

Seamless Integration of Heterogeneous Devices and
Access Control in Smart Homes

Ji Eun Kim1,3, George Boulos3, John Yackovich3, Tassilo Barth4, Christian Beckel2, Daniel Mosse3

1 Bosch Research and Technology Center, Pittsburgh, PA 15203, USA
2 Corporate Sector Research and Advanced Engineering, Robert Bosch GmbH, Stuttgart, 70442 Germany

3 Computer Science Department, University of Pittsburgh, Pittsburgh, PA 15213, USA
4 Computational Linguistics Department, Saarland University, Saarbruecken, 66123, Germany

jieun.kim@us.bosch.com, gwf5@pitt.edu, jcy8@cs.pitt.edu, tbarth@coli.uni-sb.de, christian.beckel@de.bosch.com, mosse@cs.pitt.edu

Abstract—The recent trend of ubiquitous access to embedded
physical devices over the Internet as well as increasing
penetration of wireless protocols such as ZigBee has raised
attention to smart homes. These systems consist of sensors,
devices and smart appliances that can be monitored and
controlled remotely by human users and cloud services. However,
the lack of a de facto communication standard for smart homes
creates a barrier against the interoperability of devices from
different vendors. We address this challenge by proposing a
holistic, extensible software architecture that seamlessly
integrates heterogeneous protocol- and vendor-specific devices
and services, while making these services securely available over
the Internet. Our architecture is developed on top of the OSGi
framework and incorporates a semantic model of a smart home
system. As a result, we achieve semantic interoperability – the
ability to integrate new applications and drivers into the deployed
system during runtime. Furthermore, we integrate a new access
control model for specific smart home scenarios. As a proof of
our concept, we demonstrate the seamless semantic discovery of
home devices at runtime by integrating several protocols
including X10, Insteon, ZigBee and UPnP into a real test. Using
smart phones and cloud services together with our home gateway
implementation, we further demonstrate the ease of integration
of new applications and drivers.

Keywords- smart home; interoperation; semantics; access control

I. INTRODUCTION
Smart home systems provide automation capabilities that

allow home owners to have more complete control over their
home, and promote energy efficiency that allows them to save
money on energy bills. These smart home solutions integrate
many devices having different capabilities such as intrusion
detection, video surveillance, fire detection, patient health
monitoring and entertainment. Many of these devices use
different communication protocols that are mostly
incompatible with each other. Examples of such protocols are
power line communications like X10 [1] or Insteon [2],
wireless communications (ZigBee [3], Z-Wave [4]), IP-based
UPnP (Universal Plug-and-Play) [5], SOAP-based web
Services on devices such as DPWS (Device Profiles for Web
Services) [6], Web of Things [7] using RESTful Web services
and many more proprietary protocols from diverse
manufacturers.

Although the market prediction and current technological
trends look promising, we observed that no de facto

communication standard exists in the smart home. This
hinders the integration of different services (e.g., energy
management, security). Therefore, we propose a smart home
software architecture based on the OSGi (Open Services
Gateway initiative) framework that seamlessly integrates
heterogeneous protocols and diverse device types used in
home networks. Our aim is to enable end users to add new
devices on demand, regardless of the discovery peculiarities
imposed by the particular communication protocol. In
addition, since device access by applications or end users
should not depend on installation details, we introduce an
abstraction layer based on a simple semantic domain model.

Furthermore, more devices connected to the home result in
more diverse groups of users and services that interact with
smart home solutions. This requires a new smart home access
control concept. For example, the smart home system should
not allow a utility company to access the home owner’s
health-related data from medical devices. To satisfy this
requirement, we propose a new access control model and its
implementation supporting our policy model for different
users, permissions and multi-attributes including user roles,
device type, location, device status and time.

The main contributions of this paper are as follows:
§ Analysis of a set of home network protocols with regard

to their discovery and integration requirements.
§ An extensible home gateway architecture that allows

heterogeneous devices to be flexibly installed, managed
and accessed during runtime.

§ A novel access control mechanism specific to smart home
systems.

§ The realization of the proposed concept by demonstrating
how diverse devices can be integrated and accessed by
end users.

The remainder of the paper describes related work in
Section II, details of driving use case scenarios in Section III,
our proposed overarching smart home architecture in Section
IV and the home gateway architecture including device stack,
discovery as well as usage of devices in Section V. We present
the access control mechanism in Section VI and our
demonstrator in Section VII. In Sections VIII and IX, we give
an outlook to future work and conclude our paper.

