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Abstract

Several variants of the simple and well-known Chang-
Roberts algorithm have been simulated. The empirical
analysis shows that the algorithms compare very favorably
with other ring-based election algorithms. For various ring
sizes and number of concurrent starters the average message
complexity, its distribution, and its standard deviation are
studied.

1. Introduction

The election problem is a fundamental problem of distri-
buted computing. It can roughly be characterized as distri-
buted mutual exclusion without faimess requirements. The
election problem arises whenever several uniquely identified
but otherwise “identical" processes have to agree on a (tem-
porary) leader. It is usually assumed that the process
identifications are linearly ordered but that initially no pro-
cess knows the identities of all other processes. Without loss
of generality, the leader to be found is the process with the
largest identity.

The election principle is often used as a mechanism for
breaking symmetry in other (symmetric) distributed algo-
rithms (e.g. [MAT89]). Other applications are concurrency
control, regeneration of a lost (unique) token, and system
initialization and recovery by electing a new coordinator
after a crash or coordinator failure. The problem is to
design an efficient distributed algorithm which can be ini-
tiated by an arbitrary process independently of any other
process.

The election problem has been studied mainly for circu-
lar configurations. The ring-based solutions presented in the
literature can be partitioned into two classes: In the first
class it is assumed that messages can only be sent in one
direction (unidirectional ring), in the second class messages
can be sent to both directions (bidirectional ring). The com-
plexity of the solution is usually measured in terms of the
total number of messages exchanged during the execution of
the algorithm.

Because for most algorithms the exact number of mes-
sages depends on the specific arrangement of process
identifications on the ring, the worst case and the average
case message complexity are of interest. Averaging is done
by considering all (n-1)! different arrangement of n
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processes on the ring equally likely. Furthermore, for com-
plexity analysis it is assumed that all starting processes ini-
tiate the algorithm at the same moment and that all messages
take the same time traversing a link between two processes.
But obviously an election algorithm should also work
correctly without these assumptions.

Table 1 reports the most significant results, an overview
on other ring-based election algorithms may be found in
{BOL86, BOD87, LAV88]. Notice that logn =H, (the n-th
harmonic number) and that all logarithms are to the base e.

Besides message complexity, the simplicity of a solution
is also important. The Chang-Roberts algorithm [CHR79]
and its bidirectional variants are very simple and have a very
good average case complexity, despite their O(n?) worst case
complexity. In [RKS87] Rotem et al. have shown that these
algorithms require O(nlogn) messages with very high proba-
bility, and recently Lavault has shown that the asymptotic
message complexity of the bidirectional variant is %V‘anogn
[LAV88]. Therefore, the Chang-Roberts algorithm compares
very favorably with other election algorithms.

Our empirical analysis of the Chang-Roberts algorithm
and its bidirectional variants complements the previous
theoretical analysis. We analyze the average message com-
plexity, its distribution, and its standard deviation for several
typical and extreme situations. The results not only confirm
the observations by Rotem et al., but show that the algorithm
is far better than the rather conservative mathematical esti-
mations indicate.

2. The Chang-Roberts Algorithm

The unidirectional Chang-Roberts algorithm [CHR79] (which
we call UNID) is based on the principle of selective message
extinction. We present a variant of the original algorithm
where a subset of the processes participate in the election.
Any process which is not yet engaged in the election may
initiate the algorithm independently of any other process. It
starts the algorithm by becoming "active" and sending a
message with its own identification to its neighboring pro-
cess. A process receiving a message compares the number
on the message with the highest number it has seen so far
(including its own identification if it is a starter) stored in a
local variable M. If M is larger, the process simply throws
the message away. If M is smaller, it updates M and passes



Algorithm Average Case Worst Case
Jirectional =
Chang-Roberts [CHR79] nH, (average case optimal) "—(E;—l)
Petersen [PET82] 1.360n lo; 2.078nlogn +O(n)

gn
(empirical result [EVE84])

(empirical result [EVE84])

Petersen (variant) 1.395nlogn

1.956nlogn +O(n)

[DKR82] (empirical result [EVE84]) (empirical result [EVE84])
lower bound nH, [PKR84]
Bidirectional Algorithms
Bidirectional variant
of Chang-Roberts _n_(nle)_ (probabilistic)
(Rotem et al. [RKS87), 0.7071nH,, +O(n) [LAVS8]
Bodlaender and ~ 0.25n2 (deterministic) [BOLS6]
van Leeuwen [BOL86])
Moran et al. [MSZ86], van
Leeuwen and Tan [LET87] 2.078nlogn +Otn)
lower bound 0.5nH, [BOD87, BOD88]

Table 1. Significant election algorithms.

the message on. A process has won the election if it gets
back a message with its own identification having made a
full round.

