An Optimality Proof for Asynchronous Recovery
Algorithms in Distributed Systems

Mukesh Singhalf Friedemann Mattern
Dept. of Computer Dept. of Computer Science
and Information Science University of Saarbriucken

The Ohio State University Im Stadtwald 36
Columbus, OH 43210 66123 Saarbricken
USA Germany
{E-mail: singhal@cis.ohio-state.edu} {E-mail: mattern@cs.uni-sb.de}
May 17, 1995
Abstract

We prove the optimality of asynchronous recovery algorithms for distributed sys-
tems in the sense that irrespective of the order of roll backs by sites, all sites incre-
mentally converge to a unique consistent cut which is the “latest” of all past consistent
cuts formed by the local recovery points of the sites.

Key Words: Asynchronous recovery algorithms, distributed systems, consistent cut.

1This work was supported by the German Academic Exchange Program (DAAD), Bonn and the
University of Saarbriicken, Germany.



g €1t €13 €14

] L 4
S €y €5 €73 €24
2 ® ®
S ‘3 32 €33 €34 €35
3 —e n\ ®
€ e
S4 41 .42

time ———=
Figure 1: The space-time diagram of a distributed computation.

1 Problem Statement

A distributed system consists of a collection of geographically dispersed autonomous sites,
say 51, S2, ..., Sp, which are connecled by a communication network. The siles do notl share
any memory and communicate solely by message passing. Message propagation delay is
finite but unpredictable. There is no common physical clock. We assume that the underlying
communication medium is reliable and if a site crashes, it does so in a fail-stop manner.

In a computation on such a system, the actions performed by sites are modeled as events.
Typically, three types of events are discerned: message send events, message receive events,
and inlernal events. The local compulalion al site 5; is modeled as a sequence of events
E; = eq, €, €3, ... . Figure 1 shows the space-time diagram of a distributed computation
where events are depicted as dots and messages in the computation are depicted by arrows.

In distributed recovery algorithms with asynchronous checkpointing [1, 3, 7—10], sites
periodically take checkpoints of their local states asynchronously (i.e., without any coordi-
nation with other sites). When a site fails, failure recovery is performed by restoring the
system slale Lo a globally consistent state of local checkpoints. Consistency is defined in
terms of causalily belween the events on siles. The causalily relation in a distributed com-
putation [5], denoted by —, is defined as the smallest transitive relation on the events such
that (1) if e;; occurs before e;, on S; (i.e., 7 < k), then e;; — e, and (2) if e, is the send
event of a message at site 5; and e, is the receive event of this message at 5, then e;;, — €;y.
Clearly, since messages don’t go backwards in time, the causality relation is irreflexive and

asymmetric, and thus is a strict partial order on the events of a distributed computation.



N €35

time ———=
Figure 2: Consistent and inconsistent states in a distributed computation.

For example, in Figure 1, events e;; and ey3 are causally related. So are events e3) and e3s,
bul nol evenls e5; and ex4.

A global state of the system consists of a set of local states of sites, one state for each site.
A global state is consistent provided the following holds: if the receive event of a message
has been recorded in the state of a site, then its send event is also recorded in the state of
the sender site. In space-time diagrams, a global state can be depicted by a cut, a zigzag
line cutting the space-time diagram transversely (e.g., ', and C; in Figure 2). For a site,
a cul denoles the sile’s stale where the cul crosses the site’s line. In Figure 2, the sel of
local states defined by cut ('} represents a consistent system state, while the set of local
states defined by cut (3 does not represent a consistent system state because the state of
Sy in cut (5 contains the message receive event eq,, but the state of 57 in the cut does not
contain the corresponding message send event e;5,. Note that the local states of sites 57 and
S, are causally related in the global system state represented by cut (5. The local states of
siles musl nol be causally related in a consistent global slate. Fvenls al a sile cause slale
{ransitions al thal sile. Therefore, the definition of causalily can be extended to include site
states in the following way: e—s iff event e causes a site to make a transition to state s, and
s—e iff event e occurs in state s at a site.

