
Hartmut Vogler, Thomas Kunkelmann, Marie-Louise Moschgath
Darmstadt University of Technology

Information Technology Transfer Office
Alexanderstr. 10

D-64283 Darmstadt, Germany
{vogler, kunkel, malu}@ito.th-darmstadt.de

Abstract
Mobile agents offer a new possibility for the develop-

ment of applications in distributed systems and are no
longer a theoretical issue since different architectures for
their implementations have been proposed. With the
increasing market of electronic commerce it becomes an
interesting aspect to use autonomous mobile agents for
electronic business transactions. Being involved in money
transactions, supplementary security features for mobile
agent systems have to be ensured.

In this paper we present an architecture for a mobile
agent system which offers fault tolerance for the whole
agent system at a high level. This architecture addi-
tionally guarantees security for the host as well as secu-
rity for the agent. To handle these issues for mobile
agents we use various encryption mechanisms and we
apply a novel method for mobile agent systems by using
distributed transactions in our architecture. Due to this
security architecture an agent will be enabled to carry
out money transactions.

Keywords: mobile agents, fault tolerance, reliability,
security, electronic commerce, distributed transactions

1 Introduction

The paradigm of mobile agents [HCK95] became one
of the most interesting topics in today's research work of
computer science. Since several research institutes and
companies developed high-quality prototype systems for
mobile agents, e.g. ARA [PeSt97], Mole [SBH96] or
Telescript [Whi94], mobile agents are no longer a theo-
retical issue. In the areas of information retrieval, network
management, workflow, mobile computing [CGH+95] or
telecommunication [MRK96] a lot of interesting appli-
cations for mobile agents emerge.

Unfortunately, mobile agents involve some significant
security problems for the agent as well as for the host
[FGS96]. There exist some approaches to cover these

problems like the usage of "safe"-languages like Safe-TCL
[BoRo93] or Safe-Python [Pyth94], Java [ArGo96]. For
those languages certain commands are considered as
unsafe and hence are not made available to untrusted
programs, e.g. file system access. For the agent security
and authentication, the most suitable mechanism is the
usage of digital signatures [Riv92], which guarantee the
integrity for those parts of the agent which remain static.
However, these methods don't guarantee sufficient secu-
rity, only static parts of the agents can be signed. On the
other hand they restrict the capabilities of an agent, e.g.
the available commands for the agent are not sufficient
for many scenarios. For new and useful applications,
mobile agents must also provide features for electronic
commerce [KaWh96].

Another important topic in the paradigm of mobile
agents is the fault tolerance and the reliable agent trans-
fer. These security issues will be discussed in Section 2.
Based on this analysis we explain our architecture of a
secure mobile agent system and discuss its benefits in
Section 3. After describing our realization using TIP in
Section 4 we conclude the paper with a summary and an
outlook on our future work.

2 Reliable Agent Transfer

Fault tolerance for mobile agent systems is an unsolved
topic, to which more importance should be attached. Be-
sides the security problems by intended attacks it is very
important to realize that an agent can simply get lost by
errors of the network or the hosts. If an agent itinerates
autonomously in the network, there is no instance which
can guarantee that the agent reaches the next host cor-
rectly and won't get lost. For example, when using SMTP
(E-mail) as a transport medium there are no mechanisms
for the reliability of the transport or any recovery han-
dling in case of errors. There are even no standardized
mechanisms to detect this fault situation.

Distributed Transaction Processing as a Reliability Concept for Mobile Agents

Besides the network errors, fault situations also can be
originated by problems or a breakdown of the host. In
case of such a failure, there have to be suitable recovery
mechanisms for the agent.

Based on network or host errors an agent can also be
duplicated. Such an inconsistent state of the agent system
can cause significant problems and must be avoided.

2.1 Classes of fault semantics

The problem of fault tolerance for agents is an applica-
tion level topic. After a reliable transfer an agent has to be
initiated at the new host. This offer various fault situa-
tions, which can easily cause an inconsistent state for the
whole agent system.

The transfer of an agent can be compared with a re-
mote procedure call (RPC), which guarantees the exactly-
once-semantic (only-once-type-2-semantic) [MüSc92].

In the context of an agent transfer the other classes of
fault semantic aren't sufficient. An agent transfer with the
maybe-semantic would guarantee that the agent is trans-
ferred only once, but we don't have the guarantee that the
agent is received and initiated correctly at the new host.
In the class of the at-least-once-semantic we have the
guarantee that the agent is received and initiated correctly
by the new host. However we can not avoid that the agent
may be duplicated if any communication errors occur and
the agent has to be resent. The at-most-once-semantic
(only-once-type-1) guarantees the atomicity of the agent
transfer. In this class the agent will either be transferred
correctly or, in case of a fault, an error message will be
sent to the sending host, and no further action takes place
at the receiving host. Even this fault semantic isn’t
sufficient for an agent transfer due to a possible host
crash. Only the exactly-once-semantic guarantees a con-
sistent recovery after a host crash, so an agent will always
be transferred exactly once and will not get lost or dupli-
cated. This can only be achieved with persistent storage
and a protocol for distributed transactions.

