
Leveraging the Web of Things for Rapid Prototyping of
UbiComp Applications

Benedikt Ostermaier
ETH Zurich

ostermaier@inf.ethz.ch

Fabian Schlup
ETH Zurich

fschlup@alumni.ethz.ch

Matthias Kovatsch
ETH Zurich

kovatsch@inf.ethz.ch

ABSTRACT
An increasing number of real-world entities is currently
being connected to the Internet and the World Wide Web.
We argue that this development is the precursor of a Web of
Things (WoT), which in turn provides a promising way to
prototype UbiComp applications, by significantly lowering
the technical barriers for making things �“smart�”. In this
paper, we outline how sensors, actuators and Web services
can easily be combined in the WoT in order to enable rapid
prototyping of UbiComp applications.

Author Keywords Web of Things, Rapid Prototyping,
Physical Mash-Ups

ACM Classification Keywords H.3.5 [Information
Storage and Retrieval]: Online Information Services �–
Web-based services, D.2.m [Software Engineering]:
Miscellaneous �– Rapid prototyping

General Terms Design, Experimentation

INTRODUCTION
An increasing number of real-world entities is currently
being connected to the Internet and the World Wide Web,
providing real-time access to a potentially huge audience.
One example of this is Bicing (http://www.bicing.com), a
public bicycle-sharing system in Barcelona, Spain, where
users can see the number of bicycles available at each rental
station in real-time on the Web. We believe that this
development is a precursor of a Web of Things, which gives
real-world objects and places a Web presence that not only
contains an HTML representation but also provides Web
APIs for accessing and manipulating their states in real-
time. We argue that the Web of Things fosters the creation
of UbiComp applications by significantly lowering the
technical barriers to make things �“smart�”: Context required
by an application could easily be gathered from the Web,
the large set of Web-based services could be utilized, and
Web concepts and standards are widely known and
supported.

THE WEB OF THINGS
In the emerging Web of Things (WoT), the Web is extended
from its original document-centric design to an application
layer for the real world. In this yet-to-be-standardized
concept, real-world objects like consumer devices are
integrated into the WWW by representing them as Web

resources, which can be accessed over HTTP using
lightweight APIs based on the REST principle [1,4]. For
example, assume the following URL represents the status of
the kitchen light: http://example.org/kitchen/light/power. To
determine whether the kitchen light is currently on, one
issues a HTTP GET request to this address and would in turn
receive a textual representation1 reading �“true�” or �“false�”
respectively. To switch off the light, one would send a HTTP
POST request with the payload �“false�” to the resource.

Although the concept of providing real-world entities with a
Web presence is well known and has been investigated in the
CoolTown [2] project, for example, it has recently gained a
revival: Since then, the Web has extended by reaching new
devices and user groups and also evolved, providing new
services and concepts. Structured data is nowadays more
common, various services on the Web provide powerful APIs
and combining different information sources on the WWW
within an interactive Web page, creating a so-called mash-up,
is a well-known concept.

In this paper, we demonstrate how one can combine sensors
and actuators on the Web of Things, creating physical mash-
ups, for rapidly prototyping UbiComp applications. We
illustrate this using a simple example: Assume you have a
Web-enabled light switch and a Web-enabled lamp. Let us
further assume that the light switch calls a user-specified
URL every time the switch is flipped, using a HTTP POST
request with the current state of the switch in the request
body2. The callback target of the switch can found at
http://example.org/lightswitch/callback and the lamp�’s
current power state can be read and set at
http://example.org/lamp/power. In order to link the light
switch and the lamp, one only needs to set the callback target
of the switch to the power state of the lamp. This is
performed by issuing a HTTP POST request to
http://example.org/lightswitch/callback with the message
body �“http://example.org/lamp/power�”. Now, each time the
light switch is flipped, it issues a HTTP POST request to
http://example.org/lamp/power with the current state of the
switch in the message body, causing the lamp to update its
power state. Note the flexibility of this approach: It is merely

1 However, this concept does not depend on a single serialization format,
as there may actually exist multiple representations for a given resource,
such as HTML and JSON, for example. The returned representation is
determined by HTTP�’s content negotiation.
2 URL callbacks are also sometimes denoted as WebHooks.

Copyright is held by the author/owner(s).
UbiComp�’10, September 26�–29, 2010, Copenhagen, Denmark.
ACM 978-1-4503- 0283-8/10/09.

configuration (not programming), and light switches could
control other devices using the same principle, as long as on
both sides the data is compatible. Likewise, other sensors or
arbitrary services running in the cloud could control the state
of the lamp. To toggle the lamp using multiple light switches,
one would use an intermediary Web service, if the Web API
of the lamp does not support this feature. Finally, the
interface can easily be utilized by an HTML page rendered
within a browser, by a command-line tool such as cURL
(http://curl.haxx.se/) or by a programming environment. In
order to be able to prototype more complex application
scenarios, we use a framework called WebPlug [3].

