Requirements for Smart Home Applications and Realization with
WS4D-PipesBox

Christian Beckel, Heinz Serfas
Robert Bosch GmbH
Corporate Sector Research
and Advance Engineering
Postfach 30 02 40
70442 Stuttgart, Germany
{christian.beckel, fixed-term.heinz.serfas}
@de.bosch.com

Abstract

The increasing level of device connectivity in today’s
homes and buildings enables numerous opportunities for
home owners, building managers, device manufacturers
and solution providers. Standardized communication pro-
tocols (e.g., ZigBee, Bluetooth) provide physical connec-
tivity and thus serve as a basis for smart home appli-
cations. However, beyond physical connectivity, real in-
teroperability to effectively develop such applications re-
quires additional efforts. It requires harmonizing mul-
tiple protocol standards, dealing with a heterogeneous
device landscape, different data formats, managing re-
source constraints of devices and providing means to react
quickly when devices and applications leave or join the
system. We propose to address these application-specific
requirements in multiple layers of abstraction. Our re-
search has shown that each layer is used by different types
of developers (e.g., device supplier, service provider, home
owner) with specific tool support. The paper provides a
classification and detailed analysis of requirements that
have to be addressed in order to enable application de-
velopment in smart homes. It further proposes and ana-
lyzes WS4D-PipesBox, a multi-layer framework, to illus-
trate how applications could be developed using multiple
layers of abstraction.

1. Introduction

Interconnected devices enable to intelligently monitor
and control smart homes in a future Internet of Things.
Energy saving applications, for example, control indoor
climate and electricity usage by employing context infor-
mation to switch off appliances (e.g., lights, computers),
reduce room temperature, close windows, or stop warm
water circulation. In addition to smart energy usage, ap-
plications from domains security, comfort and telehealth

Elmar Zeeb, Guido Moritz, Frank Golatowski,

Dirk Timmermann
Institute of Applied Microelectronics
and Computer Engineering

University of Rostock, 18057 Rostock, Germany

{elmar.zeeb, guido.moritz, frank.golatowski,
dirk.timmermann } @uni-rostock.de

will be prevalent in smart homes and buildings.

In contrast to mobile phones smart home systems ex-
hibit a much higher level of heterogeneity in terms of
hardware setup and user needs. Thus off-the-shelf solu-
tions which consist of a set of devices and preconfigured
software bundles will satisfy customer needs only to a
very limited extent. Alternatively customers could engage
installers to deploy and configure home automation sys-
tems and tailor them to their individual needs. However,
employing installers is expensive, which would reduce the
value of home automation systems for customers and thus
impede their penetration. Calling the installer again when
users buy additional hardware or change their preferences
further limits the customer group to a small set of rich
people.

Both off-the-shelf solutions and solutions that are com-
plex to install fail to address the needs of the vast majority
of households adequately. We propagate that customers
should be able to individually create or modify applica-
tions that are tailored to their homes. This allows more
adapted and therefore more suitable configurations by tak-
ing personal habits and preferences into account. It fur-
ther removes the cost barrier to call the installer each time
modifications must be performed. The process of creating
and adapting applications by end-users without necessar-
ily understanding the underlying technological details is
what we call composition. This concept of creating ap-
plications from basic building blocks is widely adopted
in the enterprise I'T domain and for building management
systems. However, existing tools are either too complex to
learn and require specific training. They also often focus
on a specific application domain (e.g., KNX for home au-
tomation) or technology (e.g., BPEL with Web Services),
which limits development of heterogeneous applications.
Applications from all home automation domains such as
comfort, security, safety, and health care would all ben-
efit from composition mechanisms. Comfort and health
care applications for example must match individual pref-

erences and patients. Security applications highly depend
on the items to be protected and on devices which are
available. Energy saving applications must adhere to a
trade-off between energy savings and potential limitations
in comfort.