II. RELATED WORK
Related work is categorized into the research areas of home

network standards, smart home architectures targeting
interoperability, and smart home access control mechanisms.
In the following, we discuss each of these aspects separately:

Home network standards: Prevailing home network
standards use different communication media (e.g., power
line, various RF bands), device address schemes of static or
dynamic addresses, and different device discovery
mechanisms. Low data rate protocols such as X10 and Insteon
do not provide device descriptions. ZigBee, KNX [8] and
EnOcean [9] provide device descriptions in the form of
standardized profiles specific to domains such as home
automation. The UPnP and DPWS standards use XML to
describe device information. Semantic descriptions are not
provided by any of these home networks. Security
mechanisms of these protocols vary in behavior. Examples are
pairing mechanisms of devices, checksums of message
payload and data encryption techniques using symmetric keys.
Due to these diverse and often incompatible mechanisms from
different network standards, smart home systems in the market
remain fragmented and provide only partial solutions
addressing single protocols and subsets of devices.

Smart home architectures: Despite this heterogeneous nature
of home network standards, existing smart home research
generally assumes a homogeneous underlying architecture.
MavHome [10], for example, predicts activities in a home and
makes the home act as an intelligent agent providing optimal
support for its inhabitants. In [11] the authors address the
important role of context for smart home applications by
providing adaptive middleware and APIs that provide context
to applications. Projects by Kawsar et al [12] and Zhang and
Brugge [13] aim to assist end users to build their own
individual smart home applications. While these visions are
important for the success of smart homes, dealing with device
and service heterogeneity is a crucial requirement for them to
be realized.

There are a number of similar architectural approaches that
target interoperability on the network protocol level, for
instance, DOG (Domotic OSGi Gateway) [15], Hydra [19] and
a project by Peláez [30]. All of them are based on OSGi and
use a semantic model for abstraction. The device
interoperability is achieved by a multi-layer device stack
which roughly consists of drivers, common adapters for
similar device types and a high-level representation described
semantically by a domain model. However, none of them
gives a clear account on how devices communicating over
different protocols are discovered. On the contrary, we present
a complete device discovery workflow: plug and play of
heterogeneous devices during runtime, extensibility to new
devices that are not foreseen during system development, and
the use of a barcode reading functionality with smart phone
cameras as a unique approach to improve usability.

Moreover, our approach integrates cloud services to increase
coverage of the device discovery process and to extend the

smart home functionality with new applications, drivers, and
computationally intensive services. The authors of [11] present
an architecture to integrate cloud services and smart home
networks. However, unlike us, they neither implement the
architecture in a prototype nor employ it directly in a user
interface.

Access control: The authors in [20] provide RBAC (Role
Based Access Control) for the OSGi service environment and
use XACML (eXtensible Access Control Markup Language)
[21] for their policy descriptions. However, the authors do not
address other important attributes in our policy model, such as
device type, location, device status and current time.

In summary, previous work covers specific attributes of
smart homes such as communication protocols, semantic
description of devices, access control schemes, and user
interaction. The contribution of this paper is to investigate a
holistic extensible smart home architecture that enables these
concepts to play together and to prove it with our prototypical
implementation.

III. DRIVING USE CASE SCENARIOS
A smart home user study [29] uncovered that high cost of

ownership, inflexibility, poor manageability and difficulties in
achieving security constitute four barriers for broad adoption
of home automation. We find that the heterogeneous nature of
the smart home system as well as the stakeholders is an
intrinsic cause of these barriers. This section describes three
scenarios that are crucial to our smart home solution.

First, home owners often add home devices incrementally
over time due to limited budgets and innovations in the
market. Therefore, the combined process of seamless plug and
play of devices and discovery of semantic services is necessary
to allow flexibility in managing smart home systems. In our
scenario, a home owner brings a new device (e.g., Insteon
dimmer light) to the home. She uses her smart phone camera
to scan a barcode of the device. Then the smart home system
provides a corresponding discovery wizard for the device
installation. The smart home system connects to the
application store in the cloud in order to download relevant
software drivers and basic applications recommended by the
system. Upon the home owner’s approval the software can be
deployed on the smart home system. Once this discovery
process is completed, the home owner is able to access the
discovered device remotely using his/her smart phones or
other user interface devices.

