
Institute of Information Systems
Distributed Systems Group
Prof. Dr. F. Mattern

Eidgenössische
Technische Hochschule
Zürich, Schweiz

Ecole Suisse Polytechnique Fédérale de Zurich
Politecnico Svizzero Federale di Zurigo
Swiss Federal Institute of Technology at Zurich

Web: http://www.inf.ethz.ch/vs/

An extensible infrastructure and a
representation scheme for distributed
smart proxies of real world objects

steps toward a smart environment

Thomas Dübendorfer

Assistant: Kay Römer
Supervisor: Prof. Friedemann Mattern

5th April 2001

2

An extensible infrastructure and a representation scheme for distributed
smart proxies of real world objects

Master’s Thesis of Thomas Dübendorfer, thomas@duebendorfer.ch,
ETH Zurich, Switzerland

Copyright c©2001, Thomas Dübendorfer. All rights reserved.

Document History:
March 2001 First edition
April 2001 Second edition,

published as Technical Reporta TR 359 of ETH Zurich

ahttp://www.inf.ethz.ch/publications/

Many of the designations used by manufacturers and sellers to distinguish
their products are claimed as trademarks. Where those designations appear
in this document, and the author was aware of a trademark claim, the des-
ignations have been marked with the trademark symbol.
While every precaution has been taken in the preparation of this documen-
tation, the author assumes no responsibility for errors or omissions, or for
damages resulting from the use of information contained herein or in the
code supplied.

CONTENTS 3

Contents

Abstract 7

1 Introduction 8
1.1 Vision . 8
1.2 Background . 10
1.3 Scenario . 10
1.4 Aspects . 11
1.5 Focus . 11

2 Related Work 12
2.1 Object Tracking . 12
2.2 Ubiquitous Computing Visions and Systems 14

3 Concepts 16
3.1 Location and Proximity . 16

3.1.1 Definition . 16
3.1.2 Categorization . 16
3.1.3 Queries . 17

3.2 Unique identity . 17
3.3 Smart Virtual Counterparts 20

3.3.1 Virtual Object . 20
3.3.2 Virtual Location . 20
3.3.3 Lifecycle of Virtual Counterparts 21

3.4 Meta Objects . 21
3.4.1 Virtual Meta Object 21
3.4.2 Virtual Meta Location 22

3.5 Virtual World . 22
3.6 Communication Paradigms 23
3.7 Persistence . 25

3.7.1 Artifact Memory . 25
3.8 Privacy or Defeating the Fear of a ‘Big Brother’ 25

4 A Virtual Object eXtensible Infrastructure 27
4.1 Design Goals . 27
4.2 System Architecture . 28
4.3 Events . 29

4.3.1 Definition of Event 30
4.3.2 Definition of Equality of Events 30
4.3.3 Definition of Event Matching 30
4.3.4 Definition of Strict Event Matching 31
4.3.5 Predefined Event Types: EntryEvent and ExitEvent . . 31
4.3.6 Meta Information About Events 31

4 CONTENTS

4.4 Communication Infrastructure 32
4.4.1 Event Handling . 32
4.4.2 Remote Calls . 32

4.5 Virtual Objects . 32
4.5.1 Features . 32
4.5.2 Case Study: Process or Thread? 33
4.5.3 Activatable and Permanent Virtual Objects 34
4.5.4 Location-Awareness 34

4.6 Virtual Locations . 35
4.6.1 Template-Based Event Subscriptions 35
4.6.2 Event Publishing and Distribution 36
4.6.3 Location-Awareness 36

4.7 Meta Objects . 36
4.8 Virtual Object Manager . 37

4.8.1 Core Tasks . 37
4.8.2 Creation of Virtual Objects and Locations 38
4.8.3 Case study: Should a Virtual Location Incorporate

the Features of a Virtual Object Manager? 40
4.8.4 Unloading Virtual Objects and Locations 42
4.8.5 Migrating Virtual Objects 42

4.9 Virtual Object Repository 45
4.10 Artifact Memory . 46

4.10.1 Overview . 46
4.10.2 Core Tasks . 47
4.10.3 Protocol Specification 47
4.10.4 Privacy and Availability Issues 49
4.10.5 Suggested Extensions 49

4.11 Lookup Service . 49
4.12 Event Source . 50
4.13 VoxiWatch GUI . 50
4.14 Security and Privacy . 51
4.15 Further services . 52

5 Implementation 53
5.1 General . 53
5.2 Challenges . 53
5.3 Overview . 54

5.3.1 The VOXI Package 54
5.4 Communication Infrastructure 54
5.5 Events . 55

5.5.1 Generic Event Type 55
5.5.2 Case Study: Event Subclasses Versus HashMaps . . . 57
5.5.3 Event Wrapper . 57
5.5.4 Event Delivery . 59

CONTENTS 5

5.5.5 Event Matching . 59
5.5.6 Timestamps . 59

5.6 Virtual Objects . 60
5.6.1 Features . 60
5.6.2 Implementing a New Virtual Object “MyObject” . . 62
5.6.3 Some Notes on RMI 62
5.6.4 Internal State of a Virtual Object 63

5.7 Virtual Locations . 63
5.8 Meta Objects . 64
5.9 Virtual Object Manager . 64

5.9.1 Virtual Object Creation Upon EntryEvents 64
5.9.2 Data Structures . 66
5.9.3 Multi-Threading Issues 66
5.9.4 Processing ExitEvents 68
5.9.5 Migration Support 68

5.10 Virtual Object Repository 68
5.10.1 Repository . 69
5.10.2 Mapping Facility . 70
5.10.3 Future Extensions . 71

5.11 Artifact Memory . 72
5.12 Lookup Service . 72
5.13 Event Source . 73

6 Deployment 74
6.1 Scenarios . 74

7 Conclusions 76
7.1 Summary and Outlook . 76
7.2 Future Work . 76

Acknowledgements 77

A Bibliography 78
A.1 Object Tracking Systems . 78
A.2 Radiofrequency Identification (RFID) 79
A.3 Ubiquitous Computing . 79
A.4 JavaTM . 82
A.5 JiniTM . 82
A.6 CORBA� . 82
A.7 Internet . 83
A.8 XML . 83
A.9 Online Archives . 83

B List of Figures 84

6 CONTENTS

C List of Tables 85

CONTENTS 7

Abstract

An extensible infrastructure and a representation scheme for distributed
smart virtual proxies of real world objects as presented in this Master’s
Thesis could be a foundation to make the environment smart by enhancing
simple objects with smart virtual counterparts. Design, implementation
and deployment issues of concepts such as virtual counterparts (Virtual Ob-
jects), proximity (Virtual Location), meta objects (Virtual Meta Objects
and Locations), lifecycle of virtual counterparts (Virtual Object Manager)
and a queriable persistent Artifact Memory are discussed.

Zusammenfassung1:
Eine erweiterbare Infrastruktur und eine Repräsentationsform für verteilte
intelligente virtuelle Stellvertreter von realen Objekten wie sie in dieser
Diplomarbeit präsentiert werden, könnten den Grundstein legen, um un-
sere Umgebung intelligent zu machen, indem einfache Gegenstände durch
die Intelligenz ihrer Stellvertreter ebenfalls intelligent werden. Es werden
Entwurfs-, Implementierungs- und Anwendungsaspekte von Konzepten wie
virtuelle Stellvertreter (Virtuelle Objekte), Nähe (Virtuelle Orte), Meta-
objekte (Virtuelle Metaobjekte), Lebenszyklus der virtuellen Stellvertreter
(Virtueller Objektmanager) und ein abfragbarer persistenter Artefaktspe-
icher diskutiert.

1A german summary is required by the department of computer science at ETH for a
Master’s Thesis written in English

8 1 INTRODUCTION

1 Introduction

1.1 Vision

Although the development of computers shifted society to the information
age we are still champions in keeping valuable information inaccessible or
not making use of it at all. If information is not recorded at the time of
creation then its reconstruction is likely to be cumbersome. Having the right
information at the right place and at the right time is often crucial - espe-
cially when we are keen on saving time.

A common way of spending productive time is for instance looking for every-
day things as they somehow just seem to have vanished. This is especially
true if there are many people using them. The specific thing we are looking
for certainly knows where it is at the moment, but we don’t. We could
also say that the location information is inaccessible. If there would be a
possibility of asking a hidden object about its current place of presence we
would certainly use that means to detect it. The same holds for people we
want to reach and cannot find.

Figure 1: Each physical object could have a smart virtual counterpart.

Have we ever thought of what an everyday thing such as a book or a toy
could tell us? A book might inform us when a new edition has been pub-
lished, show the latest list of errata to us when we hold it close to a screen
and suggest further reading. It could also tell how long we have spent read-
ing it and which other books have been standing close to it on the shelf. So
if once we can’t remember the exact name of a book we lent to a friend we
can just ask a book that was near to it on the shelf. A personal toy could
tell us about when it was on holidays with us, which hotel we visited and
which people we met there.

1.1 VISION 9

Might it really be possible to enhance everyday things and make them smart?
This really sounds incredible for the moment as a book or a simple toy clearly
has no input and output devices and so it can neither see nor tell.

Imagine that each thing is uniquely identifiable and that sensors can re-
cognize things close to them. We get information about when a thing is
at which location together with which others. The more we know about
a specific thing the better we can understand actions in a context and the
more information we can deduce from simple recorded events.

Let us suppose that each physical object has a smart virtual counterpart
that gets the information about its managed physical object from the sen-
sors and that it will process and store them. This opens up for a broad
new field of information providing and introduces new innovative interac-
tion patterns.

As an example, when we hold a paper business card close to an organizer the
virtual counterparts of the organizer and the business card could exchange
the information printed on it without us having to do any typing at all. The
organizer can then connect to its virtual counterpart and retrieve the new
address information. In the future it will be sufficient to collect the unique
identity of a poster hanging on a wall somewhere in order to retrieve its full
information later again without us having to grab for a pen and a notepad.
The virtual counterpart knows that we have been at a certain location and
has noticed our interest in the specific poster.

When we even go a step further and add some input and output devices to
a toy as it is a goal of the Smart-Its2 project, we could add a microphone, a
loudspeaker and a wireless link to a simple teddy bear and enable it to trans-
late spoken phrases into another language by having it send the recorded
voice signals to its virtual counterpart and then playing the translation that
it receives as the reply by using its loudspeaker. Another toy could sound
an alarm tone or even make its virtual counterpart call someone if the room
temperature gets too hot and if there has been no one watering the plants
in the room for a longer time.

A virtual counterpart tries to collect and make use of all information related
to the physical thing which it is associated to. When we take our favorite
toy into our car then the toy’s virtual counterpart should be able to hop
into the car too before we leave. It then travels with us and could tell the
whole story of what has happened on the journey, where we have been and
who we have met. We can query it on facts of which we cannot remind the

2cf. [28]

10 1 INTRODUCTION

details anymore and it could tell us the missing pieces. The virtual world
where the virtual counterparts are living in is a partitioned one. The small
virtual world of the car disconnects from the house’s bigger virtual world for
the journey and reconnects when it is back again. Virtual counterparts can
therefore temporarily move out of reach of each other and return somewhen
later.

Today’s technology is on the verge of allowing us to make simple things
smart by giving each unique identifiable thing a smart virtual counterpart.
We need versatile representations for things and locations and an infrastruc-
ture has to provide some basic services such as dynamic creation of virtual
counterparts, event-based communication, a lookup mechanism to find other
virtual counterparts and a way to store information persistently and query
on it. In the future as miniaturization of electronic devices has progressed
that far such that we can hardly distinguish dust from sensors and wireless
communication nodes anymore, we might even talk of smart dust (cf. [29]).

1.2 Background

Several projects in the Distributed Systems Group of Prof. Friedemann
Mattern at ETH Zurich are related to current research topics in the field of
ubiquitous computing. The main focus lies on generic concepts of a common
infrastructure, foundations for device-independent services, new interaction
paradigms, as well as on security aspects for communicating and cooperative
devices. All of the projects aim at finding the requirements which arise from
a proliferation of ”smart devices”, ”spontaneous networking” and ”nomadic
users”. The final goal is to define future steps for a realization of the tech-
nical foundations for ubiquitous computing.
As a first step a small infrastructure should be designed and implemented
in the Ubiquitous Computing Lab of the Distributed Systems Group, which
should demonstrate in a variety of examples the fundamental concepts in
the field of ubiquitous computing such as location- and context-awareness
and virtual representations of physical objects. This will be a starting point
for future investigations and thorough research.

1.3 Scenario

The infrastructure and the representation scheme for distributed smart prox-
ies of real world objects that were designed and implemented in this thesis
do enable scenarios like the following one.

The general concept of a virtual representation of everyday things should be
demonstrated in a presentation. To each object (e.g., a coffee mug, a book)
a unique identity in the form of a radio-frequency identification (RFID)

1.4 ASPECTS 11

tag is stuck. Several RFID antennas at different locations can sense these
tags. The virtual representations of the locations as well as the virtual
counterparts of the objects are capable of receiving and storing the events
of tags entering and exiting the specific physically limited place surrounding
an antenna.
A tool should enable to query the objects where they are and where they
have been and to query the locations which objects are present. Intersecting
the sets of visited locations could then reveal that objects have already met
before.

1.4 Aspects

The thesis introduces several new terms which are defined in section 3 and
it puts emphasis on the following aspects.

• Virtual Object (VO) and Virtual Location (VL) Modelling

• Paradigm of Virtual Meta Objects (VMO) and Virtual Meta Locations
(VML)

• Virtual Object Management (VOM)

• Virtual Object Repository (VOR)

• An event-based publish/subscribe model for Virtual Objects and Vir-
tual Locations

• An Artifact Memory (AM) to store and query event histories and state
data

1.5 Focus

The core of this Master’s Thesis is concerned with building an extensible core
software infrastructure for ubiquitous computing and with defining generic
concepts in this field as well as with finding a versatile representation scheme
for modelling virtual counterparts of physical objects and locations.

12 2 RELATED WORK

2 Related Work

In this section we present some past and current projects related to the
vision stated in 1.1 on page 8. We start with discussing object tracking sys-
tems which can be seen as the very basis of the more elaborate ubiquitous
computing systems and visions that we review subsequently.

2.1 Object Tracking

A basic feature that a software and hardware infrastructure for ubiquitous
computing should provide is tracking objects and people in order to tell
where they are at the moment or where they have been. As a matter of
fact most people tracking systems built so far do not really track people
but objects that people carry with them such as badges or tags. The term
“object tracking” which we will prefer from now on is more general and
moreover does not have the flat taste of an undesirable “Big Brother” that
is always watching you and that knows all about you. By the way this fear
is heavily related to the fact that most tracking systems are managed by a
single centralized authority instead of being truly distributed and allowing
for independent objects that can be under full control of the user itself.

Knowing the location of a badge can be used to enable a broad range of ap-
plications such as making it easy to locate people in an office environment,
open doors automatically with restrictions depending on who is arriving,
regulating the heating, switching off lights in rooms where no one is present
and letting them on even at night if some people are still working, routing
calls to the closest phone and printing on the closest printer, providing a
tourist with a location dependent city map with a moving “you are here
mark” and suggestions to visit important buildings in the current neigh-
borhood, ticketing for public transport systems and many others still to be
conceived.

Active Badge Location System (Olivetti Lab, 1992) The often cited
Active Badge Location System (cf. [1]) is one of the first badge tracking
systems ever built. It helps locating people in an office environment. Each
active badge transmits almost regularly about every 15 seconds its unique
code as a short pulse-width modulated infrared (IR) signal that is perceived
by a near sensor and then sent to a centralized tracking database through the
existing wired network. The tracking database shows the current locations
of the staff (including ’AWAY’ and probabilities) and supports a simple high-
level query and command language to retrieve location histories or among
other things to generate a notification signal upon the next sighting of a given
badge. Privacy concerns were addressed by emphasizing that badges are

2.1 OBJECT TRACKING 13

located and not people and by not keeping any long-term location records.

ParcTab Ubiquitous Computing (Xerox PARC, 1995) The ParcTab
project (cf. [2]) encompasses as its core the construction of a palm-sized
portable device called ‘ParcTab’ with a touch-sensitive display, three but-
tons and an infrared transceiver. This small device acts as a thin client that
displays server-side generated display data and sends user actions through
an infrared uplink to a preestablished non-moving server agent in the local
wired network. The communication between agent and infrared gateway is
based on SUN�’s Remote Procedure Call (RPC) technique. A beacon sent
by the device every 30 seconds helps locating its user. This enables a broad
variety of applications that can make use of location information.

Location Based Personal Mobile Computing and Communication
(University of Wollongong, 1998) Like a revival of the ideas of the Ac-
tive Badge Location System and the ParcTab Experiment this project (cf.
[3]) brings both together and defines three types of badges. A Dumb Badge
simply sends beacons with its unique identity number. A Smart Badge,
which was actually built in this project, is a Dumb Badge enhanced by a
collection of sensors (orientation, humidity, temperature, light, microphone)
and actuators (piezoelectric transducer) as well as by the capability to be
reprogrammed. An Intelligent Badge is the culmination in this hierarchy as
it additionally provides enhanced I/O capabilities such as a display, audio,
video or motion to enable new ways of interaction.