The following motivating examples illustrate the bene-
fits of a home automation solution in the energy domain.
They also reflect that real-life scenarios are too specific for
a off-the-shelf solution because they intervene with habits
and preferences of home owners. In the first example
scenario user preferences derived from a home owner’s
family calendar or based on pre-defined rules provide a
coarse-grained context. This context is augmented with
sensor information. Occupancy information, for exam-
ple, allows for a more fine-grained control of the build-
ing and individual rooms. Finally, calling Internet ser-
vices further contributes by being able to switch appli-
ances on and off based on current energy costs or the lo-
cal weather forecast. In addition the weather forecast also
enables a more accurate planning of a building’s energy
demand and supply. The second example achieves to in-
crease energy awareness by visualizing energy consump-
tion to users, for example by showing it on a TV. It moti-
vates users to change their behavior and assists them to de-
tect and replace inefficient appliances. Performing analy-
sis on measurements over a certain time frame and putting
consumption patterns in relation to statistical data (e.g.,
average consumption in current season, house calendar)
further identifies inefficient appliance settings. Giving
users control over such applications by letting them com-
pose individual components on a high level of abstraction
makes these specific applications both cost-effective and
accepted by users.

However, letting ordinary users compose applications
for smart homes involves a large set of requirements,
which must be analyzed thoroughly. As an example, users
are usually not educated in programming, thus the com-
position method must be simple to learn and apply. Next,
affecting the physical world leads to safety-challenges that
are not as relevant in pure software-based systems.

This paper provides an extensive list of requirements
for composition of smart home applications and proposes
the software framework WS4D-PipesBox, which claims to
adequately address these requirements. The analysis of
WS4D-PipesBox shows that different sets of requirements
are best addressed on different levels of abstraction, each
of which can be performed by a different class of users.
This allows for example driver developers to enable sup-
port for a wide range of devices. Installers can initially
set up, install, and configure a home automation system.
Home owners are able to extend the system or change the
individual configuration on a high level. The next chapter
discusses requirements for composition of applications in
smart homes. Many of them differ from established enter-
prise integration mechanisms. Chapter 3 presents related
work covering both standardization efforts and research
activities. Chapter 4 provides a generic framework which

addresses the requirements using the multi layer approach.
Finally, the paper concludes with a discussion on how well
WS4D-PipesBox fulfills the requirements and provides fu-
ture research challenges.

2. Requirement Analysis

This chapter categorizes requirements for creating ap-
plications in smart homes. The list of requirements pro-
vides guidance for tool developers from an industry per-
spective. A composition tool should either fulfill these
requirements inherently or provide means to solution de-
velopers (e.g., installers, home owners) to cover relevant
aspects with little effort. The requirements are clustered
in seven categories, each of which consists of three to five
requirements.

2.1. Simplicity

Simplicity describes the complexity of application de-
velopment. It involves the interaction between the system
and the application developer.

e Learning: Targeting usually untrained home end-
users the composition tool must be easy to learn and
simple to use.

o Building/Changing: Experienced or trained users
should be able to quickly develop or modify even
complex applications.

e Levels of abstraction: Providing multiple layers of
abstraction allows to hide implementation details to
end users and to expose them to more advanced de-
velopers.

2.2. Modeling

This category deals with requirements that affect the

way the smart home applications can be modeled.

e Eventing: Applications in smart homes are highly
event-driven. This is due to domain characteristics
as well as resource and energy constraints of de-
vices. Thus it should be possible to model fine-
grained event management (e.g., subscribe, unsub-
scribe) and event delivery. It should further be pos-
sible to model event management, to deal with both
synchronous and asynchronous events, and to handle
events with defined and undefined order.

e Expressiveness: Smart home applications combine
information from multiple domains (e.g., health care,
security). To make creation of such applications
efficient, application developers should be limited
in their capabilities to some extent. However, the
challenge is to still provide the expressiveness that
is needed to develop powerful domain-specific and
cross-domain applications.

o Statefulness: Modeling states of the complete envi-
ronment and transitions between states is closely re-
lated to state-based devices in the home domain. This
results in different behavior of a function with respect

to a system’s state (e.g., when logged in or not logged
in).

2.3. Time

The ability to impose timing constraints on the system
is crucial for two reasons. First, smart home applications
affect the real world. Second, applications interact with
resource-constrained devices which exhibit limited avail-
ability and varying delays. This distinction between real
world data timing and communication timing may signif-
icantly impact fulfilling the requirements in complex sce-
narios. For example, the age of a sensor reading may in-
clude the real world time of the measurement as well as
the time of transporting the data from the source to the
sink.

e Hard real-time: A system which supports hard real-
time guarantees that a certain action is performed
within a given time frame. Smart home developers
can specify this time frame in application develop-
ment. In near term we expect no use case that re-
quires actual hard real-time.

o Soft real-time: In contrast to hard real-time, missing
a time frame in a soft real-time system is not consid-
ered as an error but a quality problem. Over time, if
soft real-time deadlines are missed more often, sys-
tem acceptance suffers.