Second, new smart home applications should be developed
without detailed knowledge about devices and protocol-
specific information. Instead, the smart home system should
allow the applications to rely on an inference capability.
Assume that a developer wants to develop an application to
provide a service to turn off all lights on the first floor of a
smart home if there is no one present for more than a certain
period of time. Since every home has different configuration
of devices types, the developer should be able to get a list of
available devices with a certain level of abstraction. In our

scenario, the developer would request a list of the available
lighting devices using the abstract interface and get the
corresponding device states to determine the occupancy status
without knowing the device address, protocol and other
configurations.

Third, our smart home system connects many different
devices, which can be used by diverse users. The type of users
include adults and children in family, visitors such as
babysitters, and service providers (e.g., utility companies and
professional healthcare givers) accessing smart home remotely
in form of services. This requires suitable authentication and
authorization for different users and devices. We provide a
mechanism that enables the home gateway to authenticate
different roles of users and authorize their different requests.
For example, we address the need to prevent a healthcare giver
from accessing the home owner’s non-healthcare related
devices. In addition, our scenarios include access control that
utilizes device status, device location and current time as
access control attributes.

IV. OVERARCHING SOFTWARE ARCHITECTURE
Our smart home system (Figure 1) consists of a home

gateway, which connects different types of home devices and
provides standard interfaces that are accessible through web
services by using smart phones or any web-based user
interface devices. Home devices are categorized into end
devices and controller devices. End devices are sensors and/or
actuators, such as temperature sensors, video cameras, motion
sensors, smart appliances, plug-in modules or any devices that
provide some direct smart home functionality. Controller
devices do not offer specific services within the home. Instead
they are gateway-type devices that allow the home gateway to
communicate with end devices. They typically connect via
USB or Serial ports to the home gateway. Examples of these
are modems such as the Insteon PowerLinc model 2413s (RS-
232), X10 Active Home USB controller, and the Digi XStick
Xbee USB adaptor. For protocols like UPnP, which work on
top of IP, the controller device aspect is more implicit. The
only hardware required to communicate with an UPnP device
is a network card, which can be the controller device.

The home gateway connects to a cloud solution center that
holds an application store and provides cloud services. The
application store manages the dependencies of software and
home devices, and downloads software drivers and
applications to the user’s home gateway. A typical cloud
service, for example, is a video surveillance service requiring

large amounts of storage.

V. SMART HOME GATEWAY ARCHITECTURE
Important architectural requirements for our smart home

system are interoperability and dynamic integration of many
types of drivers and devices. Different types of devices and
services can be added and removed seamlessly during runtime,
and services within the system need to discover the existence
of other services with which they need to interact. To tackle
this problem, we build our system on top of the Java-based
OSGi framework, which enables services to be plugged in and
out at runtime. The OSGi device access service facilitates the
process of plug and play of devices and services through the
device attachment phase. The OSGi event admin service is
responsible for the communication (e.g., “new device
registered”) between components while keeping
implementations independent of one another. Figure 2
illustrates the software building blocks of our smart home
gateway. Our architecture employs a device stack and a
dynamic message handling framework that processes
commands in different ways depending on the context. The
HIM (Hardware Interface Manger) detects any controller
device that is connected to the system hardware. The
Deployment Manager connects to the application store in the
cloud and forwards to it properties of controller devices
discovered by the HIM in order to download proper drivers for
new devices. It manages installation of software and update of
the home gateway profile in the cloud. Access Control

Figure 2: Core software building blocks of Home Gateway

Figure 1: High-level architecture for the smart home

Figure 3: Device Stack (a, left) and an instance of Insteon device (b, right)

manages authentication and authorization for different
requests. Remote access is available only through Restful web
services.

A. Smart Home Device Stack and Discovery
Our smart home device stack (Figure 3-a) allows for

uniform services to access diverse types of devices. SHService
(SmartHomeService) represents a service provided by a device
in a protocol-agnostic way. SHDevice (SmartHomeDevice)
represents a proxy to a physical end device. This object
contains common home device information such as the
device's URI (Universal Resource Identifier), device type
(e.g., video camera), services supported by this device,
protocol information and device location. Service Adaptor is
specific to a protocol implementation for SHService.
Controller Driver represents the features available by the
controller device, including the low-level handling of
commands. It is responsible for either acting as the base driver
or communicating with lower-level hardware drivers such as
USB and Serial communication to send and receive
information from the device.

Figure 3-b shows an example of the device stack. The
Insteon device’s two capabilities of turning on/off and
dimming the lamp are represented as two protocol-agnostic
services of OnOffService and DimmerLampService.
InsteonOnOffAdaptor and InsteonDimmerLampAdaptor are
Insteon protocol-specific implementations to turn on/off and
dim the lamp device. InsteonPowerLinc ControllerDriver is an
implementation of the Insteon controller driver which sends
commands through USB communication.

