of labor. Models of the group design process will be
embedded in systems and will cause increased rationalization of design.

• User tailorability. Ordinary users will routinely tailor applications to their
own use and will use this power to invent new applications based on their
understanding of their own domains. Users, with their deeper knowledge of
their own knowledge domains, will increasingly be important sources of new
applications at the expense of generic systems programmers (with systems
expertise but low domain expertise).

• Information utilities. Public information utilities (such as home banking
and shopping) and specialized industry services (e.g., weather for pilots) will
continue to proliferate. The rate of proliferation will accelerate with the
introduction of high-bandwidth interaction and the improvement in quality
of interfaces.

The appearance of ubiquitous computing technologies provides the technical
foundations for advanced input and output devices as well as for ever more sophis-
ticated small-scale embedded systems. Consequently, the design space of human-

298

B.5 Context-Aware Computing

computer interfaces, in which physical objects play a central role as physical rep-
resentations and controls for digital information, grew accordingly. This led to a
“wave of new HCI research into ways to link the physical and digital worlds” [UI00],
aiming at exploring the relationship between physical representation and digital in-
formation, and highlighting new kinds of interaction that are not readily described
by existing frameworks. These interfaces are typically referred to as graspable in-
terfaces [FIB95] or tangible user interfaces [IU97].

The challenge of tangible user interfaces is the seamless integration of repre-
sentation and control, which differs markedly from the mainstream graphical user
interface (GUI) approaches of modern HCI. While graphical interfaces make a fun-
damental distinction between input devices (such as the keyboard and mouse as
controls) and graphical output devices (such as monitors and head-mounted dis-
plays) for the synthesis of visual representations, tangible interfaces explore the
conceptual space opened by the elimination of this distinction.

B.5. Context-Aware Computing

B.5.1. Definition of Context

When humans talk with humans, they are in a position to use implicit situational
information, or context, to increase the conversational bandwidth [Dey01]. This
is possible for several reasons, such as because of the richness of the language
they share, their common understanding of how the world works, and owing to an
implicit understanding of everyday situations. Context-aware computing likewise
aims at enabling computer systems to gain a certain knowledge and understanding
about the particular situation of a person or a device, and to use this knowledge as
a source for implicit input to improve the quality and adaptiveness of computing
service provided to the user. In short, context-aware computing can be charac-
terized as the ability of a software system to continuously adapt its behavior to a
changing environment over which it has little or no control [RJH02].

There have been many attempts to define the terms “context” and “context aware-
ness” more precisely. Dey and Abowd [DA00], for instance, define context as “any
information that can be used to characterize the situation of an entity. An entity
is a person, place, or object that is considered relevant to the interaction between
a user and an application, including the user and applications themselves.” Sim-
ilarly, Dey and Abowd define a system to be context-aware “if it uses context
to provide relevant information and/or services to the user, where relevancy de-
pends on the user’s task.” Typically, relevant context information is limited to
the physically proximate environment of a user or device, since for context-aware
systems, the “interesting part of the world around us is what we can see, hear, and
touch” [SAW94]. Dey et al. also proposed a categorization which combines ideas
from previous taxonomies and attempts to generalize them so that they satisfy a
broader range of existing context-aware applications. They discern three categories
of context: computing context (locally available resources, network connectivity,
communication bandwidth, etc.), physical context (physical properties of the user’s
environment, such as temperature, humidity, lighting, noise level, etc.), and user
context (e.g., the user’s profile, location, nearby people, the user’s activity, etc.).
They further describe three types of features that a context-aware application can

299

Ubiquitous Computing

support: presentation of information and services to a user, automatic execution of
a service for a user, and tagging of context to information to support later retrieval.

Obviously, context awareness is a challenge for mobile devices whose location
and environment is liable to change frequently. Here, context-aware computing ap-
plications can promote and mediate people’s interactions with devices, computers,
and other people, and it can help to navigate in unfamiliar places [SAW94]. Schilit
et al. have classified context-aware applications into four major categories: prox-
imate selection as an interface technique facilitating the interaction with nearby
objects, automatic contextual reconfiguration of system components, contextual
information and commands, and context-triggered actions [SAW94].

B.5.2. Situation Awareness

Even the availability of context information does not imply its usefulness, especially
if it is provided in an unstructured or unorganized fashion. For context information
to become useful, it is important that it can be used to draw conclusions on the
actual activity, intention, or situation of a user. Therefore, the need arises for
a situation abstraction [Dey01] that provides a description of entities relevant to
assess the situational context of a single entity.

Situation awareness can be considered the knowledge of all the objects that are
relevant to a subject and the knowledge of the relations that the subject has with
these objects. According to Kokar [Kok04], a subject is aware if the subject not only
observes (experiences) the objects but also is capable of drawing conclusions from
these observations. Kokar further states that being aware of a specific situation
means to be aware of the way in which something is placed in relation to its
surroundings. Kokar points out the fact that while situation awareness clearly
requires an inference capability, the inference process itself can be carried out using
either a mathematical or a logical framework. In doing so, mathematical and logical
reasoning are dual techniques: Logical reasoning can be viewed as the application
of inference rules on a syntactical level, yielding a good model for the automation
of the inference process. Mathematical reasoning relies more on the ingenuity
of the human to derive proofs. It can be viewed as a process of manipulating
the semantic objects rather than the syntactic objects, relying more explicitly on
models (i.e., sets, functions, and relations) than it is the case in logical reasoning.
To make use of situation awareness, one must be able to recognize situations, assess
their impact on one’s goals, memorize situations, associate various properties with
specific situations, and communicate descriptions of situations to others.

B.5.3. Location Awareness

Context consisting of any information that (1) can be used to characterize the par-
ticular location of an entity, or that (2) is characteristic of a particular location,
is commonly referred to as location context. Naturally, location context subsumes
information on the user’s physical position (e.g., global GPS coordinates) as well as
information about symbolic locations which capture more abstract ideas of where
something is (such as in the kitchen, in the office, on a train, etc.). Such loca-
tion context can directly be used for the localization and tracking of objects or
people, for creating geographic or topological maps, and for the implementation of

300

B.5 Context-Aware Computing

navigation systems in general.
Indirectly, location context is used for providing location-based services which

have the goal of delivering location-aware content to subscribers on the basis of
the positioning capability of the wireless infrastructure [CCR+04]. This includes
applications that provide location-contextual information and commands, such as
location-aware tour guides [DCME01] which offer information on nearby points of
interest, or information systems for visually impaired people [CKR04] that describe
the user’s immediate location-dependent surroundings, or location-aware services
that allow the user to use the nearest printer, indicate the closest restaurant, or
guide a person to the nearest emergency exit.

Besides, location context often provides valuable input for determining the sit-
uational context of a user, allowing mobile devices to respond to changes in the
location context and to adapt their functionality accordingly, thus making them
location-aware. For instance, by knowing and understanding the user’s symbolic
location, a smart phone could be configured to ring loudly in outdoor environ-
ments but to remain silent in the cinema, provided that the device has the means
of determining its location context in some way.

B.5.4. General Research Challenges

Support for context awareness can be provided indirectly to devices by means of
suitable background infrastructures. Such infrastructures often possess a global
view on the location of users and equipment, and on the capabilities of the equip-
ment and networking infrastructure. In this case we speak of indirect context
awareness, where the entire sensing and processing occurs in the infrastructure
while the mobile device obtains its context by means of communication [GSB02].
For instance, Harter et al. [HHS+02] describe a sensor-driven platform for context-
aware computing that collects environmental data in a form suitable for context-
aware services, enabling applications to follow mobile users as they move around in
a building. Assuming a richly equipped networked environment such as a modern
office, the users no longer need to physically carry any equipment with them as
the user-interfaces of the applications themselves can follow the users and exploit
the locally available equipment and networking resources (follow-me applications).
Further examples of context-aware applications are self-organizing computing sys-
tems (which Harter et al. called “construction-kit computers”) that automatically
build themselves by organizing nearby components to act as a more complex device,
or “walk-through videophones” which automatically select streams from a range of
cameras to maintain an image of a nomadic user [HHS+02].

In contrast to indirect context-awareness, a device has direct context awareness
if it is able to obtain context autonomously and independently from background
infrastructures [GSB02]. Portable or wearable computers particularly benefit from
direct context or situation-awareness, as they have the potential “to ‘see’ as the
user sees, ‘hear’ as the user hears, and experience the life of the user in a ‘first-
person’ sense” [SSR+99]. By providing contextual information, a challenge is to
develop more “intelligent and fluid interfaces that use the physical world as part of
the interface”. Wearable computers can perform useful work even while the wearer
isn’t directly interacting with the system, or in environments where the user needs
to concentrate on his environment instead of on the computer interface. For this

301

Ubiquitous Computing

the wearable device needs to use information from the wearer’s context (intention,
location, activity) to be the least distracting. For example, a location-aware noti-
fication system can adjust its means of user notification (using an auditory, visual,
or haptic signal, or suppressing the notification altogether) depending on the user’s
location (office, home, subway) or on his activity (meeting, conversation).

To infer the user’s situational context, especially the user’s current intention or
activity, by means of diverse sensors is a difficult problem. Kokar has identified
a number of general technical challenges for research on situation awareness that
focus on aspects of information fusion and reasoning [Kok04]:

• Situations as objects: Situation awareness in Level 2 fusion1 is considered a
computer-based process that can recognize and manipulate situations, and
the computer is also assumed to be responsible for making decisions depend-
ing on the situation. According to Kokar, this issue is different from human-
oriented situation awareness (i.e., the human becomes aware of a situation
and then uses this awareness for decision making), and it creates many chal-
lenges that need to be addressed by the developers of such computer systems.

• Relation derivation algorithms: The question whether a particular relation
holds or not is non-trivial for a program to answer. Answers to the question
can either be remembered as an atomic fact, or determined by applying a
rule to establish such a fact. In general, for each relation a rule is needed to
derive its validity, and for any domain a corresponding set of rules has to be
developed.

• Relevance of relations: If the number of “situation objects” is large, the num-
ber of potential valid relations potentially grows exponentially. An important
challenge is to define methods that allow the system to determine which of
the possible relations are relevant and should be derived or monitored.

• Complexity of derivation algorithms: Relations can be derived either using a
declarative (or logical) or a procedural (or mathematical) approach. The
declarative approach facilitates the specification of all the facts that the
derivation algorithm should consider. Conceptually, declarative derivation
algorithms are simple search algorithms, but with exponential search com-
plexity. Hence, the challenge is to find algorithms that can assess their own
limitations and abilities given the resources. The procedural approach, on the
other hand, requires the specification of domain-specific derivation procedures
already during the design of a situation awareness system. Here the challenge
is for the designer to develop a relatively complete set of such procedures.

• Certainty of derived relations: An immense challenge is the certainty of de-
rived decisions, independently of the chosen approach to determine the re-
lations. Especially since in practice, it is highly unlikely that the designer
of a situation awareness system will be in a position to provide a complete
coverage of all relations that will potentially be needed by the user of such
a system. Incorporating means to compute the uncertainty of decisions adds

1See revisions to the JDL data fusion model [HL01]: Level 1 fusion takes raw sensory data and
generates either object IDs or object states. Level 2 takes object information from Level 1
and derives relations among the objects.

302

B.6 Sensor Networks

to the complexity of this task, which remains a great challenge despite many
documented attempts to tackle this issue, such as by combining Bayesian
reasoning with logical reasoning, for instance.

However, apart from information fusion aspects, it is important to fundamentally
understand what context is and how it can be used [Dey01] in order to use it effec-
tively. A major challenge is to provide suitable architectural support that enables
and facilitates the development of context-aware applications and services. An un-
derstanding of context is essential for application designers to be able to choose
what context to use in their applications, while an understanding of how context
can be used is indispensable for being able to decide which context-aware behav-
iors to support in the applications. For that, Dey suggested architectural support
in form of a toolkit [DAS01], which enables designers to build their applications
more easily. On the technical level, once context information is made available to
mobile entities, the latter have to be able to understand and correctly interpret this
context information in order to use it in a meaningful way. Therefore, a further
important challenge is the development of suitable representations and ontologies
for the sharing and semantic integration of context information [Noy04, WVG04].

Besides technical challenges, the realization of context- and location-aware ser-
vices in general, which potentially enable computer systems to infer information
about people’s intentions, activities, and situations, raises a number of social, eth-
ical, and political questions with respect to privacy issues [Lan01, Lan02]. For
instance, this includes questions such as which personal information a system is
allowed to derive without a user’s consent, who has access to this information, and
how a user can restrict and control the aggregation of sensitive personal information
to prevent the formation of so-called information asymmetries [BCL+04a].

B.6. Sensor Networks

B.6.1. Definition

The recent advances in wireless communications and electronics have enabled the
development of low-cost, low-power, multi-functional sensor nodes that are small
in size and communicate wirelessly over short distances. These tiny sensor nodes
typically consist of sensing, data processing, and communicating components.

By densely deploying a large number of sensor nodes inside or very close to a phe-
nomenon that has to be observed (“sensed”) by those sensors, we obtain a so-called
sensor network. Usually the position of sensor nodes is not predetermined, which
allows a random deployment in inaccessible terrains or disaster relief operations.
For this reason, sensor network protocols and algorithms must possess certain self-
organizing capabilities. Furthermore, a unique feature of sensor networks is the
support of cooperation among the single sensor nodes. A typical task of sensor
nodes is the fusion of data received from other nodes. Since sensor nodes are fitted
with an on-board processor, they are able to locally perform simple computations
and transmit only the required and partially processed data to other nodes instead
of sending the raw data, which helps to reduce the communication load and energy
consumption in the sensor network as a whole.

Sensor network applications usually require wireless ad hoc networking tech-
niques for the coordination of cooperative activities. Akyildiz et al. [ASSC02a]

303

Ubiquitous Computing

showed that many protocols and algorithms that have been proposed for traditional
wireless ad hoc networks are not well suited to the unique features and application
requirements of sensor networks. To illustrate this point, they described a number
of differences between sensor networks and ad hoc networks:

• The number of sensor nodes in a sensor network can be several orders of
magnitude higher than the nodes in an ad hoc network.

• Sensor nodes are densely deployed.

• Sensor nodes are prone to failures.

• The topology of a sensor network changes very frequently.

• Sensor nodes mainly use a broadcast communication paradigm, whereas most
ad hoc networks are based on point-to-point communications.

• Sensor nodes are limited in power, computational capacities, and memory.

• Sensor nodes may not have global identification (ID) because of the large
amount of overhead and the large number of sensors.

Research in the area of sensor networks is therefore concerned with the development
of schemes that fulfill these requirements.