RFID Based Identification and Location Systems

Figure 2: A transparent RFID
label of type remote coupling.

The radio-frequency identification (RFID)
technology as described in [9] makes use
of the induction that electromagnetic fields
cause in a metal wire. This enables passive
tags that use only the energy of the elec-
tromagnetic sensor field to send the beacon
with the unique identification number when
they are close to a sensor. The supported
distances from the RFID tag to the sensor
is used to categorize the various systems. It
is differentiated between close coupling (0 -
1 cm), remote coupling (15 cm - 1 m) based on inductive coupling where no
battery is needed for the transponder in the RFID tag and long range (1 m
- 10 m) systems based on microwave communication that need a separate
power support. The identity number transmitted ranges from a simple 1
bit to symbolize the states ”present” and ”not present” up to about a thou-
sand bytes. More powerful RFID devices possess a microprocessor and some

14 2 RELATED WORK

non-volatile memory. They can encrypt messages and run customized ap-
plications. Possible applications of the RFID technology are as different as
contactless smartcards, ticketing for public transport systems, animal identi-
fication and automatic individual feeding stations, access control, electronic
locks, electronic article surveillance, time measurement at sport events and
industry automation.

Others There are many other systems that help to locate objects. For
instance, a specialized middleware (cf. [4] and [5]) was developed that sup-
ports the movement of user interfaces for multimedia teleconferences (based
on X) depending on the user’s location. Or for instance the MediaCup (cf.
[6]) that finds out about what a user is doing with a coffee mug that is en-
hanced with some sensors and an RFID tag. Our discussion of related work
is not to be taken as a final survey.

2.2 Ubiquitous Computing Visions and Systems

The vision of systems that support ubiquitous computing applications is
not brand new. There already are some visions and systems that go into
that direction. The central idea could be summarized by the phrase “mak-
ing simple things smart by giving each unique identifiable object a virtual
counterpart”.

CALAIS (University of Cambridge, 1998) The CALAIS system as
described in [10] is an event-based distributed system that consists of event
services and applications. Sensors generate events which are matched against
templates and pushed to subscribed applications. There are also some not
further specified event query mechanisms provided. This distributed system
relies on CORBA� as the communication middleware. It seems that the
system itself was neither released to the public nor is it in productive use.

Nexus - An Open Global Infrastructure for Spatial-Aware Ap-
plications (University of Stuttgart, 1999) The challenging Nexus
project (cf. [11]) is currently only a vision of augmented areas that will
provide virtual representations of physical objects and links to an informa-
tion space or service. The user will be able to query and send commands
to the virtual representations. However, the first prototype of Nexus is due
not before 2002.

Hive: Distributed Agents for Networking Things (MIT, 1999)
Hive (cf. [12] and [13]) is an agent-based distributed system that was re-
leased publicly in 1999. Agents are installed in a so-called cell that provides
a registration service and a weak migration multi-hop capability between

2.2 UBIQUITOUS COMPUTING VISIONS AND SYSTEMS 15

cells. Whereas the early Hive system was based on CORBA�3 the publicly
released system is based on JavaTM ’s Remote Method Invocation (RMI). So-
called shadows that are installed into cells can provide access to resources
such as a user interface or a digital camera. The agents are installed and
manually connected by the user by using a GUI and can be used to build dis-
tributed applications. The system consists of about 24.000 lines of JavaTM

code.

CoolTown (HP Lab Palo Alto, 2000) The CoolTown project (cf. [14])
aims at giving each person, place and thing a web representation (cf. [15]
and [16]) by associating each unique identifiable object a Word Wide Web
URL4. Based on the common HTTP-protocol the user can interact with the
virtual representation. A special device can be used to gather the unique
identities and later resolve them into URLs.

Portolano (University of Washington, 2000) The emerging fields of
ubiquitous and invisible computing are addressed by the Portolano project
(cf. [17]). Invisible and worry-free user interfaces, a new data-centric net-
working infrastructure (cf. [18]) and distributed services will be developed
in this project. As for now only conceptional and visionary papers exist.

JiniTM - JavaTM Intelligent Network Infrastructure (SUN�) JiniTM

(cf. [35]) is a middleware that is based on the simple view that “everything
is a service”. The services are distributed in a network and JiniTM offers
discovery, join and lookup mechanisms to provide hassle-free access to them.
A service can publish a description of itself on a lookup service and provide
a proxy that is downloaded by the client and used to access the service func-
tionalities as if the service were local. The JiniTM environment requires no
user intervention, it is self-healing (i.e., if leases expire the resources are au-
tomatically freed) and consumers of JiniTM services are not obliged to have
prior knowledge of the implementation of services they want to use. There is
a variety of services that ships with JiniTM such as reggie, the lookup service
or mahalo, the transaction manager or mercury, an event mailbox service
and some others. JiniTM is still very young; in December 2000 version 1.1
was released.

Others Of course the above list of related visions and systems is not com-
plete. There are some smaller projects as well where some conceptual papers
have been published such as the mobile-floating agent scheme (cf. [24]) for
wireless distributed computing by the University of Stockholm, 1995.

3Voyager 1.0 to be precise
4Uniform Resource Locator

16 3 CONCEPTS

3 Concepts

3.1 Location and Proximity

If we want to track objects we need a notion of where the object is at the
moment.

3.1.1 Definition

A Location is a physically or logically limited place.

The following examples illustrate the above definition:

• Physically limited place: An object is in a room, lies on the surface
of a table, resides on a bookshelf, hides in a toy box, is in a moving
car or is inside of a building.

• Logically limited place: An object or a person is at a conference,
in a dark forest or in vicinity to a good friend.

3.1.2 Categorization

The next step is to find a way to determine the current location of an object,
i.e., to get a positional reference.

Position A Position can be absolute (e.g., GPS5) with respect to a
coordinate system or relative to another object of which we
usually know the exact position especially if it is part of the
infrastructure.

Awareness Either the infrastructure or the object or both know the cur-
rent position of the object.

Activity An object can either actively send beacons to mark its pres-
ence or it can remain passive until it is polled by a sensor.

Availability A positioning system can be available only locally (e.g., sys-
tems based on infrared or RFID sensors) or globally avail-
able. Although a system might be global this does not indi-
cate that it is available everywhere. The global positioning
system GPS for instance does no work inside buildings or in
tunnels. Systems that learn from sensor input (e.g., from a
video stream of a camera mounted on a robot) and are able

5GPS is the Global Positioning System, cf. [8]

3.2 UNIQUE IDENTITY 17

to recognize the same location later again need a learning
phase in advance and are only reliable for places they have
already visited.

Reliability and accuracy It is important to know how reliable and accu-
rate an information about a position is. These requirements
vary strongly depending on the field of application such as
for instance tracking parcels sent worldwide or objects mov-
ing within an office building or recording the movements of
a simple pen that is enhanced to a virtual laser pointer by
the infrastructure.

It has to be considered that a location can fully or partially overlap other
locations.

Besides the proper location (�x) sometimes it might be useful to know also
about speed (�v = �x′), acceleration (�a = �x′′), change in acceleration (�a′ = �x′′′)
and about orientation (�p = [x, y, z]). These additional measurements allow
to predict positions in the near future even though the object might not be
in reach of a sensor anymore.

The primary type of positioning systems that the infrastructure which was
developed in this thesis will have to support consists of sensors at well-known
positions that poll passive RFID tags in a limited place around them. But
in fact, any type of positioning sensors that can report sightings at a unique
location and generate appropriate entry and exit events can be seamlessly
integrated. A later extension to support absolute positioning such as GPS
(i.e., many different unique locations which should be processed by one or a
few virtual counterparts of locations) is also possible.

3.1.3 Queries

Some common queries on the locations of objects are:

• Where am I? Where is object X?

• Which objects are near me? Which objects are at location X?

The first type of questions returns the current location. The second type
returns a list of object identifiers.
It might be reasonable to rely on an already existing query language and
only make a few extensions to it rather than invent a completely new one.

3.2 Unique identity

The concept of a unique identity that is assigned to an entity is in widespread
use today. Although multiple assignments of unique identities to the same

18 3 CONCEPTS

entity are conceptually not needed, this practice is very common in real life.
An interesting psychological fact is that nobody seems to care about the
globally unique MAC (medium access control) address of each ethernet card
but that the unique processor id in the Intel� PentiumTM III processor was
regarded as a big danger for personal privacy and had to be disabled by
default.

The following list of examples leads us to a set of important criteria and
shows how astonishingly widely accepted the (mostly unaware) use of unique
identities in real life is.

• Internet and Communication: Domain name, IP address, MAC
address, e-mail address, session id of a website, subscriber identity
module (SIM) in a mobile phone

• Computer Systems: Login name, process id, software licence key,
processor id, fully qualified file name, disk drive letter

• Society: Postal address, social security number (AHV/SSN), pass-
port number, card of identity number, car license number, key to a
lock

• Finance: credit card number, number on a bank note, account num-
ber, cheque number

• Business and Commerce: Employee number, order number, con-
firmation number, ISBN6, EAN7 code

• Biometry: Iris scan, fingerprint (16 characteristics are sufficient),
DNS sequence

• Others: RFID tag

The term “unique” is not precisely defined in real life. We always have
to consider two aspects: Time (temporary or permanent uniqueness) and
context (in which an identity is unique). A session id on a website might
only be unique for a couple of months and then be used again. A process id
might be reused after the computer system has been restarted. A number
on a bank note is only unique in the context of a currency and not worldwide
for all bank notes. Instead of ‘context’ we could also say that an identity
is only unique within a domain or namespace. Prepending a worldwide
unique domain name8 to an identity which is only locally unique results in

6International Standard Book Number
7European Article Number
8E.g., a registered Internet domain name such as “duebendorfer.ch”.

3.2 UNIQUE IDENTITY 19

a fully qualified name for the entity which is worldwide unique.

The reason why most identification numbers are only temporarily unique
is that we tend to restrict the length of the identification representation for
convenience of use and because of technical limitations. Nobody would like
to have a 30 digit credit card number or car license number on his or her
plate just to make sure that no one in the far future might ever get the
same number again. On the other side for instance the available permanent
memory of cheap RFID tags is very limited. As another example the 32 bit
wide IPv4 network numbers are getting scarce and therefore certain sets of
number assignments are only temporarily unique.

The use of multiple assignments of different unique identities for the same
entity is so common because this practice makes the different assignment
authorities fully independent of each other. It also reduces administration
overhead as local assignment authorities do not have to be controlled by a
worldwide master assignment organization. Furthermore innovative systems
can establish their own proprietary identification rules that best suit their
technical and organizational needs which a one-suits-all standardized solu-
tion can never offer. A person might even wish to get a different customer
identity number for each service used in order to conceal his or her personal
habits and get some guarantee for privacy. However, a unique identity does
suffice to link all kinds of rights for services to an entity such as paying in
a shopping mall, using it as a passport, using it as a key to open the doors,
using it as a link to the cinema tickets bought by phone and many more. It
would be best if the identity is not only assigned but inherent to the entity
(e.g., the unique DNA sequence of a human).

As nice9 as it would be to demand that each physical object, that will be
represented in our infrastructure, has to provide its unique identity in form
of a worldwide unique hierarchically constructed URI10 this unfortunately
would exclude the use of cheap RFID tags which use a few dozen bytes as
the identification number. Therefore we cannot rely on a consistent naming
scheme but we at least have to make sure that there are never two entities
in the system at the same time with the same identification label.

A representation of a unique identity should allow for a reasonably large set
of different identities to guarantee uniqueness over a longer time period and
at the same time the representation should have a sensibly short length to
remain convenient in use and in order not to set unnecessarily high technical

9URI-style names are short, legible object keys that can easily be written down, entered
by hand, or exchanged over the phone and there is no cryptic deciphering needed.

10Universal Resource Identifier (URI). Example (as in CORBA’s IIOP, cf. [38]):
iioploc://host:1234/ImplName/ABC/DEF/ObjName

20 3 CONCEPTS

requirements. It would be advantageous if the identity is human readable
and not only machine readable which excludes long hex codes and the like.
Depending on the application domain it might be a very good idea to have a
checksum included especially if humans have to enter the identity manually.

The representation of a unique identity that we will simply call objectID
and which is used by the infrastructure presented in this thesis is a system-
wide unique unicode character sequence of variable length with no enforced
structure. This enables us to support a wide range of naming systems and
allows for a hybrid naming scheme. The user group of the system can
make its own set of conventional rules for a flat (e.g., random numbers) or
hierarchical (e.g., URLs, IPv6 address, EAN code, etc.) naming scheme that
is most appropriate for the intended application domain.

3.3 Smart Virtual Counterparts

The vision in 1.1 introduced the idea to enhance simple everyday objects
with smart virtual counterparts as shown in figure 1. These counterparts live
in a virtual world and can make use of a common communication infrastruc-
ture independent of which object they actually represent. We differentiate
between virtual objects that stand for things including people and virtual
locations that represent locations as defined in 3.1.1 on page 16.

3.3.1 Virtual Object

Figure 3: A Virtual Ob-
ject.

Each unique identifiable physical object becomes
smart through a virtual counterpart that receives,
processes and stores all events that are related to
this identity. This Virtual Object can be regarded
as a proxy for the physical object and is able to
interact with other Virtual Objects. As the term
“proxy” is heavily used in all kinds of contexts
we refrain from using that term to denote the vir-
tual counterpart and simply call it Virtual Object
(VO).

3.3.2 Virtual Location

Figure 4: A Virtual Lo-
cation.

Each physical (e.g., an RFID sensor) or logical
(e.g., being at a conference) location (as defined
in 3.1.1) has an associated virtual counterpart,
the Virtual Location, where objects can subscribe
with event templates for event notifications. A
Virtual Object can be at more than one Virtual
Location at the same time (e.g., on the table and

3.4 META OBJECTS 21

in room F1).
Sightings of objects at a certain sensor automatically associate it with that
location. A Virtual Location can be regarded as a specialization of the
concept of a Virtual Object.

3.3.3 Lifecycle of Virtual Counterparts

Before a virtual counterpart can come to life, its representation has to be
created and the infrastructure must know which physical object or which lo-
cation it is associated to. When a tagged object is sighted by a component
of the infrastructure the virtual counterpart corresponding to the unique
identity which has been reported is dynamically loaded and activated. It re-
ceives all events related to its associated physical object or location as long
as it remains active and it can communicate with arbitrary other virtual
counterparts.
As a rule of thumb a virtual counterpart of a physical object should ter-
minate itself some reasonable time after it is no longer associated with any
Virtual Location. Upon termination it is unloaded by the infrastructure.
It will not be reloaded and activated again until it is next sighted. The
counterpart can then access the persistent data which it might has stored
earlier. Removing the association to a unique identity will prevent the vir-
tual counterpart from being reloaded again as the infrastructure does no
longer know which representation it should load and activate. However, a
default representation that would be taken as the virtual counterpart of a
physical object or location with a unique identity that was not previously
associated to a specific virtual counterpart could be used in this case.

3.4 Meta Objects

Figure 5: A Virtual
Meta Object managing
a collection of compact
disks.

When we think of unique identifiable objects such
as playing cards, various issues of a newspaper
or food products it might be more reasonable to
handle many similar physical objects by only a
single virtual representation. All events related
to objects managed by a single Virtual Object in-
stance that we call Meta Object are routed to it
instead of creating a separate Virtual Object for
each playing card or each newspaper issue. This
concept can dramatically reduce resource require-
ments and application development complexity.

3.4.1 Virtual Meta Object

A collection of usually similar objects can be managed by a single virtual
representation which internally differentiates the events received. We call

22 3 CONCEPTS

this special instance of a Virtual Object a Virtual Meta Object (VMO).

3.4.2 Virtual Meta Location

Figure 6: A Meta Loca-
tion managing GPS po-
sitions.

Analogous to the concept of Virtual Meta Ob-
jects similar locations can be managed by a sin-
gle Virtual Meta Location. For instance in a mu-
seum, various sensors at different locations could
be managed by a single Virtual Meta Location.
Furthermore this approach is particularly useful
when dealing with absolute positioning data (e.g.,
GPS) that would otherwise create a separate Vir-
tual Location for each unique identifiable position.
All locations of the form GPS(x,y,height) could be
managed by one or a few Virtual Meta Locations.

3.5 Virtual World

Figure 7: When the teddy bear leaves the house for a journey, it is still
accompanied by its virtual counterpart.

The virtual counterparts live in a virtual world which is created by a soft-
ware and hardware infrastructure. It is unrealistic to assume that this in-
frastructure will span the whole world and that some global services will be
accessible from all places. The structure of the virtual world is partitioned
and there will be smaller and bigger islands of virtual worlds where the vir-
tual counterparts can live in. For instance as is shown in figure 7 a teddy
bear might move out of his home for a journey. When the physical teddy
leaves the house, its virtual counterpart should accompany it by hopping
into the car too. As the car moves away from the house some services and
other virtual counterparts will get out of reach as the communication link
to the house’s virtual world disconnects. For the journey, the teddy bear
will live in the car’s much smaller virtual world. But when the car returns
at night and the teddy enters the house again then its virtual counterpart

3.6 COMMUNICATION PARADIGMS 23

can move back to the house’s reconnected virtual world and make use of the
full infrastructure again. This example shows a need for the migration of
virtual counterparts.

