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Abstract. We describe the architecture of iPOS (short for iPAQ Positioning Sys-
tem), a fault-tolerant and adaptive self-positioning system with quality-of-service
guarantees for resource-limited mobile devices. The architecture is based on a
novel sensor modelling technique in combination with a probabilistic data-fusion
engine, which is capable of efficiently combining the location information ob-
tained from an arbitrary number of location sensors. As proof of concept, we
present a prototypical implementation and discuss an experimental evaluation of
the iPOS system.
Keywords: Positioning, sensor modelling, sensor fusion, fault tolerance, quality
of service, ubiquitous computing, mobile computing, location awareness.

1 Introduction

Location and position information is widely considered “the single most important
piece of context” used in ubiquitous computing applications [ABO02], i.e., in appli-
cations that enable anytime, anywhere computing in everyday life situations [Wei93].
Consequently, localisation and positioning capabilities are of fundamental importance
to mobile devices delivering such context-aware services and applications.

The majority of existing indoor and outdoor systems for positioning and locali-
sation rely on single or non-redundant combinations of location sensing technologies
(cf. [HB01]). Therefore these systems are prone to service disruption and interferences,
because the unavailability or failure of the single underlying technology leads to a com-
plete failure of the service as a whole. In addition, many currently available location
systems do not fully exploit the sources of location information that are readily avail-
able in existing everyday computing environments. Thus these location systems are
not able to take advantage of various new sources of location information that are –
as a side-effect – implicitly provided by the infrastructure. While technologies such as
RFID, Wi-Fi, Bluetooth and ZigBee may have been invented with a certain primary
application in mind (e.g., object identification or wireless data transfer), these technolo-
gies often leak location information during operation. Besides, the majority of existing
location systems require the deployment of specialised hardware, such as grids of cus-
tomised infrared or ultrasonic beacons, GPS receivers, which leads to additional costs.

In addition, the number of small microcomputer-equipped objects and devices in
everyday life environments is expected to increase significantly [HMNS01]. If these



devices have to be enabled to benefit from new positioning and location sensing tech-
niques, it is particularly important to cope with the resource limitations and constraints
these devices impose on potential positioning systems. A fundamental challenge of lo-
cation and positioning systems is the quality of service of the services they provide,
even more so in the case of mobile and resource-limited devices that do not feature
costly equipment and highly reliable system components. For such resource-restricted
mobile devices and computerised objects, computing resources found in the immediate
locality provide a valuable source of localised redundancy that can be exploited for the
realisation of dependable, fault-tolerant applications and services on the mobile devices
themselves [Boh07b], thus freeing these devices from the dependence on centralised
services and background computing and communication infrastructures.

The Location Stack model proposed by Hightower et al. in [HBB02] is address-
ing some of these issues by means of a universal, multi-layered design abstraction for
location-aware computing systems, providing a framework for the integration of arbi-
trary fusion techniques. Their implementation [GLHB03] is based on Bayesian filtering
mechanisms for the data fusion layer, including Kalman- and particle filters [FHL+03].
While Kalman filters are computationally efficient, they require accurate sensors with
comparably high update rates, which is not always the case with the kind of sensors
we typically find in today’s ubiquitous computing environments. Besides, the complex-
ity of particle filters reduces their suitability for the use with small, resource-limited
mobile devices. In this context, however, integrating our fusion algorithm with a low
overhead version of the Location Stack for explicit support of mobile devices could be
an interesting option.

The COMPASS location system [KB05] is a more recent positioning architecture
that also takes up the idea of fusing different sensors with the help of a probabilistic
fusion algorithm. However, so far no complete prototypical implementation and exper-
imental evaluation is available.

2 Fault-Tolerant Self-Positioning Architecture

In the following, we present iPOS (short for iPAQ Positioning System), a robust and
scalable probabilistic positioning system that addresses a number of shortcomings of
common location systems for mobile devices (MoDs). The system is based on a light-
weight map-based multi-sensor data-fusion architecture, which was explicitly tailored
to operate efficiently and autonomously as a stand-alone service on small resource-
limited devices. The fusion architecture of our system is modularised and supports
the integration of an arbitrary number of (internal) sensors and (external) third-party
positioning services. Further, our positioning system is suited to work with standard
off-the-shelf sensor hardware that is typically found in everyday life computing envi-
ronments, thus allowing to exploit existing computing infrastructures for positioning.
A special feature of our developed data-fusion architecture is the application of a novel
event modelling technique that enables the positioning system to give quality-of-service
(QoS) guarantees under certain conditions. As a proof-of-concept, we conclude with
the description and experimental evaluation of a prototypical implementation of the
iPOS system on a resource-limited handheld device.