B.6.2. Design Space for Sensor Networks

The design space for sensor networks comprises the following parameters [ASSC02a]:

• Fault tolerance: Sensor nodes are liable to fail or to be blocked due to physical
damage, environmental interference, or lack of power. Since the failure of
single sensor nodes should not affect the overall task of the sensor network
as a whole, fault tolerance is required. In this context, fault tolerance can be
defined as the ability to sustain sensor network functionalities without any
interruption due to sensor node failures [HaAA00, SSJ01].

• Scalability: The number of sensor nodes deployed for the monitoring of a
phenomenon may be on the order of hundreds, thousands, or even millions,
depending on the particular application. Sensor networking schemes must
therefore be able to work with such high numbers of nodes and with high
node densities.

• Production costs: Due to the potentially large number of sensor nodes, the
cost of a single node is very important to justify the overall cost of the net-
work. Consequently, a sensor network is only “cost-justified” if the cost of
the network is less expensive than deploying traditional sensors. The cost of
a sensor node should be substantially less than US-$1 in order for large-scale
sensor networks to become economically feasible [RAdS+00].

• Hardware constraints: A sensor node is typically made up of four basic com-
ponents: a sensing unit, a processing unit, a transceiver unit, and a power
unit (which may be supported by power scavenging units such as solar cells,

304

B.6 Sensor Networks

for instance). It may further contain certain application-specific components.
Since many network routing techniques and sensing tasks require knowledge
of location with high accuracy, it is also common that sensor nodes possess
an integrated location finding system. If sensor nodes have to be able to au-
tonomously move to a different location, they need a so-called mobilizer. All
these components have to comply with the prevailing hardware constraints,
such as stringent size and power consumption constraints, low production
cost, the ability to be dispensable, operate without supervision, and to be
adaptive to changes in the environment.

• Sensor network topology: Since thousands of sensor nodes may have to be
deployed throughout a sensor field, the obtained node densities may be as
high as 20 nodes per cubic meter [SCI+01]. Such a dense deployment of a
high number of nodes requires a deliberate topology maintenance procedure,
which is typically divided into three phases: pre-deployment and deployment
phase (where sensor nodes are either thrown in as a mass or placed one by
one in the sensor field), post-deployment phase (where topology changes occur
due to changes in sensor nodes, position, reachability (due to jamming, noise,
moving obstacles, etc.), available energy, malfunctioning, and task details),
and redeployment of additional nodes phase (additional sensor nodes can be
redeployed at any time to replace malfunctioning nodes or due to changes in
task dynamics).

• Environment: As a rule, it is necessary to densely deploy sensor nodes either
very close to or directly inside the phenomenon that has to be observed.
Therefore, the distributed sensor nodes usually have to work unattended in
remote geographic areas, such as at the bottom of an ocean, in a biologically
or chemically contaminated field, in a battlefield beyond the enemy lines,
or in a home or large building, for instance. Each of these environments
is liable to have its own specific constraints and boundary conditions that
the sensor nodes have to be in a position to cope with (e.g., high levels of
temperature, pressure, humidity, and signals or materials interfering with the
wireless transmissions of the sensor nodes).

• Transmission media: In multi-hop sensor networks, communicating nodes are
linked by means of a wireless medium. These links can be formed by radio,
infrared, or optical media, for instance. To enable global operation of these
networks, the chosen transmission medium has to be available worldwide.

• Power consumption: Wireless sensor nodes are small-sized microelectronic
devices that can only be equipped with a limited power source. As a rule,
the lifetime of a sensor node therefore strongly depends on battery lifetime,
especially in application scenarios where the replenishment of power resources
may not be an option. Further, in multi-hop ad hoc sensor networks, the mal-
functioning of a few nodes can cause significant topological changes that may
require rerouting of packets and reorganization of the network, leading to
an increased energy consumption. Therefore, the conservation of energy and
the application of power management mechanisms during sensing, commu-
nication, and data processing is a major requirement. A related challenge
is the design of power-aware protocols and algorithms for sensor networks

305

Ubiquitous Computing

that minimize the overall power consumption. Such protocols may result in
a faster depletion of the energy resources of single sensor nodes compared to
other nodes, in order to ensure that the sensor network as a whole remains
operational as long as possible.

Sensor networks were originally motivated by military applications, such as for
the acoustic surveillance of oceans, for ground target detection [CK03], or more re-
cently for providing infrastructure security as a protection against terrorist threats.
However, the low production costs now enable many applications in civilian areas,
such as for environment and habitat monitoring, industrial sensing, or traffic con-
trol, for example.

B.6.3. General Research Challenges

A number of hard research problems and technical challenges in the field of sen-
sor networks have been identified by Chong and Kumar [CK03]. Apart from the
considerable technical problems that sensors networks in general have to deal with
in the areas of data processing, communication, and sensor management, they rec-
ognized a number of hard problems and technical challenges that stem from the
potentially harsh, uncertain, and dynamic environments in which sensor nodes are
often deployed, and from the particular energy and bandwidth constraints that
have to be met. In addition to the challenges posed by wireless ad hoc networks,
they describe additional technical challenges in the following areas:

• Ad hoc network discovery: For sensor nodes to operate properly, a certain
level of knowledge of the sensor network is essential. For instance, sensor
nodes need to know their own location and the identity and location of their
neighbors to support processing and collaboration.

• Network control and routing: A sensor network has to be able to operate
autonomously, which requires that it is in a position to dynamically adjust its
behavior and configuration to dynamically changing resources (e.g., energy,
bandwidth, processing power). Since connectivity cannot be taken for granted
in ad hoc networks, it has to “emerge” as needed from the algorithms and
software. Further, as communication links are unreliable, the software and
system design should generate the required reliability, which requires research
into issues such as network size and the number of links and nodes needed to
provide adequate redundancy.
Survivability and adaptability to the environment constitute particular chal-
lenges of sensor networks with regard to communication and routing. These
challenges need to be addressed by deploying an adequate number of nodes
to provide redundancy in paths, and by providing algorithms that find the
right paths. A further possible solution is the development of diffusion
routing methods, which rely only upon information found at neighboring
nodes [EGHK99]. However, such methods may not be optimal in so far
that they don’t achieve the information-theoretic capacity of a spatially dis-
tributed wireless network [GK00]. Another important design challenge is the
investigation of how system parameters, such as network size and density of
nodes per square mile, affect the trade-offs between latency, reliability, and
energy.

306

B.6 Sensor Networks

• Collaborative signal and information processing: The main purpose of sensor
nodes in an ad hoc sensor network is to collaborate in order to collect and
process data to generate useful information. In this context, the collaborative
signal and information processing over a network is a new and challenging area
of research with links to distributed information fusion. According to Chong
and Kumar, important technical issues include the degree of information
sharing between nodes, and algorithms for fusing the information from other
nodes. Processing data from a higher number of sensors generally results
in better performance but also requires more communication resources and
causes a higher energy consumption. Similarly, less information is lost when
information is communicated at a lower level (e.g., raw signals and data), but
at the cost of higher bandwidth requirements. Therefore, a further research
challenge is the consideration of the multiple trade-offs between performance
and resource utilization in collaborative signal and information processing
using microsensors. Further challenges are correct data association, which is
an important problem when multiple targets are present in a small region, the
enforcement of latency and reliability requirements, and the maximization of
the operational life of a sensor network.

• Tasking and querying: Chong and Kumar consider a sensor field to be “like a
database with many unique features”, with the difference that data is dynami-
cally acquired from the environment instead of being entered by an operator.
Here an important challenge is to provide a simple interface to users that
enables them to interactively task and query the sensor network, even when
the data is distributed across a large number of nodes that are geographi-
cally dispersed and connected by unreliable links. Such a database view is
the more challenging for military applications, where low-latency, real-time,
and high-reliability constitute stringent requirements of the battlefield. Fur-
ther challenges are the development of efficient distributed mechanisms for
query and task compilation and placement, data organization, and caching.
Also, since mobile platforms can carry sensors and query devices, seamless
internetworking between mobile and fixed devices in the absence of any in-
frastructure support is a critical and unique requirement for sensor networks.
For example, this would allow a mobile device to initiate a query in one phys-
ical location and then tell the sensor network that it expects to exfiltrate the
response to the query when it passes a different specific location after some
time.

• Security: Sensor nodes may operate in a hostile environment and are liable
to attempts of spying and tampering. As a consequence, if the integrity and
confidentiality of data generated by and transmitted among sensor nodes is
essential, security measures have to be taken into account already at the
design stage. Research challenges include the investigation of network tech-
niques for low-latency, survivable, and secure networks, and the protection
against illegitimate intrusions and spoofing. In military scenarios where sen-
sors are being envisioned for use behind enemy lines, a critical challenge is to
keep the probability of detecting communication among sensor nodes as low
as possible.

307

Ubiquitous Computing

B.6.4. Dependability as a System-Centric Challenge

Sensor networks in particular owe their success to the advances in microelectronics
and embedded computing, as it is the case with ubiquitous computing systems in
general. Further, from a technological point of view, a sensor node is not fundamen-
tally different from a smart object found in a ubiquitous computing environment,
as described in Section B.3.3.

However, the research discipline of sensor networks takes on a special position
in ubiquitous computing: it promotes a system-centric view that is fundamentally
different from the user-centric view that prevails in ubiquitous computing scenarios
in general. On the one hand, this fact is mirrored in the nature of sensor network
research challenges, which are strongly influenced by technical, system-oriented as-
pects, such as concerning transmission media, communication protocols, routing
algorithms, low-level data fusion, collaborative signal processing, topology man-
agement issues [CK03]. The system-centricity is also evident in explicitly system-
centric research topics, such as the study of the information-theoretic capacity of
a spatially distributed wireless network [GK00], for example.

Typical system-centric goals of sensor network research are the optimization of
the lifetime and/or performance of a deployed sensor network as a whole. For
example, individual sensor nodes may be sacrificed in order to minimize the overall
net energy consumption, or to maximize areal coverage and inter-node-connectivity
in the monitored area. The interests of an individual sensor node take second
place to system-wide objectives. Here the needs of individual users play only an
insignificant role: usually there is no one-to-one relationship or explicit interaction
between users and individual sensor nodes, whereas this is often the case with smart
objects and handheld devices in ubiquitous computing environments.

Likewise, dependability concepts for sensor networks concentrate on technical,
system-specific issues, such as robust and fault-tolerant communication [IGE00,
ABL04], routing [HMKR04, TZVM04], and collaboration [PK00]. In doing so, fun-
damental sensor network aspects such as scalability [BEGH01, WOW+05], energy
efficiency [PK00, EKM04, KPS04, BFA05], coordination [EGHK99], self-organiza-
tion capabilities [BEGH01, WOW+05] and data retrieval techniques [GGE+05] are
investigated from a system-centric viewpoint.

The dependability of the embedded sensor nodes themselves is largely determined
by the correct specification and implementation of their operating software, and
by their particular hardware, which often exhibits the tendency to degrade and
fail over time [Kni02]. Here traditional dependability concepts such as replication
of processes [JKH05] or hardware components [Rom04], and techniques for safe
software development [Lev02] are applicable.

The dependability challenges of sensor networks are beyond the scope of this
dissertation, as we focus on novel user-centric dependability challenges that arise
with the appearance of ubiquitous computing systems and environments.

308

C. About the Author

Jürgen Josef Bohn received a Master’s Degree (Diplom) in Computer Science from
the University of Karlsruhe (TH), Germany, in 2000. He completed his Master’s
Thesis in the field of Mobile Agent Security at the IBM Zurich Research Laboratory
in Rüschlikon, Switzerland. From 2000 until 2006 he was a Research Assistant in
the Distributed Systems Group at the Institute for Pervasive Computing at ETH
Zurich, Switzerland, where he obtained his Doctoral Degree in Computer Science.
Since August 2006 he has been a Technical Project Coordinator and Researcher
at the Wernher von Braun Center for Advanced Research in Campinas, Brazil,
where he is currently working on innovative Radio Frequency Identification (RFID)
systems and applications.

Contact: jjbohn@jjbohn.com

309

About the Author

310

Bibliography

[AAA97] Ward Andy, Jones Alan, and Hopper Andy. A New Location Technique
for the Active Office. IEEE Personal Communications, 4(5):42–47, 1997.

[AAC+00] Harold Abelson, Don Allen, Daniel Coore, Chris Hanson, George
Homsy, Thomas F. Knight, Jr., Radhika Nagpal, Erik Rauch, Gerald Jay
Sussman, and Ron Weiss. Amorphous Computing. Communications of
the ACM, 43(5):74–82, March 2000.

[ABL04] Giuseppe Anastasi, Alberto Bartoli, and Flaminia L. Luccio. Fault-
tolerant support for reliable multicast in mobile wireless systems: design
and evaluation. Wireless Networks, 10(3):259–269, 2004.

[ABO02] Gregory D. Abowd, Agathe Battestini, and Thomas O’Connell. The Lo-
cation Service: A framework for handling multiple location sensing tech-
nologies, 2002. Available online at http://www.cc.gatech.edu/fce/
ahri/publications/location_service.pdf.

[ACDP05] Matthieu Anne, James L. Crowley, Vincent Devin, and Gilles Privat.
Localisation intra-batiment multi-technologies: RFID, wifi et vision. In
UbiMob ’05: Proceedings of the 2nd French-speaking conference on Mo-
bility and ubiquity computing, pages 29–35, New York, NY, USA, 2005.
ACM Press.

[ACH+01] Mike Addlesee, Rupert Curwen, Steve Hodges, Joe Newman, Pete
Steggles, Andy Ward, and Andy Hopper. Implementing a Sentient Com-
puting System. Computer, 34(8):50–56, 2001.

[ACT00] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Failure Detection
and Consensus in the Crash Recovery Model. Distributed Computing,
13(2):99–125, April 2000.

[Ada00] Natascha Adamowsky. Kulturelle Relevanz. Ladenburger Diskurs “Ubiq-
uitous Computing”, February 2000. Available online at http://www.inf.
ethz.ch/vs/events/slides/adamowldbg.pdf.

[ADS02] James Aspnes, Zoë Diamadi, and Gauri Shah. Fault-tolerant routing in
peer-to-peer systems. In Twenty-First ACM Symposium on Principles of
Distributed Computing, pages 223–232, July 2002.

[AJLS97] M. D. Addlesee, A. Jones, F. Livesey, and F. Samaria. The ORL Active
Floor. IEEE Personal Communications, 4(5):35–41, October 1997.

[AKS04] Ankur Agiwal, Parakram Khandpur, and Huzur Saran. LOCATOR: loca-
tion estimation system For wireless LANs. In WMASH ’04: Proceedings
of the 2nd ACM international workshop on Wireless mobile applications

311

Bibliography

and services on WLAN hotspots, pages 102–109, New York, NY, USA,
2004. ACM Press.