3.6 Communication Paradigms

The distributed Virtual Objects must support a communication paradigm
that is simple but flexible and extensible at the same time. We give a short
overview of various concepts related to communication. In our infrastruc-
ture the objects can exchange messages that we will call events.

There are two basic communication patterns in use:

Figure 8: Illustration of a message exchange between two entities.

• synchronous: The sending entity A has to wait during the time
interval �tA (cf. figure 8) until the other party B has processed the
message and has sent a reply. We can say that synchronous message
exchanges have a blocking behavior.

• asynchronous: The sending party A can work during �tA on new
tasks after the message delivery. The receiving party B will process
the message and send the reply back by executing a callback at A
to inform it about the reply. We can say that asynchronous message
exchanges have a non-blocking behavior.

When defining a message protocol there are usually two different types of
messages:

• notification: The message sent does not require a reply11 (unless an
optional acknowledgement on the transport layer that the message has
arrived).

• request-reply pair: The message sent is a request that always re-
quires a reply12.

11E.g., time broadcast messages do not require a reply.
12E.g., the GET message of the HTTP protocol always expects a reply.

24 3 CONCEPTS

Request-reply pairs can be imitated by two notification messages that are
somehow linked together; one is sent from the sender to the receiver and the
other one back. This procedure involves establishing two different network
connections13 and the parties involved would have to match the reply to the
correct request. However, this is not as efficient as sending a reply on the
same already established network connection (e.g., TCP/IP socket). In our
infrastructure we will support both types of messages.

Messages delivery can be categorized into two different groups:

• acknowledged: The sender requires an acknowledgement that the
message was successfully received at the remote object.

• unacknowledged: The sender only makes sure that the message was
delivered into the network but does not know whether the remote
object finally received it.

In our infrastructure we will rely only on acknowledged messages.

Case Study: Remote Method Invocation (RMI) JavaTM ’s Remote
Method Invocation, which allows to call methods of objects on a remote
node in the network, is synchronous by design. When we assume the net-
work bandwidth to be reasonably high and the delay to be short then the
processing time at the receiver becomes the crucial issue. If the receiver is
processing messages fast (i.e., �tB is small) we can live with synchronous
calls as �tB is short and the sender is not blocked for a longer time. How-
ever, the processing of some messages can last longer than we are willing to
wait. In this case we can use some work-arounds:

• The sender can start a separate thread that does the synchronous call.
The thread can be either polled for the result by the main process or
it can make an upcall to the main process when the answer from the
remote object was received.

• The receiver can immediately return an answer and start a separate
thread to do the actual message processing. Note that this is useful
only for notification messages (i.e., the answer is of type void) but it
helps to keep the sender simple.

We decided to support the server-side thread in our core infrastructure as
the first work-around makes communication for the sender heavily complex.
Nevertheless objects are free to implement the first solution too, which can
show especially useful for messages of the request-reply type where there
are no server-side threads to cut down the time during which the sender is
blocked.

13In JiniTM this procedure would additionally require a lookup and the download of
the receiver’s stub (at least for the first message exchange).

3.7 PERSISTENCE 25

3.7 Persistence

In an environment where objects are created and unloaded dynamically
and where objects are not guaranteed to be reestablished at a predefined
location it is not a good idea to store persistent data on the current local
node. Furthermore it would be especially useful if objects can be queried
about current and past events.

3.7.1 Artifact Memory

Virtual Objects need a place to store event histories and stateful information.
We decided to provide a service, called Artifact Memory, to store those data
persistently. As a special feature, stored data can be queried with a high-
level query language. Each Virtual Object has access only to its own data
repository and can store events and other arbitrary key/value pairs in it.

3.8 Privacy or Defeating the Fear of a ‘Big Brother’

Although privacy is important it was not the primary focus of this thesis.
Thorough further investigations will have to be done on this issue before the
infrastructure described should be applied in a public environment. For the
moment it is merely a research prototype that does neither provide strong
authentication nor encryption.

Achieving good usability whilst guaranteeing security and privacy in the
field of spontaneous networking and ubiquitous computing will be a major
research field for the next decades to come.

Our infrastructure for ubiquitous computing does allow for independent dis-
tributed virtual counterparts that have as much control over themselves as
possible and neither the objects itself nor their event exchanges are managed
by a single centralized master. The objects are free to exchange arbitrary
events without being obliged to send them trough a predefined relay instance
and they can use their own encryption for the events if the receiving object
is able to interpret it. Besides, the fact that this infrastructure is primarily
intended to support an enhancement of everyday things and that its main
purpose is not tracking people, where the fear of a ‘Big Brother’ looms large,
mitigates the situation to some extent. Nevertheless a few important aspects
which are discussed below will have to be considered for future extensions
of the infrastructure.

Access to object specific data might be restricted depending on:

• which object is asking

• what the object in question represents

26 3 CONCEPTS

• when the question is asked

• which other objects are near it

• how the conditions of the environment look like

In order to detect misuse each access to sensitive data should be logged and
analyzed.

If we want to protect an object’s privacy, then we should:

• protect the object’s identity

• protect personal details (i.e., events sent and received)

• protect the object’s habits (i.e., where it is and how long)

• prevent impersonation (i.e., an object should not be able to masque-
rade as another object unless it is privileged to)

• prevent misuse of an object by a third party (e.g., when a key is stolen
it might refuse any service)

A severe problem lies in protecting an object’s unique identity. The unique
identity is usually broadcasted unencryptedly to a sensor. Furthermore the
infrastructure relies on the fact that every object can find every other object
and send an event to it. Therefore it seems almost impossible to protect the
identity and to prevent impersonation. One approach is to demand a proof
of identity together with each event sent. This could be done by using digi-
tal signatures and certificates.
If we installed a centralized communication master (which would contradict
to our distributed infrastructure) we could implement an even simpler so-
lution by making use of one-time identities. An object would send a new
identity in each encrypted event to the central master that has a list of the
current identities of all active objects. Only the master and the object itself
know about the new identity. This can also prevent the detection of an
object’s habits which could else be deduced by analyzing data logged at a
sensor. The one-time identities make it very hard to find out which different
identities belong to the same object as long as the one-time identities are
well chosen.

27

4 A Virtual Object eXtensible Infrastructure

Now that we have discussed the basic concepts of locations, unique identi-
ties, smart virtual counterparts, communication paradigms, persistence and
privacy in section 3 we can start with the design of an extensible infra-
structure for virtual counterparts. To make it clear which infrastructure we
are discussing we will use the acronym VOXI (Virtual Object eXtensible
Infrastructure) for future reference.

4.1 Design Goals

VOXI should enable to make simple things smart by giving each unique
identifiable object a smart virtual counterpart.

We first specify a few fundamental design principles that we try to meet:

• simple (to use): It must be simple to create new virtual counter-
parts and install them in the infrastructure. Complex tasks such as
discovering services of the infrastructure or communicating with other
remote counterparts should be encapsulated into powerful high-level
commands, which abstract from unimportant details involved in the
completion of the task.

• extensible: The core of VOXI must guarantee to be extensible for
services which are added later and which should seamlessly integrate.

• distributed: Locations and physical objects in the real world are
distributed by their very nature and so we require the virtual counter-
parts to be. The infrastructure has to provide communication facilities
between remote counterparts and allow for the distribution of its core
services. Virtual counterparts should get a means to migrate to other
nodes in the virtual world. Some nodes, which form a small part of a
bigger virtual world, might even get disconnected for some time which
should not make any virtual counterpart die.

• dynamic: Virtual counterparts are dynamically created upon sight-
ings and should not have to be manually activated (unless explicitly
wished) before they can be used. The virtual world should reflect
the dynamically changing relations of objects to locations in the real
world. Services and objects can appear and vanish without the system
having to be restarted.

• scalable: As the number of physical objects which are enhanced by
smart virtual counterparts grows the infrastructure will have to be
enlarged. It is important that core services are scalable by design.

• nice to have: secure, efficient, robust

28 4 A VIRTUAL OBJECT EXTENSIBLE INFRASTRUCTURE

4.2 System Architecture

Figure 9: System Architecture of VOXI - the Virtual Object eXtensible In-
frastructure.

4.3 EVENTS 29

The design of VOXI’s system architecture is shown in figure 9. A few every-
day objects such as a teddy bear, an organizer and a heap of compact discs
are brought into the range of one of the two sensors at different locations.
Upon object sightings VOXI dynamically creates the virtual counterparts
for the objects and locations. For each sighting the sensor creates an Entry
Event and sends it to a predefined Virtual Object Manager which is respon-
sible to download the Virtual Location named locationID and the Virtual
Object named objectID14 from the Virtual Object Repository and create
them if they are not already there. Then the Virtual Object Manager re-
gisters the new Virtual Location and the new Virtual Object at the Lookup
Service and finally forwards the Entry Event to the Virtual Location which
in turn forwards it to the Virtual Object.
Now the Virtual Object can subscribe itself at the Virtual Location for
events and it can start communicating directly without going through its
Virtual Object Manager. It can communicate with every other active com-
ponent in VOXI including the Artifact Memory, where it can store events
and other data persistently. A Virtual Object can not only communicate
and collect information, it could also display a GUI15 on the screen of the
machine that its Virtual Object Manager resides on or send events to a spe-
cial service that can control an actuator in the real world.
When a physical object leaves a location by exiting the range of a sensor
then an Exit Event is created and sent to the predefined Virtual Object Ma-
nager which forwards it to the corresponding Virtual Location which in turn
forwards it to the Virtual Object. If the Virtual Object decides to terminate
then the Virtual Object Manager which has created it will be automatically
informed and unregisters it from the Lookup Service.
VOXI has three core services: A Virtual Object Repository, a Lookup Ser-
vice and at least one Virtual Object Manager. As soon as those services
are running, an Event Source can send Entry Events and herewith make the
virtual counterparts appear. The system dynamically grows and shrinks -
without being restarted - as new services and Virtual Object Managers join.
The Artifact Memory, which provides persistent storage for data of virtual
counterparts, is not a core service but rather a nice add-on.

4.3 Events

VOXI’s communication relies on events as the message entities that can be
exchanged between two arbitrary virtual entities. The event format must
be reasonably efficient, simple to use, serializable and versatile. Specialized
Virtual Objects or Locations should be free to introduce their own propri-
etary event types. The Artifact Memory should be able to store the events
and to provide a query facility on the data fields of the events stored.

14The two identities locationID and objectID are contained in the Entry Event.
15Graphical User Interface

30 4 A VIRTUAL OBJECT EXTENSIBLE INFRASTRUCTURE

4.3.1 Definition of Event

An event has a unique type which determines a set of compulsory key/value
pairs as its properties.

Please note that the definition does not require an inheritance hierarchy
of the different events. The type of an event is always a unicode string
restricted to ASCII16 letters and digits to assure that we can display the
type properly on any computer. For the sake of simplicity we convention-
ally restrict the data type of a key to a unicode string17 and the type of a
value to a unicode string, a long18 number or a double19 number. Events
that will not be stored at the Artifact Memory20 can have an arbitrary data
type for the values including complex nested types such as a list or an array
of events. Please note that new proprietary data types must support the
equality operator21.

As events are the communication backbone of VOXI and therefore very
important we now define a couple of common operators on events.

4.3.2 Definition of Equality of Events

Two events are equal if they are of the same event type and if they have
exactly the same key/value pairs as their properties in respect to data type
and contents.

If you need a more flexible way to compare events then you can use template
matching, which is heavily used in the subscription mechanism for events at
a Virtual Location.

4.3.3 Definition of Event Matching

An event template M of type Ttmp having the properties keyt1/valt1,
keyt2/valt2, ..., keytn/valtn matches the event E of type T having the
properties key1/val1, key2/val2, ..., keym/valm if at least one of the follow-
ing rules holds true:

1. M = null

2. ((Ttmp ="") ∨ (Ttmp = T))∧the template has no properties
16American Standard Code for Information Interchange
17Type ‘string’ is a sequence of 16 bit unicode 1.1.5 characters.
18Type ‘long’ is a 64 bit signed integer number.
19Type ‘double’ is a 64 Bit IEEE 754-1985 floating point number.
20We bear in mind that the Artifact Memory will rely on an SQL database in order

to support a powerful query language for free. A future version of the Artifact Memory
could rely on an object-oriented database and accept any data types.

21In JavaTM a new data type must support the equals method.

4.3 EVENTS 31

3. ((Ttmp ="")∨(Ttmp = T))∧the set of template properties {keyt1/valt1,
keyt2/valt2, ..., keytn/valtn} is a subset of the set of event properties
{key1/val1, key2/val2, ..., keym/valm} whereas a valx of value null
in the template matches any other corresponding value in the event

If the event we try to match has a key in his properties where a list of events
is associated then any null values in this “nested” events are not taken as
a wildcard but rather matched for equality with the corresponding values in
the nested events of the template.

4.3.4 Definition of Strict Event Matching

An event template M strictly matches the event E if the template
M matches (cf. 4.3.3) the event E and if the set of E’s property keys Ekey

minus the set of M’s property keys Mkey is the empty set (Ekey\Mkey = ∅).

4.3.5 Predefined Event Types: EntryEvent and ExitEvent

Two core event types are predefined in VOXI:

EntryEvent A sighting of an object objectID at location locationID at time
timestamp causes the sensor (or it’s gateway driver in VOXI to be ex-
act) to create an event of type “EntryEvent” with the properties ob-
jectID=objectID, locationID=locationID and timestamp=timestamp.

ExitEvent An object named objectID leaving the range of a sensor at lo-
cation locationID at time timestamp causes the sensor the create an
event of type “ExitEvent” with the properties objectID=objectID, lo-
cationID=locationID and timestamp=timestamp.

There is one predefined logical location called “Virtopia” that allows to
create an object which does not have to be at a physical location at the
moment. The reason we define it here is to give the Virtual Objects a
chance to react appropriately to this fact (e.g., by not storing such events
in the Artifact Memory). This location is also used when migrating Virtual
Objects.
Please note that some services such as the Artifact Memory (cf. 4.10) or
the publish/subscribe mechanism of Virtual Locations (cf. 4.6.1) introduce
further predefined event types.

4.3.6 Meta Information About Events

It will show very useful to provide a means to supply separate meta infor-
mation about an event. The Artifact Memory, among others, will make use
of that feature. Furthermore this enables us to easily introduce encrypted
or authenticated events as an extension. The meta information could hold
information about the cryptographic algorithms used or proofs of identity.

32 4 A VIRTUAL OBJECT EXTENSIBLE INFRASTRUCTURE

Meta information is simply a set of arbitrary key/value pairs whereby the
data type of the key is a unicode string.

4.4 Communication Infrastructure

4.4.1 Event Handling

We decided that each entity in VOXI has to support two methods for event
processing. A method notify for notifications and a method request for
request-reply pairs as defined in 3.6. The second one greatly improves per-
formance as was discussed on page 24. We call the sender of an event the
Event Source.

4.4.2 Remote Calls

As virtual entities in VOXI can either be local to an event source (e.g.,
a Virtual Object Manager forwarding an event to a newly created Virtual
Location) or on a remote node, we need a paradigm that supports both.
Event sources such as sensor gateways in VOXI should be as simple and
efficient as possible. Therefore we require the Virtual Object Manager to
return immediately from the remote call to its notify method upon Entry
and Exit events. A suitable solution by using a receiver thread was already
discussed in 3.6.

4.5 Virtual Objects

4.5.1 Features

We support the conceptual ideas of a Virtual Object as discussed in 3.3.1
by requiring the following list of features from a Virtual Object:

event handling Application specific event handlers notify and request
that accept at least the event types EntryEvent and ExitEvent.

self-description A name, an up-to-date RDF/XML22 description of the
object and an iconic image must be supported. The description
can contain semantic and status information and is explicitly
allowed to change over time. This makes it much more powerful
than simple reflection of a Virtual Object class.

location-awareness The Virtual Object should preferably store the loca-
tionIDs of all locations it was recently sighted at. This infor-
mation is contained in the Entry- and ExitEvents.

22Resource Description Framework (RDF) that relies on the eXtensible Markup Lan-
guage (XML), cf. [42]

4.5 VIRTUAL OBJECTS 33

lifetime management An object can be asked about the last time it was
in use (the so-called LRU23 timestamp) and it has to provide
a method pleaseExit that asks it to exit as soon as possible.

autonomy Virtual Objects, once created by a Virtual Object Manager
(VOM), can act and communicate independently of the VOM
and other objects in VOXI. The outgoing events are sent di-
rectly to the receiving object and are not controlled by a local
or remote Virtual Object Manager unless they are Entry- or
ExitEvents. The Virtual Objects can also be active without
any need to continuously receive events.

security The pleaseExit method requires a security token that the
Virtual Object Manager tells the Virtual Object when it is
created. A call of this method with a wrong token can be
ignored. The token can also be used to require special services
in a future extension of VOXI.

resource thrift Virtual Objects are run in a thread of the Virtual Object
Manager and should use as few resources (e.g., memory, com-
munication bandwidth, processing power) as possible because
many Virtual Objects are active concurrently.