e Age: In systems with energy-constrained devices
caching mechanisms are used to reduce energy con-
sumption. Providing means to the developer to spec-
ify a minimum or maximum age of sensor readings
is required (e.g., a heating device which uses room
temperature measurements).

e Synchrony: Performing actions synchronously (e.g.,
using a checkpoint-based approach) or intentionally
asynchronously allows the developer to specify that
events start or end at the same time (e.g., lights are
switched on at the same time or avoiding all devices
to be switched on at the same time to prevent from
peaks in the power supply system). This requirement
mostly addresses quality (acceptance) of the system.

e Periods: For periodical actions application develop-
ers must be able to specify both the period of events
and a maximum jitter each event may have.

2.4. Mobility

Mobility includes both mobile devices and changes in
the system (e.g., devices and services leave or join the sys-
tem).

e Discovery: Discovery enables detection and integra-
tion of devices statically during design time or dy-
namically during runtime. In case of a repository,
devices are located based on a match between their
capabilities and the user’s preferences.

e Device Disappearance: The opposite of discovery
denotes the capability of a system to detect when de-
vices or services leave the network and to react ac-
cordingly.

e Location Awareness: Some applications require
location-aware devices and services. Thus applica-
tion developers should be able to a) find out the lo-
cation of specific devices and b) find devices with
respect to a given location in order to use services of
these particular devices.

2.5. Technical

This section describes technical requirements to a com-

position solution.

e [nteraction with Heterogeneous Services: Intercon-
necting heterogeneous services and devices (e.g.,
DPWS, REST, non-IP based) is necessary to develop
smart home applications. Services might both reside
on devices in the home or in the Internet (e.g., higher
valued services like include weather forecast in heat-
ing control).

e Extensibility: Using new functionalities which are
not foreseen at design time requires extensible tools
and methods for application development. As an ex-
ample, device discovery might be included later on
but not in the first revision of the solution.

e Data Manipulation: Interacting with devices and ser-
vices from different vendors requires mapping data
representations and data formats and allows dealing
with concepts that are modeled differently in differ-
ent domains. This requires transforming an instance
of a model into another model or transforming in-
stances of two different models into a higher-level
model.

e Traceability: Tracing actions (e.g., start of a process,
invoking an event) is often required either for statis-
tics or liability issues.

2.6. Security, Safety and Privacy

e Process Safety: Unsafe applications negatively im-
pact devices or the environment in a way which is
not foreseen by the developer and must be predicted
to ensure process safety.

e Confidentiality: Information of the system should not
be visible to anyone except for a defined group of
people.

o Authentication and Authorization: Enabling confi-
dentiality requires fine grained authentication and au-
thorization mechanisms to access processes, devices
and services.

2.7. Miscellaneous

This category contains all requirements that do not

match the other categories.

e Process Integrity: Concurrent smart home applica-
tions should not contradict with each other (e.g., re-
duce and increase heating setting). Such contradic-
tions can be detected during design or run time. Dur-
ing design time, the application developer can re-
act accordingly. Capturing contradictions during run
time requires the application developer to specify a

specific decision in advance (e.g., prioritize one ap-
plication, throw an error, or make a compromise).

e Transaction: Executing a group of actions with trans-
actional behavior maintains integrity of the applica-
tion. However, in contrast to IT systems, rolling back
actions within transactions is sometimes not possi-
ble. The actions may affect the physical world, which
sometimes does not foresee being reverted (e.g., a
sprinkler system).

e Resource management: Often cooperation with
resource-constrained devices relies on a trade-off
between functionality and resource constraints. It
should be possible to specify how the application re-
acts to changing resources (e.g., cache sensor values
in case battery level decreases).

e Streaming: Video, audio and data streaming is re-
quired in multiple domains such as in security (e.g.,
transmitting a video stream of a surveillance camera)
and in health care (e.g., remote patient monitoring).

o Concurrency & Scalability: The system must be able
to execute two or more concurrent processes at the
same time. The need for more processing power
should not grow exponentially with the number of
users, devices or processes. This is often reached by
a well-defined distribution.

This section presents a logical separation of require-
ments, each of which can be fulfilled individually. Appli-
cation scenarios always consist of a complex set of these
requirements and categories. In these sets, individual re-
quirements are often mutually dependent. For example,
periodically measuring sensor readings may require syn-
chronously measuring data with a maximum age and real-
time access to an actuator activity based on the readings.