In asynchronous recovery algorithms, at the time of recovery, a consistent state is obtained
by rolling back sites to appropriate local checkpoints. Sites communicate with other sites
to determine if their local states are causally related. If they are, sites that received mes-

sages which are responsible for the causal dependencies, roll back to eliminale these causal



time ———=
Figure 3: Asynchronous checkpoints and recovery to a consistent state.

dependencies. This process is repeated until the local states of all the sites are free from
causal dependencies. For example, Figure 3 illusirates the operatlion of an asynchronous re-
covery algorithm. Local checkpoints at sites are denoted by small rectangles. When sites 53
crashes, all sites roll back to their last local checkpoints (denoted by cut C'Fy). After having
exchanged the information regarding their current checkpoints, sites Sy and S5 discover that
S3’s state reflects the receipt of message m; but 57’s state does not reflect its send. To fix
the problem, S3 rolls back to its earlier local checkpoint yielding the global checkpoint (' 2.
However, this checkpoint is inconsistent due lo messages m, and mg. To fix this problem,
S, and 94 roll back to their earlier local checkpoints and the resulting system state is consis-
tent. We observe that rolling back of a site to eliminate a causal dependency may introduce
further causal dependencies, inducing roll backs of other sites. This is called the cascaded
roll-backs [6]. Note that in asynchronous recovery algorithms, generally a site cannot roll
back to any state — a site can roll back only to its checkpoints. However, finer granularity
of roll backs can be achieved by logging of messages [3,7].

Due to unpredictable message delays and disparily in processors’ speeds, the order in
which sites will perform roll backs is nondeterministic. Intuitively, the consistent checkpoint
to which sites converge depends upon the order of roll backs by sites and thus, sites’ roll
back may not be optimal. Informally, a roll back by sites is optimal if each site performs
least possible roll back to restore the system to a consistent global state.

In this paper, we define the optimal roll back by sites in terms of a suitable definition of

the maximal consistent cul in a distributed computation. We also prove thal asynchronous



recovery algorithms are oplimal in the sense thal irrespectlive of the order of roll back by sites,
all sites always converge to the maximal consistent cut. Previously, optimality arguments
have been given for specific recovery algorithms only (e.g., [2,3,4,10]). We show that an
asynchronous recovery algorithm that uses a general method of iteratively rolling back sites

to eliminate causal dependencies always converges to the maximal consistent cut.

2 Maximal Consistent Cut

In this seclion, we discuss the notion of maximal consislenl cul by mapping global stales
in a distributed computation to sets of events and using the set inclusion relation to model
causality. Johnson and Zwaenepoel [3] demonstrated the existence of such a unique maximal

cut by showing that the global states in a distributed computation form a lattice.

2.1 Counsistent Cuts

A cul in a distribuled computlalion represents a local stale of every sile in the system.
Notationally, a cut C' is a set {¢1, 2, ..., ¢, }, where ¢; is the local state of site S; which is
also called the cut event of 5;. Graphically, a cut is a transverse line through the space-time
diagram that cuts every site at its cut event.

The cut event or the local state of a site in a cut is modeled as a set of events on that site.
Cut event ¢; at site S; consists of all events on 5; that causally precede the state represented
by ¢;. Thus, a cul C' = {¢1, ¢a, ..., ¢, } divides all the events in a distributed computation in
two sels, past(C') and fulure(C'). The former consists of all events in ¢;U ¢ U ... U ¢, and
the latter consists of the remaining events.

The following definitions and assertion are due to [5].
Definition: A cut (] is later than a cut Cy iff ¢y C (.

In Figure 2, cut (7 is later than C; and in Figure 3, the cut denoted by ' is later than
the cut denoted by C'Ps.

Definition: (Consistent Cut) A cut C in a distributed computation is consistent if

VecC,de: e —we=e € (.

(&1



Assertion 1: If (4, (%,..., (', are consistent culs in a distributed computation, then C;UCU

... UC, is also a consistent cut in the computation.