4.5.2 Case Study: Process or Thread?

A Virtual Object Manager (VOM) could create new Virtual Objects (VO)
and Locations (VL) either in a new thread or in a separate process (in a
new Virtual Machine). The comparison in table 1 lists some advantages and
disadvantages of the two solutions.

criteria process thread
memory ≈ 10 Megabyte/VMa considerably less than 1 MByte
creation slow fast
security high (policy file for VM) mediumb

parameter passing command line parsing; String constructor args; JavaTM types
communication inefficient (remote call) efficient (local method call)
independence high low
garbage collection upon exit of VO/VL’s VM not under control of VOMc

aVM stands for JavaTM ’s Virtual Machine
bClassLoader policy possible but any thread can exit the VM of the VOM.
cEffect of JavaTM ’s garbage collector call System.gc() is implementation specific.

Table 1: Comparison of process versus thread to run a Virtual Object or
Location in.

23Least Recently Used (LRU)

34 4 A VIRTUAL OBJECT EXTENSIBLE INFRASTRUCTURE

The list is not final of course. We decided to use threads to wrap our virtual
counterparts in VOXI although we have to accept a somewhat lower security.
Using processes instead of threads would not scale at all. Nevertheless it is
still possible to explicitly install a Virtual Object Manager with only one
Virtual Object and Location running in it which is comparable to a fully
user controlled Virtual Object in a separate process.

4.5.3 Activatable and Permanent Virtual Objects

We can imagine two different types of Virtual Objects. The first one is
created once and then remains permanently active. This might be a good
solution for Virtual Objects that have to initialize a big heap of data which
causes a long initialization phase or Virtual Objects that provide a service in
VOXI. The second one is created upon a sighting and can be regarded as an
activatable object. The Virtual Object Manager has the role of a mediator24

that intercepts (Entry) events while the object is off-line, creates and runs
the object on demand, and then forwards the event when the object is ready
to receive it.
Both solutions are supported by VOXI. A permanent Virtual Object can
easily be created by issuing a ”virtual” sighting at location ”Virtopia” (cf.
4.3.5).

4.5.4 Location-Awareness

Virtual objects are encouraged to implement the following high-level query
capability which is similar to the one used in the Active Badge System (cf.
[1]):

• where? - where are you? (returns an array25 of locationIDs)

• with? - who is with you? (returns an array of objectIDs)

• history? or history(timestamp)? - get a list of recently visited
locations since the optional time timestamp or else up to three26 most
recent locations (returns an array of locationIDs)

These queries are embedded in the following protocol. Please note that it is
an extension to the protocol which virtual components use when interacting
with the Artifact Memory (cf. 4.10.3).

24E.g., in JiniTM the RMI daemon (rmid) is the mediator where activatable objects
such as the Lookup Service can register themselves.

25An object can reside at multiple locations concurrently (cf. 3.1.1).
26The restriction to a default value of three is arbitrary.

4.6 VIRTUAL LOCATIONS 35

[request-reply]
request:

meta: “sender” = objectID
event: -type: “QueryRequest”

-properties: “queryLanguage” = “VOXIQL”
“query” = “where?” or “with?” or

“history?” or
“history(timestamp)?”

reply:
meta: empty
event: -type: “QueryReply”

-properties: “errorCode” = “success” if successful. On
error anything else such as
“error”,“not found”, . . .

“errorDetails” = additional textual information
about the error (if any)

“queryLanguage” = “VOXIQL”
“result” = an array of type String that

holds a copy of all locationIDs
or objectIDs that were selected
by the query

4.6 Virtual Locations

Virtual Locations as defined in 3.3.2 model proximity of an object to a
location (cf. 3.1.1). A Virtual Location is very similar to a Virtual Object.
Additionally it supports template-based subscriptions for and publishing of
events.

4.6.1 Template-Based Event Subscriptions

A Virtual Object can subscribe for events at a Virtual Location by simply
sending an event template and setting the meta key/value pairs “metaType”
= “SubscriptionEvent” and “subscriber” = objectID. The Virtual Ob-
ject objectID will then be notified27 by the Virtual Location about all future
events that match28 the registered template(s).
In order to unsubscribe the Virtual Object sends and event template and sets
the two meta information pairs “metaType” = “SubscriptionRemovalEvent”
as well as “subscriber” = objectID. There are two different unsubscription
possibilities:

27The subscription mechanism of the Virtual Location remembers only the objectID of
the subscriber and not a (VM dependent) reference to the Virtual Object. This indirection
allows that events are automagically forwarded to a Virtual Object after it has migrated.

28Please note that we do not use ‘strict’ matching here.

36 4 A VIRTUAL OBJECT EXTENSIBLE INFRASTRUCTURE

1. A template with a type of "" and no properties (i.e., an event template
that matches all other events) removes all registered subscriptions of
the component objectID.

2. A template that contains an earlier specified template removes only
the specified template. If the specified template was never registered
then the removal request is ignored.

4.6.2 Event Publishing and Distribution

When publishing events of arbitrary types a Virtual Object sends the event
that it wants to publish to interested subscribers to a Virtual Location and
sets the meta information “metaType” = “PublishEvent”. The Virtual
Location then sends the event to all matching local subscribers (but only
once if it matches several templates of the same subscriber). A Virtual
“Master” Location could subscribe to all Virtual Locations that appear at
the Lookup Service and hereby establish a central event manager which
could trigger composite events (cf. [26]).

4.6.3 Location-Awareness

A Virtual Location is encouraged to support the VOXIQL29 query “with?”
(cf. 4.5.4) and return a list of objectIDs of objects that are currently at
that location. The other two queries mentioned in section 4.5.4 cannot be
applied to Virtual Locations.

4.7 Meta Objects

Figure 10: A collection
of compact discs mana-
ged by a single Virtual
Meta Object.

The paper [27] presents a case study of a pro-
gram called ‘RFID Chef’ that suggests meals upon
sightings of ingredients that it recognizes by their
RFID tags. The ‘RFID Chef’ processes Entry-
and ExitEvents for a variety of grocery items. An-
other comparable example would be a program
that monitors a card game and that can give useful
hints on how the players can improve their skills.
Every card would be tagged with an RFID tag. A
third example is a virtual music box that down-
loads audio30 files corresponding to small physical
music tokens that act as proof of ownership for
the downloaded songs.
In these three examples our design of an au-
tonomous Virtual Object that represents exactly

29VOXI’s Query Language
30A very common audio file format would be MP3.

4.8 VIRTUAL OBJECT MANAGER 37

one physical counterpart seems not to prove efficient. We would rather need
a tightly coupled federation of objects.

This idea led to the design of Virtual Meta Objects that can manage a set
of several “primitive” physical objects instead of merely a single one. The
only feature we need to add is a mapping facility that maps all objectIDs
of such a set of “primitive” objects to a single Virtual Meta Object. We
decided that the Virtual Object Repository (cf. 4.9) has to provide such a
mapping facility. The Virtual Object Manager has to register all “primi-
tive” objects at the Lookup Service to make them transparently accessible
for other Virtual Objects and to make them look like autonomous Virtual
Objects. Please note that a Virtual Meta Object is only a single component
in the system and does not necessarily host a collection of inner Virtual
Objects which are autonomous and could leave the Virtual Meta Object on
demand.
For short, VOXI provides Virtual Meta Objects that allow for central ma-
nagement of a couple of physical objects which results in less complex ap-
plications as we have less inter-object communication, simpler application
code as it is less distributed, easier coding and debugging as the relevant
code is more monolithic but at the same time we hazard the consequences
of a bottleneck application, a single point of failure and central monitoring
which could raise concerns about loss of privacy.

Analogously VOXI also provides Virtual Meta Locations that manage a set
of physical or logical locations.

4.8 Virtual Object Manager

4.8.1 Core Tasks

Entry- and ExitEvents need a destination in VOXI where an event source
can send them to upon sightings. The Virtual Object Manager represents
a preestablished instance which takes care of the creation and destruction
of Virtual (Meta) Objects and Virtual (Meta) Locations. After creation it
registers the new components at the Lookup Service.

The following list shows the central tasks of a Virtual Object Manager.

• Accept Entry-/ExitEvents

• Dynamically create virtual counterparts upon EntryEvents:

– Dynamically download code and resources for Virtual (Meta) Ob-
jects and Virtual (Meta) Locations from at least one predefined
Virtual Object Repository

38 4 A VIRTUAL OBJECT EXTENSIBLE INFRASTRUCTURE

Figure 11: A Virtual Object Manager with two Virtual Objects and one
Virtual Location.

– Allow for Virtual Meta Objects/Locations by supporting the map-
ping facility of the Virtual Object Repository

– Execute the downloaded code

– Register new Virtual Objects/Locations at the Lookup Service

– Renew the leases for registered Virtual Objects/Locations at the
Lookup Service (background thread)

• Destroy virtual counterparts:

– Forward ExitEvents to the corresponding Virtual Location that
forwards it to the correct Virtual Object

– Unregister and destroy Virtual Objects upon their termination

– Force termination of Virtual Objects/Locations when the Virtual
Object Manager shuts down

• further:

– Manage local resources and reclaim them from the least recently
used Virtual Objects when scarce

– Migrate Virtual Objects upon migration requests

4.8.2 Creation of Virtual Objects and Locations

A simple EntryEvent sent by an event source to a Virtual Object Mana-
ger causes a whole ‘chain reaction’ of creation steps. If a sensor sights a
tagged teddy bear named objectID at its location locationID then it sends
an EntryEvent(objectID, locationID, timestamp) to its predefined Virtual
Object Manager (VOM). The VOM then checks whether it has to create

4.8 VIRTUAL OBJECT MANAGER 39

Figure 12: Sequence diagram that illustrates a high-level view of the process-
ing of an EntryEvent by components in VOXI.

40 4 A VIRTUAL OBJECT EXTENSIBLE INFRASTRUCTURE

any virtual counterparts or if some of them are already there and he only
has to register new counterparts or simply forward the event to a remote
VOM31. The sequence diagram in figure 12 shows the high-level view of
the components and steps involved in the creation of virtual counterparts.
Please note that this illustration does not show the necessary checks that
are performed to determine whether there actually is a need for creating
new object instances or if mere registering would be sufficient. Those checks
are shown in the flowchart in figure 13.

The Virtual Object Manager implements the concept of a server-side thread
(cf. 3.6) in order to return immediately from a remote call to its event no-
tification method notify. For each arriving EntryEvent the Virtual Object
Manager spawns a new EntryThread that takes care of the processing and
terminates itself upon completion of this task. The flowchart in figure 13
illustrates the processing details. The Virtual Object Manager has to be
thread-safe by design, which will prove to be challenging for the implemen-
tation, as many EntryEvents can arrive in parallel and have to be processed
as fast as possible without being put in a designated waiting queue.

4.8.3 Case study: Should a Virtual Location Incorporate the Features of a
Virtual Object Manager?

An alternative to distinct Virtual Object Managers would be that the Vir-
tual (Meta) Locations would take over the role of a Virtual Object Manager
and be responsible for the creation of new Virtual (Meta) Objects. This
would imply that a Virtual Location has to be manually pre-established be-
fore an event source at the corresponding physical or logical location can
send Entry- and ExitEvents to it. Furthermore an event source would have
to deal with the mapping mechanism if it is moving between various lo-
cations (e.g., GPS positions) that are managed by a single Virtual Meta
Location. Another conceptual problem arises from the fact that a Virtual
Object can reside at more than one Virtual Location concurrently (e.g., on
a table and at a conference and in a room). This somehow contradicts to
the close relation with only a single Virtual Location where it is managed.
Load balancing for Virtual Object creation and destruction in case of many
objects entering and leaving a certain Virtual Location can hardly be sup-
ported as a location is a single instance only. The Virtual Location does not
only have to deal with bookkeeping of which objects are present and of event
subscriptions but also with the creation and destruction of Virtual Objects.
A last thought that influenced our decision to design the Virtual Object Ma-

31We can find out about on which other Virtual Object Manager an already exist-
ing Virtual Object resides by retrieving the attribute “ObjectManager” from the Virtual
Object’s registration entry at the Lookup Service.

4.8 VIRTUAL OBJECT MANAGER 41

createVirtualObject(locationID, ...)

return

Entry(objectID,
locationID, ...)

VL exists?
(local/remote)

VL managed
by a Meta VL?

Meta VL
exist locally?

Meta VL
exists

remotely?

Create VML in a
new Thread

Register VML
at VOM and LUS

Create VL in a
new Thread

Register VL
at VOM and LUS

Wait for the
completion of the
Meta VL creation.

Register VL
at VOM and LUS

(Meta VL's thread)

Redirect event
to the remote
VOM with VL

No

No

Yes

No

Yes

Yes

throw new
VirtualObjectCreation

Exception("Event
Redirection")

Wait for the VL to
appear at the LUS

Yes

Legend:
VL Virtual Location
Meta VL Virtual Meta Location
VO Virtual Object
Meta VO Virtual Meta Object
VOM Virtual Object Manager

VO exists?

createVirtualObject(objectID, ...)

Wait for the VO to
appear at the LUS

Send EntryEvent
to VL that will

forward it to VO.

Yes

analogous to above
creation of VML

No

Figure 13: Flowchart that illustrates the detailed processing of an EntryEvent
by the EntryThread.

42 4 A VIRTUAL OBJECT EXTENSIBLE INFRASTRUCTURE

nager as a distinct component was to separate conceptually different tasks
in our design. We think that there will be far more Virtual Locations than
Virtual Object Managers. In this case our design decision also leverages
resource requirements as distinct components are run in separate Virtual
Machines.

4.8.4 Unloading Virtual Objects and Locations

Figure 14 shows a high-level view of the actions at various components that
are performed when a sensor recognizes that an object has left its loca-
tion. The illustration hides the possible variations. A Virtual Object that
is associated with a Virtual Location different from the locationID in the
ExitEvent certainly will not terminate. It is important to recognize that the
Virtual Object finally decides by itself whether it wants to exit by leaving
its main32 method.
The Virtual Object Manager takes care of ExitEvents in a separate Exit-
Thread which is spawned to enable an immediate return (also known as
‘non-blocking’ call) of the remote call to its notification method notify and
in order not to let the event source wait. The flowchart in figure 15 shows
the details of the actions performed by the ExitThread when processing an
ExitEvent.

4.8.5 Migrating Virtual Objects

The scenario with the teddy bear leaving the house and going on a journey
on page 22 has indicated a need for migration in the virtual world which
was shown to be partitioned. Virtual counterparts should be able to follow
the associated physical object by moving between parts of the virtual world
which temporarily can disconnect from each other. Therefore a Virtual
Object Manager should provide a method for Virtual Objects to help them
migrate to a remote Virtual Object Manager. VOXI’s Virtual Object Mana-
ger does support a bare means for relocating Virtual Objects by providing a
method migrate(objectID, remoteVirtualObjectManagerID). However, this
helper function does neither fulfill the requirements of weak migration (i.e.,
data and code but no execution state) as it is supported in Hive by the
implementation of a multi-hop facility (cf. [12]) nor the ones of strong
migration (i.e., data, code and execution state). The method migrate is
much simpler. All it does is remember to issue an EntryEvent(objectID,
locationID=‘Virtopia’,current timestamp) to the remote Virtual Object
Manager after the Virtual Object objectID has terminated itself and after it
might have written all its stateful data to a persistent storage (e.g., to the
Artifact Memory (cf. 4.10)). The EntryEvent will recreate it at the remote

32The main method of a Virutal Object will be defined to be doMain().

4.8 VIRTUAL OBJECT MANAGER 43

Figure 14: Sequence diagram that illustrates the processing of an ExitEvent
by components in VOXI.

44 4 A VIRTUAL OBJECT EXTENSIBLE INFRASTRUCTURE

Note: The unregister process (at VOM und LUS) will take place after the Virtual (Meta) Location or
Object has returned from its doMain() Funktion and not here.

return

Exit(objectID,
locationID, ...)

VL exists
locally?

VL exists
remotely?

Redirect Exit Event
to the remote VOM

with VL

No

Yes

throw new
VirtualObjectExitExcept
ion("Event Redirection")

Yes

Legend:
VL Virtual Location
Meta VL Virtual Meta Location
VO Virtual Object
Meta VO Virtual Meta Object
VOM Virtual Object Manager
LUS LookUp Service

Forward Exit Event to
the local VL that will
forward it ot the VO

No

Figure 15: Flowchart that illustrates the processing of an Exit Event by the
ExitThread.

4.9 VIRTUAL OBJECT REPOSITORY 45

Virtual Object Manager where it can load the data from the persistent stor-
age and reinitialize its state if needed before the “smaller virtual world” it
just migrated to will disconnect. As the Virtual Object Manager caches33

the resource and code of the newly migrated Virtual Object it is sufficient
to only provide a single Virtual Object Manager and a Lookup Service in
the “smaller virtual world”. During the journey the teddy bear might not
have access to an Artifact Memory but when it returns home the virtual
counterpart of the teddy gets notified about its proximity to the house and
it can use the Lookup Service to find the Artifact Memory, which is now
accessible again.
If future scenarios show any need for a more powerful support for migration
then the design of the Virtual Object Manager could be extended with an
additional migrateWeak and/or migrateStrong method.

4.9 Virtual Object Repository

Figure 16: The Virtual
Object Repository.