Requirements related to marketing (e.g., low cost,
shape of devices) are out of scope of this analysis.

3. Related Work

Currently no extensive list of requirements as presented
in section 2 exists. Standardization organizations such as
IETF and OASIS are focusing on providing interoperable
protocols and do not explicitly address all requirements
for composition solutions

The scope of existing standardization covers both ap-
plicability of emerging low power wireless technologies
(e.g., 6LoOWPAN[11] and IEEE 802.15.4) and usage of ex-
isting and mature protocols (e.g., IPv6[6]). Within IETF,
the Smart Power Directorate ! aims at bridging the gap
of missing communication capabilities between the home
automation environment and the backbone network by us-
ing IP as the common lowest layer for connected devices
and Internet services.

Both IETF and mainly for security issues NIST (Na-
tional Institute of Standards and Technology) are working
towards interoperable communication protocols and their

Thttp://www.ietf.org/iesg/directorate/smart-power.html

homogenous deployment and application in order to en-
sure seamless connectivity of all communication partners.
Even industrial consortia are developing smart grid com-
munication protocols such as the ZigBee Smart Energy
2.0 specification 2 EnOcean 3, and KNX 4.

Assuming protocol interoperability, Peltz [14] and
Bohn [4] cover the required orchestration and choreog-
raphy capabilities of SOAP Web Services. Peltz mainly
focuses on Web Service Choreography Interface (WS-
CI) [2], Web Services Business Process Execution Lan-
guage (WS-BPEL) [1] and Business Process Modeling
Language (BPML) [15] in enterprise infrastructures. Peltz
does not address device-centric scenarios and thus does
not cover the requirements for such applications. Bohn
concentrates on the Devices Profile for Web Services
(DPWS) [5] and the extension of WS-BPEL [1] to com-
pose DPWS-enabled devices. Both approaches are only
applicable in SOAP Web Services enabled environments.
Technologies that are not based on SOAP cannot be inte-
grated without complex gateways or proxies. In addition,
both require programming knowledge to compose appli-
cations.

In [8], Dey et al. present iCAP, which is based on
an end-user centric design and requires no programming
knowledge to compose applications. Instead, iCAP ex-
pects the developer to express rules (e.g., if <situation>
then <action>), define relation-based actions, and per-
form environment personalization. iCAP supports both
real and simulated scenarios. However it does not explic-
itly support multiple communication technologies.

OSCAR [13] proposed by Newman, Elliott, and Smith
also addresses device compositions for users with no deep
technical knowledge. OSCAR allows to integrate arbi-
trary devices. It connects so-called data consumers with
data providers, which is even feasibly for audio and video
streaming. Unfortunately the paper does not describe
technical details on how OSCAR provides interoperabil-
1ty.

VisualRDK (Visual Robotic Development Kit) [16]
uses a visual language to rapidly prototype pervasive en-
vironments. However, VisualRDK does not support per-
forming calculations or handling complex data structures.

In [10] Hague, Robinson and Blackwell present Lin-
gua Franca, a composition system explicitly designed for
home automation applications. Lingua Franca denotes a
set of languages, each of which has its own focus and en-
ables different users groups to create, modify and view
applications. Some of these languages can be directly
mapped to a base language, which is used by a runtime
environment to execute applications. Vice versa, the base
language can be mapped to some of the other languages.
The paper describes the runtime environment but lacks de-
tails about its features and limitations (e.g., support for
discovery).

Zhttp://www.zigbee.org/
3http://www.enocean.com
“http://www.knx.de/

iCAP, OSCAR, VisualRDK and Lingua Franca all have
in common that they address particular requirements.
iCAP and OSCAR mainly focus on usability for home
users. Lingua Franca also focuses on usability but pro-
vides different notations. VisualRDK provides a language
to rapidly create applications. None of these approaches
covers an extensive list of requirements as it is presented
in this work.

To sum up, the lack of interoperable protocols and stan-
dards is in scope of protocol standardization organizations
like IETF, OASIS and NIST and also industrial consor-
tia like ZigBee, KNX and EnOcean. These efforts cover
mainly the technical requirements presented in section
2. Further research approaches and also existing market
solutions are investigating composition capabilities with
particular emphasis on easy service composition even for
end users®. However, all solutions are lacking crucial fea-
tures. First, they do not inherently focus on both device-
centric scenarios and higher-level Internet services at the
same time. Second, they are lacking capabilities to meet a
complex set of requirements as discussed in section 2.