2



2.1 Design Goals

The mobile positioning system architecture we developed and prototypically imple-
mented realises the following design goals:

– Fault Tolerance: The system is capable of tolerating the temporary or permanent
failure of individual location sensing components (location sensors) by means of a
redundant fusion architecture.

– Adaptability: The fusion architecture is designed to perform an adaptive resource
management, enabling the system to dynamically load or unload location sensing
components during runtime, according to availability and coverage.

– Self-Sufficiency: The positioning system is capable of self-sufficient local operation
on a mobile device without the need of a background service infrastructure.

– Extensibility: The modular design of our sensor fusion architecture makes it possi-
ble to easily integrate additional location sensors and location technologies.

– Interoperability: By using a uniform internal representation of location information
our systems enables the integration of arbitrary third-party positioning services.

– Versatility: The positioning system is capable of integrating both geographic posi-
tion information and symbolic location information, as well as processing local and
global (WGS-84 [NIMA00]) position coordinates.

– Quality-of-Service Guarantees: By discriminating “reliable” from “unreliable” lo-
cation sensors in our model, the fusion engine is able to provide certain quality-of-
service (QoS) guarantees.

– Support for Resource-Limited Mobile Devices: We provide a lightweight imple-
mentation of the architecture that performs well on resource-limited MoDs.

2.2 Architecture Overview

The positioning system we developed is executed on the MoD whose position is to
be established during operation. The main architectural components of the positioning
system are the resource manager, the fusion engine, the map handler, the internal event
abstraction layer, and the sensor plugins (see Fig 1).

In the context of our work, a sensor may be either a physical device or an appli-
cation that in turn preprocesses the location information of other physical devices or
applications. The sensor hardware or application can either be part of the MoD itself or
constitute an external resource, such as a remote server, for instance. A sensor plugin
is associated with one specific type of sensor. It preprocesses and transforms sensory
location information into an abstract representation of position estimates we call sensor
events. Each sensor event contains an absolute position with respect to a given two-
dimensional map model. New sensor events generated by sensor plugins are written
into an internal sensor event queue for later retrieval and further processing.

The core component of the system is the fusion engine, which processes sensor
events to calculate the current position of the MoD. During each iteration of the po-
sitioning calculation, the fusion engine takes out the most recent sensor events from
the sensor event queue and combines them by means of a map-assisted probabilistic
sensor-fusion algorithm. The maps required in the process are obtained with the help of
the map handler component, which can retrieve maps stored on the local file system or
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Fig. 1. Overview of the architecture of the positioning system

download them from a remote server. The output of the fusion engine are time-stamped
position events, which are stored in the position event queue. From that queue, the posi-
tion event server takes out the most recent position estimates and makes them available
to local or remote clients by means of a socket-based querying interface.

The resource manager is responsible for managing the different components of the
positioning service, including the initialisation, loading and unloading of components
during runtime. In particular, the resource manager controls the operation of the sensor
plugins, initialises the event queues and the map handler, starts the position event server,
and controls the operation of the fusion engine.

2.3 Map Model

The map model we used in our system consists of a two-dimensional equidistant cell
grid with square cells of equal size (e.g., cells of 0.5 m2 or 1.0 m2). Each cell within
a grid is defined by an unambiguous cell index, and by a set of geographic position
coordinates. The position coordinates may be local with regard to the map, or global
according to the WGS-84 standard [NIMA00]. The specification of two global coor-
dinates for two local reference positions in a map defines a coordinate transformation
between local and global positions.
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Each cell further contains a set of probability values for the transition to up to eight
neighbouring cells, where each value can be set to zero for indicating obstacles or walls.
A special type of cells called transition cells are used to connect a map to other maps.
The map model further supports the placement of objects onto cells. An object has a
unique symbolic identifier and a geographic position which is determined by the cell
onto which the object is placed. It is possible to create arbitrary types of objects, each
of which contains a number of specific attributes.

For instance, an object of type “Radio Beacon” may represent a physical radio trans-
mitter and contain attributes for its ID and its transmission range in meters, whereas an
object of type “WLAN-RSS-Tuple” may represent a symbolic location identifier that is
associated with a received signal strength (RSS) measurement of nearby Wireless LAN
access points that was performed at the corresponding physical position, together with
attributes describing the configuration of the measuring tool.

The map model also provides a set of basic methods for processing maps, such as
for joining and intersecting areas of a map, and for looking up and modifying cells
or objects within a map. For facilitating map operations, the map model introduces a
Region abstraction, which is defined as a set of cells, and the Clip abstraction, which
is defined as the Region containing all cells that have an occupancy probability greater
than zero concerning the current location of the MoD. The main idea of the Clip is to
narrow down the number of significant cells that have to be considered during the map-
assisted fusion process in order to enable an efficient position calculation on resource-
limited mobile devices.

