IDEA - A Framework for the Fast Creation of Interactive
Animations by Pen Sketching

Robert Adelmann
ETH Zurich
Clausiusstrasse 59
8092 Zurich, Switzerland
adelmann@inf.ethz.ch

ABSTRACT

We present a Java-based framework for the easy and on-
the-fly creation of algorithm animations. Animations are
created by sketching both the objects that should be an-
imated and operations that should be performed on them.
The IDEA (Interactive Domain rEcognition and Animation)
framework combines the recognition of drawn structures,
the interaction with these structures and their animation
in order to achieve an effortless and natural creation of ani-
mations. The framework itself supports the creation of an-
imations in arbitrary domains through a dynamic plug-in
architecture, where so-called domain modules encapsulate
all domain-specific semantics. Its application and potential
is outlined by the help of three prototypical domain modules
for linear lists, Petri nets, and the game Connect-four.

Categories and Subject Descriptors

K.3.1 [Computer Uses in Education]: Computer-assisted
instruction (CAI); K.3.2 [Computer and Information
Science Education]: Computer science education—pro-
gramming, data structures and algorithms

General Terms

Algorithms, Human Factors

Keywords

Algorithm animation, sketch recognition, education

1. INTRODUCTION

Research on algorithm animation for educational purposes
has identified two major issues to be addressed in order to in-
crease its impact on teaching and learning. The first mainly
concerns the students: a growing corpus of empirical studies
on the effectiveness of algorithm visualization has revealed
that animations should be interactive and engaging in or-
der to be effective [4]. The second issue is a problem chiefly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ITiCSE’07, June 25-27, 2007, Dundee, Scotland, United Kingdom.
Copyright 2007 ACM 978-1-59593-610-3/07/0006 ...$5.00.

Tobias Bischoff
University of Freiburg
Georges-Koéhler-Allee 051
79110 Freiburg, Germany

tobischoff@gmx.de

Tobias Lauer
University of Freiburg
Georges-Kohler-Allee 051
79110 Freiburg, Germany

lauer@uni-freiburg.de

concerning instructors. As a survey among computer science
instructors conducted at the ITiCSE 2002 conference found,
the main reasons for many teachers reluctance to use algo-
rithm visualizations in their courses is the time it takes to
find good examples, the time to learn how to use a visualiza-
tion tool, and the time to create or adapt the visualizations
[4]. Even though a great number of algorithm animation
systems are freely available and offer easy ways of creating
visualizations, it is apparently too time-consuming to build
useful examples, especially when actual programming is in-
volved. It is therefore essential to support instructors in
creating visualizations as quickly and with as little effort as
possible with an easy-to-use system.

Visual editors such as provided by systems like [7] are
one step in this direction, as they allow a quick, drag-and-
drop style creation of animations. The major drawback is
that these animations are completely predetermined and do
not allow for interaction such as changing the input of the
algorithm. Another approach is a generator framework de-
scribed in [6]: based on a library of existing algorithm ani-
mations, instructors can generate customized examples fast
and easily by choosing from a variety of options such as in-
put data or the look of the animation. One disadvantage
remains for teachers: the use of animations in the class-
room is still restricted to pre-constructed examples. If an
instructor wants to react to student questions by showing
a different example or slightly change the current one, they
would have to use the authoring tool in the middle of class.

Our approach to the rapid generation of interactive visu-
alizations aims at its integration with the classroom activity:
we present a system that allows a teacher, during his or her
presentation, to simply sketch an example of a data struc-
ture, say, a binary search tree, on an interactive display. The
system automatically recognizes the structure and, upon
simple pen gestures by the instructor, carries out the steps
of an algorithm, for instance a rotation for rebalancing the
tree, in a smooth animation directly on the instructors in-
put drawing. With such a system, teachers are not only able
to create animations virtually without effort; they can also
respond quickly to comments from students, ask and answer
”what if” questions, or let students create and present their
own examples. When integrated with other hardware and
software in the classroom, such a system also comes close to
the goals of ubiquitous computing, as the instructor would
not even have to explicitly activate the animation system or
switch back and forth between it and the normal presenta-
tion. The sketches can be drawn directly on the presented
slides. If the system is to be used by learners outside class

on their private computers, they can construct arbitrary ex-
amples in a way that is much easier than interacting with
most existing animation systems. They can use it to pre-
pare in-class presentations. Moreover, collaborative learning
is supported by allowing students to share the drawing panel
and construct visualizations together.