The virtual representations of real world objects
are stored as executable code and resources (e.g.,
iconic image, initial configuration, description
files). The Virtual Object Manager dynamically
loads the code and resources of a Virtual Object
or Location from the Virtual Object Repository
upon a sighting of a specific object at a location.
Storing code and resources at each Virtual Object
Manager would involve a cumbersome procedure
to update, add or delete that data, especially if
not all Virtual Object Managers are reachable at a time. This consideration
led us to the design of a federation of Virtual Object Repositories.

The Virtual Object Repository (VOR) fulfills two main tasks:

• repository: Store executable code and resources of Virtual Objects
and Locations that can be dynamically downloaded and instantiated
by a Virtual Object Manager upon sightings.

• mapping: Map unique identifiable object identities (objectIDs) to the
objectID of an item stored in the repository.

The mapping capability enables the use of Virtual Meta Objects and Virtual
Meta Locations as several objects can be mapped to a single object or loca-
tion that manages the others. It is important that the mapping mechanism
does only provide objectIDs and does not directly deliver items stored in the
repository. This is needed as a Virtual Object Manager will create a Virtual

33This applies only if the virtual counterpart together with its resource files is provided
in archived format (as a JAR file) at the Virtual Object Repository.

46 4 A VIRTUAL OBJECT EXTENSIBLE INFRASTRUCTURE

Meta Object only upon the sighting of a first object that is managed by
a specific Virtual Meta Object and therefore needs the code and resources
only once. To reduce network bandwidth the mapping mechanism should
preferably be cached at a Virtual Object Manager.

The implementation should allow to distribute this facility to different dis-
tant nodes in the network in order to guarantee for a good availability and
performance. Meanwhile it should remain comfortable to frequently update
code and resources by having a single master repository for the update man-
agement. This can be achieved by using well understood replication tech-
niques such as mirroring the contents of a filesystem. As the Virtual Object
Manager caches the downloaded resources and code for a Virtual Object it
has created, it is possible to disconnect from the Virtual Object Repository
as long as there are no new virtual counterparts created. However, the ideal
solution would be if the physical object itself could directly provide the code
and resources of its virtual counterpart implementation. This might become
true in the future when for example cheap writable RFID tags can store big-
ger amounts of data than just an identification number.
Two last requirements that we have is that the Virtual Object Repository
should rely on common network transport mechanisms and that it should
be open for further extensions related the the objects stored (e.g., inventory
listing or a search capability for items by specifying properties instead of an
objectID).

4.10 Artifact Memory

4.10.1 Overview

Figure 17: A persistent
Artifact Memory.

The need for a service that allows for persistent
storage of data arises from the fact that the life-
time of Virtual Objects is limited. They are dy-
namically created and and destroyed. If a later in-
stance of a Virtual Object wants to find out about
past events that happened during the lifetime of
its predecessor instance (with the same objectID)
it can access the Artifact Memory where it can
retrieve the data required. Besides from storing
events the Artifact Memory provides a means to
store key/value pairs that can be used much like
environment variables also known from operating
systems (e.g., UNIX) with the difference that the
data is stored persistently. We call this kind of
data “persistent state data”.

4.10 ARTIFACT MEMORY 47

Some fields of application for Ubiquitous Computing (e.g., remind our sce-
nario in 1.3) require a powerful query facility for past and current events.
Queries on events that were collected by different virtual counterparts might
be of interest too. Such a query service is provided by our Artifact Memory.

4.10.2 Core Tasks

We summarize and specify the core tasks of the Artifact Memory in the
following list:

• store persistent state data as key/value pairs persistently

• retrieve the value of persistent state data for a given key

• store events of an arbitrary event type persistently

• accept queries on event histories and return a set of events as the
answer

All information stored is bound to an owner specified by a unique identity
(i.e., an objectID, a locationID or an identity of another component such as
a Virtual Object Manager).

4.10.3 Protocol Specification

Any object in VOXI with a unique ID can make use of the Artifact Memory
by sending events that comply to the following protocol specification. Stor-
ing events persistently is a very common task and so it was designed to be
as simple as possible.

a) storing persistent state data [notification]
meta: “sender” = objectID
event: -type: “ContextStorageEvent”

-properties: key/value pairs to store

Note that values of existing keys are replaced. We restrict keys and val-
ues for context data to the JavaTM type String.

b) storing events [notification]
meta: “metaType” = “StorageEvent”, “sender” = objectID
event: the event to store

This is very convenient as a received event can be persistently stored with
only adding a meta information and not having to change the event itself.
We restrict the property keys to the JavaTM type String and the values to
the types String, long and double (cf. 4.3.1).

48 4 A VIRTUAL OBJECT EXTENSIBLE INFRASTRUCTURE

c) retrieving persistent state data [request-reply]
request:

meta: “sender” = objectID
event: -type: “ContextDataRequest”

-properties: keys of which we want to retrieve the associated
values; values supplied are gracefully ignored

reply:
meta: empty
event: -type: “ContextDataReply”

-properties: key/value pairs for all requested keys;
keys that were not found in the storage
have an associated value of null

d) queries on event histories [request-reply]
request:

meta: “sender” = objectID
event: -type: “QueryRequest”

-properties: “queryLanguage” = “SQL92”
“query” = query in the appropriate

query language (highly
implementation specific)

reply:
meta: empty
event: -type: “QueryReply”

-properties: “errorCode” = “success” if successful. On
error anything else such as
“error”,“not found”, . . .

“errorDetails” = additional textual information
about the error (if any)

“queryLanguage” = “SQL92”
“result” = an array of type Event that

holds a copy of all events
that were selected by the
query

Note: Large result sets can be avoided by making use of an the appro-
priate SQL extension34.

The events in a) and b) are sent to the Artifact Memory’s notify method,
the requests in c) and d) are sent to the request method as we expect a reply.

34In PostgreSQL and MySQL you can use the keyword LIMIT firstRowNr, lastRowNr.

4.11 LOOKUP SERVICE 49

4.10.4 Privacy and Availability Issues

The Artifact Memory raises serious privacy concerns if it is realized as a
single centralized database. The administrator of the database has full ac-
cess to all persistent information such as events and state, which the virtual
counterparts have stored. There are at least two possible solutions to deal
with this problem. Either we require the virtual counterparts to encrypt the
contents of the events and state information which they store at the Artifact
Memory or we store the persistent data at distributed locations. A good
place would be on a writable tag of the associated physical object.
The other problem which arises from a centralized solution and the fact that
our virtual world is a distributed one is that we need a globally available
connection to the single Artifact Memory or else the virtual counterpart
might not be able to use persistency.
As VOXI is a research prototype we decided to prefer usability and a power-
ful query facility to a secure Artifact Memory. However, it would be a good
idea to extend VOXI by a more secure persistence and query facility which
can guarantee better privacy.

4.10.5 Suggested Extensions

When we have a complex scenario with many objects involved such as a
business meeting we might want to record what has happened during a
certain time frame which we call session. We might want to be able to replay
all events of an important situation. The Artifact Memory could support this
scenario by accepting sessionIDs that can bind events of different objects
to a unique session. This feature could be used to replay certain object
interactions. A session table could consist of a series of references to events
stored in the event tables.

4.11 Lookup Service

Figure 18: The
Lookup Service.

Components in the Virtual Object eXtensible Infra-
structure (VOXI) need a way to find other components
such as Virtual (Meta) Objects, Virtual (Meta) Loca-
tions, Virtual Object Managers or the Artifact Memory.
A lookup service enables virtual components to be regis-
tered and lookup up. A federation of such servers guar-
antees for better availability and reliability. The use of
leases for the registrations that have to be renewed in
certain time intervals and that automatically delete the
registration if a renewal is not accomplished makes this
service especially robust.
Virtual components can not only provide their objectID but also a set of
attributes. This can be used to hold up-to-date state information and to

50 4 A VIRTUAL OBJECT EXTENSIBLE INFRASTRUCTURE

show details about which object is managed by which Virtual Meta Object
and by which Virtual Object Manager. Such information could be used to
build a GUI that shows the current state of components in VOXI.
The lookup service should support a (multicast) discovery protocol that ob-
viates the need to predefine a network address where components can find
a Lookup Service as it can be discovered if necessary.
A subscription mechanism for notification of changes in the registry based
on matching service templates greatly simplifies the interaction with the
Lookup Service35.

4.12 Event Source

Event sources send events to components in VOXI. The origin of an event
could be a sighting of a physical object by a sensor or an organizer which
connects by infrared to a gateway and sends it’s unique identity. Of course,
events can also be generated without using any hardware at all. VOXI
supplies a simple application called EventSource which allows to send
arbitrary events to any virtual component in VOXI. It allows to set the
key/value pairs in the meta information, the event type and its properties.
Then it creates the event and sends it to the virtual component specified by
its unique identity and prints the reply if any.

4.13 VoxiWatch GUI

A GUI as mentioned in 4.11 would greatly help when developing appli-
cations with VOXI. As it enables to watch VOXI at work we will call it
VoxiWatch. It should graphically show active Virtual Object Managers
together with the managed Virtual Meta Objects, Virtual Objects, Virtual
Meta Locations and Virtual Locations. The hierarchy of which component
manages which other can be read from the attributes in the Lookup Service
that are registered together with the objectID.
When selecting a component, available information about that object should
be shown. VoxiWatch could be extended to integrate the features of the
EventSource application and it could allow to send queries to components
and show the replies.

It is important to understand that VoxiWatch is quite restricted in its possi-
bilites to monitor VOXI. The events are not sent through a central instance
and so VoxiWatch cannot trace them. It can neither know at which Virtual
Locations a Virtual Object resides currently as only the Virtual Object itself
knows that. VoxiWatch gets all the information displayed from the Lookup
Service and the attributes registered together with the objectID36 or from a

35The implementation will choose JiniTM ’s Lookup Service reggie.
36cf. 5.12

4.14 SECURITY AND PRIVACY 51

component itself upon inquiries. This shows that installing a central moni-
toring and control authority in VOXI is almost impossible which was one of
our considerations when designing the system and by deciding to give the
Virtual Objects as much independence and autonomy as possible. However,
especially the current prototype implementation of the Artifact Memory37

definitely has to be improved if privacy is a major concern.

The screenshot in figure 19 shows the VoxiWatch GUI. There are two active
Virtual Object Managers shown: MyVOM and MyCarVOM. A collection
of compact discs lies on a table. The discs are all managed by the Virtual
Meta Object MyVirtualMusicBox. This fact is shown in the status bar when
the mouse is pointed to a disc. Two teddies are sitting in the car and are
waiting for the green teddy which is about to migrate to the MyCarVOM.
The Artifact Memory is also shown. The location ”Virtopia” was created
when the first teddy moved to the new Virtual Object Manager MyCarVOM.

Figure 19: Screenshot of the VoxiWatch GUI.

4.14 Security and Privacy

As already mentioned in section 3.8 VOXI is open for future extensions
concerning security and privacy. There are two key points which allow to
embed encryption and authentication.

37Refer also to the discussion in 4.10.4.

52 4 A VIRTUAL OBJECT EXTENSIBLE INFRASTRUCTURE

1. The meta information of an event could carry information about an
encryption scheme for the event. It could also hold information related
to authentication.

2. A Virtual Object Manager communicates a security token to all Vir-
tual Components that it creates (by providing it as a parameter of the
component’s constructor when creating the virtual counterpart locally
which then gets wrapped in a new thread). This security token can be
used for privileged services of the Virtual Object Manager (although
the component might already have migrated to a distant location) and
it is used as a privilege to actively ask a component to terminate (cf.
the pleaseExit method of a Virtual Object).

4.15 Further services

An infrastructure is never complete as new requirements arise with new ap-
plications. VOXI is highly extensible for new services. Any component that
can register itself at the Lookup Services and that supports VOXI’s event
communication paradigm can be seamlessly introduced without restarting
the system and act as a service for components in VOXI. It might be clever
to wrap a new service in a Virtual Object that is created at the location
of ‘Virtopia’ (cf. 4.3.5) and managed by a Virtual Object Manager. In
this case the developer can fully concentrate on the new service and let the
Virtual Object Manger do all the tasks to correctly integrate a new service
component into VOXI.
New events, which new services will need for their operation, do not have to
be understood by all components in the system. Only components in VOXI
such as for example virtual counterparts which want to use the new service
must understand the new event-based protocol of the newly provided service.

The following list of suggested further services or extensions is by no means
final:

Infrastructure Information This service can tell how far apart two lo-
cations locationID1 and locationID2 are and which other location is
close to a given one. The positioning information has to be collected
(probably manually) in advance before such a system is possible.

GPS support The problem with absolute positioning data is that we do
not want to create a Virtual Location for each unique absolute posi-
tion such as GPS(23,30,400) or GPS(23,33,405). The only thing we
have to enhance is the mapping capability provided by the Virtual
Object Repository in order to support pattern matching (e.g., regu-
lar expressions) of unique location identities. The location pattern
“GPS(x,y,height)” could then be mapped to a single or a few Virtual
GPS Meta Locations.

53

5 Implementation

5.1 General

The implementation is based on young but promising technologies as VOXI
is intended to be a research prototype rather than a world wide productive
infrastructure where people and vital services depend on. The implementa-
tion of VOXI provides a simple but extensible core infrastructure.

We tried to meet the following implementation guidelines:

• JavaTM as the programming language: Object-oriented and platform-
independent code, support for Remote Method Invocation (RMI),
JavaTM is type-safe, garbage collector, security is supported by poli-
cies for classloaders and the virtual machine’s (VM) sandbox, inherent
support for multi-threading

• JiniTM 38 as the core infrastructure: Useful services for a distributed
infrastructure such as a LookUp Service (LUS) or distributed events
are provided

• Simple: Small required interfaces; heavy code reuse (inheritance, voxi
package); event-based communication paradigm

• Extensible: OO design, standards (TCP/IP, SQL, RDF/XML, Jini),
generic events and interfaces

5.2 Challenges

The experience gained during the implementation phase made several de-
velopment challenges apparent. VOXI is a system which can be described
as being:

• distributed

• asynchronous

• dynamic

• multi-threaded

• scalable

• extensible

38JiniTM is an acronym that stands for JavaTM Intelligent Network Infrastructure.

54 5 IMPLEMENTATION

However, the above properties are not even complete as we should possibly
build a system that is at the same time robust, secure, highly available and
not too resource demanding.

To make it even more challenging, the fact that we always have to deal with
time synchronization problems in a distributed environment has to be con-
sidered when evaluating timestamps of for example Entry- and ExitEvents.

5.3 Overview

The result of the implementation efforts is a collection of Java classes and
some resource files that were all put in a hierarchial package named voxi. A
description can only illustrate the important ideas behind the implementa-
tion. When developing applications for any system the unwritten law that
“the source is the documentation” will still hold true. A lot of time was
spent on writing thorough comments directly into the source39 code files.

5.3.1 The VOXI Package

The structure of the VOXI package looks like this:

Package prefix Description of package contents
voxi.core.* The very core of VOXI. All services and components

such as the Virtual Object Manager, Artifact Memory,
the superclass for Virtual Objects and Locations,
Event defintion and others

voxi.util.* Utilities that can also be used outside of VOXI,
e.g., a central log module or an image loader

voxi.apps.* In this package you will put your own Virtual Objects,
Virtual Locations, Meta Objects or application specific
services.

5.4 Communication Infrastructure

It is tempting to use RMI40 as we decided to implement VOXI in JavaTM .
But RMI is known to suffer performance problems (cf. [33]) and so we
require that Virtual Objects are free to use other mechanisms (e.g., as in
CORBA� [37]) where reasonable. This can be achieved by decoupling the
VirtualObjectEventListener interface from the java.rmi.Remote inter-
face, which would mark it as a remote interface that relies on RMI. To assure
compatibility with an RMI implementation we have to declare each remotely
accessible method to throw java.rmi.RemoteException. Please note that

39There is also a HTML reference for the voxi package which was generated by using
the javadoc utility.

40JavaTM ’s Remote Method Invocation

5.5 EVENTS 55

this exception does not require RMI at all even though it resides in the
java.rmi package. If a Virtual Object decides to use its own communication
paradigm instead of RMI then it must not implement java.rmi.Remote.
When a Virtual Object wants to communicate with another component then
it needs the stub before it can make an RMI call. As VOXI is open for new
Virtual Object types and as we do not want to distribute new RMI stubs
to all possible communication partners in advance, we use JiniTM ’s proxies.
A Virtual Object registers a reference to the codebase of its proxy (which
in fact can be a RMI stub being stored a the Virtual Object Repository) at
the Lookup Service and each Virtual Object which wants to communicate
can simply download the proxy on demand. In VOXI all Virtual Objects
which do not provide additional remote methods can simply use the proxy
of VirtualObjectImpl which is supplied in the voxi package and which is
already available locally at each Virtual Object Manager. A JiniTM proxy
which does not implement java.rmi.Remote will be downloaded as if it
were a simple stub and herewith is able to use proprietary communication
to its “backend” that resides somewhere in the same network.