WEBPLUG: A FRAMEWORK FOR THE WEB OF THINGS
WebPlug is a prototypical framework for the Web of Things,
which does not rely on a centralized infrastructure but rather
introduces several building blocks. These components could
be distributed among connected devices but could also be
located in the cloud. We will briefly sketch some of its key
features, for more information we refer to [3].

Each resource managed by WebPlug can be versioned, i.e.,
the framework can keep a history of past versions of that
resource. Moreover, each version of a resource is assigned an
URL. This is especially helpful for sensor readings, where
one is often interested in past sensor data. For example, if
http://example.org/temperature represents a temperature
sensor then http://example.org/temperature@history/i:1
addresses the first recorded temperature reading while the
penultimate reading of a temperature sensor could be found
at http://example.org/temperature@history/i:last-1.

Furthermore, WebPlug supports a simple publish/subscribe
scheme for managed resources: One can observe changes of
a given resource by registering URL callbacks, which are
called by WebPlug with the updated value whenever the
corresponding resource changes. For example, to update a
display whenever http://example.org/temperature changes,
one may POST http://example.org/display/content, the
resource representing the display�’s contents, to
http://example.org/temperature@observers. Each time the
value of http://example.org/temperature changes, WebPlug
will issue an HTTP POST request to all registered
observers with the updated value in the message body, thus
updating the contents of the display, in this example.

An important feature of WebPlug are expressions, which
can be applied to managed resources. For example, the
http://example.org/fridge/temperature>10 will return true if
http://example.org/fridge/temperature is currently above
10°C, false otherwise. It is also possible to subscribe to the
result of expressions: In order to sound an alarm when the
temperature of the fridge exceeds 10°C, one could register
http://example.org/beeper/power by POSTing it to
http://example.org/fridge/temperature>10@observers.

Additionally, there is support for complex evaluations based
on multiple input resources. WebPlug also support the
integration of existing Web resources by polling them at

regular intervals, and turning them into managed resources.
Finally, WebPlug supports a variety of representations for
managed data. For example, numeric data can be depicted
graphically and historic data can be represented as iCalendar
data, which can be viewed in many popular calendar
applications.

PUTTING THINGS TOGETHER
In order to test and demonstrate the rapid prototyping of
UbiComp applications using the Web-of-Things approach,
we utilized several wireless, Web-enabled devices: A light
switch and a switchable power plug, which both offer a
simple REST-based API. Additionally, we used a standard
webcam and a mobile phone with a REST interface where
one can access the built-in sensors like the accelerometer or
the GPS and control the actuators like the vibrating alert,
for example. Finally, software components like a virtual
display and REST-based Web services providing helper
functions were utilized.

While we have tested our system only in setups of limited
size, our initial experiences with our approach are
promising. Creating and changing a setup requires little
effort �– for example, creating a motion detector based on a
standard webcam and using its results to automatically
switch a device connected to the Web-enabled power plug.
For this scenario, we turned the webcam into a resource
managed by WebPlug by utilizing a component of the
framework to poll and store the images at regular intervals.
Based on this managed resource, another component of
WebPlug was used to automatically invoke an external Web
service with the last two images taken by the camera, using
the subscription and versioning mechanisms outlined
above. The output of this service, a similarity metric for two
given images, is again a resource managed by WebPlug.
Finally, we subscribed the state of the power plug to a
threshold expression for this similarity level, thus switching
power whenever there is motion before the webcam.

REFERENCES
1. R.T. Fielding: Architectural Styles and the Design of

Network-based Software Architectures. Doctoral
dissertation, University of California, Irvine, 2000.

2. T. Kindberg, J. Barton, J. Morgan, G. Becker, D.
Caswell, P. Debaty, G. Gopal, M. Frid, V. Krishnan, H.
Morris, J. Schettino, B. Serra, and M. Spasojevic:
People, Places, Things: Web Presence for the Real
World. Mobile Networks and Applications, vol. 7, no. 5,
pp. 365�–376, 2002.

3. B. Ostermaier, F. Schlup, K. Römer: WebPlug: A
Framework for the Web of Things. Proc. of the First
IEEE International Workshop on the Web of Things
(WOT2010), Mannheim, Germany, March 2010.

4. D. Guinard, V. Trifa, E. Wilde: Architecting a Mashable
Open World Wide Web of Things. Technical Report No.
663, Institute for Pervasive Computing, ETH Zurich,
February 2010.