2. GENERAL APPROACH

Recognizing structures from pen-based input can be seen
as a chain process involving several steps, as is also described
in [1] and [8]. First, the input traces must be classified as
either a primitive shape or a gesture command. The de-
tails of this low-level recognition process are not part of our
work, as shape recognition is an extensive field of research
of its own. We have incorporated an existing system, which
provides robust recognition of primitive shapes and gestures
based on a small number of training examples [3]. These
primitive objects (or collections of them) and gestures must
then be classified as domain-specific objects and commands.
For example, a circle together with a number drawn inside
it may be classified as a node in the binary tree domain; a
”crossing out” gesture drawn on top of a node object may
be recognized as a delete command. Finally, interrelations
between the domain-specific objects must be detected to in-
fer structures; for instance, two nodes connected by a line
should be interpreted as parent and child nodes in a tree.
Likewise, commands must be interpreted as invocations of
actions performed on the structure (rather than just on one
single object). For example, deleting a node in a tree usually
involves a change of the complete structure, which implies
much more than just removing the respective node object
from the visualization. In order to do this, an actual in-
stance of the data structure must be available within the
system. The presence of such an internal data structure
and the possibilities this provides distinguishes IDEA from
other sketch-based animation systems like [2].

When an action is carried out, it usually changes the struc-
ture and, consequently, its graphical representation. In our
binary tree example, the rotation of a node will alter the
shape of the tree considerably. Hence, the results of such
actions must be propagated back to the original input vi-
sualization, where the collection of primitive objects is up-
dated in order to visualize the change. Our contribution
and the goal of our system is to combine methods for shape
and structure recognition with actual implementations of
structures, which are instantiated according to the recog-
nized input. Once the actual structure exists, it can then be
manipulated, and the result will be visualized on the drawn
input with the help of smooth animations. We note that
our main focus is not on sophisticated recognition methods
but on an open architecture supporting the complete process
chain, in which existing or future recognition and visualiza-
tion technologies as well as content domains can easily be
plugged in.

3. ARCHITECTURE

The IDEA framework can be divided into two parts, the
UI component responsible for user interaction and the exe-
cution of animations, and the framework which maintains a
global system state and manages the different domain mod-
ules. The domain modules contain all semantic knowledge
for a certain application domain. All other elements, includ-

User Interface (UI) Framework

Component

general primitives

Low-Level

Recognition Global

System | Services
State

Domain
Module A

lgeneral commands

A/

Jedas general actions
Animation System

el

Figure 1: Basic architecture of the IDEA system.

ing the UI component, are completely domain independent.
Figure 1 shows the basic architecture.

IDEA has been implemented as a distributed system al-
lowing multiple users to work concurrently on the same data.
Since both the Ul and framework are implemented in Java,
the Java RMI technology® is used for communication.

3.1 User Interface (UI) Component

The user interface simply consists of a white canvas on
which the user can draw sketches. On a standard PC the
input device will typically be a mouse but ideally, it is an
electronic stylus. According to our experiences, pen input
provides a much more natural feedback, especially on inter-
active boards or on tablet PCs. The sketches drawn by the
user are passed on to a low-level recognition system which
classifies the pen traces into two classes: primitive graphi-
cal objects and gestures [3]. Graphical primitives are lines,
polylines, ovals, rectangles, or text. Like the gestures, they
are completely domain independent. Gestures include, for
example, a stroke connecting two objects, a circle around an
object, or a cross. The low-level recognizer currently used
relies on training of the primitives and gestures with some
examples. If a user wants to draw things that should not
be interpreted by the system (such as additional notes), this
can be done by holding a button on the pen or pressing the
right mouse button while drawing.

The UI component can be seen as a black box that takes
pen traces as an input and separates them in two kinds
of output: For each graphical primitive the user draws,
a so called general primitive object is created and sent to
the framework. This object contains the basic information
about that element, e.g. its position, size, color. Accord-
ingly, for each gesture a general command object will be cre-
ated, which will also be sent to the framework component.
In addition, the UI component receives so called general ac-
tion objects from the framework containing animation direc-
tions. E.g. ”move general primitive object o to position zy”.
General objects have been introduced in order to allow the
remaining system components to abstract from the concrete
implementation of the Ul component.

For displaying and animating the contents, the Ul com-
ponent uses JEDAS?, a freely available Java-based library
for animation production, which allows the easy creation of
sophisticated 2-d keyframe animations. Figure 2 shows a
screenshot of the Ul component. The tool palette on the
left is optional and can be used to select different colors or
to enter text using a keyboard.