[AL86] A. Avizienis and J.-C. Laprie. Dependable computing: From concepts to
design diversity. Proceedings of the IEEE, 74(5):629–638, May 1986.

[AM00] Gregory D. Abowd and Elizabeth D. Mynatt. Charting Past, Present
and Future Research in Ubiquitous Computing. ACM Transactions on
Computer-Human Interaction, Special issue on HCI in the new Mille-
nium, 7(1):29–58, March 2000.

[Ana05] Analysys Research. The Western European Mobile Market: trends
and forecasts 2005-2010. 6th Edition, April 2005. Available on-
line at http://research.analysys.com/default.asp?Mode=article\
&iLeftArticle=1876.

[Ano01] Anonymous. Workshop on Embedded Computing. Report, Sponsored by
NSF and ACM SIGDA, November 2001.

[Ara95] Agustin A. Araya. Questioning Ubiquitous Computing. In Proceedings
of the 1995 ACM 23rd Annual Conference on Computer Science. ACM
Press, 1995. Available online at http://doi.acm.org/10.1145/259526.
259560.

[ART05] O. Amft, J. Randall, and G. Tröster. Towards LuxTrace: Using solar
cells to support human position tracking. In Proceedings of 2nd Inter-
national Forum on Applied Wearable Computing, Zürich, Switzerland,
March 2005.

[AS85] Bowen Alpern and Fred B. Schneider. Defining liveness. Information
Processing Letters, 21:181–185, 1985.

[ASRPZ03] Stefan Arbanowski, Stephan Steglich, Ilja Radusch, and Radu
Popescu-Zeletin. Super Distributed Objects: An Execution Environment
for I-Centric Services. In Proceedings 9th IEEE International Workshop
on Object-Oriented Real-Time Dependable Systems (WORDS’ 03), pages
201–208. IEEE Computer Society, October 2003.

[ASSC02a] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. A
survey on sensor networks. IEEE Communications Magazine, 40(8):102–
114, August 2002.

[ASSC02b] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wire-
less Sensor Networks: A Survey. IEEE Computer Networks, 38(4):393–
422, March 2002.

[ATS04] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of
peer-to-peer content distribution technologies. ACM Computing Surveys,
36(4):335–371, 2004.

[Bak04] Bonnie C. Baker. Wireless Communication Using the IrDA Standard Pro-
tocol. Analog Design Note ADN006, Microchip Technology Inc, January
2004.

312

Bibliography

[Bal96] T. R. Balch. Grid-based navigation for mobile robots. The Robotics
Practitioner, 2(1), 1996.

[Bar02] David Barkai. Peer-to-Peer Computing. Technologies for Sharing and
Collaborating on the Net. Rich Bowles, 2002.

[Bär04] Marco Bär. Collaborative Map-Making in an Area of Randomly Dis-
tributed RFID-Tags using a LEGO Mindstorms Robot Vehicle. Semester
thesis, Institute for Pervasive Computing, Department of Computer Sci-
ence, ETH Zurich, Switzerland, July 2004.

[BBH+04] Gaetano Borriello, Waylon Brunette, Matthew Hall, Carl Hartung,
and Cameron Tangney. Reminding About Tagged Objects Using Pas-
sive RFIDs. In Proceedings of 6th International Conference on Ubiq-
uitous Computing (UbiComp 2004), Nottingham, UK, September 7-10,
2004, number 3205 in Lecture Notes in Computer Science, pages 36–53.
Springer, 2004.

[BC06] Bluetooth Consortium. Bluetooth.com – The Official Bluetooth Wireless
Info Site. www.bluetooth.com, February 2006.

[BCL+03a] Jürgen Bohn, Vlad Coroama, Marc Langheinrich, Friedemann Mat-
tern, and Michael Rohs. Allgegenwart und Verschwinden des Computers
– Leben in einer Welt smarter Alltagsdinge. In Ralf Grötker, editor,
Privat! Kontrollierte Freiheit in einer vernetzten Welt, pages 195–245.
Heise-Verlag, March 2003.

[BCL+03b] Jürgen Bohn, Vlad Coroama, Marc Langheinrich, Friedemann Mat-
tern, and Michael Rohs. Disappearing Computers Everywhere – Living
in a World of Smart Everyday Objects. In New Media, Technology and
Everyday Life in Europe Conference (EMTEL 2003), London, UK, April
2003. Available online at http://www.emtelconference.org/.

[BCL+04a] Jürgen Bohn, Vlad Coroama, Marc Langheinrich, Friedemann Mat-
tern, and Michael Rohs. Living in a World of Smart Everyday Objects
– Social, Economic, and Ethical Implications. Journal of Human and
Ecological Risk Assessment, 10(5), October 2004.

[BCL+04b] Jürgen Bohn, Vlad Coroama, Marc Langheinrich, Friedemann Mat-
tern, and Michael Rohs. Social, Economic, and Ethical Implications
of Ambient Intelligence and Ubiquitous Computing. In W. Weber,
J. Rabaey, and E. Aarts, editors, Ambient Intelligence. Springer, 2004.

[BDM93] Michael Barborak, Anton Dahbura, and Miroslaw Malek. The con-
sensus problem in fault-tolerant computing. ACM Computing Surveys,
25(2):171–220, June 1993.

[BEGH01] Nirupama Bulusu, Deborah Estrin, Lewis Girod, and John Heidemann.
Scalable coordination for wireless sensor networks: Self-configuring local-
ization systems. In Proceedings 6th International Symposium on Commu-
nication Theory and Applications (ISCTA ’01). University of California,
Los Angeles, July 15-20th 2001.

313

Bibliography

[BFA05] Azzedine Boukerche, Xin Fei, and Regina B. Araujo. An energy aware
coverage-preserving scheme for wireless sensor networks. In PE-WASUN
’05: Proceedings of the 2nd ACM international workshop on Performance
evaluation of wireless ad hoc, sensor, and ubiquitous networks, pages 205–
213, New York, NY, USA, 2005. ACM Press.

[BFH97] W. Burgard, D. Fox, and D. Hennig. Fast Grid-based Position Tracking
for Mobile Robots. In Proceedings of the 21th German Conference on
Artificial Intelligence, volume 1303 of Lecture Notes in Computer Science.
Springer, 1997.

[BG95] Kenneth P. Birman and Bradford B. Glade. Reliability through consis-
tency. IEEE Software, pages 29–41, May 1995.

[BGS01] M. Beigl, H.-W. Gellersen, and A. Schmidt. Mediacups: Experience with
Design and Use of Computer-Augmented Everyday Artefacts. Computer
Networks, Special Issue on Pervasive Computing, Elsevier, 35(4):401–
409, March 2001.

[BGV02] Jürgen Bohn, Felix Gärtner, and Harald Vogt. Dependability Issues of
Pervasive Computing in a Healthcare Environment. In Dieter Hutter,
Günter Müller, Werner Stephan, and Markus Ullmann, editors, Proceed-
ings of the 1st International Conference on Security in Pervasive Com-
puting, number 2082 in Lecture Notes in Computer Science, Boppard,
Germany, March 2002. Springer.

[BH00] Levente Buttyan and Jean-Pierre Hubaux. Enforcing Service Availability
in Mobile Ad-Hoc WANs. In IEEE/ACM Workshop on Mobile Ad Hoc
Networking and Computing (MobiHOC), 2000.

[BH01] Levente Buttyan and Jean-Pierre Hubaux. Nuglets: a Virtual Currency
to Stimulate Cooperation in Self-Organized Mobile Ad Hoc Networks.
Technical report, EPFL Lausanne, Switzerland, 2001.

[BH03] Levente Buttyán and Jean-Pierre Hubaux. Stimulating cooperation in
self-organizing mobile ad hoc networks. Mobile Networks and Applica-
tions, 8(5):579–592, 2003.

[Bha97] Vaduvur Bharghavan. Challenges and solutions to adaptive computing
and seamless mobility over heterogeneous wireless networks. Wireless
Personal Communications, 4(2):217–256, 1997.

[BHE00] Nirupama Bulusu, John Heidemann, and Deborah Estrin. GPS-less low
cost outdoor localization for very small devices. IEEE Personal Commu-
nications Magazine, 7(5):28–34, October 2000.

[Bir93] Kenneth P. Birman. The process group approach to reliable distributed
computing. Communications of the ACM, 36(12):37–53, 1993.

[Bit05] Bitlaw.com. Domain names disputes, 2005. Available online at http:
//www.bitlaw.com/internet/domain.html#disputes.

314

Bibliography

[BJ87] K. P. Birman and T. A. Joseph. Reliable Communication in the Pres-
ence of Failures. ACM Transactions on Computer Systems, 5(1):47–76,
February 1987.

[BJM+91] M. Banâtre, Ph. Joubert, Ch. Morin, G. Muller, B. Rochat, and
P. Sanchez. Stable transactional memories and fault tolerant architec-
tures. SIGOPS Operating Systems Review, 25(1):68–72, 1991.

[BK02] H.-B. Bludau and A. Koop, editors. Proceedings 2nd Conf. on Mo-
bile Computing in Medicine, Workshop of the Project Group MoCoMed,
GMDS-Fachb. Med. Informatik & GI-Fachausschuss 4.7, Heidelberg, vol-
ume 15 of LNI. GI, 2002.

[BKM+04] Jan Beutel, Oliver Kasten, Friedemann Mattern, Kay Römer, Frank
Siegemund, and Lothar Thiele. Prototyping Wireless Sensor Network
Applications with BTnodes. In 1st European Workshop on Wireless Sen-
sor Networks (EWSN), pages 323–338, Berlin, Germany, January 2004.
Springer.

[BKW02] J. Baus, A. Krüger, and W. Wahlster. A Resource-Adaptive Mobile Nav-
igation System. In Proceedings of International Conference on Intelligent
User Interfaces IUI 2002. ACM Press, 2002.

[BM04] Jürgen Bohn and Friedemann Mattern. Super-Distributed RFID Tag
Infrastructures. In Panos Markopoulos, Berry Eggen, Emile Aarts, and
James Crowley, editors, Proceedings of the 2nd European Symposium on
Ambient Intelligence (EUSAI 2004), Eindhoven, The Netherlands, num-
ber 3295 in Lecture Notes in Computer Science, pages 1–12. Springer,
November 2004.

[BMF+00] Wolfram Burgard, Mark Moors, Dieter Fox, Reid Simmons, and Sebas-
tian Thrun. Collaborative Multi-Robot Exploration. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA),
2000.

[Boh03] Jürgen Bohn. Exploiting Heterogeneity in Ubiquitous Computing En-
vironments for Robust Positioning and Localization. Workshop on
Location-Aware Computing at Ubicomp 2003, October 2003.

[Boh04a] Jürgen Bohn. Instant Personalization and Temporary Ownership of
Handheld Devices. In Proceedings of the 6th IEEE Workshop on Mo-
bile Computing Systems & Applications (WMCSA 2004), pages 134–143,
Windermere, Cumbria, UK, December 2004. IEEE Computer Society
Press, Los Alamitos, California.

[Boh04b] Jürgen Bohn. The Smart Jigsaw Puzzle Assistant: Using RFID Tech-
nology for Building Augmented Real-World Games. Workshop on Gam-
ing Applications in Pervasive Computing Environments at PERVASIVE
2004, Vienna, Austria, April 2004. Available online at http://www.ipsi.
fraunhofer.de/ambiente/pervasivegaming/.

315

Bibliography

[Boh06] Jürgen Bohn. Prototypical Implementation of Location-Aware Services
based on Super-Distributed RFID Tags. In Proceedings 19th International
Conference on Architecture of Computing Systems (ARCS’06), number
3894 in Lecture Notes in Computer Science, pages 69–83, Frankfurt am
Main, Germany, March 2006. Springer.

[Boh07a] Jürgen Bohn. iPOS: A Fault-Tolerant and Adaptive Multi-Sensor Posi-
tioning Architecture with QoS Guarantees. Sensor Review Journal, 2007.
Accepted for Publication.

[Boh07b] Jürgen Bohn. Prototypical Implementation of Location-Aware Services
based on a Middleware Architecture for Super-Distributed RFID Tag In-
frastructures. Personal and Ubiquitous Computing, 2007. In Press. Online
version available at http://dx.doi.org/10.1007/s00779-006-0107-2.

[BP00] P. Bahl and V. N. Padmanabhan. RADAR: An in-building RF-based
user location and tracking system. In INFOCOM 2000, pages 775–784,
2000.

[BR01] Jürgen Bohn and Michael Rohs. Klicken in der realen Welt. In Konferenz
Mensch und Computer 2001. Workshop Mensch-Computer-Interaktion
in allgegenwärtigen Informationssystemen. Michael Beigl, Hans-Werner
Gellersen, and Norbert Streitz, Bad Honnef, Bonn, March 2001. Avail-
able online at http://www.teco.edu/mc2001/.

[Bre03] Elizabeth A. Bretz. Precision navigation in European skies. IEEE Spec-
trum, 40(9):16, September 2003.

[BS06] Bluetooth SIG. Bluetooth.org – The Official Bluetooth Membership Site.
www.bluetooth.org, February 2006.

[Bur05] Martin Burri. LuxTraceRT: A Self-Calibrating Real-Time Positioning
System using Solar Cells as Main Sensory Input. Semester thesis, Dis-
tributed Systems Group, ETH Zürich, Switzerland, October 2005.

[BV03] Jürgen Bohn and Harald Vogt. Robust Probabilistic Positioning based
on High-Level Sensor-Fusion and Map Knowledge. Technical Report 421,
Institute for Pervasive Computing, Department of Computer Science,
ETH Zurich, Switzerland, April 2003.

[BWLW04] Bharat Bhargava, Xiaoxin Wu, Yi Lu, and Weichao Wang. Integrat-
ing heterogeneous wireless technologies: a cellular aided mobile ad hoc
network (cama). Mobile Networks and Applications, 9(4):393–408, 2004.

[Cas02] Henri Casanova. Distributed computing research issues in grid comput-
ing. SIGACT News, 33(3):50–70, 2002.

[CBM04] Vlad Coroama, Jürgen Bohn, and Friedemann Mattern. Living in a
Smart Environment – Scenarios and Implications of the Coming Ubiqui-
tous Information Societyi. In Proceedings of the International Conference
on Systems, Man and Cybernetics 2004 (IEEE SMC 2004), volume 6,
pages 5633–5638, The Hague, The Netherlands, October 2004.

316

Bibliography

[CCR+04] Y. Chen, X. Y. Chen, F. Y. Rao, X. L. Yu, Y. Li, and D. Liu. LORE:
An infrastructure to support location-aware services. IBM Journal of
Research and Development, 48(5/6):601–616, 2004.