4. Multi Layer Approach

This section proposes a multi layer architecture ap-
proach, which eases the design and implementation of
smart home applications. It separates a platform architec-
ture into multiple layers, each of which represents certain
types of users. Employing this multi layer approach al-
lows to group the requirements identified in section 2 and
have them addressed by adequate stakeholders.

The multi layer approach distinguishes four different
user types:

1. Low-Level Developer: The Low-Level Developer is
a programmer who creates a software library. There
is no need for domain-specific knowledge or knowl-
edge about the platform as long as the library can be
integrated in the platform. Such libraries can inte-
grate Internet services, device communication tech-
nologies or provide a service or a functional block
itself.

2. Integrator: The integrator integrates new features
into the platform. These features then serve as a
basis for smart home applications. An integrator
must have some technical knowledge in program-
ming and medium domain-specific knowledge. He
should know which features can be integrated into
the platform and how they should be designed to be
useful for the application designer.

3. Application Designer: The designer of an application
should have slight technical knowledge but compre-

Shttp://pipes.yahoo.com/pipes/
http://www.fluxcorp.com/
http://www.kiwigrid.com/
http://www.ip-symcon.de/
http://www.loxone.com/

execullon Idesign]
‘untime logic
grouped in packages
1echnologies libraries: HTTP, ZigBee, KNX, ...
) i q .)

i . serviet
pipes-launcher . OSGi container

PR T

Figure 1. Architecture of WS4D-PipesBox

Ipresentalion / configuration]

hensive domain-specific knowledge. The designer
should know the needs of end users, the technical
possibilities as well as features of the platform to de-
sign smart home applications.

4. End User: In general an end user does not need to
have any technical knowledge to run smart home ap-
plications. However, with some technical knowledge
an end user is able to customize applications.

This role model and the multi layer approach architec-
ture resembles concepts like programming in the large [7]
or the process orientation in service oriented architectures
[9].

The remainder of this section describes WS4D-
PipesBoxG, a service creation environment (SCE) for com-
position of heterogeneous service oriented systems espe-
cially addressing Internet, enterprise and devices services
based on the fundamentals in [3]. Afterwards it ana-
lyzes how the requirements for smart home applications
are addressed in WS4D-PipesBox and thus how they are
grouped to be fulfilled by a multi layer architecture.

4.1. WS4D-PipesBox

WS4D-PipesBox is software tool to mash up devices
and Internet services to create new applications in service
oriented device-centric environments. Overall it addresses
the requirements with three key design principles. These
principles are to (1) keep the underlying concepts simple
and lightweight, (2) provide extensive extensibility and
(3) highlight ease of use to address end-users with little
technical knowledge.

4.2. Architecture

WS4D-PipesBox consists of several components as
shown in figure 1. They can be divided into design and
execution components. pipes-designer is an AJAX-based
Web application to design smart home applications called
pipes and runs in modern web browsers. pipes-launcher
is a basic container running on a Java virtual machine that
provides an OSGi environment and Java servlet engine to
run and manage the pipes-core component and the pack-
ages that contain modules.

pipes-core is the central component of the WS4D-
PipesBox. pipes-core provides a HTTP based web ser-
vice API communication between the execution and de-
sign components. To execute pipes it contains an execu-
tion engine is described in more detail in the next section.

6¢.f. Web Services for Devices Initiative, http://www.wsdd.org

)

in ports out ports

pull wire push wire

-

passive out active in active out passive in

Figure 2. Modules, Configurations, Ports
and Wires in the execution engine of Pipes-
Box

Typically WS4D-PipesBox is running on a small em-
bedded system that is located in the central control cab-
inet of a house where the home automation bus systems
can be reached easily. It is connected to wired or wire-
less LAN where the enduser can configure and control the
WS4D-PipesBox with a Web browser.

4.3. Execution Engine

The execution engine is based on the flow based pro-
gramming principle defined by [12]. This principle uses
software components with defined input and output ports
for data processing. During the set up phase the process
engine is responsible for instantiating components and
wiring the input and output ports of instances according
to a process configuration that was defined before. Dur-
ing execution phase the process engine is responsible for
scheduling the instances depending on the data flow. This
principle enables the easy creation of new process engines
and is not limited to specific process execution languages.