New Controller Device discovery: We describe the controller
discovery through an example illustrated in Figure 4. Upon the

plug-in of a controller device (such as the PowerLinc RS232),
the HIM detects a new controller and sends controller device
information to the DeviceFactory module. The DeviceFactory
module, which is responsible for the life cycle of devices,
creates a Controller Device Object with device information,
and registers a "new device" event. The OSGi Device Manager
detects this event and starts the matching process of Controller
Device Object and the corresponding driver (Controller
Driver). If no driver is found, the OSGi Device Manager
contacts Driver Locator, an OSGi Service interface for
locating drivers for a device. Our implementation of Driver
Locator calls Deployment Manager, which is responsible for
downloading and installing the required software bundles from
the application store in the cloud. The application store
manages software dependencies of the connected devices and
other properties such as cost of software packages. Once the
installation is complete, Device Driver registers a Controller
Driver and Device Manager restarts the matching process, and
Controller Device Object finally matches with Controller
Driver.

New End Device discovery: Each protocol has its own device
discovery mechanism. We categorize discovery mechanisms
into three types: manual, semi-automatic and automatic device
discovery.

Manual discovery is device discovery that must be done
entirely outside of the protocol specification. One example is
X10, which provides no means for automated discovery of
devices. In these instances the home gateway must derive all
information about the device via user input. Semi-automatic
discovery applies to protocols that support some level of
device discovery using the protocol, but still require human
involvement. Insteon is an example of semi-automatic
discovery in that the user is required to either 1) input the
hardware address of a device to discover it, or 2) press a
hardware button on the device to initiate a discovery mode.
The ZigBee protocol also falls into this category of home
automation profiles.

Automatic discovery does not require any user interaction
unless the system wants to get additional (non-protocol)
information specific to the user’s environment. An example of
automatic discovery is the UPnP protocol which detects and
adds new devices automatically to the network system. In our
system, we ask users to confirm the automatically discovered
device and ask them to provide semantic information such as
location and a user-friendly name.

Figure 4: New controller discovery

Figure 6: ZigBee End-Device Discovery Process

Figure 5: ZigBee End device Discovery

Device	
D is covery
Manager

Z igBee
D is coverer

Ins teon
Dis coverer

Z igBee
C ontroller	 DriverUI

P roxy

Ins teon
C ontroller	 Driver

…

DeviceFactory OS G I
DeviceManager

Deployment
Manager

DriverL ocator
Impl

	 	

Manual discovery and semi-automatic discovery rely on
user interaction to add new devices to the smart home system.

To mitigate the complexity of the discovery process, our
architecture utilizes a camera on a smart phone device, which
is capable of scanning the barcode of devices and sending the
barcode to the application store which manages the discovery
parameters specific to the device. Depending on the discovery
parameters returned by the application store, we provide users
with a corresponding wizard to guide them to easily add the
new device.

At the home gateway, we introduce Device Discoverer
modules which are specific to each protocol. Depending on the
input from the smart phone, the home gateway calls the
corresponding discoverer to add the new device.

Figure 5 and Figure 6 illustrate an example of new ZigBee
end device discovery. In our scenario, the user does not know
which discovery mechanism ZigBee supports. She scans the
barcode of the ZigBee end device with her smart phone
camera which triggers the proper wizard to discover the new
device. The smart phone sends the discovery request with
parameters from the application store in the cloud to the home
gateway. The home gateway finds the corresponding
discoverer which sends a broadcast message to the local
ZigBee network. This is equivalent to pushing a button on the
controller, through ZigBeeController Driver. Once a new
device is discovered, similar to the controller device discovery
process, Device Factory creates a new device object
(SHDevice) and OSGi Device Manager matches the
corresponding Service Adaptors for that device. Service
Adaptors, in addition to matching to SHDevice object
instances, must be assigned to a Controller Driver in order to
execute commands.