However, RMI, which is seamlessly integrated into JavaTM and which uses
a transport mechanism41 with acknowledgments, is used in VOXI for the im-
plementation of the abstract Virtual Object superclass42 that most application-
specific Virtual Objects will inherit from. Unfortunately RMI43 is not clever
enough to handle calls to local instances without overhead by simply doing
a local call. The reason might be that this would alter the calling semantic
as references are passed differently in local method calls in comparison to
remote method calls. The Virtual Object Manager therefore uses local calls
to forward Entry- and ExitEvents where possible to improve performance.
Objects that are using RMI can receive many simultaneous calls to their
remote methods which causes the RMI receiver thread to spawn a new sub-
thread for each call. The developer therefore has to make sure that the
remote methods are thread-safe.

5.5 Events

5.5.1 Generic Event Type

Events as defined in 4.3 are the backbone of VOXI’s communication. It is
crucial that the implementation is open for new event types and that send-
ing and handling events is efficient. It must be possible to introduce new
event types while the system is already running.
We have chosen a very generic event type that stores the event properties

41TCP/IP
42Note that RMI is not part of the core interfaces that a Virtual Object must implement.
43RMI as of JDK 1.2

56 5 IMPLEMENTATION

in the form of key/value pairs in a HashMap44. The type of the event can-
not be changed after the event was created but the key/value pairs still can
be edited. Analogously to other JavaTM types we also provide an equals
method to compare two events for (commutative) equality as defined in 4.3.2.
The final variable serialVersionUID makes it more efficient to serialize an
event upon sending it to a remote receiver as the number does not have to
be recalculated upon each serialization. By the way we chose a HashMap be-
cause it can hold named keys, null values and because it is unsynchronized
(in contrast to the similar Hashtable) which makes it extremely fast.

VOXI’s core event type voxi.core.event.Event is important enough to be
presented in almost full source code here:

public final class Event implements Serializable {
static final long serialVersionUID = 7958819389897872161L;

/**
* The unique type identifying label for this event.
*/

public final String type;

/**
* The properties specific to each event type defined
* only by convention.
*/

public HashMap properties = new HashMap();

/**
* Constructs a new event with the specified type.
*
* @param type the label which identifies this event’s "class"
* @throws IllegalArgumentException if the type parameter is null
*/

public Event(String type) {
if (type == null)

throw new IllegalArgumentException();
this.type = type;

}

/**
* Compares this event to the specified event
* (for commutative equality).

44java.util.HashMap

5.5 EVENTS 57

*
* @param obj the event to compare with
* @return true if both events are equal
*/
public boolean equals(Object obj) {
...
}

}

5.5.2 Case Study: Event Subclasses Versus HashMaps

One could argue that a HashMap cannot guarantee proper type checking for
the compulsory key/value pairs depending on the event type and this is fully
true. Nevertheless we refrained from using event subclassing because this
would be quite inefficient as we will show now: When delivering an event to
a remote component we download the stub of the receiver once and call its
notify or request method. The stub45 has to serialize the event and move it
to the remote component where it is deserialized into a new event instance.
The new instance can only be created if the class definition for the new event
subclass is available. RMI provides a reference to the corresponding class
file which has to be downloaded from a web server. This involves a huge
overhead for new previously unknown event types that each receiver will
have to perform just to state in a later phase that it actually cannot process
this new type of event. When we take 10 new event subclasses that are
sent to 100 virtual counterparts all of them will have to download the new
class code which causes 1000 downloads from the Virtual Object Repository.
And if the repository might be unavailable for some time then new events
cannot be processed at all. The implementation of a HashMap in contrast
is available locally and the only thing we have to do when introducing new
events by convention is making sure that the event type names are unique.
Furthermore it is much easier for an even handler to investigate new event
types. It does not have to use complicated (but powerful) mechanisms such
as reflection46 to find out about the event properties. It can simply iterate
over the entry set of the HashMap that contains all key/value pairs.

5.5.3 Event Wrapper

We want to embed our generic event format into a distributed event of
JiniTM in order to make the event receiving methods of a virtual component
compatible to subscribers for distributed events and to allow for the use of
event mailboxes and future event services of JiniTM . Moreover we need

45In most cases this will be an RMI stub but VOXI allows proprietary transport proto-
cols too.

46Reflection is also known as introspection.

58 5 IMPLEMENTATION

Figure 20: UML class diagram of the event Wrapper VirtualObjectRemo-
teEvent which embeds VOXI’s core event and meta information.

5.5 EVENTS 59

a place to put the meta information. Both issues can be solved with an
event wrapper that subclasses a distributed event (cf. figure 20) and by an
interface that subclasses the RemoteEventListener interface (cf. figure 21).
This design shows how seamlessly the VOXI components fit into JiniTM .

Figure 21: UML class diagram of the event listener interface extension Vir-
tualObjectEventListener.

5.5.4 Event Delivery

For ease of use VOXI provides an EventDeliveryManager47 that sends an
event to a local or remote object named objectID. The complicated mech-
anisms of finding the receiver object, downloading its stub and handling
minor errors are hidden from the user.

5.5.5 Event Matching

The class EventTemplateMatching48 implements the template matching
for events and is compliant to our definitions of “matches” (cf. 4.3.3) and
“strictly matches” (cf. 4.3.4).

5.5.6 Timestamps

A timestamp can be represented in a huge variety of formats. We have
chosen to implement it as the number of milliseconds that have passed
since Jan 1, 1970, 00:00:00 GMT. The timestamp is represented as a 64-
bit signed integer value of type long. This format is restricted to the range
[−263 . . .+ (263 − 1)] which corresponds to the years -292 million years B.C.

47voxi.core.event.EventDeliveryManager
48voxi.core.event.EventTemplateMatching

60 5 IMPLEMENTATION

. . . +292 million years A.D., which hopefully will be sufficient.

The reason why we have not chosen a variable length text representation that
could represent every possible date in the very far future is that the handling
(i.e., sorting, comparing, retrieving from the realtime clock49, storing in a
database) of numeric timestamps is much more efficient.
VOXI itself does not rely on timestamps at all. However, the Entry- and
ExitEvent were defined to have a timestamp included by the creator of
the event. If we want to evaluate timestamps from different event sources
(e.g., events stored in the Artifact Memory) than we need a possibility to
synchronize time at the event sources (e.g., by using the Network Time
Protocol NTP).

5.6 Virtual Objects

5.6.1 Features

The list of the features of Virtual Objects as shown in the description of the
design (cf. 4.5.1) is rather long. The core implementation tries to provide as
much functionality as possible such that the developer of a new Virtual Ob-
ject can make new Virtual Objects inherit all the features from the abstract
VirtualObjectImpl reference implementation superclass and then focus on
the event handler.

The class diagram in figure 22 shows which basic features a Virtual Object
supports by design.

event handling By extending the VirtualObjectEventListener50 inter-
face two event handlers, notify for event notifications that
require no reply and request that always sends an event
as the reply, have to be implemented. The reference imple-
mentation in VirtualObjectImpl51 simplifies both entry
points to a single method eventHandler that processes
both sorts of events. The core event types EntryEvent
and ExitEvent are accepted. The ExitEvent calls the
pleaseExit method of the object by default. However, a
developer has full control to change the default behavior.

self-description The interface Describable52 enforces that each Virtual
Object has to supply a description (a String with infor-
mation compliant to RDF/XML), a name (a String) and

49The method System.currentTimeMillis() in JavaTM returns a timestamp that is fully
compliant to our timestamp definition.

50voxi.core.event.VirtualObjectEventListener
51voxi.core.virtualobject.VirtualObjectImpl
52voxi.core.description.Describable

5.6 VIRTUAL OBJECTS 61

Figure 22: UML class diagram that shows the important interface Virtu-

alObject, which is common to all Virtual Objects, and the reference imple-
mentation VirtualObjectImpl.

an iconic image (a java.awt.image, preferably of the size
32x32 pixels).

lifetime management The interface VirtualObject, which is common to
all Virtual Objects independent of whether they use RMI
(as the reference implementation VirtualObjectImpl does),
introduces three methods related to lifetime management.

• The method doMain is called after the Virtual Ob-
ject has been created by a Virtual Object Manager.
When a Virtual Object returns from that method
then it terminates. Subsequently it is unregistered
and unloaded by the Virtual Object Manager. In-
stead of busy waiting to prevent an early return we
recommend to use the waitUntilStop method in the
reference implementation which simply lets the main
thread of an object wait until pleaseExit is called.
The method waitUntilStop uses a blocking tech-
nique which does neither prevent nor slow down the
reception and processing of events in the mean time.

• The getLRUTimestampmethod returns the timestamp
(cf. 5.5.6) of the last event reception by default and

62 5 IMPLEMENTATION

can be used by the Virtual Object Manager to find
out which Virtual Object was not in use for a long
time and unload it if resources get scarce.

• Finally the method pleaseExit gracefully asks the
Virtual Object to terminate as soon as possible by
returning from its doMain method.

The constructor of VirtualObjectImpl53 is passed a reference to the Virtual
Object Manager that has created this instance, the unique objectID and a
security token that the Virtual Object Manager will reuse when calling the
pleaseExit method.

5.6.2 Implementing a New Virtual Object “MyObject”

Writing a new Virtual Object should be as simple as possible. We therefore
made the Virtual Object Manager take over most of the complicated tasks
such as asynchronously registering a Virtual Object at the Lookup Service or
renewing the leases. An abstract superclass for Virtual Objects reduces the
programming effort to a bare minimum. Service classes in the voxi package
provide many high-level abstractions from the cumbersome asynchronous
communication and interaction patterns and for common tasks such as log-
ging54.

A new Virtual Object “MyObject” usually55 inherits from the reference im-
plementation VirtualObjectImpl and has to implement the event handler
eventHandler and the main method doMain. It usually sets its own descrip-
tion, name and iconic image during initialization. Application specific or
user-supplied new Virtual Objects such as “MyObject” reside in the package
voxi.apps.virtualobject.MyObject. Before an EntryEvent(objectID =
“MyObject”, locationID, timestamp) can activate the new Virtual Object
its class files, resources and a mapping file have to be copied to the Virtual
Object Repository (cf. 5.10) where it will be downloaded from by a Virtual
Object Manager upon creation.

5.6.3 Some Notes on RMI

The Remote Method Invocation (RMI) in the JavaTM Development Kit
(JDK) v. 1.2 no longer requires a RMI skeleton for the server. A RMI
stub on the client side now is sufficient as the JavaTM Virtual Machine was

53The Virtual Object Manager uses reflection to find a compatible constructor and does
not require a subclass of VirtualObjectImpl (as this simple-minded enforcement
would restrict VOXI to RMI compliant Virtual Objects).

54voxi.util.Log
55Don’t forget that our infrastructure is also open for Virtual Objects that use e.g.,

CORBA� instead of RMI.

5.7 VIRTUAL LOCATIONS 63

extended to handle remote calls itself. As JiniTM requires JDK v. 1.2 (i.e.,
Java 2) we no longer need to generate a RMI skeleton.
If no new remote methods are added to an application-specific implementa-
tion of a Virtual Object then there is not even a need to generate a client
RMI stub as the one of VirtualObjectImpl, which is already provided, will
be used. This feature can be seen as a generic RMI stub.
Virtual Objects provide remotely accessible methods, which are called us-
ing RMI (in the reference implementation). As RMI starts a new thread
for each call and as this allows for multiple parallel remote calls a Virtual
Object has to be thread-safe. The programmer has to protect internal data
structures from simultaneous edit operations by different threads which else
would cause havoc.

5.6.4 Internal State of a Virtual Object

The VirtualObjectImpl uses two internal boolean flags: ready and stop.
Both are set to false upon construction of the Virtual Object. The ready
flag is set to true after the initialization has been done. The stop flag is
set to true when pleaseExit is called. The waitUntilStop method, which
many Virtual Objects will use to prevent themselves to return from doMain,
will return after the stop flag has become true.

As VirtualObjectImpl extends the class UnicastRemoteObject a Virtual
Object will actually not cease from receiving events after having returned
from the doMain method as long as the wrapping thread (cf. 5.9) has not
exited. An event handler therefore might want to take care of the state of the
flag stop before processing an event and refuse events in a state when stop
is set to true. However, the wrapping thread will issue a non-blocking56

call to the method unregister of the Virtual Object Manager after doMain
was left and before exiting.

5.7 Virtual Locations

A Virtual Location is quite similar to a Virtual Object. Additionally it
provides an event subscription and publishing mechanism which is imple-
mented in the default event handler of the abstract reference implementation
VirtualLocationImpl57. Additionally a Virtual Location has to forward
Entry- and ExitEvents to the corresponding Virtual Objects as illustrated
in figures 12 no page 39 and 14 on page 43.

56The internal unregister operations are fast. It is meant that the call does not block
until the object is unregistered from the somewhat slower Lookup Service.

57voxi.core.virtuallocation.VirtualLocationImpl

64 5 IMPLEMENTATION

5.8 Meta Objects

Actually there is no formal difference between the implementation of a Vir-
tual Meta Object or Meta Location and the implementation of a Virtual
Object or Location. Of course a Meta Object will get EntryEvents for se-
veral other objects which it will manage internally. The only thing that is
really different is that the mapping file for the Virtual Object Repository
will not contain a self-reference but more than one unique identity and has
to be copied to all the different names of the identities contained in it to
make the mapping work. Please consult the description of the mapping
mechanism in 5.10 for further details.

5.9 Virtual Object Manager

The Virtual Object Manager is at the core of VOXI. The implementation was
especially challenging as it is heavily multi-threaded. Much work has been
invested to make it thread-safe without unnecessarily blocking any parallel
executable operations and to avoid memory leaks. The design of the Virtual
Object Manager in section 4.8 contains a comprehensive description of its
internal processing, which will not be repeated here.

5.9.1 Virtual Object Creation Upon EntryEvents

The flowchart in figure 12 on page 39 has illustrated the processing of an
EntryEvent by the Virtual Object Manager. An extended illustration that
is closer to the implementation is shown in figure 23.

The creation of a new Virtual Object works like this: The objectID contained
in the EntryEvent is used to retrieve the mapping to a Virtual Meta Object
(or to itself if it manages itself). A local mapping cache speeds up this oper-
ation and a check guarantees that the Virtual Object does not already run
locally or remotely. Then the code and resources of the new Virtual Object
are downloaded from the Virtual Object Repository (cf. 5.10) by using a
new URLClassLoader58. The code basis is either a single JAR file or a base
URL for several distinct files. The new Virtual Object is instantiated and
handed to a newly spawned thread of type VirtualObjectThread, which
has its name set to the objectID. The thread’s run method calls the doMain
method of the Virtual Object to make it initialize itself. Then the Virtual
Object Manager registers the new Virtual Object in its data structures and
at the Lookup Service. The thread which embeds it will automatically un-
register it when it will return from the doMain method.
Virtual Objects and Locations that are managed by an already running Vir-
tual Meta Object or Meta Location are only registered internally and at the

58A class loader also allows to restrict policies if needed.

5.9 VIRTUAL OBJECT MANAGER 65

createVirtualObject(locationID, ...)

return

Entry(objectID,
locationID, ...)

VL exists?
(local/remote)

VL managed
by a Meta VL?

Meta VL
exist locally?

Meta VL
exists

remotely?

Create VML in a
new Thread

Register VML
at VOM and LUS

Create VL in a
new Thread

Register VL
at VOM and LUS

Wait for the
completion of the
Meta VL creation.

Register VL
at VOM and LUS

(Meta VL's thread)

Redirect event
to the remote
VOM with VL

No

No

Yes

No

Yes

Yes

throw new
VirtualObjectCreation

Exception("Event
Redirection")

Wait for the VL to
appear at the LUS

Yes

Legend:
VL Virtual Location
Meta VL Virtual Meta Location
VO Virtual Object
Meta VO Virtual Meta Object
VOM Virtual Object Manager

A lock guarantees single entrance

Ask for lock

Read data

Write data

VO exists?

createVirtualObject(objectID, ...)

Wait for the VO to
appear at the LUS

Send EntryEvent
to VL that will

forward it to VO.

Yes

analogous to above
creation of VML

No

LockableHashtable
virtualLocations

Hashtable
virtualMetaLocations

(needed for unregister)

LockableHashtable
virtualObjects

Hashtable
virtualMetaObjects

(needed for unregister)

Hashtable
virtualLocationToMetaCache

Hashtable
virtualObjectToMetaCache

Figure 23: Flowchart that illustrates the processing of an Entry Event by the
Entry Thread.

66 5 IMPLEMENTATION

Lookup Service but no new thread is created.

The creation of Virtual Locations is analogous to the above procedure and
the creation of Virtual Meta Objects and Meta Locations differs only in that
they are indirectly created by EntryEvents with an objectID or locationID
that maps to the identity of the Meta Object or Meta Location.

5.9.2 Data Structures

The Virtual Object Manager uses three distinct data structures for the book-
keeping of Virtual Objects:

• The field virtualObjects (of type LockableHashMap) contains the
mappings from objectID to the thread (of type VirtualObjectThread)
which wraps the associated Virtual Object with that objectID. The ob-
jectID belongs to a Virtual Meta Object or to a Virtual Object which
either manages itself or is managed by a Virtual Meta Object. This
implies that several different objectIDs map to the same thread if they
belong to the same Virtual Meta Object.