[CCS99] Dryer D. C., Eisbach C., and Ark W. S. At what cost pervasive? a social
computing view of mobile computing systems. IBM Systems Journal,
38(4):652–676, 1999.

[CDG+02] Miguel Castro, Peter Druschel, Ayalvadi Ganesh, Antony Rowstron,
and Dan S. Wallach. Secure routing for structured peer-to-peer overlay
networks. SIGOPS Operating Systems Review, 36(SI):299–314, 2002.

[CDK00] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems - Con-
cepts and Design. Addison-Wesley, 3rd edition, 2000.

[CGN+05] Jason Campbell, Phillip B. Gibbons, Suman Nath, Padmanabhan Pillai,
Srinivasan Seshan, and Rahul Sukthankar. IrisNet: an internet-scale
architecture for multimedia sensors. In MULTIMEDIA ’05: Proceedings
of the 13th annual ACM international conference on Multimedia, pages
81–88, New York, NY, USA, 2005. ACM Press.

[CH04] Vlad Coroama and Norbert Höckl. Pervasive Insurance Markets and their
Consequences. In 1st International Workshop on Sustainable Pervasive
Computing at PERVASIVE 2004, Vienna, Austria, April 2004.

[CJ02] P. Chandrasekaran and A. Joshi. MobileIQ: a framework for mobile in-
formation access. In Proceedings 3rd International Conference on Mobile
Data Management, pages 43–50, January 2002.

[CK00] G. Chen and D. Kotz. A Survey of Context-Aware Mobile Computing Re-
search. Technical Report TR2000-381, Department of Computer Science,
Dartmouth College, November 2000.

[CK03] C.-Y. Chong and S. P. Kumar. Sensor networks: evolution, opportunities,
and challenges. Proceedings of the IEEE, 91(8):1247–1256, August 2003.

[CKR04] Vlad Coroama, Tarik Kapic, and Felix Röthenbacher. Improving the
reality perception of visually impaired through pervasive computing. In
Alois Ferscha, Horst Hoertner, and Gabriele Kotsis, editors, Advances
in Pervasive Computing, pages 369–376, Vienna, Austria, April 2004.
Austrian Computer Society (OCG).

[CLMZ03] G. Cabri, L. Leonardi, M. Mamei, and F. Zambonelli. Location-
dependent services for mobile users. IEEE Transactions on Systems,
Man and Cybernetics, 33(6):667–681, November 2003.

[CN02] M. D. Corner and B. D. Noble. Zero-interaction authentication. In Pro-
ceedings 8th Annual International Conference on Mobile computing and
networking, pages 1–11. ACM Press, 2002.

[Cor06] Vlad Coroama. The Smart Tachograph – Individual Accounting of Traffic
Costs and its Implications. In Proceedings of PERVASIVE 2006, pages
135–152, Dublin, Ireland, May 2006.

317

Bibliography

[CR03] Vlad Coroama and Felix Röthenbacher. The Chatty Environment –
Providing Everyday Independence to the Visually Impaired. Workshop
on Ubiquitous Computing for Pervasive Healthcare Applications at Ubi-
Comp 2003, October 2003.

[CR04] Vlad Coroama and Felix Röthenbacher. The Chatty Environment. In
Demo at the Second Conference on Pervasive Computing and Communi-
cations (PerCom 2004), Orlando, Florida, March 2004.

[CRC05] Shiva Chetan, Anand Ranganathan, and Roy Campbell. Towards Fault
Tolerant Pervasive Computing. IEEE Technology and Society, 24(1):38–
44, 2005.

[CSG99] D. Chen, A. Schmidt, and H.-W. Gellesen. An Architecture for Multi-
Sensor Fusion in Mobile Environments. In Proceedings of the Interna-
tional Conference on Information Fusion, Sunnyvale, CA, USA, vol-
ume II, pages 861–868, July 1999.

[DA00] Anind K. Dey and Gregory D. Abowd. Towards a Better Understanding
of Context and Context-Awareness. In Workshop on The What, Who,
Where, When, and How of Context-Awareness, Part of the Conference
on Human Factors in Computing Systems (CHI 2000), The Hague, The
Netherlands, April 2000.

[DAS01] A. Dey, G. D. Abowd, and D. Salber. A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware applica-
tions. Human-Computer Interaction, 16(2–4):97–166, 2001.

[DCME01] N. Davies, K. Cheverst, K. Mitchell, and A. Efrat. Using and Deter-
mining Location in a Context-Sensitive Tour Guide. IEEE Computer,
34(8):35–41, August 2001.

[Der02] Michael L. Dertouzos. Human-centered systems. In The invisible future:
the seamless integration of technology into everyday life, pages 181–191.
McGraw-Hill, Inc., New York, NY, USA, 2002.

[Dev04] Device Independence Working Group (DIWG). Composite Capabil-
ity/Preference Profiles (CC/PP): Structure and Vocabularies 1.0. W3C
Recommendation, January 2004.

[Dey01] Anind K. Dey. Understanding and Using Context. Personal and Ubiqui-
tous Computing, 5(1):4–7, 2001.

[DH98] F. Dawson and T. Howes. vCard MIME Directory Profile. Internet
RFC 2426, September 1998.

[dI01] Diego López de Ipiña. Video-Based Sensing for Wide Deployment of
Sentient Spaces. In Proceedings of the 2nd PACT 2001 Workshop on
Ubiquitous Computing and Communications, September 2001.

[Dic56] Philip K. Dick. Minority Report. Fantastic Universe, January 1956.

318

Bibliography

[dLKWZ03] E. de Lara, R. Kumar, D. S. Wallach, and W. Zwaenepoel. Collab-
oration and multimedia authoring on mobile devices. In Proceedings of
MobiSys 2003, San Francisco, USA, May 2003.

[DM04] F. DePaoli and L. Mariani. Dependability in peer-to-peer systems. IEEE
Internet Computing, 8(4):54–61, 2004.

[DNH04] Domain Name Handbook. Domain Dispute Index, 2004. Available online
at http://www.domainhandbook.com/dd.html.

[Dom04] Svetlana Domnitcheva. Smart Vacuum Cleaner – An Autonomous
Location-Aware Cleaning Device. In Adjunct Proceedings of UbiComp
2004, September 2004.

[DS98] F. Dawson and D. Stenerson. Internet Calendaring and Scheduling Core
Object Specification (iCalendar). Internet RFC 2445, November 1998.

[EC03] European Commission. The Galilei Project: GALILEO Design
Consolidation. http://europa.eu.int/comm/dgs/energy_transport/
galileo/doc/, August 2003.

[EC05] European Commission. Galileo project webpage. http://www.europa.
eu.int/comm/dgs/energy_transport/galileo/index_en.htm, July
2005.

[ECPS02] Deborah Estrin, David Culler, Kris Pister, and Gaurav Sukhatme. Con-
necting the Physical World with Pervasive Networks. IEEE Pervasive
Computing – Mobile and Ubiquitous Systems, 1(1):59–69, January 2002.

[EGHK99] Deborah Estrin, Ramesh Govindan, John Heidemann, and Satish Ku-
mar. Next century challenges: scalable coordination in sensor networks.
In MobiCom ’99: Proceedings of the 5th annual ACM/IEEE interna-
tional conference on Mobile computing and networking, pages 263–270.
ACM Press, 1999.

[EKM04] Virantha Ekanayake, Kelly Clinton IV, and Rajit Manohar. An ultra low-
power processor for sensor networks. In ASPLOS-XI: Proceedings of the
11th international conference on Architectural support for programming
languages and operating systems, pages 27–36, New York, NY, USA, 2004.
ACM Press.

[Ele06] Electronic Frontier Foundation. Blue Ribbon Campaign. Defending Free-
dom in the Digital World. www.eff.org/br/, February 2006.

[Elf89] Alberto Elfes. Using occupancy grids for mobile robot perception and
navigation. IEEE Computer, 22(6):46–57, June 1989.

[Eur06] Eurocontrol. World Geodetic System 1984. Homepage at www.wgs84.com,
2006.

[Fal02] M. A. C. Fallon. Handheld Devices: Toward a More Mobile Campus.
Syllabus Magazine, November 2002.

319

Bibliography

[FBDT99] D. Fox, W. Burgard, F. Dellaert, and S. Thrun. Monte Carlo Local-
ization: Efficient Position Estimation for Mobile Robots. In Proceedings
of the National Conferenceon Artificial Intelligence. AAAI Press / The
MIT Press, 1999.

[FBKT00] D. Fox, W. Burgard, H. Kruppa, and S. Thrun. A Probabilistic Ap-
proach to Collaborative Multi-Robot Localization. Autonomous Robots,
8(3):325–344, 2000.

[FBT99] D. Fox, W. Burgard, and S. Thrun. Markov Localization for Mobile
Robots in Dynamic Environments. Journal of Artificial Intelligence Re-
search, 11:391–427, November 1999.

[FHL+03] D. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello. Bayesian
filtering for location estimation. IEEE Pervasive Computing, 2(3):24–33,
July-September 2003.

[FIB95] George W. Fitzmaurice, Hiroshi Ishii, and William A. S. Buxton. Bricks:
laying the foundations for graspable user interfaces. In CHI ’95: Proceed-
ings of the SIGCHI conference on Human factors in computing systems,
pages 442–449. ACM Press/Addison-Wesley Publishing Co., 1995.

[Fin03] K. Finkenzeller. RFID Handbook: Fundamentals and Applications in
Contactless Smart Cards and Identification. John Wiley & Sons, 2nd
edition edition, April 2003.

[Fit93] George W. Fitzmaurice. Situated Information Spaces and Spatially Aware
Palmtop Computers. Communications of the ACM, 36(7):38–49, July
1993.

[FJB+04] Richard Fairhurst, Ben Jameson, Andrew Bolt, Robert Brown, and
Matthew Slattery. Geowiki - a map which you can annotate. Home-
page at www.geowiki.com, 2004.

[FKSK02] M. Funabashi, K. Kawano, S. Sameshima, and H. Kato. Middle-
ware technology for ubiquitous computing: Aya (context-aware and yet
another service) that permits autonomous collaboration on super dis-
tributed objects. In Proceedings IEEE International Conference on Sys-
tems, Man and Cybernetics, volume 2, pages 623–628, October 2002.

[FKT01] Ian Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid:
Enabling Scalable Virtual Organizations. Intl. Journal Supercomputer
Applications (IJSA), 15(3), 2001.

[FL04] Christian Flörkemeier and Matthias Lampe. Issues with RFID usage in
ubiquitous computing applications. In Proceedings PERVASIVE 2004,
number 3001 in Lecture Notes in Computer Science, pages 188–193,
Linz/Vienna, Austria, April 2004. Springer.

[FL05a] Marco Feriencik and Matthias Leumann. iPOS: Ein adaptives System
zur Selbst-Positionierung von mobilen ressourcenbeschränkten Geräten.
Semester thesis, Institute for Pervasive Computing, Department of Com-
puter Science, ETH Zurich, Switzerland, June 2005.

320

Bibliography

[FL05b] Christian Flörkemeier and Matthias Lampe. RFID middleware design
- addressing application requirements and RFID. In Proceedings sOc-
EUSAI 2005 (Smart Objects Conference), Grenoble, France, October
2005.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Impos-
sibility of distributed consensus with one faulty process. Journal of the
ACM, 32(2):374–382, April 1985.

[FLSC04] Michal Feldman, Kevin Lai, Ion Stoica, and John Chuang. Robust in-
centive techniques for peer-to-peer networks. In EC ’04: Proceedings of
the 5th ACM conference on Electronic commerce, pages 102–111, New
York, NY, USA, 2004. ACM Press.

[Fos02] Ian Foster. The Grid: A New Infrastructure for 21st Century Science.
Physics Today, 55(2):42, February 2002.

[FS99] Jason Flinn and Mahadev Satyanarayanan. Energy-aware adaptation for
mobile applications. In SOSP ’99: Proceedings of the seventeenth ACM
symposium on Operating systems principles, pages 48–63, New York, NY,
USA, 1999. ACM Press.

[FS04] Jason Flinn and Mahadev Satyanarayanan. Managing battery lifetime
with energy-aware adaptation. ACM Transactions on Computer Systems,
22(2):137–179, 2004.

[FZ94] G. H. Forman and J. Zahorjan. The challenges of mobile computing.
IEEE Computer, 27(4):38–47, April 1994.

[Gal04] René Gallati. Anpassung eines probabilistischen Positionierungsdien-
stes für die Verwendung mit mobilen ressourcenbeschränkten Geräten.
Semester thesis, Institute for Pervasive Computing, Department of Com-
puter Science, ETH Zurich, Switzerland, November 2004.

[Gär99] F. C. Gärtner. Fundamentals of fault-tolerant distributed computing in
asynchronous environments. ACM Computing Surveys (CSUR), 31(1):1–
26, 1999.

[Gar05a] Gartner, Inc. Gartner Says Strong Fourth Quarter Sales Led Worldwide
Mobile Phone Sales to 30 Percent Growth in 2004. Gartner Press Release,
2. March 2005. Available online at http://www.gartner.com/press_
releases/asset_121402_11.html.

[Gar05b] Gartner, Inc. Gartner Says Wireless E-Mail Applications Drive World-
wide PDA Shipments Increase 25 Percent in First Quarter of 2005.
Gartner Press Release, 4. May 2005. Available online at http://www.
gartner.com/press_releases/asset_126216_11.html.

[GBPK02] J. Glas, M. Banu, V. Prodanov, and P. Kiss. Wireless LANs. In Pro-
ceedings of the Workshop on Advances in Analog Circuit Design, March
2002.

321

Bibliography

[GDL+04] Robert Grimm, Janet Davis, Eric Lemar, Adam Macbeth, Steven Swan-
son, Thomas Anderson, Brian Bershad, Gaetano Borriello, Steven Grib-
ble, and David Wetherall. System support for pervasive applications.
ACM Transactions on Computer Systems, 22(4):421–486, 2004.

[Geg04] Christian Gegenschatz. Zuverlässige Patientenüberwachung in einer
Ubiquitous-Computing-Umgebung. Diplomarbeit, Institute for Pervasive
Computing, Department of Computer Science, ETH Zurich, Switzerland,
June 2004.

[Gel98] Hans-Werner Gellersen. Environment-Mediated Communication. In-
ternational Workshop on Interactive Applications of Mobile Computing
(IMC’98), 1998.

[Ger98] Lou Gerstner. Keynote Speech at CeBIT ’98 in Hanover, Germany, 18.
March 1998.

[Get93] I. Getting. The Global Positioning System. IEEE Spectrum 30, 12:36–47,
December 1993.

[GGE+05] Deepak Ganesan, Ben Greenstein, Deborah Estrin, John Heidemann,
and Ramesh Govindan. Multiresolution storage and search in sensor
networks. ACM Transactions on Storage, 1(3):277–315, 2005.