Without loss of generality we assume that each of the n
processes is uniquely identified by an integer 1,..,n. The
local variable M is initialized to 0. A process may start the
algorithm as long as M=0. (If a process has not initiated the
algorithm by the time a message reaches it, then it does not
participate in the current election round). Each process i
executes the same local algorithm:

Algorithm UNI for process i:

Start: M :=i;
send <i> to neighbor;

Upon receiving a message <j>:
if M<j then M:=j;

send <j> to neighbor;
elseif M =j then leader;

endif;

The correctness of the algorithm is easily verified: A
message is eliminated by the first larger active process
encountered. Thus all messages except the message with the
highest value are eliminated on their way around the ring. At
the end of the algorithm every process knows the identity of
the leader and the leader knows that it has won the election.
Notice that the FIFO property is not required.

2.1 Message Complexity

Clearly, the worst case message complexity for k starting
processes arises when the participating processes are ordered
in decreasing sequence and a message initiated by an active
process must traverse all smaller processes and all passive
processes. Therefore, the worst case message complexity
of Algorithm UNI is

k(k-1)

-
" 2

If the processes are randomly ordered, a message initiated by
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the i-th highest active process traverses % links on the aver-
age before being discarded by a higher process. Because
n

n n
T2t %

the average message complexity is nH.

Pachl et al. [PKR84] show that (for k =n) nH, is a
lower bound for the message complexity of the unidirec-
tional election problem. Therefore, algorithm UNI is average
case optimal. This suggests that the quadratic message com-
plexity is an exception and that in most cases (i.e. for most
configurations) the message complexity is about nH. In
fact, Rotem et al. [RKS87] proved that (for k=n) the algo-
rithm uses O(nH,, ) messages with probability tending to one.
An interesting problem is therefore the quantification of the
"average deviation" from the mean message complexity.

In order to assess the algorithm, the distribution and the
standard deviation (or the variance) of the expected number
of messages are of interest. To be able to compare the algo-
rithm to other algorithms and to different bidirectional vari-
ants, we use the coefficient ¢ of m=cnH; as a unit of meas-
ure. That is, for given ring size n, number of starters £, and
number of messages m we define the coefficient ¢ as

LA
n ZT = nHk.
i=l

C =

nHy

From previous considerations it follows that the average
value ¢ for Algorithm UNI is £=1, and the maximal value
¢ for Algorithm UNI is

P 105V}
H, 2nH,

In order to estimate the deviation from C=1 we are
interested in the distribution of c. Figure 1 illustrates the
situation we expect. The results of 100000 simulation experi-
ments for n=100 and k=100 are shown in Table 2 (column
UNI).
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Fig. 1. An illustration of the distribution.

UNI__RND __MIN
0% (=0) exceed 1637 1401 1.388
0.01% (=10) exceed 1.583 1313 1.207
0.1% (=100) exceed 1471 1197 1.095
1% (=1000) exceed 1317 1.070 0.995
5% (=5000) exceed 1201 0978 0.900
10% (=10000) exceed 1.143 0933 (.858
30% §=30000 exceed 1045 0.854 0.783
50% (=50000) exceed 0987 0.814 0.746
75% (=715000) exceed 0923 0.771 0.709
90% (=90000) exceed 0877 0.742 0.682
100% (=100000) exceed | 0.729 0.648  0.600
Average value 1.000 0.828 0.760

Table 2. Cumulative distribution of coefficient ¢ for n=k=100,

This demonstrates that in general ¢ is rather close to the
average value C=1. The observed maximal value of ¢ was
only 1.637, although theoretically it could be as large as
¢=9.735 for n=k =100. Table 3 shows the values for
coefficient ¢ which were not exceeded in 1% of all cases for
other values of n and k. Each entry of the table is based on
at least 5000 simulation runs. The figures confirm the obser-
vation that large deviations from ¢=1 are highly improb-
able.