2.4 Sensor Event Model

Sensor plugins generate sensor events. We say that a sensor event fired when it was
created by a sensor plugin.

For each type of sensor, a separate class of sensor events is defined that share com-
mon global properties. A sensor event contains location information in the form of
either a symbolic location identifier or a geographic position. A sensor event containing
symbolic location information we refer to as symbolic sensor event. Likewise, a sensor
event containing geographic position information we call a geographic sensor event.

The location information provided with a sensor event defines the (geographic) cen-
tre point of that sensor event. For sensor events featuring a symbolic location, the cor-
responding centre point is determined with help of the map model described earlier. For
that, each class of symbolic sensor events is assigned a separate class of objects in the
map model. Then each symbolic sensor event of that class is linked to an object of the
corresponding object class with the same individual symbolic identifier. Any such ob-
ject has to be added to the respective grid map during the learning or initialisation phase
of the positioning system. Obviously, the mapping of sensor events to objects in the map
model is bijective. Therefore, with the help of the map model, it is possible to decide
a priori which symbolic sensor events can possibly occur within the mapped area. In
particular, it is also possible to determine the symbolic sensor events that did not fire
(i.e., where not created by sensor plugins) during an iteration of the sensor event fusion
process. We exploit this ability to increase the accuracy of our position calculation in
the sensor fusion engine.
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Concerning shared properties, each class of sensor events contains a range property.
Together with the individual centre point, the range defines the spatial area of influence
of a single sensor event in the two-dimensional map model, which corresponds to a
Region in the map model. Thus the range of a sensor event class is a measure of the
accuracy of the corresponding sensor plugin and its provided location information. In
the following, whenever we speak of the intersection or union of sensor events, we refer
to the intersection or union of the respective Regions spanned by these sensor events. We
also say that a sensor event covers an individual cell if that cell is part of the Region of
the sensor event. Each sensor event class further contains a property blocking indicating
whether the area of influence of the sensor event is affected by obstacles or walls.

For instance, a sensor plugin for sensing nearby radio beacons may create a sensor
event containing the symbolic identifier of a detected beacon as symbolic location iden-
tifier. Then, by means of the map model in which a corresponding beacon object was
placed earlier and named accordingly, the geographic position of the cell containing the
beacon object is taken as the geographic position of the radio beacon. Alternatively, in
case the detected beacon already transmits its physical position, no further map lookup
is required to establish the centre point of the corresponding sensor event. For instance,
given a maximum range of 10 m for the type of radio beacon, the area of influence of
the sensor event during the map-based fusion process is determined by identifying all
cells within that range, starting from the centre point. In the process, if the sensor event
is blocking, only cells that are in line of sight from the centre point are considered.

2.5 Las-Vegas and Monte-Carlo Sensor Events

Depending on the type of sensor, position estimates vary in terms of accuracy and relia-
bility. In our system, we discern two categories of sensor plugins: (1) unreliable sensor
plugins, which we call Monte-Carlo sensor plugins, and (2) reliable sensor plugins,
which we call Las-Vegas sensor plugins. Likewise, we refer to a sensor event gener-
ated by a Monte-Carlo or Las-Vegas plugin as Monte-Carlo or Las-Vegas sensor event,
respectively.

The semantics of the Las-Vegas and Monte-Carlo sensor plugins follow the seman-
tics of the behaviour of randomised algorithms. A Monte-Carlo sensor plugin (in short:
MC-plugin) shows a deterministic behaviour in so far that it always returns a result upon
request, in our case location information encapsulated in a Monte-Carlo sensor event
(in short: MC-event), but the resulting position information is liable to be erroneous
and possibly false. In contrast, a Las-Vegas sensor plugin (in short: LV-plugin) displays
the following indeterministic behaviour: it does not always return a Las-Vegas sensor
event (in short: LV-event), but if it does, the provided location information is correct
in the following sense: it is guaranteed that the actual current position of the MoD lies
within the boundaries determined by the known accuracy and area of influence of the
respective Las Vegas sensor event.

A typical class of LV-plugins are plugins that detect the presence of radio beacons
for which the maximum range (i.e., the maximum distance from which a beacon can
still be detected) can be safely and accurately determined. Consequently, if a beacon of
that type is detected, the current position of the MoD is known to be within the area
of influence of the beacon (i.e., within the physical area in which the beacon can be
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detected). The knowledge of the maximum range yields an upper bound for the posi-
tioning error (which equals the maximum distance between any two physical positions
within the range of the beacon). The upper bound for the positioning error can be inter-
preted as an upper bound for the accuracy value of the sensor (a higher metric accuracy
value actually means a lower accuracy).