[GHM99] K. Goto, Matsubara H., and S. Myojo. A mobile guide system for vi-
sually disabled persons. In Proceedings 4th International Symposium on
Autonomous Decentralized Systems, pages 12–17, March 1999.

[GK00] P. Gupta and P. R. Kumar. The capacity of wireless networks. IEEE
Transactions on Information Theory, 46(2):388–404, March 2000.

[GKK+03] Phillip B. Gibbons, Brad Karp, Yan Ke, Suman Nath, and Srinivasan
Seshan. IrisNet: An Architecture for a World-Wide Sensor Web. IEEE
Pervasive Computing, October – November:22–33, 2003.

[GLHB03] David Graumann, Walter Lara, Jeffrey Hightower, and Gaetano Bor-
riello. Real-world implementation of the Location Stack: The Universal
Location Framework. In Proceedings 5th IEEE Workshop on Mobile Com-
puting Systems & Applications (WMCSA 2003), pages 122–128. IEEE
Computer Society Press, October 2003.

[GM02] Jean-Claude Geffroy and Gilles Motet. Design of Dependable Computing
Systems. Kluwer Academic Publishers, 2002.

[Gon01] Daniel Jorge Viegas Gonçalves. Ubiquitous computing and AI towards
an inclusive society. In WUAUC’01: Proceedings of the 2001 EC/NSF
Workshop on Universal Accessibility of Ubiquitous Computing, pages 37–
40. ACM Press, 2001.

[GS97] Rachid Guerraoui and André Schiper. Genuine atomic multicast. In
Proceedings of the 11th International Workshop on Distributed Algorithms
(WDAG97), number 1320 in Lecture Notes in Computer Science, pages
141–154. Springer-Verlag, September 1997.

322

Bibliography

[GSB02] Hans-Werner Gellersen, Albrecht Schmidt, and Michael Beigl. Multi-
Sensor Context-Awareness in Mobile Devices and Smart Artifacts. Mobile
Networks and Applications, 7(5):341–351, 2002.

[GSI05] Lee Gilbert, Sunanda Sangwan, and Mei Ian. Beyond usability: the
OoBE dynamics of mobile data services markets. Personal Ubiquitous
Computing, 9(4):198–208, 2005.

[GSM06] GSM Association. GSM World – the website of the GSM Association.
www.gsmworld.com, February 2006.

[Gut96] P. Gutmann. Secure Deletion of Data from Magnetic and Solid-State
Memory. In Proceedings 6th USENIX Security Symposium, San Jose,
California, USA, July 1996.

[Gut01] P. Gutmann. Data Remanence in Semiconductor Devices. In Proceed-
ings 10th USENIX Security Symposium, Washington, D.C., USA, August
2001.

[HaAA00] G. Hoblos and M. Staroswiecki amd A. Aitouche. Optimal design of
fault tolerant sensor networks. In Proceedings 2000 IEEE International
Conference on Control Applications, Anchorage, AK, U.S.A., pages 467–
472, September 2000.

[HB01] Jeffrey Hightower and Gaetano Borriello. Location Systems for Ubiqui-
tous Computing. IEEE Computer, 34(8):57–66, August 2001.

[HBB02] Jeffrey Hightower, Barry Brumitt, and Gaetano Borriello. The Loca-
tion Stack: A Layered Model for Location in Ubiquitous Computing. In
Proceedings of the 4th IEEE Workshop on Mobile Computing Systems &
Applications (WMCSA 2002), pages 22–28, Callicoon, NY, June 2002.
IEEE Computer Society Press.

[HBC+96] Thomas T. Hewett, Ronald Baecker, Stuart Card, Tom Carey, Jean
Gasen, Marilyn Mantei, Gary Perlman, Gary Strong, and William Ver-
plank. Curricula for Human-Computer Interaction, Report of the ACM
Special Interest Group on Computer-Human Interaction (SIGCHI) Cur-
riculum Development Group. Association for Computing Machinery, Inc.,
1996. Available online at http://www.sigchi.org/cdg/.

[HBF+04] D. Hähnel, W. Burgard, D. Fox, K. Fishkin, and M. Philipose. Map-
ping and Localization with RFID Technology. In Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), New Or-
leans, LA, USA, 2004.

[HC24] Jason L. Hill and David E. Culler. Mica: A wireless platform for deeply
embedded networks. IEEE Micro, 22(6):12–24, November 22(6):12–24.
November/December 2002.

[HCW04] Elgan Huang, Jon Crowcroft, and Ian Wassell. Rethinking incentives
for mobile ad hoc networks. In PINS ’04: Proceedings of the ACM SIG-
COMM workshop on Practice and theory of incentives in networked sys-
tems, pages 191–196, New York, NY, USA, 2004. ACM Press.

323

Bibliography

[Hel00] A. Hellemans. Polymer matrix augurs flexible displays. IEEE Spectrum,
37(12):18–21, December 2000.

[HFG+98] Beverly L. Harrison, Kenneth P. Fishkin, Anuj Gujar, Carlos Mochon,
and Roy Want. Squeeze me, hold me, tilt me! an exploration of manipu-
lative user interfaces. In CHI ’98: Proceedings of the SIGCHI conference
on Human factors in computing systems, pages 17–24, New York, NY,
USA, 1998. ACM Press/Addison-Wesley Publishing Co.

[HH04] Abdelsalam Helal and Joachim Hammer. UbiData: requirements and
architecture for ubiquitous data access. SIGMOD Rec., 33(4):71–76, 2004.

[HHS+02] Andy Harter, Andy Hopper, Pete Steggles, Andy Ward, and Paul Web-
ster. The anatomy of a context-aware application. Wireless Networks,
8(2/3):187–197, 2002.

[HHZK01] Sumi Helal, Joachim Hammer, Jinsuo Zhang, and Abhinav Khushraj.
A Three-Tier Architecture for Ubiquitous Data Access. In Proceedings
ACS/IEEE International Conference on Computer Systems and Appli-
cations, page 177. IEEE Computer Society, 2001.

[Hit06] Hitachi Ltd. Hitachi mu-chip - the World’s smallest RFID IC. Hitachi
Mu-Solutions. Homepage at www.hitachi.co.jp/Prod/mu-chip/, 2006.

[HKS04] Hung-Yun Hsieh, Kyu-Han Kim, and Raghupathy Sivakumar. An end-
to-end approach for transparent mobility across heterogeneous wireless
networks. Mobile Networks and Applications, 9(4):363–378, 2004.

[HKZ02] Abdelsalam Sumi Helal, Abhinav Khushraj, and Jinsuo Zhang. Incre-
mental Hoarding and Reintegration in Mobile Environments. In SAINT
’02: Proceedings of the 2002 Symposium on Applications and the Internet,
pages 8–11, Washington, DC, USA, 2002. IEEE Computer Society.

[HL01] D. L. Hall and J. Llinas, editors. Handbook of Multisensor Data Fusion.
CRC Press, 2001.

[HMKR04] M. Hollick, I. Martinovic, T. Krop, and I. Rimac. A survey on depend-
able routing in sensor networks, ad hoc networks, and cellular networks.
In Proceedings of 30th Euromicro Conference, pages 495–502, 2004.

[HMNS01] Uwe Hansmann, Lothar Merk, Martin Nicklous, and Thomas Stober.
Pervasive Computing Handbook. Springer, Heidelberg, 2001.

[HR83] Theo Härder and Andreas Reuter. Principles of transaction-oriented
database recovery. ACM Computing Surveys, 15(4):287–317, 1983.

[HS02] U. Hengartner and P. Steenkiste. Protecting People Location Informa-
tion. UBICOMP Workshop on Security in Ubiquitous Computing, 2002.

[HT04] D. M. Hilbert and J. Trevor. Personalizing shared ubiquitous devices.
interactions, 11(3):34–43, 2004.

324

Bibliography

[HZ04] A. Hohl and A. Zugenmaier. Safeguarding Personal Data with DRM in
Pervasive Computing. In Proceedings Security and Privacy Workshop at
PERVASIVE 2004. Kluwer Academic Publishing, 2004.

[IDA05] Infrared Data Association. Trade Association for Defining Infrared Stan-
dards, IrDA System Protocol consortium web site. www.irda.org, April
2005.

[IDE05] IDENTEC SOLUTIONS. ILR RFID Tag Family – i-Q Tags. http:
//www.identecsolutions.com/i-q_tags.asp, April 2005.

[IGE00] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Di-
rected diffusion: a scalable and robust communication paradigm for sen-
sor networks. In MobiCom ’00: Proceedings of the 6th annual interna-
tional conference on Mobile computing and networking, pages 56–67, New
York, NY, USA, 2000. ACM Press.

[inf04] informa telecoms & media. Mobile subscriber numbers exceed 1.5 billion.
Analyst Report, 22. June 2004.

[inf05] informa telecoms & media. Worldwide Mobile Subscribers to Hit 2 Bil-
lions in 2005. Analyst Report, 7. February 2005.

[IoEEE90] Institute of Electrical and Electronics Engineers, editors. IEEE Stan-
dard Computer Dictionary: A Compilation of IEEE Standard Computer
Glossaries. IEEE, New York, NY, U.S.A., 1990.

[IU97] Hiroshi Ishii and Brygg Ullmer. Tangible bits: towards seamless interfaces
between people, bits and atoms. In CHI ’97: Proceedings of the SIGCHI
conference on Human factors in computing systems, pages 234–241. ACM
Press, 1997.

[Jal94] P. Jalote. Fault tolerance in distributed systems. PTR Prentice Hall,
Englewood Cliffs, N.J., USA, 1994.

[JEC05] Editorial Board JEC. Scope of Contents. Journal of Embedded Com-
puting, 2005. Available online at http://www.cisp-publishing.com/
books/journalofembeddedcomputersscopeofcontents.htm.

[JIMK03] Timo Jokela, Netta Iivari, Juha Matero, and Minna Karukka. The stan-
dard of user-centered design and the standard definition of usability: an-
alyzing iso 13407 against iso 9241-11. In CLIHC ’03: Proceedings of the
Latin American conference on Human-computer interaction, pages 53–60,
New York, NY, USA, 2003. ACM Press.

[JKH05] Arshad Jhumka, Stephan Klaus, and Sorin A. Huss. A dependability-
driven system-level design approach for embedded systems. In DATE
’05: Proceedings of the conference on Design, Automation and Test in
Europe, pages 372–377, Washington, DC, USA, 2005. IEEE Computer
Society.

325

Bibliography

[JW93] Niraj K. Jha and Sying-Jyan Wang. Design and synthesis of self-checking
VLSI circuits. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 12(6):878–887, June 1993.

[Kai01] Nikolaos Kaintantzis. Erweiterung von gedruckten Dokumenten um
Online-Inhalte. Diplomarbeit, Institute for Information Systems, De-
partment of Computer Science, ETH Zurich, Switzerland, April 2001.

[KB05] Frank Kargl and Alexander Bernauer. The COMPASS Location System.
In Proceedings 1st International Workshop on Location- and Context-
Awareness (LoCA 2005), Oberpfaffenhofen, Germany, number 3479 in
LNCS, pages 105–112, May 2005.

[KBPD97] O. Kubitz, M. O. Berger, M. Perlick, and R. Dumoulin. Application
of radio frequency identification devices to support navigation of au-
tonomous mobile robots. In IEEE 47th Vehicular Technology Conference,
volume 1, pages 126–130, May 1997.

[KCMT05] Todd Kort, Roberta Cozza, Kanae Maita, and Lillian Tay. PDA Market
Has Record First Quarter, Growing 25 Percent. Gartner Report Nr.
G00127580, 2. May 2005. Available online at http://www.gartner.com/
DisplayDocument?id=480706.

[KFM03] C. Kwok, D. Fox, and M. Meila. Adaptive Real-Time Particle Filters for
Robot Localization. In Proceedings of the IEEE International Conference
on Robotics & Automation, 2003.

[KHM+00] J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale, and S. Shafer.
Multi-Camera Multi-Person Tracking for EasyLiving. In Proceedings 3rd
IEEE Workshop on Visual Surveillance, 2000.

[KHTK00] Sneha Kumar Kasera, Gísli Hjálmtýsson, Donald F. Towsley, and
James F. Kurose. Scalable reliable multicast using multiple multicast
channels. IEEE/ACM Transactions on Networking, 8(3):294–310, 2000.

[Kid99] Junji Kido. Organic displays. Physics World, 1999(3):27–30, March 1999.

[Kin02] Tim Kindberg. Implementing physical hyperlinks using ubiquitous iden-
tifier resolution. In Proceedings 11th International Conference on World
Wide Web, pages 191–199. ACM Press, 2002.

[KL99] Steinar Kristoffersen and Fredrik Ljungberg. Designing Interaction Styles
for a Mobile Use Context. In Proceedings of 1st International Symposium
Handheld and Ubiquitous Computing (HUC’99), Karlsruhe, Germany,
September 27-29, 1999, pages 281–288, 1999.

[Kni02] John C. Knight. Dependability of embedded systems. In ICSE ’02: Pro-
ceedings of the 24th International Conference on Software Engineering,
pages 685–686, New York, NY, USA, 2002. ACM Press.

[KOB01] T. Kleine-Ostmann and A. E. Bell. A data fusion architecture for en-
hanced position estimation in wireless networks. IEEE Communications
Letters, 5(8):343–345, 2001.

326

Bibliography

[Koh81] Walter H. Kohler. A survey of techniques for synchronization and re-
covery in decentralized computer systems. ACM Computing Surveys,
13(2):149–183, 1981.

[Kok04] M. M. Kokar. Situation awareness: issues and challenges. In Proceed-
ings 7th International Conference on Information Fusion, pages 533–534,
2004.

[Kop04] Hermann Kopetz. An Integrated Architecture for Dependable Embed-
ded Systems. In SRDS ’04: Proceedings of the 23rd IEEE International
Symposium on Reliable Distributed Systems (SRDS’04), pages 160–161,
Washington, DC, USA, 2004. IEEE Computer Society.

[KP97] Geoffrey H. Kuenning and Gerald J. Popek. Automated hoarding for
mobile computers. In SOSP ’97: Proceedings of the sixteenth ACM sym-
posium on Operating systems principles, pages 264–275, New York, NY,
USA, 1997. ACM Press.

[KPS04] Aman Kansal, Dunny Potter, and Mani B. Srivastava. Performance aware
tasking for environmentally powered sensor networks. In SIGMETRICS
2004/PERFORMANCE 2004: Proceedings of the joint international con-
ference on Measurement and modeling of computer systems, pages 223–
234, New York, NY, USA, 2004. ACM Press.

[KR99] U. Kubach and K. Rothermel. A universal, location-aware hoard-
ing mechanism. Proceedings of Handheld and Ubiquitous Computing,
1707:377–379, 1999.