Obviously, the cut C7UC,U ... UC, is later than each of the cuts Cy, Cs,..., C,,.
A cut defines a global state of the system in which the local state of a site corresponds to
the cut event of that site and all message arrows cutting the cut correspond to the messages

in transit.

2.2 Maximal Consistent Cut

A cut (' is a maximal consistent cut among the set of all consistent cuts through a distributed
computation (the set is denoted by Cf) iff all other consistent cuts in C; lie in the past(C);
that 1s, the maximal consistent cut is later than all other consistent cuts. Using the set union

operation, the maximal consistent cut for the distributed computation is given by U.cc, c.

Definition: (Maximal Consistent Cut) Cut C'={¢y, cz,..., ¢, } is a maximal consistent
cut in a distributed computation if there is no cut event in future(C') that lies on a

consistent cut.

It should be noted, however, that when we talk about consistent cuts in connection with
asynchronous recovery algorithms, cul eventls are generally the local checkpoints taken by
sites. We cannot have a consistent cut passing through arbitrary states of sites (unless

message logging is done to enable reconstruction of a site’s state at a finer granularity).

Assertion 2: There always exists a maximal consistent cut in the local states recorded by

sites in an asynchronous recovery algorithm.

Proof: All sites start in a consistent state. So the initial states recorded by all sites form
a consistent state. If the computation has progressed and other consistent cuts exist in the
distributed computation, then the maximal consistent cut at any time is defined by the

union of all those consistent cuts. O



3 Proof of Optimality

In asynchronous recovery algorithms, a site performs recovery by iteratively rolling back to
an earlier local checkpoint to eliminate its causal dependencies with other sites. The recovery
is complete when the local state of every site is free from causal dependencies with all other
sites.

It is clear that for optimality, an asynchronous recovery algorithm should cause sites
{o roll back only up to the unique maximal consistent cul with respecl to the “current”
computalion. Intuitively, the consistent cul {o which siles converge depends upon the order
of roll backs by sites, and due to unpredictable message delays and disparity in the speed
of processors, the order in which sites will perform roll backs is nondeterministic. We next

show that all sites, nonetheless, always converge to the maximal consistent cut.

Theorem: Irrespective of the order in which roll backs are performed by various sites in an
asynchronous recovery algorithm, the sites always converge to the maximal consistent

cut.

Proof: From Assertion 2, a maximal consistent cut exists in the local states (i.e., check-
points) recorded by all siles. Lel the maximal consistent cul be denoted by {c1, ¢, ...,

Cn}-

To prove the theorem, we need to prove the following two assertions:

1. No site has to roll back beyond its cut event on the maximal consistent cut.

2. Each site will roll back at least up to its cut event on the maximal consistent cut.

The proot of the latter is straightforward. Since there is no consistent cut in the future
of the maximal consistent cut in a distributed computation, all sites must roll back at least
up to the maximal consistent cut to reach a consistent global state.

The proof of the former is more involved. Unprediclable order of roll backs by sites will
affect the order in which sites will reach their cut events on the final consistent cut or will
roll back beyond the maximal consistent cut (if at all they have to roll back beyond the

maximal consistent cut). This is tantamount to assuming, in the proof, a generalized order



maximal consistent cut

-~

%}
[
[

[

time ——>

Figure 4: A scenario for Case 1.

in which sites reach their local states on the final consistent cut or roll back beyond the
maximal consistent cut.
Assume that 5; is the first site that is asked by a site, say 5}, to roll back beyond its local

slale on the maximal consistent cul. We have the following two cases:

Case 1: Site 5; was in the state corresponding to its cut event ¢; on the maximal consistent

cut when 5; caused it to roll back further.

Case 2: Site 5; had not yet reached the state corresponding to its cut event ¢; on the

maximal consistent cut when S; caused it to roll back beyond ¢;.