• The field virtualMetaObjects (of type Hashtable) simplifies the
management of Virtual Meta Objects, especially if a Virtual Meta
Object returns from its doMain method which causes all managed
Virtual Objects to be unregistered as a consequence. The field maps
an objectID of a Virtual Meta Object to a linked list59 with all the
objectIDs of the managed Virtual Objects. The first item in the list is
by convention the objectID of the Virtual Meta Object itself.

• The field virtualObjectToMetaCache (of type Hashtable) implements
a simple caching mechanism that maps an objectID to the meta-
objectID of an associated Virtual Meta Object which manages this
Virtual Object or to the objectID of the Virtual Object itself if it
manages itself.

The bookkeeping of Virtual Locations is done in separate fields which use the
same three types of data structures as explained above. The separate fields
are named virtualLocations (.= virtualObjects), virtualMetaLocations
(.= virtualMetaObjects) and the field for the local cache of Virtual Meta
Locations is virtualLocationToMetaCache (.= virtualObjectToMetaCache).
The functionality is exactly the same.

5.9.3 Multi-Threading Issues

A thorough look at the flow chart in figure 23 that shows the process-
ing of the EntryEvent reveals some interesting scenarios related to multi-

59java.util.LinkedList

5.9 VIRTUAL OBJECT MANAGER 67

threading. You can recognize three locks in the colored box which is named
createVirtualObject(locationID, . . .). There are three other similar locks
in the second colored box below which is only partly drawn as it it fully anal-
ogous. There is exactly one lock for each locationID that is going to be stored
in the field virtualLocations60 which is of our own type LockableHashMap.
Only a thread which can obtain the lock is allowed to execute the operations
in the dotted box below the lock (i.e., register and/or create the correspond-
ing Virtual Object). A thread which does not get a lock simply omits the
dotted box and goes on beyond61. These special locks are crucial as we will
see in the following scenarios:

Preventing Multiple Creations of the Same Counterpart: Two
compact disks named diskID1 and diskID2 are sighted almost simultane-
ously by a sensor at a location named locationID. This causes two EntryEvents
to arrive almost concurrently at the Virtual Object Manager. As the Vir-
tual Location locationID of the sensor does not already exist, both threads
that process the different EntryEvents would decide to create the Virtual
Location and register62 it which would cause two Virtual Locations with the
same name locationID to be active. This would be an inconsistent state of
VOXI as it violates the concept of unique identities what we try to prevent.
This scenario has explained the leftmost lock.
The lock in the second column of the flowchart is used to assure that a
Virtual Meta Location is created only once although there might be multi-
ple threads processing EntryEvents with locationIDs that map to the same
meta-locationID. Only the one that gets the lock on the meta-locationID can
enter the dotted box. The others will omit the dotted box and try to get
the lock for their locationID as shown in the third column in the flowchart.
This lock assures that the Virtual Location locationID which is managed
by a Virtual Meta Object is registered only once. The action “wait for the
completion of the Virtual Meta Location’s creation” in the box following
that lock is also crucial. It assures that a Virtual Location is not regis-
tered at the Lookup Service prior to its Virtual Meta Location. Without
the wait block (which relies on JavaTM ’s wait/notify mechanism that was
implemented in the waitForKey method of our LockableHashtable) a first
thread could still be creating the Virtual Meta Location whereas an almost
parallel second thread would omit the creation box and try to register its
Virtual Location at the Lookup Service with a reference to the not yet ex-
isting Virtual Meta Location, which would actually cause a null reference to
be used for the registration if the new thread for the Virtual Meta Location
was not already created.

60The case for objectID and virtualObjects is fully analogous.
61Note that threads do not wait on these locks.
62Note that the register operation is rather slow which makes this race condition more

likely to happen.

68 5 IMPLEMENTATION

5.9.4 Processing ExitEvents

The processing of ExitEvents is straight forward and is almost entirely ex-
plained by figure 14 which is shown in section 4.8 where the design of the
Virtual Object Manager is described.

The unregister process will not take place until a Virtual Object returns
from its doMain method.

5.9.5 Migration Support

The bare migration support provided by method migrate(objectID, remote-
VirtualObjectManagerID) does update an internal memo which will set a
trigger for an EntryEvent(objectID, locationID=‘Virtopia’,current time-
stamp) and send it to the specified remote Virtual Object Manager that is
named remoteVirtualObjectManagerID. The trigger is fired after a Virtual
Object has returned from its doMain method and after it was unregistered
internally and from the Lookup Service.

There is no special support for data synchronization between the two Virtual
Object Instances. A Virtual Object is advised to write all important data
to the Artifact Memory before quitting. The “migrated” instance could
than read the Artifact Memory (e.g., persistent state data) and load an
old state. Subscriptions to Virtual Locations are not automatically deleted
when a Virtual Object has migrated. The Virtual Location is designed to
send the events to the new network address automagically without having
to be notified about the migration.

5.10 Virtual Object Repository

An HTTP63 compliant web server was chosen as the basis of the Virtual Ob-
ject Repository. An FTP compliant server would also have been a common
solution for mere data downloads but FTP-only servers are not as versatile
as HTTP ones because they usually lack a server-side scripting capability.
We decided to use the Apache (cf. [40]) web server as it is free, stable and
powerful.
The Apache web server processes HTTP which is transported over the com-
mon network transport protocol stack TCP/IP64. This makes it easy to
reach the Virtual Object Repository from any host in a network based on
Internet’s technology. HTTP communication could easily be encrypted with

63Hypertext Transfer Protocol (cf. [39])
64TCP/IP is the Internet’s Trasmission Control Protocol (TCP) in the transport layer

that relies on the Internet Protocol (IP) in the network layer.

5.10 VIRTUAL OBJECT REPOSITORY 69

SSL/TLS65 if needed in a future release of VOXI. Digital certificates could
be used together with SSL/TLS to provide state-of-the-art authentication.

5.10.1 Repository

Contents stored on a web server can easily be mirrored by other web servers
to achieve a good performance and availability. This leads to a federation of
Virtual Object Repositories with a single master repository that holds the
primary copy of the code and resource data of all Virtual Objects and Loca-
tions available. We refrained from an update everywhere replication scheme
as this would require exact distributed time-stamps or at least the use of a
versioning scheme to enable the service to resolve conflicts of different code
and resource versions when synchronizing repositories. The primary copy
strategy also enables a hassle-free control over the data in the various repo-
sitories.

A Virtual Object Manager must know at least one URL66 reference of a
nearby Virtual Object Repository. A list of such URLs at the Virtual Ob-
ject Manager can increase the availability of the repository service.

The repository has to store executable code in the form of JavaTM class files
and resources such as for instance images or text files. As Virtual Objects
are written in JavaTM they can make use of the hierarchical packaging67

mechanism. In this case the code and resources must be stored in a hierar-
chical directory structure that matches exactly on the package structure.
The Virtual Object Repository provides two different ways to store files
related to a Virtual Object named objectID respectively files related to a
Virtual Location named locationID :

• normal: All files are stored in a folder of the name objectID resp.
locationID and its subfolders.

• archived: All files are archived in a JAR68 file of the name objec-
tID.jar resp. locationID.jar.

An application specific Virtual Object named objectID is expected to be
part of the package voxi.apps.virtualobject.<objectID in lower case>
and therefore a Virtual Object ”MyTeddyWinnie” is stored in the folder
voxi/apps/virtualobject/myteddywinnie as a JavaTM class file of the

65SSL stands for Secure Sockets Layer which is a channel encryption scheme than can be
used to encrypt HTTP traffic. The Transport Layer Security (TLS) scheme is superseding
the SSL standard.

66Uniform Resource Locator (cf. [39])
67Refer to the keyword package of JavaTM .
68JavaTM ARchive; the JavaTM SDK supplies a tool to build JAR files.

70 5 IMPLEMENTATION

name MyTeddyWinnie.class or in the archive MyTeddyWinnie.jar in the
repository’s root folder.
Likewise an application specific Virtual Location named locationID is ex-
pected to be part of the package voxi.apps.virtuallocation.<locationID
in lower case> and therefore a Virtual Location ”MyOffice” is stored in the
folder voxi/apps/virtuallocation/myoffice/ as a JavaTM class file of
the name MyOffice.class or in the archive MyOffice.jar in the reposi-
tory’s root folder.
A Virtual Object Manager first looks for the jar file and if that cannot be
found then it looks for the class file in the appropriate folder. If this ac-
tion fails too, then the Virtual Object or Location cannot be created. The
current mapping facility does not provide a default virtual counterpart for
unknown unique identities.

In order to make configuration changes easier the constant package prefix
names, the root folder of the repository as well as other global settings in
VOXI are set in the JavaTM source file voxi.core.Global.java.

5.10.2 Mapping Facility

The mapping facility maps objectIDs to the objectID of a Virtual Meta
Object and locationIDs to the locationID of a Virtual Meta Object. If
the objectID or locationID is not associated with a Virtual Meta Object or
Location then the same ID is returned.

A music box that manages a couple of cd tokens
Here goes the Virtual Meta Object
MyVirtualMusicBox
And here go all the Virtual Objects we want to
manage by our virtual music box
SongOfLove
ScreamOfTheNight
StormyWeather

Figure 24: A sample mapping file for the Virtual Meta Object MyVirtual-
MusicBox.

In order to keep things simple we implemented this lookup mechanism with
static text files. However, if there is any need to make the lookup more pow-
erful, then a server-side script or e.g., servlet can be used without having to
change anything at the Virtual Object Managers that are using this service.
When the Virtual Object Repository serves a request of the form GET
http://<host and port of Virtual Object Repository>/mapping/objectID69

69In a mapping file for a Virtual Meta Location the locationID is used in the URL

5.10 VIRTUAL OBJECT REPOSITORY 71

then it returns a mapping text file.

Syntactical structure of a mapping file M specified in EBNF70:

M = MetaIDLine {IDLine} {CommentLine}.
MetaIDLine = {CommentLine} objectID NewLine.
IDLine = {CommentLine} objectID NewLine.
CommentLine = "#" Unicode NewLine.
NewLine = [CR] LF.
objectIDa = Symbol {Symbol}.
Symbol = (Letter | Digit) Letter | Digit.
Letter = "A" | "B" | ... | "Z" | "a" | "b" | ... |

"z".
Digit = "0" | "1" | ... | "9".
Unicode = <16 bit unicode>.
CR = "0x000D".
LF = "0x000A".

aThe objectID is replaced by the locationID in mapping files for Virtual Locations.

In short the definition means that the first uncommented line is the ob-
jectID of the repository item that all the other objectIDs in the later un-
commented lines of the file are mapped to. To make the lookup mechanism
work the sample file shown in figure 24 must be copied and renamed to all
the objectIDs that the mapping file contains.
An objectID that is mapped to itself has a mapping file with only one un-
commented line where its objectID is contained.
Although JavaTM supports unicode71 we restrict unique objectIDs or loca-
tionIDs to a sequence of ASCII letters and digits.

5.10.3 Future Extensions

The architecture chosen for the Virtual Object Repository is open for fu-
ture extensions such as a lookup by object properties instead of by objectID
(e.g., by using a server-side scripting language such as PHP72 or by using
a JavaTM servlet that searches the repository) or for a more powerful map-
ping mechanism that supports pattern matching to map locations such as
GPS(x,y,height) on a single objectID. It might also support a default map-
ping for unknown unique identities.

instead of the objectID.
70EBNF is the Extended Backus-Naur Form that can be used to specify a syntax.
71JavaTM supports Unicode 1.1.5. See http://www.unicode.org/ for details
72http://www.php.org/

72 5 IMPLEMENTATION

5.11 Artifact Memory

The Artifact Memory implements facilities to store events and context data
persistently and for querying on event histories.

It is implemented as a Virtual Object with the objectID ArtifactMemory
that once has to be installed at an arbitrary73 Virtual Object Manager
by issuing an EntryEvent for it (preferably with locationID=“Virtopia”).
The Artifact Memory opens a JDBC74 connection the an SQL database75

to store and retrieve data and events. For good performance the database
should be run on the same host as the Artifact Memory itself.
The protocol defined in 4.10.3 is implemented by parsing the header infor-
mation and translating the commands to SQL queries and filling the results
into events.

All events of the same type (i.e., events that have the same type name and
property keys) are stored in the same table. Tables are dynamically created
when new event types arrive. The data types of the values associated with
keys in the event’s HashMap define the SQL data type used in the table. The
Artifact Memory assumes that only the restricted set of data types as stated
in 4.3.1 is used or else an error is reported.

5.12 Lookup Service

All the features of the Lookup Service as discussed in 4.11 are provided by
reggie which is the lookup service implementation that ships together with
the JiniTM environment. Reggie can be run in multiple instances at differ-
ent nodes in the network in order to form a federation of lookup services.
The multicast discovery protocol supports such a federation and will return
a list of all Lookup Services found upon discovery.

JavaTM ’s RMI implementation does provide the rmiregistry which is a
simplified lookup service that does not support attributes and that has to be
run on each host in a network as for security reasons only local applications
can bind to it (cf. [34]). A lookup, in contrast, can be done from any host.
We decided to prefer reggie.
When we register the same object reference at reggie with a different set of
attributes then the previous entry in the Lookup Service will be replaced.
This behavior jibs at our concept of Meta Objects where a single reference
is registered for many different objectIDs76. Fortunately, reggie uses unique

73Depending on the database policy you might have to reconfigure access to the database
from the host where the Artifact Memory is running on.

74JavaTM DataBase Connectivity
75PostgreSQL was used in the implementation
76The objectIDs are placed in the attribute “Name” of the registered serviceItem.

5.13 EVENT SOURCE 73

serviceIDs internally for each serviceItem that gets registered, which we
can assign ourselves. This method allows us to implement Virtual Meta
Objects and Virtual Meta Locations.
The Virtual Object Manager registers some default attributes for the virtual
counterparts which it creates.

• Name: The unique identity77 of a virtual counterpart78.

• MetaObject: The unique identity of the virtual meta counterpart
which it is managed by or its own unique identity if it manages itself.

• ObjectGroup: The unique name of the group79 it belongs to such
as “VirtualObject”, “VirtualLocation”, “VirtualMetaObject” or
“VirtualMetaLocation” as defined in the global settings80.

• ObjectManager: The unique identity of the Virtual Object Manager
which manages the virtual counterpart of this registration entry.

A virtual counterpart, which wants to add some proprietary attributes to its
lookup service entry, can get its associated join manager81 from the Virtual
Object Manager82.

5.13 Event Source

The implementation of the Event Source is quite simple as it can make
use of the various high-level services (e.g., EventDeliveryManager) in the
voxi package. EventSource is a command line application that scans its
arguments and creates an arbitrary event with the meta and event infor-
mation supplied. Then it sends the event as a notification or as a re-
quest (as specified by the user) to a virtual component that implements
the VirtualObjectEventListener interface and which is registered in the
Lookup Service.

Gateways for sensors to VOXI can easily make use of the EventSource to
send their own Entry- and ExitEvents. All they have to do is call an exter-
nal JavaTM program and pass some command line arguments. The usage of
EventSource is displayed if no arguments are supplied. The EventSource
merely acts as stub for real event sources such as a sensor. It has an in-
teractive mode (parameter option -i) that allows to send multiple events
without restarting it for each event.

77I.e., objectID or locationID.
78I.e., Virtual Object, Virtual Meta Object, Virtual Location or Virtual Meta Location.
79The Virtual Object Manager itself belongs to the group “VirtualObjectManager”.
80voxi.core.Global.java
81net.jini.lookup.JoinManager
82Use getJoinManager(String uniqueID).

74 6 DEPLOYMENT

6 Deployment

We wand to list some ideas of how our infrastructure could be deployed in
various scenarios. The list shows that we can make some steps toward a
smart environment with VOXI but it also makes clear that we are still far
away from a smart environment. Nevertheless we can already start right
now to dream about a world where even dust83 will get smart.

6.1 Scenarios

First Steps

• Object and people tracking:
Objects that are tagged with a unique identity or a badge that re-
gularly broadcasts a beacon with its identity can be recognized by
a sensor and easily be tracked with VOXI. The virtual counterparts
are dynamically created upon sightings and get all the location infor-
mation from the sensors in the form of entry and exit events. The
Virtual Objects can be queried about the locations where they have
been recently sighted and a Virtual Location can be queried about
which objects are there at the moment. The Artifact Memory enables
sophisticated queries on past events.

• Business card exchange:
Imagine a paper business card with a thin RFID label stuck on its back.
When the card is put close to an organizer the sensor recognizes that
both objects are in its vicinity and creates the corresponding Entry-
Events. The smart virtual counterpart of the business card can then
find out that there is an organizer at the same location and transfer
the information which is written on the card to the virtual counterpart
of the organizer by simply sending a special business card data event.

• Virtual jukebox - new human computer interaction:
Tiny compact disc tokens are labelled with an RFID tag. When tokens
are put on a table then a virtual jukebox puts all the associated music
tracks in its play list, downloads the streaming audio data from the
Internet and starts playing the music. The virtual jukebox is imple-
mented as a Virtual Meta Object.

• Card game advisor:
A Virtual Meta Object that manages all playing cards used in a game
could display the current set of cards on the table on a nearby screen
and advice the players which action to perform next and later show
a replay of the game and explain how the players can improve their

83Not to be taken too seriously.