[KRA99] Naohiko Kohtake, Jun Rekimoto, and Yuichiro Anzai. InfoStick: An In-
teraction Device for Inter-Appliance Computing. In Proceedings of 1st In-
ternational Symposium Handheld and Ubiquitous Computing (HUC’99),
Karlsruhe, Germany, September 27-29, 1999, pages 246–258, 1999.

[KS92] James J. Kistler and Mahadev Satyanarayanan. Disconnected Operation
in the Coda File System. ACM Transactions on Computer Systems,
10(1):3–25, 1992.

[KWS02] John Krumm, Lyndsay Williams, and Greg Smith. SmartMoveX on a
Graph - An Inexpensive Active Badge Tracker. In Proceedings of the 4th
international conference on Ubiquitous Computing (UbiComp ’02), pages
299–307, London, UK, 2002. Springer.

[KWSB05] Jong Hee Kang, William Welbourne, Benjamin Stewart, and Gaetano
Borriello. Extracting places from traces of locations. ACM SIGMOBILE
Mobile Computing and Communications Review, 9(3):58–68, 2005.

[Lal85] Parag K. Lala. Fault tolerant and fault testable hardware design. Prentice-
Hall, Inc., Upper Saddle River, NJ, USA, 1985.

[Lam77] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE
Transactions on Software Engineering, 3(2):125–143, March 1977.

327

Bibliography

[Lam81] L. Lamport. Password authentication with insecure communication.
Communications of the ACM, 24(11):770–772, 1981.

[Lam83] L. Lamport. The Weak Byzantine Generals Problem. Journal of the
ACM, 30(3):668–676, 1983.

[Lan01] Marc Langheinrich. Privacy by Design – Principles of Privacy-Aware
Ubiquitous Systems. In Proceedings Ubicomp 2001, number 2201 in Lec-
ture Notes in Computer Science, pages 273–291. Springer, 2001.

[Lan02] Marc Langheinrich. A Privacy Awareness System for Ubiquitous Com-
puting Environments. In Gaetano Borriello and Lars Erik Holmquist, ed-
itors, 4th International Conference on Ubiquitous Computing (Ubicomp
2002), number 2498 in Lecture Notes in Computer Science, pages 237–
245. Springer, September 2002.

[Lan05] Marc Langheinrich. Privacy in Ubiquitous Computing. Ph.d. thesis, no.
16100, ETH Zurich, Switzerland, 2005.

[Lap85] Jean-Claude Laprie. Dependable computing and fault tolerance: concepts
and terminology. In Proceedings of the 15th IEEE Symposium on Fault
Tolerant Computing Systems (FTCS-15), pages 2–11, June 1985.

[Lap92a] Jean-Claude Laprie. Dependability: A Unifying Concept for Reliable,
Safe, Secure Computing. Proceedings of the IFIP Transactions, 12th
World Computer Congress on Algorithms, Software, Architecture - Infor-
mation Processing ’92, pages 585–593, 1992.

[Lap92b] Jean-Claude Laprie, editor. Dependability: Basic Concepts and Termi-
nology, volume 5 of Dependable Computing and Fault-Tolerant Systems.
Springer, 1992.

[LC04] M.-H. Lin and C.-C. Chang. A secure one-time password authentica-
tion scheme with low-computation for mobile communications. SIGOPS
Operating Systems Review, 38(2):76–84, 2004.

[LEG06] LEGO Mindstorms. Homepage at http://mindstorms.lego.com, 2006.

[Lev02] Nancy G. Leveson. An Approach to Designing Safe Embedded Software.
In EMSOFT ’02: Proceedings of the Second International Conference on
Embedded Software, number 2491 in Lecture Notes in Computer Science,
pages 15–29, London, UK, 2002. Springer.

[LF04] Matthias Lampe and Christian Flörkemeier. The Smart Box Application
Model. In Alois Ferscha, Horst Hörtner, and Gabriele Kotsis, editors,
Advances in Pervasive Computing, pages 351–356. Austrian Computer
Society (OCG), April 2004.

[LH02] Minsoo Lee and Sumi Helal. HiCoMo: High Commit Mobile Transac-
tions. Distributed and Parallel Databases, 11(1):73–92, 2002.

328

Bibliography

[LM98] Ulf Leonhardt and Jeff Magee. Multi-sensor location tracking. In Mobi-
Com ’98: Proceedings of the 4th annual ACM/IEEE international con-
ference on Mobile computing and networking, pages 203–214, New York,
NY, USA, 1998. ACM Press.

[LMFJ+04] Konrad Lorincz, David J. Malan, Thaddeus R. F. Fulford-Jones, Alan
Nawoj, Antony Clavel, Victor Shnayder, Geoffrey Mainland, Matt Welsh,
and Steve Moulton. Sensor Networks for Emergency Response: Chal-
lenges and Opportunities. IEEE Pervasive Computing, 3(4):16–23, 2004.

[LMS85] Leslie Lamport and P. M. Melliar-Smith. Synchronizing Clocks in the
Presence of Faults. Journal of the ACM, 32(1):52–78, January 1985.

[LRH00] Peter Ljungstrand, Johan Redström, and Lars Erik Holmquist. WebStick-
ers: Using Physical Tokens to Access, Manage and Share Bookmarks to
the Web, April 2000.

[LS81] Butler W. Lampson and Howard E. Sturgis. Atomic transactions. In
B. W. Lampson, M. Paul, and H. Siegert, editors, Distributed Systems-
Architecture and Implementation, Lecture Notes in Computer Science
105, Springer, 1981, ed B. Lampson, with M. Paul and H. Siegert, vol-
ume 105 of Lecture Notes in Computer Science, pages 246–265. Springer
New York, 1981.

[LSM+03] Hilty L., Behrendt S., Binswanger M., Bruinink A., Erdmann L., Fröh-
lich J., Köhler A., Kuster N., Som C., and Würtenberger F. Das vor-
sorgeprinzip in der informationsgesellschaft. auswirkungen des pervasive
computing auf gesundheit und umwelt. Technical Report TA 46/2003,
Zentrums für Technologiefolgen-Abschätzung TA-SWISS, Switzerland,
August 2003.

[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine Generals Problem.
ACM Transactions on Programming Languages and Systems, 4(3):382–
401, July 1982.

[Luc99] Robert W. Lucky. Everything will be connected to everything else.
Connections. IEEE Spectrum, March 1999. Available online at http:
//www.argreenhouse.com/papers/rlucky/spectrum/connect.shtml.

[LvKSP02] M. M. Lankhorst, H. van Kranenburg, A. Salden, and A. J. H. Pedde-
mors. Enabling technology for personalizing mobile services. In Proceed-
ings 35th Annual Hawaii International Conference on System Sciences
(HICSS 2002), pages 1464–1471, January 2002.

[Lyo01] David Lyon. Facing the Future: Seeking Ethics for Everyday Surveillance.
Ethics and Information Technology, 3(3):171–180, July 2001.

[Maa98] Henning Maass. Location-aware mobile applications based on directory
services. Mobile Networks and Applications, 3(2):157–173, 1998.

329

Bibliography

[Mak01] Pantelis Makris. Accessibility of Ubiquitous Computing: Providing for
the Elderly. In Proceedings of the 2001 EC/NSF Workshop on Universal
Accessibility of Ubiquitous Computing, Alcácer do Sal, Portugal, May
2001. Available online at http://virtual.inesc.pt/wuauc01/procs/
pdfs/makris_final.pdf.

[Mat01a] Friedemann Mattern. The Vision and Technical Foundations of Ubiqui-
tous Computing. Upgrade, 2(5):2–6, October 2001.

[Mat01b] Friedemann Mattern. Ubiquitous Computing: Vision und technische
Grundlagen. INFORMATIK-INFORMATIQUE 5/2001 (joint issue with
Novática and Upgrade), pages 4–7, October 2001.

[Mat03] Friedemann Mattern. Vom Verschwinden des Computers – Die Vision des
Ubiquitous Computing. In Friedemann Mattern, editor, Total vernetzt,
pages 1–41. Springer, April 2003.

[Mat04] Friedemann Mattern. Wireless Future: Ubiquitous Computing. In Pro-
ceedings of Wireless Congress 2004, Munich, Germany, November 2004.

[Mat05] Friedemann Mattern. Die technische Basis für das Internet der Dinge. In
Elgar Fleisch and Friedemann Mattern, editors, Das Internet der Dinge
– Ubiquitous Computing und RFID in der Praxis. Springer, 2005.

[Maz03] Thomas Mazhuancherry. Fehlertolerante Dienstinfrastruktur durch
Ausnutzung lokaler Redundanz in Ubiquitous-Computing-Umgebungen.
Diplomarbeit, Institute for Pervasive Computing, Department of Com-
puter Science, ETH Zurich, Switzerland, August 2003.

[MB03] B. A. Myers and M. Beigl. Handheld computing. IEEE Computer,
36(9):27–29, September 2003.

[MFJW+04] David Malan, Thaddeus Fulford-Jones, Matt Welsh, , and Steve Moul-
ton. CodeBlue: An Ad Hoc Sensor Network Infrastructure for Emergency
Medical Care. In International Workshop on Wearable and Implantable
Body Sensor Networks, Imperial College London, United Kingdom, April
2004.

[MRK+03] Milan Milenkovic, Scott H. Robinson, Rob C. Knauerhase, David
Barkai, Sharad Garg, Vijay Tewari, Todd A. Anderson, and Mic Bowman.
Toward Internet Distributed Computing . IEEE Computer, 36(5):38–46,
May 2003.

[MS92] Shivakant Mishra and Richard D. Schlichting. Abstractions for construct-
ing dependable distributed systems. Technical Report TR 92-19, Univer-
sity of Arizona, U.S.A., August 1992.

[MS03] Friedemann Mattern and Peter Sturm. From Distributed Systems to
Ubiquitous Computing – The State of the Art, Trends, and Prospects of
Future Networked Systems. In Klaus Irmscher and Klaus-Peter Fähnrich,
editors, Proceedings KIVS 2003, pages 3–25, Springer, February 2003.

330

Bibliography

[MS04] Roy A. Maxion and Daniel P. Siewiorek, editors. Workshop on Hu-
man Computer Interaction and Dependability, 46th IFIP WG 10.4 Meet-
ing, Siena, Italy, July 2004. Available online at http://www.laas.fr/
IFIPWG/Workshops\&Meetings/46/index.htm.

[MZSMM03] Diana Marculescu, Nicholas H. Zamora, Phillip Stanley-Marbell, and
Radu Marculescu. Fault-Tolerant Techniques for Ambient Intelligent Dis-
tributed Systems. In ICCAD ’03: Proceedings of the 2003 IEEE/ACM
international conference on Computer-aided design, page 348, Washing-
ton, DC, USA, 2003. IEEE Computer Society.

[NCN98] Klara Nahrstedt, Hao Chu, and Srinivas Narayan. QoS-Aware Resource
Management for Distributed Multimedia Applications. High-Speed Net-
working, Special Issue on Multimedia Networking, 7(3/4):227–255, 1998.

[Nel98] G. J. Nelson. Context-Aware and Location Systems. PhD thesis, Clare
College, University of Cambridge, UK, January 1998.

[Net96] Netscape Communications. Secure Sockets Layer (SSL) 3.0 Specification,
November 1996.

[NLLP03] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil. LANDMARC: indoor
location sensing using active RFID. In Proceedings 1st IEEE Interna-
tional Conference on Pervasive Computing and Communications (Per-
Com 2003), pages 407–415, March 2003.

[NLLP04] Lionel M. Ni, Yunhao Liu, Yiu Cho Lau, and Abhishek P. Patil. LAND-
MARC: indoor location sensing using active RFID. Wireless Networks,
10(6):701–710, 2004.

[NMH+02] Jeffrey Nichols, Brad A. Myers, Michael Higgins, Joseph Hughes,
Thomas K. Harris, Roni Rosenfeld, and Mathilde Pignol. Generating
remote control interfaces for complex appliances. In UIST ’02: Proceed-
ings of the 15th annual ACM symposium on User interface software and
technology, pages 161–170, New York, NY, USA, 2002. ACM Press.

[Noy04] Natalya F. Noy. Semantic integration: a survey of ontology-based ap-
proaches. SIGMOD Rec., 33(4):65–70, 2004.

[NSN+97] Brian D. Noble, Mahadev Satyanarayanan, Dushyanth Narayanan,
James Eric Tilton, Jason Flinn, and Kevin R. Walker. Agile application-
aware adaptation for mobility. In SOSP ’97: Proceedings of the sixteenth
ACM symposium on Operating systems principles, pages 276–287, New
York, NY, USA, 1997. ACM Press.

[NTT03] NTT Corporation and Waseda University. Market Requirements for
IrBurst, September 2003. Available online at http://www.irda.org/
associations/2494/files/Publications/IrBurst_MRD.doc.

[OA00] R. J. Orr and G. D. Abowd. The Smart Floor: A mechanism for natural
user identification and tracking. In Proceedings SIGCHI Conference on
Human Factors in Computing Systems, The Hague, Netherlands, April
2000.

331

Bibliography

[OMG01] Object Managment Group OMG. Super Distributed Objects (SDO)
Whitepaper. OMG Document sdo/01-07-05, July 2001. Available online
at http://www.omg.org/.

[OMG04] Object Managment Group OMG. Platform Independent Model (PIM)
& Platform Specific Model (PSM) for Super Distributed Objects (SDO),
Version 1.0. OMG Document sdo/04-11-01, November 2004. Available
online at http://www.omg.org/.

[OMG05] Object Management Group OMG. Homepage. www.omg.org, 2005.

[Ope06] Open Mobile Alliance. Technical Section. Material from Affili-
ates. Wireless Application Protocol (WAP) – Downloads, February
2006. Available online at http://www.openmobilealliance.org/tech/
affiliates/wap/wapindex.html.

[Opr05] Nicola Oprecht. Positioning and Object Tracking Based on Super-
Distributed RFID Tag Infrastructures. Master’s thesis, Institute for
Pervasive Computing, Department of Computer Science, ETH Zurich,
Switzerland, March 2005.

[PCB00] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The Cricket
Location-Support System. In Proceedings of the Sixth Annual ACM In-
ternational Conference on Mobile Computing and Networking (MOBI-
COM), August 2000.

[Per98] Charles E. Perkins. Mobile Networking through Mobile IP. IEEE Internet
Computing, 2(1):58–69, 1998.

[Pet02] D. Peterson. Implementing PDAs in a College Course: One Professor’s
Perspective. Syllabus Magazine, November 2002.

[Pfe05] Tom Pfeifer. Redundant positioning architecture. Computer Communi-
cations, 28(13):1575–1585, August 2005.