An important quality of LV-plugins is that if multiple beacons (which may belong to
different classes and therefore feature different ranges) are detected by the correspond-
ing LV-plugins, then the current position of the receiver (i.e., the MoD) by definition
has to lie in the intersection of the individual areas of influence of the involved beacons.
In the map model, this results in a Region that is equal to or smaller than the Region
covered by the beacon with the smallest range. This implies that the resulting accuracy
for the intersection of multiple beacons is higher (i.e., better) or equal to the one of the
beacon with the highest accuracy (and with the lowest accuracy value). A further im-
plication of the reception of multiple LV-events is that the current Clip (i.e., the Region
containing all cells that are candidates for the current position of the MoD, see Sect. 2.3)
can be narrowed down to the intersection of the Regions of all received LV-events.

Typical examples for MC-plugins are plugins that rely on received signal strength
(RSS) measurements of all detected senders in the vicinity of the MoD, and which
determine the best match out of previously empirically learnt RSS patterns for a number
of reference positions by means of a nearest neighbour metric, for instance. Obviously,
in case the signal strength values for some of the senders vary significantly (e.g., due
to interference or mobile obstacles temporarily blocking or reflecting the signals), the
calculated best match possibly yields a reference position that is far off the true best
match for the actual current position of the mobile device.

2.6 Operation of the Probabilistic Fusion Engine

The probabilistic fusion engine plays a pivotal role in our positioning system. Running
on top of a two-dimensional map model, the fusion engine during each iteration step
takes the sensor events stored in the sensor event queues, fuses their location informa-
tion, and stores the resulting position events in the position event queue. Finally, based
on a mobility heuristic that respects previously known positions, the new most likely
position of the MoD is determined based on the computed occupancy probabilities of
the cells in the Clip. A high-level schematic of the flow of control and operation of
the probabilistic fusion engine and the integration of the different parts of the fusion
engine is shown in Fig. 2. For a detailed formal description of the probabilistic fusion
algorithm, see [Boh07b].

As we can see in Fig. 2, the fusion engine performs position calculations in itera-
tions, each of which begins with the intention of sensor events from the sensor plugins.
Based on these sensor events, the engine computes the Clip containing the cells with
an occupancy probability greater than zero concerning the current location of the MoD.
Then the fusion engine extracts position information from the available LV- and MC-
events and merges them with the existing position probabilities (cell occupancy proba-
bilities) that were calculated and stored in the respective cells of the map model during
the previous iteration. By fusing the occupancy probabilities of previous iterations with
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Fig. 2. Control loop of the probabilistic map-based fusion engine

the newly obtained location information, a continuity of the positioning is achieved, as-
suming that subsequent positions of the MoD are spatially proximate. Further, it enables
the system to provide position estimates even in case no sensor events are available.

Based on the fundamental properties of our Las-Vegas and Monte-Carlo sensor
modelling technique, the calculation of the Clip can be performed in an efficient manner
as the intersection of all LV-events that fired during an iteration. Further, the knowledge
of the absence of an LV-event with regard to cells in the Clip that are covered by a LV-
plugin in the map model is used for implementing a negative feedback by penalising
the affected cells with a lower occupancy probability (Fig. 3-C).

In the absence of LV-events, due to the inherent inaccuracy of MC-events, the Re-
gions of any detected MC-events are joined with the current Clip to obtain the new Clip.
However, if reliable LV-events were obtained, MC-events do not affect the size of the
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Fig. 3. Exemplary Clip calculation in the grid map model based on two LV-events and on one MC-
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the reliable LV-event #3 did not fire (C), its cells have position probability zero and therefore are
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cell occupancy probabilities of the cells it occupies within the Clip (D). A darker shade corre-
sponds to a higher cell occupancy probability of the MoD

Clip, but instead only provide the fusion engine with additional position information
for the cells in the clip they cover (see Fig. 3-D).

3 iPOS Positioning System Prototype

We prototypically implemented a fully functional prototype of the positioning sys-
tem according to the system architecture presented in Sect. 2, which we called (iPAQ
POsitioning System, or in short iPOS. The term iPAQ refers to the fact that the MoD
was represented by a handheld device of type HP iPAQ (H5450 Series, PocketPC 2002).

In our system, we employed the following location sensing technologies (see also
Fig. 4): (1) active RFID beacons (i-Q8 tags and i-Card3 PCMCIA RFID reader by
Identec Solutions), (2) Bluetooth-enabled sensor nodes (BTnodes, www.btnode.ethz.
ch), (3) densely distributed passive RFID tags as part of the SDRI Positioning proto-
type [Boh07a], (4) a “smart badge” in combination with two “RFID gates”.