B. Message Framework
We introduce a smart home internal message (SHMessage)

to communicate with different software modules in the home
gateway. SHMessage can represent various types of
framework messages, such as command invocation messages
(e.g., turn on kitchen lights), or state change messages (e.g.,
data updates from a motion sensor if it detects motion). To
provide a uniform way of accessing the SHMessage, the
concept of Message Helper is provided. Message Helper

adopts the Decorator design pattern [22] that encapsulates the
SHMessage object and provides methods to access its fields.
SHMessages are handled in a centralized yet dynamic way
using a mixture of Chain of Responsibility and Strategy design
patterns. A SHMessage is handled by invoking a list of
Message Handlers, each of which is a logical entity
responsible for executing a specific task such as raising an
event throughout the system or logging the message. The list
of Message Handlers is constructed on-the-fly by the Chain
Factory module, which uses the message type to derive the
purpose of the SHMessage and how it should be handled. In
this way we provide an extensible framework where handlers
may be added and removed dynamically.

Figure 7 illustrates how our message framework works for
an example service. A web service creates a SHMessage with
priority and timestamp to invoke an action on a device (in this
example setting the temperature value) and inserts it in the
queue. The Chain Factory then constructs the chain of
Message Handlers that will handle the message. In this
example, Event Handler raises a new event to any modules
that are interested in being notified of this particular type of
occurrence (the set temperature command). Following this the
LoggingHandler handles the message, which will record the
execution of the message in the log. Finally the
ServiceInvocationHandler carries out the message's purpose
by sending the message's intended command to the appropriate
ControllerDriver.

C. Semantic Integration
Our architecture incorporates a semantic model that enables

new applications to be developed independently from the
concrete environment in which they are deployed. The
semantic model is formalized as an ontology. Ontologies
translate a domain of interest into a set of concepts, properties
and relations governed by strictly formalized semantics.
Automatic inference operations can draw implicit conclusions
from the explicitly stated knowledge.

Consider a typical yet simple example application such as
“turn on all lights on the first floor”. The application will use
an abstract “lighting” super-type to retrieve all possible lamp
devices. Moreover, based on the specified device location and
the contextual knowledge (e.g., kitchen is on the first floor), it
has to infer that devices located in the kitchen are also located
on the first floor. After analyzing such examples, we consider
the following properties essential for the semantic knowledge
in the smart home domain and its potential use by new
applications:
§ Taxonomy of home devices and home environment to

allow for abstraction and on-the-fly semantic device
retrieval, together with contextual knowledge (e.g.,
location and time) required for context-aware
applications.

§ Reasoning on the knowledge base to infer implicit
knowledge from a minimum number of explicit facts.

§ APIs to retrieve and modify semantic knowledge without
knowledge about formal ontology descriptions.

Figure 7: Message Framework

	 	

Knowledge on the smart home system has been addressed
by domain ontologies such as DogOnt [15] and Hydra [19].
We build our semantic model on top of DogOnt. Figure 8
shows an excerpt from our adapted domain ontology which
supports the example application presented above: transitive
location properties (isIn or contains) enable contextual
reasoning. The concrete lamp device instance is grounded in
the multi-level device taxonomy and connected to the services
it offers, which allows for abstract semantic device retrieval.

We formalized the ontology using the Web Ontology
Language (OWL) [18], because it is well supported by toolkits
and reasoning engines. Smart home applications require fast
responses, making efficient reasoning engines especially
important. Such high performance reasoning can be achieved
when reducing the expressivity of the model by excluding
certain constructs from OWL. In order to benefit from large
expressivity and also perform fast reasoning we use different
components for offline (consistency checking, device instance
classification) and online (knowledge retrieval) reasoning.

Online reasoning along with data storage is handled by
OWLIM [23], a fast and scalable reasoning engine. However,
OWLIM excludes some constructs important to automatically
detect an inconsistent model (such a model might indicate a
configuration mistake). One example is disjointness of device
classes, which prevents a device from being simultaneously
configured, e.g., as a lamp and a TV. Thus, we use the more
powerful Pellet [24] reasoning engine to guarantee the
consistency of the model and fully classify device instances
during discovery and gateway startup.

We provide a common Java-based interface to these
engines, with simple methods to retrieve and modify device
instances. We support location, device class and device ID as
filter options. Within this framework, there should be no need
for application developers to be proficient with OWL-related
formal methods.

VI. ACCESS CONTROL FOR THE SMART HOME
In this Section we propose a novel access control

mechanism for the smart home.

A. Policy Model
Our policy model includes different roles (e.g.,

administrator, adult, kid). A user can be a member of many
roles. The policy model has four permission types: user
management, device management, controlling device, and
monitoring device. User management permission represents
the ability to add, remove and modify user roles. Device
management permission represents the ability to add, remove
and modify devices. Controlling device permission represents
the ability to issue a command to a device such as opening a
door lock or turning on a light. Monitoring device permission
represents the ability to get state information from sensor
devices, which includes getting temperature feed, getting heart
monitor feed, video streaming.