As shown in 2, the pipes execution engine implements
the flow based programming principles with a few exten-
sions. In WS4D-PipesBox Components are called mod-
ules, have defined in and output ports and an a initial con-
figuration. There are two kinds of wires to connect ports
that implement a pull and a push behaviour.

4.4. Multi Layer Approach in PipesBox
WS4D-PipesBox was designed with the multi layer ap-

proach described before. The user types are mapped to the

following layers in WS4D-PipesBox as shown in figure 1:

Technology Layer The technology layer corresponds to
the Low-Level Developer. It consists of regular Java li-
braries called technology which integrate or implement a
specific feature in Java. These libraries are not related
to WS4D-PipesBox but can be developed independently.
In the case of WS4D-PipesBox these libraries can inte-
grate communication technologies (e.g., RS232, ZigBee,
Bluetooth, UPnP or DPWS), data formats (e.g., XML,
JSON or CSV), higher value Web services (e.g., Twitter or

~loix|
D osteten e Gk (oot Exrs e

€@ - ¢ x . [Apimpesboxiocalipesdesignerhimi - o

Coffee Maker
G

Alarm Clock

Ebay Auction
Alarm
10:
Show in o)
G°°9" i m
ere Generate News Report
Location News Feeds
4

Discover
Bluetooth
Devices
Upload to Mobile News Reader

YouTube L http://mobile.local

—
=

Figure 3. Mockup of the WS4D-PipesBox-
Designer

weather forecast), proprietary devices or software compo-
nents (e.g., rule engines, encryption engines or data anal-
ysis engines).

To integrate a new technology in WS4D-PipesBox a
Java library should be available which is in our opinion a
low barrier to integrate new technologies.

Module Layer The module layer corresponds to the In-
tegrator. It consists of packages that contain several mod-
ules to integrate a new technology. Packages are used to
logically group modules which wrap the operations of an
technology and homogenize technology-specific function-
ality for usage. A package is implemented as OSGi bundle
that can be dynamically deployed in WS4D-PipesBox.

The task of the integrator is to wrap the operations of
technologies in modules so that they can be used easily.
A module has two representations. The design represen-
tation is used in the pipes-designer to build smart home
applications using a graphical user interface. The execu-
tion representation contains the logic of the module that is
used during the execution of the application.

The run-time logic must be written in Java. The pipes-
designer representation currently must be written in Java
Script but the Google Web toolkit will be used in future to
write the designer representation in Java as well. Packages
and modules provide meta data for the pipes-designer that
are currently implemented with Java annotations.

Pipes Layer The pipes layer corresponds to the Appli-
cation Designer who uses the pipes-designer in a Web
browser to design new smart home applications called
pipes. They consist of files containing the wiring between
modules and the initial configuration.

As shown in figure 3 an Application Designer can cre-
ate applications by combining modules. Modules have in-
put and output ports. This ports can be either configured
statically with an initial configuration or dynamically by
using a wire. A wire connects an outport of one module
with the inport of another module. Wires are based on
weak typing and declare the interaction between modules
during execution. Both module configurations and wire
configurations describe a complete pipe and can be stored

Table 1. Requirement mapping
PipesBox User Types
Designer | Runtime Integrator| Designer
Simplicity
learning +
building & changing + +
abstraction + +
Modeling
events +
expressive [¢] o [¢] o
statefulness +
Timing
hard-realtime + +
soft-realtime o o + +
data aging +
synchronity + + +
periods + +
Mobility
discovery & disappearance + +
location awareness + +
Technical
heterogeneity + +
extensibility + +
data manipulation + + +
traceability + +
Security, Safety & Privacy
safety - + +
confidentiality + +
authentication & authorization | + +
Miscellaneous
integrity - + +
transaction -
resource management + +
streaming + +
concurrency & scalability + of+ + +

in a file for exchange or deployed on WS4D-PipesBox for
execution .

As wires and ports are based on weak typing, WS4D-
PipesBox has no strict data model. The idea is to rely on
primitive types like string, number, boolean and on for-
mats like JSON or XML for complex types.

User Layer The top layer is the user layer. Users
can exchange pipes and install pipes on their WS4D-
PipesBox. A user can also install new packages and in-
stall, adapt or create new pipes. In the case of this paper
pipes would represent smart home applications.

4.5. Requirement Analysis

Table 1 displays the result of the analysis how the multi
layer architecture approach and WS4D-PipesBox address
the requirements from section 2.