[PFF+03] M. Philipose, K. P. Fishkin, D. Fox, D. Hahnel, and W. Burgard. Map-
ping and Localization with RFID Technology. Technical Report IRS-TR-
03-014, Intel Research, December 2003.

[PHD02] Thomas Phan, Lloyd Huang, and Chris Dulan. Challenge:: integrating
mobile wireless devices into the computational grid. In MobiCom ’02:
Proceedings of the 8th annual international conference on Mobile com-
puting and networking, pages 271–278, New York, NY, USA, 2002. ACM
Press.

[Phi06] Philips Semiconductors. I-CODE – Smart Label Technology.
Homepage at http://www.semiconductors.philips.com/products/
identification/icode/, 2006.

[Pir04] Vito Piraino. A Middleware for Robust Self-Organizing Services Based on
Highly Redundant RFID Tag Infrastructures. Master’s thesis, Institute
for Pervasive Computing, Department of Computer Science, ETH Zurich,
Switzerland, December 2004.

332

Bibliography

[PK00] G. J. Pottie and W. J. Kaiser. Wireless Integrated Network Sensors.
Communications of the ACM, 43(5):51–58, May 2000.

[PPZ99] T. Pfeifer and R. Popescu-Zeletin. A Modular Location-Aware Service
and Application Platform. In Proceedings of the 4th IEEE Symposium
on Computers and Communications (ISCC ’99), pages 137–148, Wash-
ington, DC, USA, 1999. IEEE Computer Society.

[PS03] Danat Pomeranets and Stephan Schneider. Erweiterung und Evaluierung
eines Positionierungsdienstes. Semester thesis, Institute for Pervasive
Computing, Department of Computer Science, ETH Zurich, Switzerland,
October 2003.

[Pyt04] Emmanuel Python. Secure RFID-based Document Reconstruction.
Semester thesis, Institute for Pervasive Computing, Department of Com-
puter Science, ETH Zurich, Switzerland, July 2004.

[PZSA04] Radu Popescu-Zeletin, Stephan Steglich, and Stefan Arbanowski. Per-
vasive Communication - A Human-Centered Service Architecture. In
Proceedings of the 10th IEEE International Workshop on Future Trends
of Distributed Computing Systems (FTDCS’04), pages 140–146, Wash-
ington, DC, USA, 2004. IEEE Computer Society.

[QLIM01] G. Qiang, Z. J. Liu, S. Ishihara, and T. Mizuno. Enhanced mobile Inter-
net protocol based on IPv6 addressing scheme for third generation wire-
less network. IEICE Transactions on Communications, E84B(4):885–891,
2001.

[Qod06] Qode. It’s in the code. www.quode.com, May 2006.

[RA00] Jun Rekimoto and Yuji Ayatsuka. CyberCode: Designing augmented re-
ality environments with visual tags. In DARE ’00: Proceedings of DARE
2000 on Designing augmented reality environments, pages 1–10. ACM
Press, 2000.

[RABB07] Julian Randall, Oliver Amft, Jürgen Bohn, and Martin Burri. LuxTrace
– indoor positioning using building illumination. Personal and Ubiquitous
Computing, 2007. In Press. Online version available at http://dx.doi.
org/10.1007/s00779-006-0097-0.

[RAdS+00] J. M. Rabaey, M. J. Ammer, J. L. da Silva, D. Patel, and S. Roundy.
PicoRadio supports ad hoc ultra-low power wireless networking. Com-
puter, 33(7):42–48, 2000.

[RAKO03] Jun Rekimoto, Yuji Ayatsuka, Michimune Kohno, and Haruo Oba.
Proximal interactions: A direct manipulation technique for wireless net-
working. In Proceedings of INTERACT ’03: IFIP TC13 International
Conference on Human-Computer Interaction, September 2003, Zurich,
Switzerland, 2003.

333

Bibliography

[RAMC+04] Anand Ranganathan, Jalal Al-Muhtadi, Shiva Chetan, Roy
Campbell, and M. Dennis Mickunas. MiddleWhere: A Middle-
ware for Location Awareness in Ubiquitous Computing Applications.
In ACM/IFIP/USENIX 5’th International Middleware Conference,
Toronto, Ontario, Canada, October 2004.

[RAT05] J. Randall, O. Amft, and G. Tröster. Towards LuxTrace: Using solar cells
to measure distance indoors. In Proceedings of the 1st International Work-
shop on Location- and Context-Awareness (LoCA 2005 Springer LNCS)
in cooperation with Pervasive 2005, pages 40–51, Oberpfaffenhofen near
Munich, Germany, May 2005. ISBN 3-540-25896-5.

[RB03] Michael Rohs and Jürgen Bohn. Entry Points into a Smart Campus
Environment – Overview of the ETHOC System. In Proceedings of the
23rd International Conference on Distributed Computing Systems – 3rd
International Workshop on Smart Appliances and Wearable Computing
(IWSAWC 2003), Providence, Rhode Island, USA, May 2003.

[Ree83] David P. Reed. Implementing atomic actions on decentralized data. ACM
Transactions on Computer Systems, 1(1):3–23, 1983.

[Rek97] Jun Rekimoto. Pick-and-drop: A direct manipulation technique for mul-
tiple computer environments. In ACM Symposium on User Interface
Software and Technology, pages 31–39, 1997.

[RFI03] RFID Journal. www.rfidjournal.com, 2003.

[RJH02] Gruia-Catalin Roman, Christine Julien, and Qingfend Huang. Network
abstractions for context-aware mobile computing. In ICSE ’02: Proceed-
ings of the 24th International Conference on Software Engineering, pages
363–373, New York, NY, USA, 2002. ACM Press.

[Roh04] Michael Rohs. Real-World Interaction with Camera-Phones. In 2nd In-
ternational Symposium on Ubiquitous Computing Systems (UCS 2004),
pages 39–48, Tokyo, Japan, November 2004.

[Rom01] Alexander Romanovsky. Coordinated atomic actions: how to remain
ACID in the modern world. ACM SIGSOFT Software Engineering Notes,
26(2):66–68, 2001.

[Rom04] Tony Romero. Managing high availability systems. Embedded Comput-
ing Design: Special Feature. An OpenSystems Publishing, LLC publica-
tion, 2004. Available online at http://www.embedded-computing.com/
articles/romero/.

[RS00] W. Rungsarityotin and T. Starner. Finding Location Using Omnidi-
rectional Video on a Wearable Computing Platform. In Proceedings of
IEEE International Symposium on Wearable Computing (ISWC 2000),
pages 61–68, 2000.

[RSFWH98] T. Richardson, Q. Stafford-Fraser, K. R. Wood, and A. Hopper. Vir-
tual Network Computing. IEEE Internet Computing, 2(1):33–38, 1998.

334

Bibliography

[RSMD04] Kay Römer, Thomas Schoch, Friedemann Mattern, and Thomas
Dübendorfer. Smart Identification Frameworks for Ubiquitous Comput-
ing Applications. Wireless Networks, 10(6):689–700, December 2004.

[Rus01a] John Rushby. A Comparison of Bus Architectures for Safety-Critical
Embedded Systems. Technical report, Computer Science Laboratory,
SRI International, Menlo Park, CA, September 2001. Available online
at http://www.csl.sri.com/~rushby/abstracts/buscompare. This is
a long version of Bus Architectures for Safety-Critical Embedded Sys-
tems [Rus01b].

[Rus01b] John M. Rushby. Bus Architectures for Safety-Critical Embedded Sys-
tems. In EMSOFT ’01: Proceedings of the First International Workshop
on Embedded Software, pages 306–323, London, UK, 2001. Springer.

[RV03] Daler Rakhmatov and Sarma Vrudhula. Energy management for battery-
powered embedded systems. Transactions on Embedded Computing Sys-
tems, 2(3):277–324, 2003.

[Sar01] Sanjay E. Sarma. Towards the Five-Cent Tag. Techni-
cal Report MIT-AUTOID-WH-006, MIT Auto-ID Center, 2001.
www.autoidcenter.org/research/MIT-AUTOID-WH-006.pdf.

[Sat96] Mahadev Satyanarayanan. Fundamental challenges in mobile computing.
In Proceedings of the 15th Annual ACM Symposium on Principles of
Distributed Computing (PODC ’96), pages 1–7, New York, NY, USA,
1996. ACM Press.

[Sat01] Mahadev Satyanarayanan. Pervasive Computing: Vision and Challenges.
IEEE Personal Communications, 8(4):10–17, 2001.

[SAW94] Bill N. Schilit, Norman I. Adams, and Roy Want. Context-Aware Com-
puting Applications. In Proceedings of the 1st Workshop on Mobile
Computing Systems and Applications (WMCSA), Santa Cruz, CA, USA,
pages 85–90. IEEE Computer Society., December 1994.

[SBG99] Albrecht Schmidt, Michael Beigl, and Hans-W. Gellersen. There is more
to context than location. Computers and Graphics, 23(6):893–901, 1999.

[SBS91] André Schiper, Kenneth Birman, and Pat Stephenson. Lightweight causal
and atomic group multicast. ACM Transactions on Computer Systems,
9(3):272–314, 1991.

[Sch02] C. Schär. Heuristiken zur Positionsbestimmung in Gebäuden mittels
Sensor-Fusion und 2D-Kartenmodell. Diplomarbeit, Institute for Infor-
mation Systems, Department of Computer Science, ETH Zurich, Switzer-
land, August 2002.

[Sch03] Simon Schlachter. Learning Movement Patterns and Predicting Positions
in a Grid-based Probabilistic Positioning System. Semester thesis, Insti-
tute for Pervasive Computing, Department of Computer Science, ETH
Zurich, Switzerland, October 2003.

335

Bibliography

[SCI+01] Eugene Shih, Seong-Hwan Cho, Nathan Ickes, Rex Min, Amit Sinha,
Alice Wang, and Anantha Chandrakasan. Physical layer driven protocol
and algorithm design for energy-efficient wireless sensor networks. In
MobiCom ’01: Proceedings of the 7th annual international conference on
Mobile computing and networking, pages 272–287. ACM Press, 2001.

[SDHM03] Marc Smith, Duncan Davenport, Howard Hwa, and Lik Mui. The
Annotated Planet: A mobile platform for object and location annota-
tion. In Proceedings 1st International Workshop on Ubiquitous Systems
for Supporting Social Interaction and Face-to-Face Communication in
Public Spaces at UbiComp 2003, Seattle, Washington, USA. Microsoft
Research, October 2003.

[SET05] SETI@home. Search for Extraterrestrial Intelligence (SETI). Home page.
http://setiweb.ssl.berkeley.edu/, 2005.

[SFV04] Frank Siegemund, Christian Flörkemeier, and Harald Vogt. The Value of
Handhelds in Smart Environments. In Christian Mueller-Schloer, Theo
Ungerer, and Bernhard Bauer, editors, 17th International Conference on
Architecture of Computing Systems - Organic and Pervasive Computing
(ARCS 2004), number 2981 in Lecture Notes in Computer Science, pages
291–308, Augsburg, Germany, March 2004. Springer.

[SHLX03] Arnaud Sahuguet, Richard Hull, Daniel F. Lieuwen, and Ming Xiong.
Enter once, share everywhere: User profile management in converged
networks. In Proceedings 1st Biennial Conf. on Innovative Data Systems
Research (CIDR 2003), Asilomar, CA, USA, January 2003.

[Sie04a] Frank Siegemund. A Context-Aware Communication Platform for Smart
Objects. In Alois Ferscha and Friedemann Mattern, editors, Perva-
sive Computing: Second International Conference, PERVASIVE 2004,
number 3001 in Lecture Notes in Computer Science, pages 69–86,
Linz/Vienna, Austria, April 2004. Springer. (c) Springer.

[Sie04b] Frank Siegemund. Cooperating Smart Everyday Objects – Exploiting Het-
erogeneity and Pervasiveness in Smart Environments. PhD thesis, ETH
Zurich, Zurich, Switzerland, December 2004.

[Sil97] Barry G. Silverman. Computer Reminders and Alerts. Computer,
30(1):42–49, 1997.

[SK04] Frank Siegemund and Pascal Keller. Tuplespace-based collaboration for
bluetooth-enabled devices in smart environments. In Proceedings Infor-
matik 2004, 34. Jahrestagung der Gesellschaft fuer Informatik, 2nd Ger-
man Workshop on Mobile Ad Hoc Networks, Ulm, Germany, September
2004.

[SLP05] Thomas Strang and Claudia Linnhoff-Popien, editors. Proceedings of the
1st International Workshop on Location- and Context-Awareness (LoCA
2005), Oberpfaffenhofen, Germany, volume 3479 of Lecture Notes in
Computer Science. Springer, May 2005.

336

Bibliography

[SMPC02] Z. Sahinoglu, F. Matsubara, K. A. Peker, and J. Cukier. A mobile net-
work architecture with personalized instant information access. In Digest
of Technical Papers. International Conference on Consumer Electronics
(ICCE 2002), pages 34–35, June 2002.

[SNB+01] E. Soloway, C. Norris, P. Blumenfeld, B. Fishman, J. Krajcik, and
R. Marx. Log on education: Handheld devices are ready-at-hand. Com-
munications of the ACM, 44(6):15–20, 2001.

[Son98] Y. Sonnenblick. An Indoor Navigation System for Blind Individuals. In
CSUN Center On Disabilities, editor, CSUN 1998 Conference, California
State University Northridge, Los Angeles, March 1998.

[SR03] Frank Siegemund and Michael Rohs. Rendezvous Layer Protocols for
Bluetooth-Enabled Smart Devices. Personal and Ubiquitous Computing,
pages 91–101, October 2003.

[SRS03] Curt Schurgers, Vijay Raghunathan, and Mani B. Srivastava. Power man-
agement for energy-aware communication systems. ACM Transactions on
Embedded Computing Systems, 2(3):431–447, 2003.

[SS83] Richard D. Schlichting and Fred B. Schneider. Fail-stop processors: an
approach to designing fault-tolerant computing systems. ACM Transac-
tions on Computer Systems, 1(3):222–238, 1983.

[SSJ01] C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo. Sensor information net-
working architecture and applications. IEEE Personal Communications,
8(4):52–59, August 2001.

[SSR+99] Bernt Schiele, Thad Starner, Brad Rhodes, Brian Clarkson, and Alex
Pentland. Situation Aware Computing with Wearable Computers. In
W. Barfield and T. Caudell, editors, Augmented Reality and Wearable
Computers. Lawrence Erlbaum Press, 1999.

[Ste01] Constantine Stephanidis. Towards Universal Access in the Information
Society. Proceedings of the 2001 EC/NSF Workshop on Universal Acces-
sibility of Ubiquitous Computing, May 2001. Available online at http:
//virtual.inesc.pt/wuauc01/procs/pdfs/stephanidis_final.pdf.