A smart home policy model represents fine-grained access
policies similar to the ones we enforce in real life. We
identified four attributes capable of expressing a wide range of
rules when combined. The device type attribute limits the
access to a given device type (e.g., light devices). The location
attribute determines access to the devices in a specific
location. It also limits access to a device by restricting user
location at access time. Device status limits the access to a
device by restricting the status of the device at that time. The
time attribute limits the access to a device for a (possibly
recurring) period of time. The policy maps a user role with
permissions on a device with a collection of attributes.

The device type attribute is important in the smart home
domain, because our system interacts with different user roles
(e.g., utility company, healthcare provider) from outside the
home with limited access. Also, a family usually consists of
different age groups which often require different access
policies for safety or other purposes. The location attribute is
useful for more fine-grained control. A house resident can
limit the access of some places within the home for visitors.
For example, a visitor may be allowed to control devices in the
living room, but not in the bedroom. Device status is also
required especially concerning future smart grid integration.
One possible scenario in the future smart grid is that the
service provider should not turn off the laundry machine while
the machine is on. The time attribute provides users with a
flexible way to control access during different times of the
day, such as common parental control schemes. For example,
parents may only allow their kids to access entertainment
devices (e.g., television) during specified time durations.

Figure 8: Part of the ontology (red arcs: inferred relations; dashed boxes:
knowledge for a smart home instance; solid boxes:generic domain knowledge)

Figure 9: Access Control Design Concept

B. Access Control Architecture and Design
To realize access control within our architecture, we develop

a hybrid approach of OSGi User Admin service and XACML.
While the OSGi User Admin service is moderately expressive,
it does not allow us to express the multitude of variables
introduced in our policy model. Thus, we use it only to
represent subjects (user roles) and assist in our authentication
process, while XACML specifies and enforces policy given
subjects. Figure 9 illustrates how access control concepts are
implemented in our architecture. The client request is
transformed into new internal messages (SHMessage
discussed in Section V.B). Each message is wrapped with an
authentication header which contains a flexible form of user
credentials such as username/password or an authentication
token. The message is then enqueued within the message
framework for execution. AuthenticationHandler consults the
OSGi User Admin service to validate given credentials and get
the user’s roles. The AuthorizationHandler fulfills the role of
PEP (Policy Enforcement Point) as specified by XACML. It
checks the authorization object of the message (representing
the subject), the intended action and the object of the message,
as well as other attributes such as location and time, and
submits an XACML query based on this information to PDP
(Policy Decision Point). PDP evaluates the XACML policy to
see if the intended action (e.g., turn on an entertainment
device) is indeed an authorized one. If the policy allows the
request, the PDP will refer the message to the next handler for
further processing. If the policy does not permit the action, the
message is denied and dropped.

Figure 10 is an example of the XACML policy used in our
demonstrator, permitting kids to turn on entertainment devices
only before 7pm.

VII. PROOF OF CONCEPT
We demonstrate our smart home architecture and design by

implementing a prototype that consists of an actual home
gateway, real devices and a smartphone as a user interface.
The prototype realizes discovery of selected new devices and
integrates services based on semantic information. Our access
control concept is also demonstrated with example policies
covering selected users, devices and services.

The home gateway prototype is running on Ubuntu 9.04,
supporting the OSGi implementations of ProSyst [25] and
Equinox. It integrates devices based on X10, Insteon, ZigBee
and UPnP. We have integrated a variety of different devices:
sensors (motion, water leak), on/off adapters for home
appliances and dimmer lamp adapters, RF transmitters to
control TV, and video surveillance cameras. For the user
interface devices, iOS and Android devices are used. The
cloud solution center currently supports the application store
component, which is deployed in our private cloud. Figure 11
shows our demonstrator with selected devices.

During runtime, the user connects X10, Insteon and ZigBee
controller devices via USB to the home gateway. The home
gateway then detects the presence of new controller devices
and creates new controller device objects. The UPnP drivers
discover a new UPnP video camera when it is plugged into the
network and send a notification to the user’s smartphone
(automatic discovery). For other end devices, our
demonstrator uses iOS Android native apps to start discovery
of end devices by scanning the barcode of the devices. The
devices are discovered semi-automatically and manually as
discussed in Section V.A.