The two RFID gates each consisted of one RFID antenna (Softronica ANTMR5000)
connected to one RFID reader device (RIDEL5000-I, 13.56 MHz). Each reader device
was controlled by an RFID-gate application running on a notebook computer. The MoD
was equipped with a passive RFID tag (Philips I·CODE Type 1 [Phi06]) serving as a
“smart badge”. Whenever the RFID-gate application detected the presence of the badge,
it created a time-stamped RFID-gate-event containing the symbolic location identifier
(or alternatively the geographic location) of the RFID gate and the ID of the detected
tag. The RFID-gate-event was then forwarded to a tuple space managed by a centralised
server that provided a socket-based communication interface. The RFID Gate LV-plugin
on the MoD connected to this interface in order to retrieve the RFID-gate-events for its
given tag ID (badge ID).

The handheld device itself was directly connected to a BTnode which it employed
for discovering nearby BTnodes in the environment. Figure 5 shows the MoD hardware
setup. Further, for the interaction with the densely distributed RFID-tag infrastructure,
we used the SDRI Positioning System as a reference positioning service. The iPOS
positioning software on the handheld wirelessly connected to the SDRI positioning
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Fig. 4. Location sensing technologies: active RFID tags, active Bluetooth enabled sensor nodes
(BTnodes), and SDRI Positioning System [Boh07a] with densely distributed RFID tags (super-
distributed RFID tag infrastructure (SDRI) prototype [BM04])

service, which was executed on a separate notebook computer mounted on the trolley
of the SDRI Positioning System (see Fig. 4). The iPOS software was implemented in
Java using the CrE-Me 4.0 Java Virtual Machine by NSICOM.

3.1 Implemented Sensor Plugins

We implemented the sensor plugin components as independent, active modules that
are managed by the resource manager component. In the following, we list the sensor
plugins we developed and implemented based on the available sensing technologies.
An overview of the sensor plugins and their configurations is shown in Table 1.

The Active RFID LV-Plugin treats active RFID tags as individual radio beacons. For
every detected active RFID tag, the plugin creates an LV-event containing the ID of the
tag as symbolic location identifier. Consequently, each such beacon has to be inserted
as an object into the map model at the cell that corresponds to the physical location of
the beacon, to enable the fusion engine to resolve the geographic positions of the sensor
events during the fusion process. The range of the plugin depends on the transmission
power of the tags and on the sensitivity of the reader, both of which were configurable
in our case. We used a configuration that limited the transmission range of the active
RFID tags to below 3 m, resulting in a positioning accuracy per beacon that was better
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Table 1. Overview of implemented sensor plugins. The entries marked with an asterisk depend
on the characteristics of the used sensor hardware or third-party positioning service, respectively

Sensor Type Range/Accuracy Blocking
Active RFID Beacons LV ±3 m yes
Bluetooth Beacons LV ±30 m yes
SDRI Prototype LV ±0.3 m yes
RFID Gate LV ±0.5 m yes
Generic LV-Plugin LV * *
Active RFID RSS [2-m-grid] MC ±5 m yes
Bluetooth RSS [2-m-grid] MC ±5 m yes
WLAN RSS MC ±10 m no
Generic MC-Plugin MC * *

than ±3 m. The radio signals of the active RFID tags we used were blocked by walls.
Therefore the sensor events were configured as blocking.

The basic functionality of the Bluetooth-based LV-Plugin is similar to the one of
the active RFID-based LV-plugin: each Bluetooth sender (here: BTnode) is treated as
a radio beacon and its Bluetooth MAC address used as symbolic location identifier.
A reliable upper bound of the transmission range of the BTnodes was experimentally
evaluated to 30 m and set accordingly in the corresponding sensor event class. As a
result, the accuracy of ±30 m of the Bluetooth beacons was much lower than the one
of the active RFID beacons.

The SDRI Positioning LV-Plugin makes use of an existing RFID-based self-posi-
tioning system we developed at ETH Zurich (SDRI Positioning System [Boh07a]) that
directly provides location information in the form of geographic position coordinates
at a rate of approx. 1 Hz. The SDRI Positioning LV-Plugin connected to the RFID-
based positioning service via a wireless network connection and created an LV-event
for each obtained position. Further, based on the given hardware configuration and tag
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distribution density of the prototypical SDRI, the range of the LV-plugin was set to
0.15 m, and the sensor events were configured as blocking.

The RFID Gate LV-Plugin is the only plugin we implemented that makes use of a
background service infrastructure: the LV-plugin has to connect to a central server and
ask for any recent RFID-gate-event that contains the user’s RFID badge ID as identifier.
For our experiments, we placed the RFID gates such that they covered the area of a
single cell of 1 m2 in the map model, which corresponds to a range of approx. 0.5 m
of the respective sensor events. Since RFID tags cannot be detected through walls, the
sensor events were configured as blocking.