Table 3. Upper bounds of the 99% interval.

2.2 The Standard Deviation

A measure of the extent to which the possible values of ¢
are dispersed around the mean ¢=1 is the standard deviation
o or the variance 62 In [RKS87] it is shown that 62 is the
sum of hypergeometric distributed random variables. A simi-
lar derivation whose details are omitted here yields the gen-
eral formula

1 [150=)G-D
He N niq j2G+1)

For small values of k, it is easy to deduce specific and
simpler formulas for the standard deviation ¢ from the gen-
eral formula. Some of these formulas are listed in Table 4
together with their limit for n — oo,

o=

The following estimation (which is analogue to a similar
estimation in [RKS87]) demonstrates that ¢ can be bounded

k>1):
1 [5Gt <L1/i" n_
" j2 (+1)?

g =
He N niq j2G+) Hy
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1 4/“_1_ S 1\E3 o oew
Hk §3j2 Hk 6 4 Hk logk
Hence, ‘
0.629
—_— A)
< logk
k © limo
J—poo
1 0 0
n-2 V3 _
2 27n 3_~0.19M5
1 12 5
3 1 5- " 1 =0.20328
1 127n-348 1 127 _
4 >3 55 S =0.20159
Table 4. Formulas for ¢ (Algorithm UNI).
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Fig. 2. The standard deviation ¢ for small rings.

In figures 2 and 3 © is analyzed in more detail, they
show o plotted against the ring size n for different values of
k. In accordance with (A), ¢ approaches 0 with increasing
ring size if k is a constant fraction of n. It converges to
some value > 0, however, if the number of starters remains
fixed. k=3 leads to the Jls_iighest asymptotic standard devia-

tion, therefore its limit ET = (.20328 is an upper bound for
all values n, k:

6<0.2033 (B)

t + t t t ~—
100 300 1000 3000 10000 30000

t +
3 10 30

Fig. 3. The standard deviation ¢ for larger rings.




The probability that the values of ¢ lic within a certain dis-
tance of ¢ =1 can be estimated by using the Chebychev Ine-
quality. In a form which is convenient for our purposes it
states that for any e>0

prob(c>1+€) < -9-;-
€

©
By substituting (B) in (C) we get
0.04;

prob(c>1+€) < 7
€

®)

Based on estimations similar to (C) and (D), Rotem et al.
state that "the algorithm compares very favorably with the
best-known ones and should be considered in many cases to
be the algorithm of choice because of its simplicity..."
[RKS87]. Our empirical analysis of the cumulative distribu-
tion and the analysis of the standard deviation underline this
statement — the algorithm is even far better than the analyti-
cal estimations based on the rather conservative Chebychev
Inequality indicate: For €e=1 we get prob(c>2)<0.042,
whereas Table 2 shows that for n =k =100 the value
¢ =1.637 was never exceeded in 100000 experiments!

3. Bidirectional Election Algorithms

3.1 A Probabilistic Algorithm

On bidirectional rings elections require less messages. An
obvious bidirectional version of algorithm UNI is the follow-
ing probabilistic algorithm [RKS87, BOL86, LAV88]. Only
the starting phase is different from Algorithm UNI. Because
the local actions are assumed to be atomic taking no time,
we can assume that messages are not received simultane-
ously from both neighbors.

Algorithm RND for process i:
Start: M :=§;
send <i> to one of the two neighbors;
Upon receiving a message <j>:
if M<j then M :=j;
send <j> to next;
elseif M =j then /eader,
endif;

V\’

Fig. 4. Half way eliminations.