We demonstrate the message passing and the semantic
abstraction layer by implementing a specific application. The
user can use her smartphone to turn on and off devices of a
certain class (Light, Entertainment) located in a certain room
(GuestRoom, Kitchen). This sample application was
implemented by a developer without particular knowledge
about OWL-related technologies, using only our interface to
the semantic model.

The demonstrator also contains a policy model to show

<Rule RuleId=”Rule_6” Effect=”Permit”>
<Target><Subjects><Subject>
<SubjectMatch MatchId=”string-equal”>
 <SubjectAttributeDesignator DataType=”string” AttributeId=”group”/>
 <AttributeValue DataType=”string”>Kids</AttributeValue>
</SubjectMatch>
</Subject></Subjects>
<Resources> <Resource>
<ResourceMatch MatchId=”string-equal”>
 <ResourceAttributeDesignator dataType=”string” AttributeId=”domain”/>
 <AttributeValue DataType=”string”>Entertainment</AttributeValue>
</ResourceMatch>
<ResourceMatch MatchId=”string-equal”>
 <ResourceAttributeDesignator DataType=”string” AttributeId=”status”/>
 <AttributeValue DataType=”string”>On</AttributeValue>
</ResourceMatch></Resource></Resources>
<Actions> <Action>
<ActionMatch MatchId=”string-equal”>
 <ActionAttributeDesignator DataType=”string”AttributeId=”action-id”/>
 <AttributeValue DataType=”string”>control-device</AttributeValue>
 </ActionMatch>
 </Action></Actions> </Target>
<Condition FunctionId=”time-less-than-or-equal”>
 <Apply FunctionId=”time-one-and-only”>
 <EnvironmentAttributeDesignator DataType=”time” AttributeId=”current-time”/>
 </Apply>
 <AttributeValue DataType=”time”>19:00:00</AttributeValue>
</Condition>
</Rule>

Figure 10: Example of XACML Policy (shortened)

Figure 11: Overview of our demonstrator

access control for the different users, permissions and
attributes discussed in Section VI. Users can remotely access
discovered devices using smart phones from anywhere based
on the access control policy. Our example policy grants all
permissions to the users having the adult role, while it restricts
accesses for the users belonging to the kid role. Example
policies include “kids are allowed to control all lighting
devices in the guest room” and “kids are allowed to turn on
entertainment devices before 7pm”. We use a permit-override
algorithm, only allowing requests which match a policy rule,
and rejecting all others.

VIII. FUTURE WORK
The smart home gateway connects various safety-related

devices and the misuse of connected devices may harm the
quality of devices and services. For example, a simple service
to increase temperature by one degree every minute will lead
to failure of a heating device unless the device itself supports
suitable protection mechanisms. Therefore, the protection
mechanisms for such use cases should be addressed in our
existing architecture. Furthermore, we will provide a
mechanism for conflicts detection and resolution of different
intents that access the same device at the same time in order to
provide safe and reliable smart home systems.

In addition, we believe usable and useful interfaces for
home owners to specify access control policies to be an
important improvement to be investigated.

IX. CONCLUSION
This paper proposes an extensible OSGi-based architecture

for highly heterogeneous smart home systems to enable
dynamic integration of devices and services. We demonstrate
how the interoperation of different home network protocols
can be handled in a systematic way by corresponding device
discovery approaches (manual, semi-automatic and
automatic). Cloud services and smart phone user interface that
provide driver resources and discovery wizards make it easier
for users to install new devices. A flexible messaging system
together with a semantic abstraction layer supports application
development. Finally, our access control policy gives home
owners robust control over the way users can access their
devices. We believe this work will lower the barriers for smart
home systems to become amenable for broader adoption.

ACKNOWLEDGMENT
We thank many researchers in Bosch Corporate Research

for discussion of key requirements for smart home systems
and Professor Adam Lee at University of Pittsburgh for
discussion and review of our access control proposal.