!See http://java.sun.com
2See http://ad.informatik.uni-freiburg.de/jedas/

[NNotes il 3§ K] idea Environment [-[ax]
: E

«H B

o HENE

.H =

©

===l |

O [1a -

ﬁm‘ 90600

@ @ oo |

Figure 2: Screenshot of the user interface compo-
nent with an optional tool-window.

3.2 Framework

The framework works as a server to which several UI com-
ponents can be connected at a time. It maintains the global
system state, which consists mainly of a list of general prim-
itive objects. The objects contained in this list are visible
on all connected Ul components, while the framework en-
sures the synchronicity of the connected components with
this list.

The second task of the framework component is the provi-
sion of several domain independent services. These services
include the following ones:

e Recording and Playback The framework component pro-
vides the possibility to record and play back arbitrary
situations. Recording and playback of situations can
be contolled by gestures. In a teaching scenario, this
feature allows for the identification of critical passages
and their replay once questions from the audience arise
regarding a certain point or when things should be re-
peated for clarity reasons.

e Rights Management The rights management prevents
the connection of unregistered Ul components to the
framework and allows us to assign different rights to
the connected UI components. In a typical classroom
scenario, for example, it is possible to grant all rights
to the teacher and to restrict the other connected Ul
components belonging to students to merely display
what is happening, without the possibility to interfere.
One could also restrict the receiving of general prim-
tive objects from students but allow general command
objects, in which case they would be able to work with
the structures the teacher has created but would not
be able to draw objects on their own.

o Higher-level Recognition System The recognition sys-
tem consists of a collection of tools that support the
domain modules in the recognition and interpretation
of the primitive objects. It provides, for example,
the functionality to determine which graphical primi-
tives are contained in others or which primitives fulfill
certain conditions regarding their attributes like size,
color, or more complex properties.

Besides the previously mentioned two functions, the frame-
work component manages the domain modules currently
plugged in. Different domain modules can be active at the
same time. If a module registered at the framework is active,
the framework will forward the received gemneral primitive
objects and general command objects from the connected

General Domain Logical

Level GDObject- Level DLObject- Level
Mapperinterface Mapperinterface
7y 4
> GDObj > DLObj >

Logical Structure-
Interface

4

GDCommand- DLCommand-
Mapperinterface Mapperinterface
& 4

GDCommand DLCommand
Mapper Mapper

DGAction- LDAction-
Mapperinterface Mapperinterface
Iy 4

Logical Structure

PN
o
a
1]
>

Figure 3: Basic structure of a module. The white
parts contain domain specific knowledge, while the
grey parts are provided by the framework.

UI components to that module and pass all general action
objects that are produced by a module on to the UI compo-
nents.

3.3 Modules

As already mentioned in the last sentence, domain mod-
ules can also be seen as black boxes performing some kind
of transformation. They receive general primitive objects
and general command objects as input and produce general
action objects as output. This transformation is done ac-
cording to the semantics of the domain represented by the
module. Even though general action objects represent the
only means a module can influence the global system state
and therefore the display on the connected UI components,
modules are in no way restricted in their capabilities. They
are normal software components that can use the full power
of a programming language.

Internally, modules can be structured in an arbitrary way,
but the matrix like structure presented in figure 3 proved to
be very effective. Horizontally there are the three infor-
mation streams: from left to right the primitive or object
stream, below it the command stream and a stream of action
objects from right to left. Vertically we see three semantic
levels: on the left the general level, in which there are general
objects that contain no semantic knowledge. In the middle
there is a so-called domain level, in which domain-specific
objects are available; on the right there is the logical level,
in which we have the pure implementation of the data struc-
ture and algorithms the module represents. These levels are
similar to the three semantic levels used in [1] and [8] for
the recognition of structures.

A domain module that can be plugged into the framework
basically consist of the white components visible in figure 3.
Writing a domain module corresponds to the implementa-
tion of these white components.

This structure supports the basic recognition and anima-
tion creation processes described in Section 2. How these
tasks are performed along this structure can be illustrated
using a simple example from the linear-list domain module
that encapsulates a singly-linked linear list: We will start
with the object stream. Once a new general primitive like
a circle or a number has been drawn, the framework will

-0 00

Figure 4: Snapshot of the linear list module. On
the left a situation with a low feedback level, on the
right a similar situation with a higher feedback level.

pass this information on to the GDObjectMapper(General-
Domain Object Mapper) component. This component con-
structs domain objects out of the available general primi-
tives. For example, if it detects that a number has been
drawn inside a circle, it constructs a "node” domain object.
The linear list module has two types of possible domain ob-
jects: nodes and links. The domain objects will be passed
on to the DLObjectMapper(Domain-Logic Object Mapper)
component, which will adjust the implementation of the lin-
ear list contained in the logical structure component based
on the domain objects already recognized and the relations
between them.