6.1 SCENARIOS 75

skills. Similarly, an ‘RFID Chef’84 could be realized as a Virtual Meta
Object.

Not Too Far Away

• Smart household:
The fridge could do some bookkeeping on his stock and trigger new
deliveries if some vital grocery items are missing or if they are no
longer fresh.

• Virtual nanny:
A virtual nanny could control a baby in a room and make sure that it
does not play (i.e., comes close to) with dangerous objects and trigger
some actions such as flashing some lights or calling a person to prevent
injuries of the unattended baby.

• Smart universal remote control:
A palm-sized remote control device with a touch screen could dynami-
cally download the appropriate user-interfaces85 of devices which have
a unique identity. The smart remote control could be used as the
only control for video recorders, washing machines, TV, DVD, heat-
ing systems, etc., which no longer would have to provide their own
awkward and proprietary buttons and tiny keyboards as a physical
user interface.

• Smart toys:
Toys such as Smart-Its86 can open new fields of interaction for amuse-
ment and education. A doll could change its mood depending on the
weather outside which it retrieves from the Internet. A multilingual
teddy could translate spoken words by recording them with a micro-
phone, sending it to its virtual counterpart and playing the reply on
its loud speaker. Such smart toys could help to provide a pioneering
new learning and playing environment for young people.

84cf. [27]
85Similar to the idea of JiniTM ’s proxy approach
86cf. [28]

76 7 CONCLUSIONS

7 Conclusions

7.1 Summary and Outlook

The effort made to build the core of VOXI - a Virtual Object eXtensible
Infrastructure - was worth while. We could show that it is possible to build
an architecture that relies on cutting-edge but young technologies such as
JiniTM whilst staying extensible. This Master’s Thesis formulated many
fundamental principles and concepts in a clear way which could be a basis
for further research. The representation scheme chosen to represent real
world objects and physical as well as logical locations allows to use it for
many different applications in the wide field of Ubiquitous Computing.

We hope that VOXI will contribute as a research prototype for further inves-
tigations in the field of Ubiquitous and Invisible Computing and that some
of the concepts will be seized in related work.

7.2 Future Work

However, there remains a lot of future work to be done by people interested
in enhancing VOXI. Some ideas are listed below.

• Making use of rewritable RFID tags (e.g., to allow the physical object
to take a tiny bit of state information with it when physically moving).

• Design and implementation of security and privacy mechanisms. Among
others authentication for the access to the Artifact Memory might be
a first task.

• Extension of the VoxiWatch GUI by providing a way to issue ”where?”
and ”with?” queries to virtual counterparts and additional function-
alities as described in section 4.13.

• Design and implementation of a more powerful context-oriented query
and trigger language for the Artifact Memory.

• Enhancement of the mapping mechanism of the Virtual Object Repo-
sitory to support pattern matching (e.g., mapping “GPS(x,y,height)”
to a GPS meta object).

• Enhancement of the bare migration support to a weak or even strong
multi-hop migration capability.

• Finding a way to give each Virtual Object and Location its own inter-
active web page (based on the getDescriptionmethod and RDF/XML).

• Distribute and decentralize the Artifact Memory service.

• Others: See the various remarks about extensions in this document.

7.2 FUTURE WORK 77

Acknowledgements

I want to conclude with saying thank you to Prof. Friedemann Mattern,
his research group and especially Kay Römer who supported my interesting
work in the Distributed Systems Group at the Department of Computer
Science at the Swiss Federal Institute of Technology ETH Zurich, and gave
many useful suggestions and ideas concerning the Virtual Object eXtensible
Infrastructure.

78 REFERENCES

A Bibliography

References

A.1 Object Tracking Systems

[1] R. Want, A. Hopper, V. Falcao, and J. Gibbons The active badge
location system, ACM Trans. Info. Syst. 10, 1, Jan 1992, 91-102
One of the earliest badge tracking systems.

[2] Roy Want, Bill N. Schilit, Norman I. Adams, Rich Gold, Karin Pe-
tersen, David Goldberg, John R. Ellis and Mark Weiser, An Overview
of the ParcTab Ubiquitous Computing Experiment, IEEE Pers.
Comm. 2, 6 (Dec 1995), 28-34, source: [Citeseer]
http://sandbox.xerox.com/parctab/
Mobile thin client devices linked by infrared gateways to a network that
provide location information and support interaction with server-side
applications such as reading e-mail.

[3] H. W. Peter Beadle, G. Q. Maguire Jr., M. T. Smith, Location Based
Personal Mobile Computing and Communication
http://www.it.kth.se/˜maguire/LocationAware/ieee lan 98/
Development of a Smart Badge.

[4] John Bates, David Halls, Jean Bacon, A Framwork to Support Mo-
bile Users of Multimedia Applications,University of Cambridge
UK, Computer Laboratory, 1996, published in: ACM Mobile Networks
and Nomadic Applications
A Framework to keep user connected to multimedia teleconferencing
sessions when they are moving to another computer.

[5] John Bates, David Halls, Jean Bacon, Middleware Support for Mo-
bile Multimedia Applications,University of Cambridge UK, Com-
puter Laboratory, 1997
A Middleware to move user interfaces based on X depending on the
user’s location.

[6] Hans-W. Gellersen, Michael Beigl, and Holger Krull, The MediaCup:
Awareness Technology Embedded in an Everyday Object, Uni
Karlsruhe, 1999, published in: Handheld and Ubiquitous Computing,
HUC’99, Springer, ISBN 9-783540-665502, pp. 308-310
Experiments with a simple coffee mug enhanced by a couple of sensors.

[7] R. Borovoy, M. McDonald, F. Martin, and M. Resnick, Things that
blink: Computationally augmented name tags
IBM Systems Journa, Vol. 35, Nos. 3 & 4, 1996 - MIT Media Lab

A.2 RADIOFREQUENCY IDENTIFICATION (RFID) 79

http://www.research.ibm.com/journal/sj/mit/sectionc/borovoy.html
http://www.research.ibm.com/journal/sj/mit/sectionc/borovoy.pdf

[8] N. Ackroyd, R. Lorimer, Global Naviation: A GPS User’s Guide,
Lloyd’s of London, 2nd edition, 1994.

A.2 Radiofrequency Identification (RFID)

[9] Klaus Finkenzeller, RFID-Handbuch, 2. Auflage, 1999, Hanser Ver-
lag, ISBN 3-446-21278-7
Foundations and deployment scenarios of inductive radio systems,
transponders and contactless chipcards (written in German)

A.3 Ubiquitous Computing

[10] Giles John Nelson, Context-Aware and Location Systems, PhD.
Thesis, 1998, Clare College
Comprehensive description of the general foundations of context-aware
and location systems and of an event-based distributed system called
CALAIS.

[11] Fritz Hohl, Uwe Kubach, Alexander Leonhardi, Kurt Rothermel,
Markus Schwehm, Next Century Challenges: Nexus - An Open
Global Infrastructure for Spatial-Aware Applications Univer-
sity of Stuttgart, published in: Mobicom 1999 Seattle Washington USA,
pp. 249-255
http://www.nexus.uni-stuttgart.de/
Vision of augmented areas that provide virtual representations of physi-
cal objects and links to an information space. The first prototype is due
not before 2002.

[12] Nelson Minar, Matthew Gray, Oliver Roup, Raffi Krikorian, and Pattie
Mae, Hive: Distributed Agents for Networking Things
http://www.hivecell.net/hive-asama.html
http://nelson.www.media.mit.edu/people/nelson/research/hive-
asama99/hive-asama99.ps
An infrastructure for agents that can be used to build distributed
applications.

[13] Nelson Minar, Designing an Ecology of Distributed Agents, Mas-
ter’s Thesis, MIT Media Lab, May 1999
Foundations for Hive.

[14] CoolTown project, HP Labs, Palo Alto, USA
http://www.cooltown.hp.com/

80 REFERENCES

Infrastructure that aims at giving each person, place and thing a web
representation.

[15] Deborah Cashwell, Philippe Debaty, Creating Web Representati-
ons for Places
http://www.cooltown.hp.com/papers/placeman/placesHUC2000.pdf
This work is part of to the CoolTown project.

[16] Tim Kindberg, et al., People, Places, Things: Web Presence for
the Real World, HP Laboratories Technical Report, HPL-2000-16
This work is part of to the CoolTown project.

[17] Portolano
http://www.cs.washington.edu/research/portolano/
Visions and concepts about ubiquitous and invisible computing.

[18] M. Esler, J. Hightower, T. Anderson, and G. Borriello, Next Century
Challenges: Data-Centric Networking for Invisible Comput-
ing: The Portolano Project, University of Washington, Mobicom
1999
http://portolano.cs.washington.edu/papers/mobicom99/mobicom.ps
A vision that is part of the Portolano project.

[19] H.W. Peter Beadle, B. Harper, G. Q. Maguire Jr., J. Judge, Location
Aware Mobile Computing
Proc. IEEE/IEE International Conference on Telecommunications,
(ICT’97), Melbourne, April, 1997
http://www.it.kth.se/˜maguire/LocationAware/ICT97/ict97.htm

[20] M. Weiser, R. Gold, J.S. Brown, The origins of ubiquitous com-
puting research at PARC in the late 1980s
IBM Systems Journal, Vol 38, No. 4 - Pervasive Computing
http://www.research.ibm.com/journal/sj/384/weiser.pdf

[21] C. Schmandt, N. Marmasse, S. Marti, N. Sawhney, and S. Wheeler,
Everywhere messaging
IBM Systems Journal, Vol. 39, Nos. 3 & 4 - MIT Media Laboratory
http://www.research.ibm.com/journal/sj/393/part1/schmandt.pdf

[22] T. Selker, W. Burleson, Context-Aware Design and Interaction
in computer systems
IBM Systems Journal, Vol. 39, Nos. 3 & 4 - MIT Media Laboratory
http://www.research.ibm.com/journal/sj/393/part3/selker.pdf

[23] H. Lieberman and T. Selker, Out of context: Computer systems
that adapt to, and learn from, context
IBM Systems Journal, Vol. 39, Nos. 3 & 4 - MIT Media Laboratory

A.3 UBIQUITOUS COMPUTING 81

http://www.research.ibm.com/journal/sj/393/part1/lieberman.html
http://www.research.ibm.com/journal/sj/393/part1/lieberman.pdf

[24] George Liu and Gerald Q. Maguire Jr., A Virtual Distributed Sys-
tem Architecture for Supporting Global-distributed Mobile
Computing
TRITA-IT R 95:01, Dec. 94, source: [Citeseer]

[25] George Y. Liu et al., A Mobile-Floating Agent Scheme for Wire-
less Distributed Computing (1995), source: [Citeseer]

[26] Eine Ereignis-Architektur für kontextsensitive Anwendungen
in verteilten Systemen, Diploma Thesis of Jürg Senn, Distributed
Systems Group of Prof. F. Mattern, ETH Zurich, March 2001
The thesis (written in German) describes among other things the im-
plementation of a compact specification language that is used to define
composite events that are triggered upon logical and temporal conditions.

[27] Marc Langheinrich, Friedemann Mattern, Kay Römer, Harald Vogt,
First Steps Towards an Event-Based Infrastructure for Smart
Things, Distributed Systems Group, Departement of Computer Sci-
ence, Swiss Federal Institute of Technology, ETH Zurich, 8092 Zurich,
Switzerland
http://www.inf.ethz.ch/vs/publ/papers/firststeps.ps
This paper discusses why there is a need for an event-based infrastruc-
ture and presents a nice case study of an program called ‘RFID Chef’
that suggests meals upon sightings of ingredients that it recognizes by
their RFID tags.

[28] Smart-Its, European research project
http://www.inf.ethz.ch/vs/research/proj/smartits.html
Joint project of the Distributed Systems Group, Perceptual Computing
and Computer Vision Group at ETH, TecO (Germany), PLAY (Swe-
den), and VTT (Finland)
The Smart-Its project is one of 16 projects conducted under the Eu-
ropean Union’s Disappearing Computer initiative and aims at making
everyday things smart. The project has been started in January 2001
and will continue till Juli 2003.

[29] Smart Dust
Robotics and Intelligent Machines Laboratory, Department of Electri-
cal Engineering and Computer Sciences, Uni of California at Berkeley
http://robotics.eecs.berkeley.edu/ pister/SmartDust/
The long-term project Smart Dust was started in June 1998. It’s aim is
to enable autonomous sensing and communication in a cubic millime-
ter.

82 REFERENCES

A.4 JavaTM

[30] David Flanagan, The JavaTM Programming Language, 2000, 3rd
ed., ISBN 0-201-70433-1, Addison-Wesley

[31] David Flanagan, JavaTM Foundation Classes in a Nutshell, Nov.
1999, 3rd ed., ISBN 9-781565-924871, O’Reilly & Associates
http://www.oreilly.com/catalog/javanut3/
Guide and reference book for JFC

[32] David Flanagan, JavaTM in a Nutshell, Sept. 1999, 1st ed., ISBN
9-781565-924888, O’Reilly & Associates
http://www.oreilly.com/catalog/jfcnut/
Guide and reference book for Java

[33] Mark Bull, Scott Telford, Programming Models for Parallel Java
Applications
http://www.ukhec.ac.uk/publications/reports/paralleljava.pdf
file: paralleljava.pdf
Performance comparision of RMI and other inter-process communica-
tions paradigms

[34] Getting Started using RMI
http://java.sun.com/j2se/1.3/docs/guide/rmi/getstart.doc.html
Comprehensive introduction to RMI.

A.5 JiniTM

[35] Scott Oaks, Henry Wong, JiniTM in a Nutshell, March
2000, 1st ed., ISBN 9-781565-927599, O’Reilly & Associates
http://www.oreilly.com/catalog/jininut/
Guide and reference book for Jini

[36] W. Keith Edwards, Brian Murph, Core JiniTM , December 2000, 2nd
edition, ISBN: 0-130-89408-7, Prentice Hall
Guide for JiniTM with many code examples

A.6 CORBA�

[37] CORBA�

http://www.corba.org/
A comprehensive middleware for distributed systems.

[38] Michi Henning, Steve Vinoski, Advanced CORBA� Programming
with C++, ISBN 9-780201379273, Addison-Wesley

A.7 INTERNET 83

A.7 Internet

[39] The World Wide Web Consortium
http://www.w3.org/
Publications of many standards and drafts related the the Internet and
World Wide Web.

[40] The Apache Software Foundation
http://www.apache.org/
Publications of many standards and drafts related the the Internet and
World Wide Web.

[41] Transport Layer Security (TLS)
http://www.ietf.org/html.charters/tls-charter.html
A channel encryption scheme for Internet traffic.

A.8 XML

[42] Resource Description Framework (RDF) - Model and Syntax
Specification
http://www.w3.org/TR/1999/PR-rdf-syntax-19990105
RDF provides an extensible model and a syntax to describe properties
of a resource.

A.9 Online Archives

[Citeseer] ResearchIndex - The NECI Scientific Literature Digital Library,
http://citeseer.nj.nec.com/cs
Huge free archive of research papers.

[ACM] ACM Digital Library, http://www.acm.org/dl
Archive of ACM research papers.

[Hypatia] Hypatia Electronic Library, http://hypatia.dcs.qmw.ac.uk/
Research papers in Pure Mathematics and Computer Science.

84 LIST OF FIGURES

B List of Figures

List of Figures

1 Each physical object could have a smart virtual counterpart. . 8
2 A transparent RFID label of type remote coupling. 13
3 A Virtual Object. 20
4 A Virtual Location. 20
5 A Virtual Meta Object managing a collection of compact disks. 21
6 A Meta Location managing GPS positions. 22
7 When the teddy bear leaves the house for a journey, it is still

accompanied by its virtual counterpart. 22
8 Illustration of a message exchange between two entities. . . . 23
9 System Architecture of VOXI - the Virtual Object eXtensible

Infrastructure. 28
10 A collection of compact discs managed by a single Virtual

Meta Object. 36
11 A Virtual Object Manager with two Virtual Objects and one

Virtual Location. 38
12 Sequence diagram that illustrates a high-level view of the pro-

cessing of an EntryEvent by components in VOXI. 39
13 Flowchart that illustrates the detailed processing of an En-

tryEvent by the EntryThread. 41
14 Sequence diagram that illustrates the processing of an Ex-

itEvent by components in VOXI. 43
15 Flowchart that illustrates the processing of an Exit Event by

the ExitThread. 44
16 The Virtual Object Repository. 45
17 A persistent Artifact Memory. 46
18 The Lookup Service. 49
19 Screenshot of the VoxiWatch GUI. 51
20 UML class diagram of the event Wrapper VirtualObjectRemo-

teEvent which embeds VOXI’s core event and meta information. 58
21 UML class diagram of the event listener interface extension

VirtualObjectEventListener. 59
22 UML class diagram that shows the important interface Virtu-

alObject, which is common to all Virtual Objects, and the
reference implementation VirtualObjectImpl. 61

23 Flowchart that illustrates the processing of an Entry Event by
the Entry Thread. 65

24 A sample mapping file for the Virtual Meta Object MyVir-
tualMusicBox. 70

85

C List of Tables

List of Tables

1 Comparison of process versus thread to run a Virtual Object
or Location in. 33