Clearly, the worst case message complexity is the same
as in algorithm UNI. However, a message will be eliminated
earlier if it runs into a larger message traveling in the oppo-
site direction. Figure 4 illustrates the situation. If on the uni-
directional ring the message initiated by process 3 is elim-
inated by process 7, then on a bidirectional ring we can
expect that the two messages meet "half way" if process 7
decides to send its message in the opposite direction (case
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a). We assume that a process choses a starting direction with
equal probability % among its two neighbors. Therefore,
with probability % message 3 travels only half the distance
which should save 25% of the total number of messages on
the average. However, even if process 7 sends its message in
the same direction as process 3 (case b), there is a positive
probability that another process (process 9 in Figure 4)
meets message 3 before it reaches process 7. Ignoring the
effect of these "higher order eliminators”, and assuming that
messages traveling in opposite directions meet half way (i.e.,
they are started at the same timc and travel at the same
speed), the average total number of messages /7 can be
estimated by

_ 1 1

msn +-2-a+ EB
The first term n comes from the highest message which
travels a links in any case. o is the accumulated distance of
all messages which are not stopped by a message traveling
in the opposite direction, hence

1 1 1

o=_n + 3" + + Pl
and B is the accumulated distance of messages being elim-
inated half way

i e
=%(—;-n +-,;—n+ +-,lc-n)+"1{("'1)-
This yields
ﬁS%ﬂHg"’E‘t’:_—!’ and
EWEY ®

c
0.91
| C = 0.75 + (nek-1)/(4nHk) 2o
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Fig. 5. Upper bounds.

Figure 5 shows the upper bound (E) for different values
of n and k. In [BOL86] Bodlaender and van Leeuwen give
a more precise analysis of the algorithm by taking into
account the effect of some higher order eliminators.
Recently, Lavault presented an exact analysis of the asymp-
totic complexity [LAV88].

3.2 Deterministic Variants
If the identities of the neighboring processes are known,

deterministic variants are conceivable which are more
efficient than Algorithm RND. By comparing its own



identification with the identification of the two neighbors an
initiator can act according to one of several possible stra-
tegies. Figure 6 enumerates some of these strategies. They
differ only in the starting phase.

configuration (relative position of the starter)
*r—o— *—o—e *r—o——@
strategy | o 1 3 1 2 3 1 3 2
1) MAX — — —
2) MIN — — -—
8) < - -
MIN® J / -~

Fig. 6. Starting strategies for bidirectional rings with neighborhood
knowledge.

In general (n 23) there are 3 cases: The starting node
can be smaller than both neighbors, it can be larger than
both and it can be between them. For all three cases, the
strategy determines the neighbor to which the initial message
will be directed. Not all strategies make sense. Note that in
general (k <n) a starter does not know whether a neighbor
is also a starter. The two deterministic strategies named
"MAX" and "MIN" have been analyzed in detail. MIN is a
variant of Bodlaender and van Leeuwen’s Algorithm-D
[BOL86] which we have named "MIN*". MIN* assumes
that all processes are starters. Using this strategy a process
does not start the algorithm or propagate a message if it
knows that one of its neighbor’s identity is greater than its
own. MIN* uses less messages than other strategies but it
does only work if k =n.

3.3 Experimental Analysis of Coefficient ¢

Table 5 shows the experimentally determined average values
of coefficient ¢ for algorithms RND, MAX, MIN, and MIN*
for k=n. The last line tells the number of experiments that
have been conducted for ring size n.

Figure 7 and Figure 8 show the information of Table 5
in a graphical form. Obviously, the deterministic variants are
much more efficient than Algorithm RND. The figures show
that the asymptotic value 0.7071... of coefficient ¢ as
derived by Lavault [LAV88] is approximated very slowly —
the asymptotic value is merely of theoretical interest.

Several series of experiments have been conducted to
study the behavior of coefficient ¢ for k <n. Figure 9 shows
T for different values of k. Each sampling point has been

0.95
0.9 ‘®- upper bound
©- AND
0.85 - MAX
- MmN
08 ) .\'\'*.
I~
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0.7 + + + + t 1
3 10 30 100 300 1000 3000 10000 30000
Fig. 7. Coefficient ¢ for bidirectional algorithms.
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Fig. 8. Coefficient c for algorithm MIN®*,
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Fig. 9. Coefficient ¢ for algorithms RND and MIN for different
numbers of starters.

obtained by averaging over 10000 experiments. Whereas
Cyuv is monotonically decreasing, Czyp is more or less con-
stant over a large range.