Let us first consider Case 1 and show thal this will never occur. The scenario of Case 1
is shown in Figure 4, where when site .5; rolls back to state ¢; (or beyond), it asks site S; to
roll back from state ¢; to state c;. This implies that ¢; and ¢; are causally related; a message
is sent after cut event ¢; by \5; that was received by S; before cut event ¢; but after ¢;. That
18,

c} — ¢

= ¢ — ¢ (because ¢; — ¢;)

This is a contradiction to our premise that ¢; and ¢; lie on a consistent cut. Therefore,
when a site is in the state corresponding to its cut event ¢; on the maximal consistent cut,
it will not be asked to roll back further.

Let us now show that Case 2 will never occur. The corresponding scenario is shown in
Figure 5. When site \S; rolls back to stale cj, il asks sile .5; lo roll back from stale ¢; to

state ¢;. Since 9; is asking 5; to roll back from cut event ¢} to beyond cut event ¢; in order

8



maximal consistent cut

\
-
M

C. Cl‘ // Cl

S. i i i i

l N

\\ C C’

S. n n_J n n

J O o ] [}

/
-7 time ——=

Figure 5: A scenario for Case 2.

to obtain a consistent cut, ¢; and ¢; are causally related (that is, a message is sent after cut
event ¢; by 5; that was received by S; before cut event ¢;). That is, ¢; — ¢;. Since ¢; — ¢,
this implies ¢; — ¢; which is again a contradiction!

Both cases also hold for ¢; = ¢;. Therefore, no site ever rolls back beyond its cul event

on the maximal consistent cut. O

4 Summary

We first defined the optimal roll back by siles in asynchronous recovery algorithms in terms
of a suitable definition of the maximal consistent cut in a distributed computation. We then
proved the optimality of asynchronous recovery algorithms in the sense that irrespective of
the order of roll back by sites, all sites converge to this unique maximal consistent cut.

Acknowledgements: The authors are indebted to anonymous referees for valuable com-

ments on an earlier version of the paper.

References

1. B. Bhargava and S.R. Lian, Independent Checkpointing and Concurrent Rollback Re-
covery — An Optimistic Approach, Proc. of IEEE Symp. on Reliable Distributed
Systems, 1988, pp. 3-12.

2. E. Elnozahy and W. Zwaenepoel, Manetho: Transparent Rollback-Recovery with Low
Overhead, Limiled Rollback, and Fast Oulput Commit, IEEE Trans. on Compulers,
Vol 41, No 5, pp. 526-531, May 1992.

3. D. Johnson and W. Zwaenepoel, Recovery in Distributed Systems Using Optimistic
Message Logging and Checkpointing, Journal of Algorithms, Vol 11, No. 3, 1990, pp.
462-491.

4. R. Koo and S. Toueg, Checkpointing and Rollback Recovery in Distributed Systems,
[EEE Trans. on Software Engineering, Vol SE-13, No 1, pp. 23-31, January 1987.

9



(o1

10.

11.

F. Mattern, Virtual Time and Global States of Distributed Systems, Parallel and
Distributed Algorithms, M. Cosnard et al. (editors), North-Holland, 1989, pp. 215-
226.

. B. Randell, System Structure for Software Fault Tolerance, IEEE Trans. on Software

Engineering, Vol 1, No. 2, 1975, pp. 220-232.

(. Richard and M. Singhal, Using Logging and Asynchronous Checkpointing to Im-
plement Recoverable Distributed Shared Memory, Proc. of the 12th Symposium on
Reliable Distributed Systems, October 1993.

. A.P. Sistla and J.L. Welch, Efficient Distributed Recovery Using Message Logging,

Proc. of the 8th ACM Symp. on PODC, August 1989, pp. 223-238.

. R.E. Strom and S. Yemini, Optimistic Recovery in Distribuled Systems, ACM Trans.

on Computer Systems, Vol 3, No. 3, 1985, pp. 204-226.

S. Venkatesan and Tony Juang, Low-Overhead Optimistic Crash Recovery, Proc. of
the 11th Intl. Conf. on Distributed Computing Systems, May 1991, pp. 454-461.

Y.-M. Wang and W. Fuchs, Optimistic Message Logging for Independent Checkpoint-

ing in Message-Passing Systems, Proc. of the 11th Symp. on Reliable Distributed
Systems, pp. 147-154, October 1992.

10