As a basis for the MC-plugins we implemented an Abstract MC-plugin based on
received signal strength (RSS) measurements of radio signals. The plugin first mea-
sures the signal strength values of all radio transmitters that are received at the current
physical location and then compares the obtained RSS values with previously stored
reference values (positions). With the help of a least-squares-metric, the known refer-
ence position whose RSS vector exhibits the minimum error compared to the current
RSS vector is chosen as the current position of the MoD. Obviously, the quality of
the positioning depends on the quality of the reference positions. In particular, if no
reference position close to the true position of the MoD is available, or if the RSS mea-
surements are distorted, the calculated position is liable to be wrong or far off the mark.
Therefore, this type of plugin is considered unreliable.

Based on the Abstract RSS MC-Plugin we created the Active RFID RSS and Blue-
tooth RSS plugins. In order to receive multiple senders per measurement, we used a
configuration with a grid-like distribution with 2 m distance between adjacent units in
the test area (see Fig. 6), which resulted in a range of up to 5 m for the corresponding
plugins. The radio signals of our active tags and Bluetooth beacons were blocked by
walls. For this reason, the sensor events were configured as blocking. Since we were
not able to access the signal strength values of the Wireless LAN interface on our iPAQ
handheld device, we couldn’t complete the implementation of the WLAN RSS plugin.

We further developed generic plugins, the Generic LV-Plugin and the Generic MC-
Plugin, which enable the straightforward integration of arbitrary third-party positioning
services that exhibit Las-Vegas or Monte-Carlo characteristics into the iPOS system.

4 Experimental Evaluation

In preparation of our practical experiments, we deployed our hardware for the sensing
infrastructure in the corridor of our office building at ETH Zurich. We also created
a grid map model of the corridor with square cells of 1 m2 size, which resulted in a
precision of 1 m2 for the iPOS position estimates and in an inherent average position
error of 0.35 m, given that the iPOS system returns the coordinates of the centre point
of the cell in which the MoD is thought to be located.

The BTnodes serving as Bluetooth senders and the active RFID tags were dis-
tributed in a grid with 2 m distance between adjacent entities, with a displacement
of 1 m between the two grids. The map model was updated by inserting BTnode- and
active-RFID-objects into the map at the respective positions as shown in Fig. 6. An area
of the corridor was also covered with densely distributed RFID tags (see area shaded
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in grey in the figure), using four RFID-tagged foil templates. In the figure, we can also
see the locations of the map objects placed for the two RFID gates (i.e., the areas cov-
ered by their antenna fields), marked with grey rhombuses (diamonds) in the grid map
model. The map objects for the reference positions that were learnt for the Bluetooth
RSS MC-Plugin are marked with small squares in the map model. We further laid out
a test track of 38 m, which started in a side hall and led in a loop through the prepared
corridor as displayed in Fig. 6.

Fig. 6. Excerpt of the grid map model showing the experimental setup and test track

Our experimental method was as follows: The handheld running the iPOS applica-
tion was put on top of the trolley that also carried the SDRI Positioning System. One
person pushed the trolley along the test track marked in Fig. 6, while a second person
initiated positioning samples at well-defined locations using a developed sampling tool.

We executed our measurements based on two different ways of traversing the test
track: (A) stop-and-go mode where the person pushing the trolley advanced one meter
(i.e., one cell in the model) every five seconds, and at each position we took a position
measurement using a sampling tool we developed, and (B) continuous mode where
the person pushing the trolley advanced at a constant speed of 0.4 m/s while a second
person took position samples after every two meters of distance the trolley had covered.

We performed six positioning experiments based on different combinations of sen-
sor plugins. An overview of the experimental configurations and the obtained position-
ing results is displayed in Table 2. For the experiments in stop-and-go mode (mode A),
we performed five test runs per configuration, collecting 39 samples per run, which re-
sulted in an overall number of 195 samples. For the experiments in continuous mode
(mode B), five test runs were performed and 20 samples were collected during each run,
yielding a total of 100 samples per configuration. The SDRI Positioning LV-plugin and
the RFID Gate LV-plugin were modelled with the accuracy of one cell each. The Active
RFID LV-Plugin was modelled with an accuracy of five meters.
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Table 2. Overview of experiments based on different combinations of sensor plugins. For each
experiment, n describes the number of collected samples, α the average error in meters, and σ
the standard deviation of the error in meters

Exp. Config. Active Plugins Mode #Runs n α [m] σ [m]
1 1 Active RFID LV

RFID Gate LV
SDRI Pos. LV A 5 195 1.14 0.97

2 1 Active RFID LV
RFID Gate LV
SDRI Pos. LV B 5 100 1.64 1.14

3 2 Active RFID LV A 5 195 1.44 1.01
4 2 Active RFID LV B 5 100 3.03 2.80
5 3 Active RFID LV