The processes along the command stream are similar. The
module receives general commands like ”cross gesture per-
formed at position zy”. The GDCommandMapper compo-
nent will use this information and construct domain com-
mands like ”delete object at position zy”. Afterwards, the
DLCommandMapper component detects the domain object
present at position zy. It uses this information in combi-
nation with the current logical structure to create a logic
command like ”delete node n”. This logic command will
then be passed on to the logic representation of the linear
list contained in the logical structure component, where it
will be executed.

At the action stream, the direction is reversed. The logi-
cal structure component creates and issues a logic action like
?remove node n” and passes it on to the LDActionMapper
component. This component creates a ”fade out domain
node” domain action, a ”fade out link” for the following
link and ”adjust link” domain action for the preceding link,
which will be passed on to the DGActionMapper compo-
nent. There, the general primtive objects associated with the
specified domain objects are detected (each domain object
contains a list of general primitive objects) and respective
general action objects for these graphical primitives are cre-
ated. The framework will pass these general action objects
on to the connected Ul components.

4. IMPLEMENTED MODULES

Due to space constraints only three of the four domain
modules implemented so far are presented. For each module,
the domain it models and the basic options for interaction
are presented. The binary tree module has been omitted, as
it is similar to that for linear lists.

All modules offer different ”feedback levels”. The feed-
back level determines the level of ”beautification” of the el-
ements drawn by the user once the module recognized parts
of the structure, in order to increase the overall clarity of
the drawn structures. Figure 4 illustrates the difference.

4.1 Linear List Module

The linear list module has already been mentioned in sec-

wait | into 1

o
Semaphore
N B

2%
@
s et (o

Figure 5: Snapshot of the Petri net module. The
three transition nodes on the left side are marked.

finish 2

tion 3.3. It encapsulates a singly-linked linear list as well as
several sorting algorithms. This module allows the user to
draw a linear list and modify it in various ways. The linear
list consists of nodes and links. Ovals including text objects
are recognized as nodes and lines connecting two nodes are
recognized as links. All other drawn elements are treated as
comments. For the recognition of the linear list, it is irrel-
evant in which fashion or order these elements are drawn.
Figure 2 shows a typical situation.

Once nodes and links have been drawn, several ways of
interaction with the structure are possible. Users can switch
the positions of two nodes, mark a selected set of nodes
or insert new nodes between two previously marked nodes.
If a node or link gets deleted, the resulting linear list will
be recognized accordingly. Furthermore, arbitrary sorting
algorithms can be executed on the drawn list by performing
certain gestures, either step by step, or in one animation,
until the whole list is sorted. All actions resulting from
these interactions are smoothly animated.

An obvious application scenario of this module could be
the discussion of different sorting algorithms during a lecture
(in this case, the list may be interpreted as an array). Ar-
bitrary situations can be drawn, animated and augmented
with annotations. Due to the interactivity of the system,
instructors can react spontaneously to any questions of stu-
dents, which we think is a great advantage over existing
animation systems.

4.2 Petri Net Module

This module represents and simulates a condition/event
system, a subclass of Petri nets [5]. Petri nets were chosen
because they have a more complex structure than linear lists.
The module allows the user to model a net by drawing places
(state nodes), transition nodes and tokens and by connecting
the nodes using directed links. Figure 5 shows an example
of a sketched net that models a mutual exclusion situation,
in which two processes cannot be both in a critical situation
at the same time.

Using certain gestures the firing of only one selected tran-
sition nodes, or all nodes at once can be simulated. Users
can select all transition nodes inside a certain area using ges-
tures. Selected transition nodes signal, through their color
and the color of links connected to them, whether or not
they are enabled and why this is so. In the example shown
in Figure 5 all three transition nodes on the left side have
been marked. It can be seen that the node labeled ret! is

Figure 6: Snapshot of the Connect-four game mod-
ule using a high feedback level.

not enabled as it is highlighted in a different color. The rea-
son for that can be seen at the color of the links connected to
it. The link to the criticall place is red, because that node
is a preceding node of ret! and contains no token. The link
to the semaphore place is also red, because it is a successor
node of ret! and already contains a token.

This module would also be well suited for an application in
teaching. Furthermore, it can be used for the fast and easy
collaborative design and testing of simple condition/event
systems. The possibility to clearly visualize a model’s status
with the mentioned coloring of transition nodes fosters the
understanding of the underlying processes in both areas.