The column PipesBox indicates for each require-
ment whether it is directly addressed by WS4D-

PipesBox or not (+: addressed, -: not addressed,
o: needs further research). Column User Types shows if
a requirement must be addressed by a specific user type
(+: has to address, o: needs further research). The analy-
sis considers only user types Integrator and Application
Designer. This is because an End User does not need to
consider any requirements. Low-Level Developers are not
aware of the PipesBox framework when designing and
developing the technology libraries.

The remainder of this section briefly discusses some of
the requirements. WS4D-PipesBox addresses the simplic-
ity category by design due to its graphical programming
concept and the user type model. From the modeling cate-
gory, events are supported by design. Modules in WS4D-
PipesBox are triggered by incoming data, so events are
supported in general. States of devices and applications
are handled by integrators in modules and by designers
in pipes, while expressiveness requires further investiga-
tions.

Requirements of the categories timing capabilities and
mobility depend on technology-specific features. Hence
for dedicated scenarios it is only possible to fulfill a given
set of requirements by using specific low-level technolo-
gies which also fulfill the requirements. This must be
developed independently outside the scope of WS4D-
PipesBox. The basic synchronization mechanisms of a
pipe are wires. More complex mechanisms can be imple-
mented as wrapping modules. Simple time-based triggers
are built in as modules but further mechanisms can be in-
tegrated as modules as well. Real-time capabilities are
out of scope of current developments but focus of future
research.

Technical requirements such as heterogeneity of smart
homes are resolved by the high level of abstraction of the
pipes-designer and the easy extensibility of the pipes exe-
cution engine with new packages. Some basic modules for
data manipulation are available, further modules can be
integrated. WS4D-Pipesbox traces the execution of every
pipe that was instantiated with log files for traceability.

WS4D-PipesBox provides multi user support by main-
taining user based sessions. These sessions can only be
started or accessed after authenticating with typical form
based login mechanism. When a session is started it will
continue as long as there are running pipes related to.
Users can only edit and control their own pipes so that
basic confidentiality can be guaranteed.

WS4D-PipesBox can be used for both central or dis-
tributed composition of scenarios. Hence PipesBox has
not necessarily a global view on processes and cannot
guarantee integrity and safety. This must be addressed by
the modules, pipes and the invoked services. As a pro-
cess is described formally in PipesBox model checkers or
other tools to check integrity and safety can be included.
An alternative approach could be to use communities to
rank pipes and thus create a moderate level of safety

Requirements of the type miscellaneous depend like
the timing requirements mainly on the users which are re-

sponsible to design the applications accordingly. While
streaming features require corresponding capabilities of
the used underlying technology, scalability of WS4D-
PipesBox mainly depends on the hardware platform and
system specific characteristics. WS4D-PipesBox itself is
not limited to the concept of modules and wires. How-
ever, further investigation is required on scalability re-
quirements.

5. Conclusion and Future Work

This paper illustrates the potential of interconnected
devices for multiple application domains in smart homes.
Exploiting this potential requires individually composed
solutions in contrast to off-the-shelf solutions or expensive
installations performed by professional installers. The pa-
per presents an extensive list of requirements as a guid-
ance for developers of tools that aim at realizing smart
home scenarios. Existing composition solutions only fo-
cus on individual requirements such as usability or pro-
tocol interoperability. A comprehensive solution, which
provides means to cover all requirements, is still missing.

This paper proposes to satisfy the requirements on dif-
ferent levels by separating the architecture in multiple lay-
ers, each of which mapped to a certain user type and stake-
holder. It further presents the WS4D-PipesBox framework
that is based on this multi layer architecture. The analysis
shows that the design of the WS4D-PipesBox composition
framework successfully covers most requirements while
still retaining end-user usability by hiding technology de-
tails. Only few requirements, e.g. timing related capabil-
ities, cannot be realized either due to the dependency on
Java and OSGi or because verification requires further re-
search efforts. Other requirements such as process safety
are not part of the native WS4D-PipesBox framework but
can be implemented by certain user types due to the ex-
tensible nature of the framework. WS4D-PipesBox only
depends on Java and OSGi for its runtime, other technolo-
gies can be integrated by specific libraries and extensions.