RFID Gate LV
SDRI Pos. LV
Bluetooth RSS MC A 5 195 1.25 1.25

6 4 Bluetooth RSS MC A 1 39 6.66 3.62

5 Experimental Results

By comparing experiments number 1 and 2 based on the same configuration of LV-
plugins (see Figures 7 and 8), we can see that the accuracy of the iPOS positioning
service in the stop-and-go mode was 30% higher compared to the continuous mode.
With regard to the map model, the accuracy of 1.14 m with a standard deviation of
about 1 m for the stop-and-go mode can be interpreted as follows: the average error
amounts to approx. one cell in horizontal or vertical direction, with a standard deviation
of one cell. Likewise, the error for the continuous mode in experiment no. 2 can be
interpreted as amounting to approx. one cell in diagonal direction of the correct cell in
the grid, with a standard deviation of approx. one cell. We consider this accuracy a good
result in comparison to the achievable precision of the measurements.

We found that the main reason for the decline in accuracy with increased mobil-
ity was the short delay between the creation of the sensor event and the processing in
the fusion engine, which in particular affected the location information obtained via
wireless connection from the SDRI Positioning LV-plugin and from the RFID Gate LV-
plugin. We can see in Figures 7 and 8 that the average error approximately doubles at
those places along the path where the SDRI Positioning and RFID Gate plugins were
encountered by the MoD. This observation also holds true for the results obtained using
only the Active RFID LV-plugin for positioning: the average error of the continuous
experiment (no. 4) increased by approx. 110% in comparison to the stop-and-go exper-
iment (no. 3), with an even higher increase of the standard deviation.

The stop-and-go experiment based on the active RFID tags modelled as a reliable
LV-plugin further showed that the average and maximum accuracy of the majority of
position estimates calculated by the iPOS fusion engine were contained in the range
of the corresponding LV-plugin. Comparing the performance of the Active RFID LV-
plugin in experiments no. 3 and 4 with the overall performance of the multi-plugin
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Fig. 7. Positioning errors for experiment no. 1, configuration no. 1, mode A. Plugins: Active
RFID LV-plugin, RFID Gate LV-plugin, and SDRI Positioning LV-plugin (runs = 5, n = 195,
α = 1.14 m, σ = 0.97 m)
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Fig. 8. Positioning errors for experiment no. 2, configuration no. 1, mode B. Plugins: Active
RFID LV-plugin, Bluetooth LV-plugin, RFID Gate LV-plugin, and SDRI Positioning LV-plugin
(runs = 5, n = 100, α = 1.64 m, σ = 1.14 m)

experiments no. 1 and 2, we can see that the accuracy of the fusion process is indeed
determined by the accuracy of the most accurate active LV-plugin at a time. In our case,
this concerned the stretches along the test track where the areas of influence of the RFID
Gate LV-plugin and of the SDRI Positioning LV-plugin were entered by the MoD.

Finally, we performed an experiment where we added the Bluetooth RSS Plugin to
the plugins of configuration 1 Here we can see that the overall accuracy has slightly
decreased in the average case, with a few outliers with regard to the maximum position-
ing error. The reason for this effect was that the Bluetooth RSS MC-plugin on its own
proved to be very unreliable and inaccurate, which had a pronounced negative effect
whenever only MC-events and no LV-events were detected, as the Clip was then recal-
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culated based on the potentially very inaccurate MC-events (see experiment no. 6). In
the experiment based on LV-plugins only, the Clip was only extended according to the
mobility heuristic and not changed completely in the absence of LV-events. To address
this issue, we changed the Clip calculation procedure in the case that only MC-events
are obtained to joining the existing Clip with the Regions of the MC-events rather than
replacing the Clip with the union of the Regions of the MC-events.

The Active RFID LV-Plugin and Active RFID RSS MC-Plugin could not be em-
ployed in parallel on the MoD as both plugins made use of the same RFID hardware
and required incompatible driver settings. For a complete account of the performed
experiments and an in-depth evaluation and discussion of the results refer to [Boh07b].

5.1 Discussion

In the following, we discuss our experimental results according to the taxonomy for
assessing location technology proposed by Hightower [HB01], which considers scala-
bility, cost, recognition and limitations.

Scalability. A major advantage of the iPOS positioning system is its extensibility as a
result of its open plugin architecture and the support of global positioning coordinates
according to the WGS-84 standard [NIMA00]. This makes it possible to integrate arbi-
trary location sensing technologies and third-party positioning services alike with little
effort. For that reason, the iPOS system scales well in terms of versatility and variety of
supported location sensing technologies.