[Stu04] Lukas Stucki. System zur augenblicklichen Personalisierung und
vorübergehenden Nutzung von mobilen Benutzergeräten. Semester the-
sis, Institute for Pervasive Computing, Department of Computer Science,
ETH Zurich, Switzerland, July 2004.

[SVG+03] S. Steglich, R. N. Vaidya, O. Gimpeliovskaja, S. Arbanowski,
R. Popescu-Zeletin, S. Sameshima, and K. Kawano. I-centric services
based on super distributed objects. In Proceedings 6th International Sym-
posium on Autonomous Decentralized Systems (ISADS), pages 232–239,
April 2003.

[SY85] Rob Strom and Shaula Yemini. Optimistic recovery in distributed sys-
tems. ACM Transactions on Computer Systems, 3(3):204–226, 1985.

337

Bibliography

[Tec04] Technology Working Group. Headed by A. Cuomo and L. Cloetens. Tech-
nology challenges for future Intelligent Embedded Systems. In Euro-
pean Technology Platform on Embedded Systems Workshop, June 28–29,
Rome, Italy, June 2004.

[Tel00] Gerard Tel. Introduction to Distributed Algorithms. Cambridge Univer-
sity Press, Cambridge, Eng.; New York, 2nd edition, 2000.

[Tim02] Tim Kindberg, John Barton, et al. People, Places, Things: Web Presence
for the Real World. Mobile Networks and Applications, 7(5):365–376,
2002.

[TLAC95] Carl Tait, Hui Lei, Swarup Acharya, and Henry Chang. Intelligent file
hoarding for mobile computers. In MobiCom ’95: Proceedings of the 1st
annual international conference on Mobile computing and networking,
pages 119–125, New York, NY, USA, 1995. ACM Press.

[Tru03] Trusted Computing Group (TCG). TCG TPM Specification Version 1.2
(Revision 62), October 2003.

[TZVM04] P. Trakadas, Th. Zahariadis, S. Voliotis, and Ch. Manasis. Efficient
routing in PAN and sensor networks. ACM SIGMOBILE Mobile Com-
puting and Communications Review, 8(1):10–17, 2004.

[UI00] B. Ullmer and H. Ishii. Emerging frameworks for tangible user interfaces.
IBM Systems Journal, 39(3-4):915–931, 2000.

[UMT06] UMTS Forum. UMTS Forum Home. www.umts-forum.org, February
2006.

[VMKA02] E. Vildjiounaite, E. J. Malm, J. Kaartinen, and P. Alahuhta. Lo-
cation estimation indoors by means of small computing power devices,
accelerometers, magnetic sensors, and map knowledge. In Pervasive ’02:
Proceedings of the 1st International Conference on Pervasive Computing,
pages 211–224. Springer, 2002.

[Vor05] Vorwerk & Co. Teppichwerke GmbH & Co. KG. Vorwerk is presenting
the first carpet containing integrated RFID technology. Press release,
Hamlin, Germany, June 2005.

[VTB04] Abhinav Vora, Zahir Tari, and Peter Bertok. An hoarding approach
for supporting disconnected write operations in mobile environments. In
SRDS ’04: Proceedings of the 23rd IEEE International Symposium on Re-
liable Distributed Systems (SRDS’04), pages 276–288, Washington, DC,
USA, 2004. IEEE Computer Society.

[VWG+03] M. Vossiek, L. Wiebking, P. Gulden, J. Weighardt, and C. Hoffmann.
Wireless local positioning - concepts, solutions, applications. In Radio
and Wireless Conference, 2003. RAWCON ’03.

[WB97] Mark Weiser and John Seely Brown. The coming age of calm technolgy.
In Peter J. Denning and Robert M. Metcalfe, editors, Beyond calculation:
the next fifty years, pages 75–85. Copernicus, New York, NY, USA, 1997.

338

Bibliography

[WBB02] Andreas Weissel, Björn Beutel, and Frank Bellosa. Cooperative I/O: a
novel I/O semantics for energy-aware applications. ACM SIGOPS Oper-
ating Systems Review, 36(SI):117–129, 2002.

[Wei91] Mark Weiser. The Computer for the 21st Century. Scientific American,
265(3):66–75, September 1991. Reprinted in IEEE Pervasive Computing,
1(1), Jan.-Mar. 2002, pp. 19–25.

[Wei93a] Mark Weiser. Some Computer Science Problems in Ubiquitous Comput-
ing. Communications of the ACM, 36(7):75–84, July 1993.

[Wei93b] Mark Weiser. Ubiquitous Computing. IEEE Computer, 26(10):71–72,
October 1993.

[Wei98] Mark Weiser. The Future of Ubiquitous Computing on Campus. Com-
munications of the ACM, 41(1):41–42, January 1998.

[WFA06] Wi-Fi Alliance. Home Page. www.wi-fi.org, February 2006.

[WFGH99] Roy Want, Kenneth P. Fishkin, Anuj Gujar, and Beverly L. Harrison.
Bridging physical and virtual worlds with electronic tags. In Proceedings
SIGCHI Conference on Human Factors in Computing Systems, pages
370–377. ACM Press, 1999.

[WH04] Eric Hsiao-Kuang Wu and Yi-Zhan Huang. Dynamic adaptive routing
for a heterogeneous wireless network. Mobile Networks and Applications,
9(3):219–233, 2004.

[WHFG92] R. Want, A. Hopper, V. Falcao, and J. Gibbons. The Active Badge
Location System. ACM Transactions on Information Systems, 10(1),
January 1992.

[Win99] Langdon Winner. The Voluntary Complexity Movement. NETFUTURE:
Technology and Human Responsibility, September 1999. Available on-
line at http://www.oreilly.com/~stevet/netfuture/1999/Sep1499_
94.html#3.

[WJH97] A. Ward, A. Jones, and A. Hopper. A New Location Technique for
the Active Office. IEEE Personal Communications, 4(5):42–47, October
1997.

[WOW+05] A. Wadaa, S. Olariu, L. Wilson, M. Eltoweissy, and K. Jones. Train-
ing a wireless sensor network. Mobile Networks and Applications, 10(1-
2):151–168, 2005.

[WPD+02] R. Want, T. Pering, G. Danneels, M. Kumar, M. Sundar, and J. Light.
The Personal Server: Changing the Way We Think about Ubiquitous
Computing. In Proceedings UbiComp 2002, pages 194–209. Springer,
2002.

[WSA+97] Roy Want, Bill N. Schilit, Norman I. Adams, Rich Gold, Karin Pe-
tersen, David Goldberg, John R. Ellis, and Mark Weiser. The ParcTab
Ubiquitous Computing Experiment, chapter 2, pages 45–101. In: Mobile
Computing, Kluwer Publishing, February 1997.

339

Bibliography

[WVG04] Norbert Weißenberg, Agnès Voisard, and Rüdiger Gartmann. Using
ontologies in personalized mobile applications. In GIS ’04: Proceedings of
the 12th annual ACM international workshop on Geographic information
systems, pages 2–11, New York, NY, USA, 2004. ACM Press.

[Xal02] XALAN Project Home Page. http://xml.apache.org/xalan-j, 2002.

[Xer02] XERCES Project Home Page. http://xml.apache.org/xerces2-j,
2002.

[YF00] B. Yao and W. K. Fuchs. Proxy-Based Recovery for Applications on
Wireless Hand-Held Devices. In Proceedings of 19th IEEE Symposium
on Reliable Distributed Systems (SRDS 2000), Nürnberg, Germany, pages
2–10, October 2000.

[YF01] B. Yao and W. K. Fuchs. Recovery Proxy for Wireless Applications. In
Proceedings of the 12th International Symposium on Software Reliability
Engineering (ISSRE 2001), pages 112–119, November 2001.

[YHAP02] Kho Hao Yuan, Ang Chip Hong, M. Ang, and Goi Sio Peng. Unmanned
library: an intelligent robotic books retrieval & return system utilizing
RFID tags. In Proceedings IEEE International Conference on Systems,
Man and Cybernetics (SMC ’02), volume 4, October 2002.

[ZHH03] J. Zhang, A. Helal, and J. Hammer. UbiData: ubiquitous mobile file
service. In Proceedings 2003 ACM Symposium on Applied Computing,
pages 893–900. ACM Press, March 2003.

[Zig06] ZigBee Alliance. ZigBee – Wireless Control That Simply Works. Home
Page. www.zigbee.org, February 2006.

[Zwe04] Thomas Zweifel. Development and Simulation of Position-Reckoning-
Strategies for Super-Distributed RFID Tag Infrastructures. Semester the-
sis, Institute for Pervasive Computing, Department of Computer Science,
ETH Zurich, Switzerland, February 2004.

340

	Title Page
	Abstract
	Zusammenfassung
	Acknowledgments
	Table of Contents
	1 Introduction
	1.1 Problem Statement
	1.2 Contributions
	1.3 Structure of this Dissertation

	I Fundamentals
	2 Dependability
	2.1 Definition and Terminology
	2.2 Dependability in Distributed Computing
	2.3 Fault Tolerance Through Redundancy

	3 Ubiquitous Computing
	3.1 Vision and Background
	3.2 User-Centric Ubiquitous Computing Challenges
	3.3 A Characterization of Ubiquitous Computing Systems

	4 Dependability in Ubiquitous Computing
	4.1 Faults in Ubiquitous Computing Environments
	4.2 Fault Detection
	4.3 Fault Prevention
	4.4 Fault Removal and Fault Forecasting
	4.5 Fault Tolerance Based on Different Forms of Redundancy
	4.6 Adaptability
	4.7 Conclusion

	5 User-Centric Dependability Challenges
	5.1 System-Centricity vs. User-Centricity
	5.2 Dependable Human-Computer Interaction
	5.3 Dependable Context-Aware Computing

	II Dependability in Human-Computer-Interaction
	6 Dependable Human-Computer-Interaction
	6.1 Accessibility of Devices and Services as a Fundamental Challenge
	6.2 Redundancy Through Diversity and Multitude of User Interfaces
	6.3 Input/Output Diversification
	6.4 Instant Personalization and Temporary Ownership

	7 Case Study: I/O Diversification in the ETHOC System
	7.1 Providing Physical Hyperlinks into a Virtual Campus
	7.2 Entry Points into a Ubiquitous Computing Campus Environment
	7.3 Overview of the ETHOC System
	7.4 ETHOC System Architecture
	7.5 Results
	7.6 Experimental Evaluation
	7.7 Conclusion
	7.8 Related Work

	8 Instant Personalization of Handheld Devices
	8.1 Instant Personalization of Mobile Devices
	8.2 Design Goals
	8.3 Discussion
	8.4 Prototype Implementation
	8.5 Conclusion
	8.6 Related Work

	III Dependability in Context-Aware Computing
	9 Dependable Context-Aware Computing
	9.1 Dependable Context-Aware Computing Through Fault Tolerance
	9.2 Fault-Tolerant Operation Through Localized Cooperation and Resource Sharing
	9.3 Concepts for Fault-Tolerant Data Fusion and Context Inference
	9.4 Super-Distribution of Smart Entities as a Design Principle

	10 Fault-Tolerant Data Dissemination Based on Cooperating Smart Objects
	10.1 Dependable Computing Based on Cooperating Smart Objects
	10.2 Conceptual Framework
	10.3 Architecture of a Fault-Tolerant User-Centric Service Infrastructure
	10.4 Fault-Tolerance Management of the Fault-Tolerance Layer
	10.5 Internal Classification of Resource Conditions
	10.6 Fault-Tolerance Mechanisms Based on Proximate Smart Objects
	10.7 Rule-Based Activation of Fault-Tolerance Mechanisms
	10.8 Incentives for Cooperation Among Independent Smart Objects
	10.9 Support for Disconnected Operation
	10.10 Further Dependability Issues
	10.11 Prototype Implementation: Mobile Patient Monitoring Platform
	10.12 Conclusion
	10.13 Related Work

	11 Super-Distributed RFID Tag Infrastructures
	11.1 Super-Distribution of Radio Frequency Identification Tags
	11.2 Efficient and Redundant Large-Scale Deployment of RFID Tags
	11.3 Initial Prototype Development and Assessment
	11.4 Conclusion

	12 Fault-Tolerant Service Middleware Based on Super-Distributed Smart Entities
	12.1 Dependable Location-Aware Services for Mobile Devices
	12.2 Middleware Support for Super-Distributed Infrastructures
	12.3 Motivating Usage Scenarios
	12.4 Middleware Architecture
	12.5 Middleware Design Aspects
	12.6 Prototypical Implementation Based on RFID Technology
	12.7 Summary
	12.8 Related Work

	13 Middleware Implementation Based on Super-Distributed RFID Tags
	13.1 Motivation and Background
	13.2 Overview of Middleware Implementation
	13.3 Basic Middleware Services
	13.4 SDRI Tracking and Positioning Prototype
	13.5 Collaborative SDRI Mapping Prototype
	13.6 Conclusion

	14 iPOS: Fault-Tolerant Self-Positioning Based on Multi-Sensor Data Fusion
	14.1 Motivation and Background
	14.2 Fundamentals
	14.3 System Architecture
	14.4 Probabilistic Sensor-Fusion Algorithm
	14.5 Complexity Analysis
	14.6 iPOS Positioning System Prototype
	14.7 Experimental Evaluation
	14.8 Discussion
	14.9 Conclusion
	14.10 Related Work

	15 LuxTraceRT: Real-Time Positioning Using Indoor Lights and RFID
	15.1 Motivating Scenario
	15.2 Design Goals
	15.3 System Architecture
	15.4 System Design Aspects
	15.5 Experimental Setup
	15.6 Experimental Results
	15.7 Discussion
	15.8 Conclusion
	15.9 Related Work

	IV Social Perspective on Dependability
	16 The Social Dimension of Dependability in Ubiquitous Computing
	16.1 Reliability
	16.2 Delegation of Control
	16.3 Social Compatibility
	16.4 Acceptance
	16.5 Living in a World of Smart Environments and Augmented Objects
	16.6 Conclusion

	V Summary and Conclusion
	17 Summary and Conclusion
	17.1 Main Contribution
	17.2 Individual Contributions
	17.3 Conclusion

	VI Appendix
	A Dependability
	A.1 Definition
	A.2 Terminology
	A.3 Hardware Fault-Tolerance
	A.4 Fundamental Dependability Concepts
	A.5 Fault-Tolerant Software

	B Ubiquitous Computing
	B.1 Vision
	B.2 Background
	B.3 Ubiquitous Computing Technologies
	B.4 Human-Computer Interaction
	B.5 Context-Aware Computing
	B.6 Sensor Networks

	C About the Author
	Bibliography