REFERENCES
[1] X10 PowerHouse, Tech. Rep., 2001, Available: http://www.x10.com.
[2] Smart Home Technology, “INSTEON - the details”, 2005, Available:

http://www.insteon.net/pdf/insteondetails.pdf
[3] ZigBee Alliance, “ZigBee Home Automation Public Application

Profile”, 2010
[4] Z-Wave Alliance, Available: http://www.z-wavealliance.org/

[5] UPnP Forum, “UPnP Device Architecture v.1.1”, 2010, Available:
http://www.upnp.org/specs/arch/UPnP-arch-DeviceArchitecture-
v1.1.pdf

[6] D. Driscoll, A. Mensch, “OASIS device profile for web services
(DPWS) Version 1.1”, 2009, Available: http://docs.oasis-open.org/ws-
dd/ns/dpws/2009/01

[7] D. Guinard et al., “Towards physical mashups in the Web of Things”,
Proceedings of the 6th International Conference on Networked Sensing
Systems (INSS), 2009 , pp 1-4

[8] KNX Association, “KNX Specifications”, Available:
http://www.knx.org

[9] EnOcean Alliance, “EnOcean Equipment Profiles (EEP) v2.0”, 2009
[10] Diane J. Cook et al., “MavHome: An Agent-Based Smart Home”,

Proceedings of the First IEEE International Conference on Pervasive
Computing and Communications, 2003, pp 521 – 524

[11] M.Huebsher and J.McCann, “Adaptive middleware for context-aware
applications in smart-homes”, Proceedings of the 2nd workshop on
Middleware for pervasive and ad-hoc computing, 2004. doi:
10.1145/1028509.1028511

[12] F. Kawsar et al, “Deploy spontaneously: supporting end-users in
building and enhancing a smart home”, Proceedings of the 10th
international conference on Ubiquitous computing, 2008. doi:
10.1145/1409635.1409673

[13] T. Zhang and B.Brugge, “Empowering the user to build smart home
applications”, Towards a Human Friendly Assistive Environment, IOS
Press, 2004, pp 171- 183

[14] OSGi Alliance, “OSGi Service Platform Core Specification v 4.2”,
2009, Available: http://www.osgi.org

[15] D. Bonino et al., ” The DOG Gateway: Enabling Ontology-based
Intelligent Domotic Engironments”, IEEE transactions on consumer
electronics, 2008, vol. 54/4, pp 1656-1664

[16] The Eclipse Equinox project, Available: http://www.eclipse.org/equinox.
[17] D. Bonino and F. Corno , “DogOnt - Ontology Modeling for Intelligent

Domotic Environments”, The Semantic Web - ISWC 2008, Lecture
Notes in Computer Science, 2008. doi: 10.1007/978-3-540-88564-1_51

[18] D. McGuinness and F. van Harmelen, “OWL Web Ontology Language
Document Overview”, W3C recommendation, 2004

[19] M. Eisenhauer et al., “A Development Platform for Integrating Wireless
Devices and Sensors into Ambient Intelligence System”, IEEE SECON
Workshops , 2009, pp 1-3

[20] G. Ahn et al., “Towards Role-based Authorization for OSGi Service
Environments”, Proceedings of IEEE International Workshop on Future
Trends of Distributed Computing Systems, 2008, pp 23-29.

[21] OASIS eXtensible Access Control Markup Language (XACML),
Available: http:// www.oasis-open.org/committees/xacml/.

[22] E. Gamma, R. Helm , R. Johnson, J. Vlissides, “Design Patterns:
Elements of Reusable Object-Oriented Software”, Addison-Wesley
Professional, 1994

[23] A. Kiryakov, D. Ognyanov, D. Manov, “OWLIM – A pragmatic
semantic repository for OWL”, Web Information Systems Engineering –
WISE 2005 Workshops, Lecture Notes in Computer Science, 2005,
Volume 3807/2005, pp 182-192

[24] E. Sirin, B. Parsia, B.Grau, A. Kalyanpur, Y. Katz , “Pellet: A practical
OWL-DL reasoner”, Web Semantics: Science, Services and Agents on
the World Wide Web, Vol. 5, Issue 2, June 2007, pp 51-53, Elsevier

[25] ProSyst OSGi services, Available: http://www.prosyst.com
[26] Sun’s XACML Implementation, Available:

http://sunxacml.sourceforge.net/
[27] THJ Kim et al., “Challenges in Access Right Assignment for Secure

Home Networks”, Proceedings of the 5th USENIX Workshop on Hot
Topics in Security, 2010

[28] W. Zhiqiang et al., “Research and design architecture of cloud
architecture for smart home”, IEEE International Conference on
Software Engineering and Service Sciences, 2010, pp 86-89

[29] A. Brush et al., “Home automation in the wild: challenges and
opportunities”, 2011 Proc. of the annual conference on Human factors
in computing systems (CHI 2011), 2011, pp. 2115-2124

[30] V. Peláez et al., “Multilevel and Hybrid Architecture for Device
Abstraction and Context Information Management in Smart Home
Environments”, Ambient Intelligence: First International Joint
Conference, 2010