Future work will include missing requirements cover-
age with specific focus on the security, safety & privacy
category. The challenge is to meet the corresponding re-
quirements while staying agnostic of the underlying com-
position design. Also we will perform a usability study to
proof and quantify what we claim about the simplicity of
using WS4D-PipesBox (e.g., learning curve, ease of use).
Future research further analyzes the question whether ap-
plications should be deployed as a centralized orchestra-
tion instance or in distributed component-based environ-
ments.

6. Acknowledgments

This work has been partly funded by German Federal
Ministry of Education and Research (BMBF) under refer-
ence number 01S 080031.

References

[1] A. Alves, A. Arkin, S. Askary, C. Barreto, B. Bloch,
F. Curbera, M. Ford, Y. Goland, A. Guzar, N. Kartha, C. K.
Liu, R. Khalaf, D. Kénig, M. Marin, V. Mehta, S. Thatte,
D. van der Rijn, P. Yendluri, and A. Yiu. Web services
business process execution language version 2.0, April
2007. http://docs.oasis—open.org/wsbpel/

2.0/0S/wsbpel-v2.0-0S.html.
[2] A. Arkin, S. Askary, S. Fordin, W. Jekeli, K. Kawaguchi,

D. Orchard, S. Pogliani, K. Riemer, S. Struble, P. T. Nagy,
I. Trickovic, and S. Zimek. Web service choreography in-

terface (wsci) 1.0. Technical report, 2002.
[3] A. Bobek. Serviceorientierte Infrastruktur fiir vernetzte

Dienste und eingebettete Gerdite. PhD thesis, Fakultit
fiir Informatik und Elektrotechnik der Universitit Rostock,

Germany, Dezember 2008.
[4] H. Bohn. Web Service Composition for Embedded Systems

- A WS-BPEL Extension for DPWS. PhD thesis, Fakultit
fiir Informatik und Elektrotechnik der Universitit Rostock,

Germany, Februar 2009. ISBN: 978-3-86844-108-6.
[5] Dan Driscoll and Antoine Mensch. Devices Pro-

file for Web Services Version 1.1. OASIS, 2009.
http://docs.oasis-open.org/ws—-dd/dpws/

1.1/0s/wsdd-dpws-1.1-spec-os.html.
[6] S. Deering and R. Hinden. Internet Protocol, Version 6

(IPv6) Specification. RFC 2460 (Draft Standard), Dec.

1998. Updated by RFCs 5095, 5722, 5871.
[7]1 F. DeRemer and H. Kron. Programming-in-the large ver-

sus programming-in-the-small. In Proceedings of the inter-
national conference on Reliable software, pages 114-121,

New York, NY, USA, 1975. ACM.
[8] A. K. Dey, T. Sohn, S. Streng, and J. Kodama. icap: In-

teractive prototyping of context-aware applications. In in

Proceedings of Pervasive 2006, pages 254-271, 2006.
[9] T. Erl. Service-Oriented Architecture: Concepts, Technol-

ogy, and Design. Prentice Hall PTR, Upper Saddle River,

NJ, USA, 2005.
[10] R. Hague, P. Robinson, and A. Blackwell. Towards ubiq-

uitous end-user programming. In In Proceedings of the 5th
annual conference on Ubiquitous Computing (UbiComp),

October 2003.
[11] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler.

Transmission of IPv6 Packets over IEEE 802.15.4 Net-

works. RFC 4944 (Proposed Standard), Sept. 2007.
[12] J. P. Morrison. Flow-Based Programming, 2nd Edition: A

New Approach to Application Development. CreateSpace,

2010.
[13] M. W. Newman, A. Elliott, and T. F. Smith. Providing

an integrated user experience of networked media, devices,
and services through end-user composition. In J. Indulska,
D. J. Patterson, T. Rodden, and M. Ott, editors, Pervasive,
volume 5013 of Lecture Notes in Computer Science, pages

213-227. Springer, 2008.
[14] C. Peltz. Web services orchestration and choreography.

Computer, 36:46-52, 2003.
[15] R.K. Thiagarajan, A. K. Srivastava, A. K. Pujari, and V. K.

Bulusu. Bpml: A process modeling language for dynamic
business models. Advanced Issues of E-Commerce and

Web-Based Information Systems, International Workshop

on, 0:239, 2002.
[16] T. Weis, M. Knoll, A. Ulbrich, G. Muhl, and A. Brandle.

Rapid prototyping for pervasive applications. IEEE Perva-
sive Computing, 6(2):76-84, 2007.