4.3 Connect-Four Game Module

This module encapsulates the game Connect-Four®. While
the previous modules contain more formal structures, this
module illustrates the flexibilty of our framework by model-
ing a more complex system that contains, besides the data-
structure itself, quite extensive additional elements like a
game engine. It demonstrates a big advantage of the ma-
trix structure presented in Figure 3: The fact that once the
object, command and action mapper components that rec-
ognize and animate the basic elemements like the playfield,
stones or moves, are implemented, arbitrary complex algo-
rithms and systems can be easily built on top of the logical
structure, without having to consider the underlying recog-
nition or animation processes. In this case a game engine.

Users can start the game by either selecting an area in
which a playfield will be created automatically, or they cre-
ate the playfield manually by simply drawing it. No special
care has to be taken regarding too short lines or to the right
distance and orientation of the lines. The module will de-
tect and remove all non valid lines automatically. A turn
can be executed by drawing a game token and by perform-
ing a stroke gesture from that token to the column in which
it should be inserted. The resulting animation moves the
token to the top of the selected column and drops it into
that column. Another gesture triggers a move of the com-
puter player that will automatically select a suitable column
according to a simple heuristic. Except for inserting tokens,
users have several other ways of interaction: They can clear
all tokens inside a playfield, completely remove playfields or
create and use multiple playfields at a time, as well as delete
selected tokens contained in a playfield. The latter will re-
sult in a situation where all tokens above the deleted one
will fall down by one field. If one player wins, the set of
tokens responsible for the winning will be highlighted.

3See www.wikipedia.org/wiki/Connect_Four

As an interesting side note, due to the underlying dis-
tributed structure of our system, we get a multi-user network
game ”for free” if multiple Ul components are connected.

5. CONCLUSIONS

Motivated by the goal of increasing user engagement and
facilitating the creation of data structure animations, we
have introduced a system which enables users to simply
sketch the structures that should be animated. The IDEA
framework supports the combination of the recognition and
animation creation process, based on a logical representa-
tion of the specific structure. In order to achieve a very open
system and to enable it to be successfully applied in a col-
laborative teaching environment, it has been implemented
as a distributed client-server system.

Since the framework itself is domain-independent, it is
applicable to a wide range of different application areas.
The domain-specific knowledge is encapsulated in modules.
These modules work as plug-in components for the IDEA
framework. There are two main ideas behind the frame-
work’s support for the recognition and animation creation
processes performed inside a module: The separation of the
processes into object, command, and action streams and the
introduction of three semantic levels: the general, domain,
and logical level. The result is the matrix structure pre-
sented in figure 3. The functioning of this system has been
detailed by a series of example modules. So far, the usability
of the framework has only been assessed informally in some
individual presentations. Future work includes the integra-
tion of the system in a classroom environment and its use
in actual teaching scenarios.

6. REFERENCES

[1] C. Alvarado and R. Davis. Sketchread: a multi-domain
sketch recognition engine. In Proceedings of UIST 04,
Santa Fe, NM, October 2004.

[2] R. C. Davis and J. A. Landay. Informal animation
sketching: Requirements and design. In Proceedings of
the AAAI 2004 Fall Symposium on Making Pen-Based
Interaction Intelligent and Natural, Arlington, VA,
October 2004.

[3] K. A. Mohamed and T. Ottmann. Fast interpretation
of pen gestures with competent agents. In Proceedings
of CIRAS 2003. Singapore, December 2003.

[4] T. Naps, G. Rossling, V. Almstrum, W. Dann, R.
Fleischer, C. Hundhausen, A. Korhonen, L. Malmi, M.
McNally, S. Rodger, and J. Velazquez-Iturbide.
Exploring the role of visualization and engagement in
computer science education. ACM SIGCSE Bulletin,
35(2), June 2003.

[5] P.S. Thiagarajan. Condition/Event Systems. Lecture
notes, Aarhus University, Mat. Inst., October 1982.

[6] G. Rossling, T. Ackermann, and S. Kulessa.
Visualisierung von Algorithmen und Datenstrukturen.
In Proceedings of DeLFI 2006. Darmstadt, Germany,
September 2006.

[7] G. Rossling, M. Schiiler, and B. Freisleben. The

ANIMAL algorithm animation tool. In Proceedings of

ITiCSE 2000, Helsinki, Finland, July 2000.

L. Wenyin. On-line graphics recognition: state of the

art. In Proceedings of GREC 2003. Springer, 2004.

8

