
Distributed Termination Detection

with Sticky State Indicators

Friedemann Mattern

Department of Computer Science, University of Kaiserslautern,
P.O. Box 3049, D 6750 Kaiserslautern, Fed. Rep. Germany

mattern@informatik.uni-kl.de

July 29, 1990

Distributed termination detection is a \prototype problem" of the theory
of distributed computing which has gained considerable interest in recent

years1. It is closely related to other important problems such as deadlock
detection [CMH83, Na86], garbage collection [TTL88, TM90], and snapshot
computation [CL85, Ma90]. The main purpose of this short note is not to
introduce yet another distributed termination detection algorithm, but to
demonstrate that straightforward solutions to the problem can be based on

simple ideas with informal and intuitive (but yet correct) proofs.
We adopt the usual model of a distributed system consisting of n processes

P1; :::; Pn communicating by synchronous messages:

1. A process is always in one of two states, passive or active.

2. An active process may activate another (passive) process by sending a

message to it.

3. At any time, a process (which is not currently2 engaged in a send

operation) may change from active to passive. (To become active again,
however, it must be reactivated by an active process.)

It is usually assumed that initially at least one process is active. If at some

instant of time all processes are (simultaneously) passive, the system has

reached a stable state, it is terminated. The task of a termination detection
algorithm is to detect this global property. Since in a distributed system it

1See, e.g., [DFG83, To84] and the reference list in [Ma87].
2Note that activations of other processes are not necessarily \immediate". A syn-

chronous send operation, however, is blocking|the sender therefore remains active at

least until the message has been received by the receiver.

1



is impossible to inspect the states of all processes simultaneously even when

using synchronous messages, this is a non-trivial problem.

For a �rst attempt to solve the problem, assume that each process Pi has

a state indicator Si always correctly reecting the state of the process. Then

an initiator may start a control wave which visits all processes and returns

the values of the state indicators. (More e�ciently, it could only return the

\accumulated" value passive if all processes were passive, and active other-

wise.) The control wave can be implemented in various ways; for example by

a token circulating on a (virtual) ring connecting all processes, by a sequen-

tial or parallel distributed graph traversal scheme such as the echo algorithm

[Ch82], by a (virtual) broadcast scheme on a spanning tree, or by any other

total algorithm with feedback [Te90]. Unfortunately, however, the values of

the state indicators collected in that way are of no use: because of possible

reactivations of processes \behind the back" of the wave, the observation

that all processes were passive when being inspected by the wave does not
imply that all processes were passive simultaneously. An algorithm which an-
nounces global termination when it found all Si passive could wrongly detect
termination!

Fortunately, the simple scheme sketched above can easily be transformed

into a correct algorithm. Assume now that the state indicators Si are \sticky"
in the following sense: If a process Pi is activated, the value of Si becomes (or
remains) active. If a process becomes passive, however, Si \sticks" to active.
Clearly, if at some moment before the start of the control wave some process
Pj was active, the algorithm will not announce global termination because

the value of Sj is active when it is eventually collected by the wave. As a
matter of fact, the implicit semantics of the sticky state indicator ensures
the safety property (i.e., no \false termination" is detected). Unfortunately,
however, termination will never be announced in the scheme as it stands! In
order to guarantee liveness (\termination will eventually be detected after its
occurrence") it is necessary to repeatedly start a control wave and to peri-

odically reset the sticky state indicators to the true values of their processes'
states without compromising the safety property. Obviously, the following

two properties hold:

(Safety) If at the start of the wave a process was active (and the sticky

state indicators are not reset during the wave), termination will not be
announced. (Or equivalently: If termination is announced, the system

was already terminated when the wave was started.)

(Liveness) If at the start of the wave the value of each sticky state indicator
Si is passive (and consequently all processes are passive and the system

is terminated), termination will be announced at the end of the wave.

To see the liveness property, observe that since the system is terminated

2



(as a consequence of the assumption), the values of the sticky state indicators

will not be changed. Hence the wave will �nd all state indicators passive and

will consequently announce termination. Note that the assumptions trivially

hold if the state indicators are reset to their true values after termination

occurred (and the �nal wave is started thereafter).