As a consequence, the iPOS system is capable of exploiting a large number of sensor
technologies and sensing infrastructures as they are present in ubiquitous computing
infrastructures. For instance, the system can interface existing positioning services as
well as extract location information from wireless network infrastructures, Bluetooth
hotspots, RFID-tagged carpets (e.g., [Vor05]), or stationary sensor networks. The iPOS
system therefore also scales well with regard to cost as a factor.

The iPOS system also scales well with respect to the number of sensor plugins that
can be operated in parallel. The main limiting factor for the number of supported active
plugins is the amount of available system resources on the MoD, as the number of cells
that have to be processed in the map-assisted fusion engine is constant in the presence of
LV-events, and increases linearly with the number of MC-events (or MC-plugins) that
have to be processed in case no LV-events are available. In the worst case, the number
of multiplications per cell in the Clip is linear with regard to the number of obtained
sensor events. Further, in our system the normalisation of the occupancy probabilities
is performed on the fly during the fusion process and does not pose a performance
issue. As a result of this low overhead and complexity, the positioning architecture is
particularly suited for the use on lightweight, resource-limited mobile devices.

Concerning the maintenance of the map model, the system is further capable of
performing a form of self-organisation: if an LV-plugin creates an LV-event that already
contains geographic position information in addition to its symbolic location identifier,
a corresponding LV-object can be automatically inserted into the map model. This has
two advantages. Firstly, the newly mapped LV-event can now be considered during the
negative feedback calculation in the fusion engine. Secondly, the Region of the mapped
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LV-event can be pre-calculated and stored with the map model, increasing the efficiency
of the fusion procedure on the resource-limited mobile device during runtime.

Cost. Principally, the iPOS system can be configured to make use of any readily avail-
able hardware (on the mobile client executing the iPOS system) or infrastructure (in the
user’s environment) that can be exploited for location sensing and positioning. There-
fore, in general, the usage of the iPOS system does not result in extra costs. A MoD
featuring Wireless LAN and Bluetooth connectivity, for example, can use these avail-
able radio interfaces for location sensing. The purchase of additional location sensing
hardware, such as a mobile RFID reader or a GPS receiver module, may be considered
if the needs of the user require it and/or if the physical support infrastructure is already
available (e.g., stationary radio beacons as part of a locally distributed sensor network).

Recognition. Our experimental results indicate a good accuracy of the fusion-based po-
sitioning system in comparison to the accuracy of the individual sensing technologies.
Based on our developed fusion engine and the explicit modelling of reliable sensor
events, the iPOS system is capable of providing quality-of-service guarantees. Firstly,
the fusion engine guarantees that overall accuracy of the fusion process is at least as
good as the accuracy of the most accurate LV-event that was part of the input during
one iteration. Secondly, given that the LV-plugins were modelled with care and the po-
sitioning system does not suffer from timing or synchronisation problems, the iPOS
system can provide quality-of-service guarantees with regard to the achieved accuracy
if at least one LV-plugin generates sensor events: the position of the mobile device is
guaranteed to be within the area that corresponds to the current Clip in the map model.

Limitations. During our experiments, we recognised time synchronisation as an impor-
tant challenge: the processing of sensor events with inaccurate timestamps can result
in a degraded quality-of-service of the probabilistic fusion process. Possible solutions
are the use of explicit time synchronisation mechanisms or the increase of the ranges of
time-critical sensor events to account for a certain acceptable maximum delay.

An implementation-specific limitation of our system is the use of a fixed cell size
per map. Variable cell sizes would allow a more fine-grained resolution for specific
areas of a map if needed, and avoid an unnecessarily high cell density in areas where
applications are satisfied with less precise position information.

6 Conclusion

We presented a positioning system for ubiquitous computing that emphasises the robust-
ness and fault tolerance of the core functionality, namely self-localisation of a resource-
limited “smart object” or mobile device. This is achieved by means of redundant loca-
tion sensing and data fusion. The system architecture allows for the simple integration
of multiple sensors due to the loose coupling between the acquisition of sensory location
information on the one hand and the fusion-based positioning algorithm on the other.
This enables a seamless transition between areas where different positioning technolo-
gies are available, including smooth hand-offs between indoor and outdoor areas. The
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open plugin architecture further facilitates the integration of arbitrary location sensing
technologies and existing third-party positioning services. In addition, by using a grid
map model, the iPOS system is capable of integrating both symbolic or geographic
representations of position information, as well as local and global geographic position
coordinates. A special feature of the fusion algorithm is that, by distinguishing reliable
from unreliable sensor plugins, it is able to provide quality-of-service guarantees for po-
sitioning results under certain conditions. By means of a prototypical implementation
of our system on a resource-restricted handheld device, and based on a set of practical
experiments, we provided first evidence of the feasibility of our approach.
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