—n__ | 1 1 2

RND 0977 0902 0.858 0828 0804 079 0778 0772 0.767
coeff. of var. | 900%  Li31%  1037% 9.18%  836%  699%  608%  525%  5.19%
MAX 0909  0.813 0.784 0.764 o.zgz 0749 0746 0744 0.744
coeff. of var. | 6:00% 825% 9.67% 941% 4 757%  679%  638%  577%
MIN 0.909  0.800 0.779 0760 0752 0745 0736 0736 0.732
coeff. of var. | 000% 855% 9.87% 932% 819% 762% 631%  S84%  $5383%
MIN* 0546  0.528 0.573 0600 0619 0632 0641 0651 0655
coeff of var. | 000%  1363%  1354%  1186% 997%  881% 773%  660%  6.02%

N 9900 9900 9900 9900 9900 9900 2500 1000 120

Table 5. Coefficient ¢ for different bidirectional algorithms.
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n 1 2
mpfcom T 0 0k O W WA O YR MR
MIN ‘Sk=0.1n) 1.000 0.882 0.816 0.785 0.769 0758 0747  0.747
coeff. of var. 000%  1768%  1S50%  1242%  1042% 836% 741%  775%
RND a}k=3) 0911 0.889 0.884 0.881 0.9879 0.878
coeff. of var. 1631%  1842%  1933%  1936%  1976%  1964%
MY | W YR W W W

N 9900 9900 9900 9900 9500 2500 1000 120

Table 6. Coefficient ¢ for a smaller number of starters.

1

0.95
0.9
®- AND (k=0.1n)
0.85 4+ O« MIN (k=0.1n)
B~ AND (ke3)
081 O MIN (ke3)

0.75 1

0.7
10 30 100 30

1000 3000 10000 30000

Fig. 10. Coefficient ¢ for a smaller number of starters.

Table 6 lists the experimental results for the same series
of experiments as shown in Table 5 and Figure 7 but for
k=3 and k=0.1n starters. Figure 10 displays the informa-
tion in graphical form. By comparing figures 10 and 7 one
sees that the graphs for k =n and k =0.1a are rather similar.
For k =3 the two strategies MIN and RND behave almost
identical for large rings. This is to be expected because the
knowledge of the neighbor’s identities does not convey
much information if the probability for a neighbor being a
starter is low.

The experimentally obtained cumulative distribution of
cavp and ¢y for k =n =100 is shown in Table 2 together
with the cumulative distribution of cyy;. It again shows the
superiority of Algorithm MIN over Algorithm RND, but
qualitatively the three algorithms are very similar: In over
50% of all cases the values are below C, and 2¢° was never
reached or exceeded in 100000 experiments.

In order to be able to compare the standard deviation of
different algorithms, we use the relative standard deviation
(the so-called coefficient of variation). The coefficient of
variation cvar of a random variable X with mean p and
standard deviation o is defined by cvar =<, Notice that

since for algorithm UNI ¢ =1, the standard deviation and the
coefficient of variation are identical. Tables 5 and 6 list the

cvar (%)
201
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Fig. 11. Coefficient of variation for algorithms RND and MIN.

experimentally obtained coefficient of variation for algo-
rithms RND and MIN. The values are shown in a graphical
form in Figure 11.

A comparison of this figure to Figure 3 shows that the
coefficient of variation for unidirectional and bidirectional
algorithms are very similar.

4, Conclusions

We have presented an empirical analysis of the Chang-
Roberts election algorithm and several bidirectional variants.
While a mathematical analysis of its behavior requires
powerful and elaborate methods from the theory of combina-
torial enumeration [LAV88], our simulations demonstrate
that the estimations are often rather conservative. The simu-
lations show that despite its simplicity the algorithm com-
pares very favorably with other known election algorithms.

The distribution and the standard deviation for the
bidirectional variant have not been analyzed before. How-
ever, our simulations show that the unidirectional and
bidirectional variants behave very similar. By using the
coefficient ¢ as a unit of measure we were able to compare
different variants. In particular, we analyzed the performance
of the algorithm for a small number of starters which has not
been done before but which is a more realistic situation in
practice.
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