The principle presented above allows several concrete variants which can

easily be implemented. If in a sequence of control waves the next wave

is started only after completion of the previous one, it is probably most

appropriate to reset the state indicator of a process directly after collecting

its value (i.e., actually during but logically after the wave). In that way, no

extra wave is necessary for the resetting of the state indicators. Furthermore,

to minimize the number of control waves it is reasonable to visit the processes

in a \lazy" way|a wave visiting an active process is only propagated when

the process becomes passive.

The scheme can also be adapted to asynchronous communications. One
possibility is to acknowledge each message and to consider a process to be
engaged in a send operation while the acknowledgement is not received (thus
simulating synchronous communication for which the acknowledgement is im-
plicit). Obviously, this can be realized by locally counting sent messages and

received acknowledgements. It is also possible to use indirect acknowledge-
ments and to batch acknowledgements, this technique is used for example in
the vector counter algorithm [Ma87].

Finally, there is a great variety of wave algorithms on which our generic
scheme can be based [Te90, Ra90]. For rings with a circulating token it is

similar to the well-known algorithm by Dijkstra et al. [DFG83] (whereas in
that algorithm send-ags are used, our scheme implicitly uses receive-ags),
for spanning trees Topor presented a variant in [To84]. An interesting chal-
lenge is the design of e�cient and \intelligent" waves which try to avoid the
visit of processes that have not been reactivated since the last visit.

Conclusions. We presented a simple generic and intuitively correct termina-
tion detection scheme together with an informal correctness argument based
on the \sticky indicator" paradigm. It shows again that distributed termi-

nation detection is non-trivial but not necessarily complicated. We leave it

to the reader to formalize the idea and to give thorough and complete proofs

for concrete variants of the sticky state indicator scheme.

References

[Ch82] Chang, E.J.H, Echo Algorithms: Depth Parallel Operations on

General Graphs, Trans. Softw. Eng. 8 (1982) 391{401.

3



[CL85] Chandy, K.M., L. Lamport, Distributed Snapshots: Determining

Global States of Distributed Systems, ACM Trans. on Computer

Systems 3 (1985) 45{56.

[CMH83] Chandy, K.M., J. Misra, L.M. Haas, Distributed Deadlock Detec-

tion, ACM Trans. on Computer Systems 1 (1983) 144{156.

[DFG83] Dijkstra, E.W., W.H.J. Feijen, A.J.M. van Gasteren, Derivation of

a Termination Detection Algorithm for Distributed Computations,

Inf. Proc. Lett. 16 (1983) 217{219.

[Ma87] Mattern, F., Algorithms for Distributed Termination Detection,

Distributed Computing 2 (1987) 161{175.

[Ma90] Mattern, F., E�cient Distributed Snapshots and Global Virtual

Time Algorithms for Non{FIFO Systems, Tech. Rep. SFB124{
24/90, Kaiserslautern University, 1990.

[Na86] Natarajan, N., A Distributed Scheme for Detecting Communica-

tion Deadlocks, IEEE Trans. on Software Engineering SE{12 (1986)
531{537.

[Ra90] Raynal, M., Helary, J.-M., Control and Synchronisation of Dis-

tributed Systems and Programs, Wiley, 1990

[Te90] Tel, G., Total Algorithms, Technical Report RUU{CS{88{16, Dept.
of Computer Science, Utrecht University, 1988. Also in: Algorithms
Review 1 (1990) 13{42.

[TM90] Tel, G., Mattern, F., The Derivation of Distributed Termination

Detection Algorithms from Garbage Collection Schemes, Technical
Report RUU{CS{90{24, Dept. of Computer Science, Utrecht Uni-

versity, 1990.

[To84] Topor, R.W., Termination Detection for Distributed Computations,

Inf. Proc. Lett. 18 (1984) 33{36.

[TTL88] Tel, G., R.B. Tan, J. van Leeuwen, The Derivation of Graph Mark-

ing Algorithms from Distributed Termination Detection Protocols,

Science of Computer Programming 10 (1988) 107{137.

4