After this analysis we see that only distributed transac-
tion processing (DTP) offers the possibility to control the
state of a mobile agent system and also offers the scal-
ability of the system to involve further parties.

2.2 Introduction in DTP

The usage of transactions [BeNe96] is a very popular
concept for the management of large data collections.
Transactions guarantee the consistency of data records
when multiple users or processes perform concurrent
operations on them. In general, the properties of transac-
tions are known as the ACID properties (Atomicity, an
indivisible set of operations; Consistency is guaranteed
for the data; Isolation of parallel data access in different

transactions; Durability, the events are stored perma-
nently or completely rejected) [GrRe93].

The access of distributed resources, e.g. databases on
different computers, within a transaction is called a
distributed transaction. For committing the result, the
peers involved in a distributed transaction usually com-
municate via the two-phase-commit protocol (2PC).

Nowadays the concept of transaction processing is used
- apart from the "classical" database applications - in
various applications, e.g. for the management of large
distributed systems [Vog96] [MaHa96]. There also exist
first experiences and implementations using transaction
processing on the Internet [DEC96a] [TIP97], which offer
a wide range of opportunities to build new secure and
fault tolerant applications. Furthermore it is important to
recognize that DTP systems are not monolithic, rather
they are open by standardized protocols.

3 Architecture of a secure agent system

In the previous section we outlined the importance of
transactions for a reliable agent transfer. However, the
usage of distributed transactions and the 2PC protocol
contain some significant drawbacks like the bad perform-
ance of the 2PC protocol due to its blocking characteris-
tics. DTP also introduces implementation overhead and
additional software components. Analyzing these pros
and cons of DTP in the context of mobile agents we came
to the conclusion that the benefits of distributed transac-
tions should be used for additional valuable features of an
agent system. Therefore we build a DTP-based enhance-
ment of existing systems for host security as well as agent
security, which additionally allows agent management
and control. With our system we also equip an agent for
electronic commerce.

3.1 Trust Between Host and Agent

Analyzing the situation in the mobile agent paradigm
we came to the conclusion that it is not possible to achieve
security with complete functionality for the agent without
trusting each other. By aid of a third party, which has in-
formation about all instances of the closed system, a kind
of trusted situation or contract can be achieved. In our
architecture we call this instance trust service. This trust
service is the core of our architecture for agent security
and fault tolerance. On the one hand, our concept of a
trust service is based on the concepts of Kerberos
[NeTs94] in the way that we also use a trusted third party
for a session key generation and distribution. On the other
hand it is important to see the difference between our trust
service and well-known security services like the security
service of the Distributed Computing Environment (DCE)
[Hu95]. Our trust service is an extension to handle the

specific problems of mobile agents and is based on com-
mon security concepts and services.

Besides a special security protocol, which is explained
in the following section, our trust service logs data about
the agents and the hosts. These data include a record with
the agent's identity, the host ID and the time interval of
the visit. The trust service and the protocol additionally
guarantee the correctness and consistency of these data.
With these data we have enough information about the
agent and the host so that in case of a breach of trust we
can ascertain the originator and call him to account. Our
system also offers the basis for agent control and man-
agement.

3.2 Life-Cycle of an agent

The basis of our secure protocol for the agent migration
is a combination of data logging, encryption mechanisms
and DTP. To use PGP [Gar94] in our system we assume
that every participant in the agent system possesses a
certified public key [Kal93]. We also assume that every
instance, hosts as well as users of the agent system, are
registered at the trust service.

In conjunction with the registration a user announces
to the bank that he will participate in the electronic cash
system and transmits via a secure channel his bank ac-
count number and his credit card number. The electronic
cash system establishes a virtual account and notifies the
user about the virtual account number (VAN). All pur-
chases with this virtual account number have to be con-
firmed by the owner before the credit card will be
charged. This concept introduced by First Virtual [FV96],
with freely accessible data for the payment, seems to be
the suitable mechanism for mobile agents.

Other electronic cash systems are based either on a se-
cret (credit card number) like the iKP (Internet Keyed
Payment Protocol) of IBM [IBM96] or on electronic
proxies for money (electronic coins or coupons) like
DigiCash [Dig96] or Millicent [DEC96b]. In either of
these cases the agent has to carry out a secret information.
So these solutions are not suitable for mobile agents.

The following items describe the life-cycle of an agent
in our architecture.
Registration

The originator announces a new agent to the trust ser-
vice. The trust service generates a unique ID for the
agent, which is used in conjunction with the registered
user and which is sent back. This communication is
protected by public key encryption. With the ID for the
agent and the VAN, the agent is equipped to carry out
money transactions.

When the agent is initiated at the host of its originator,
it looks for a new target host by aid of special traders for
agents like it is suggested in [SKL97]. To find a suitable

new host a trader must have additional information con-
cerning the resources, environment conditions and ser-
vices at the offered host.
Agent transfer

When the contract between the target host and the
agent is negotiated, a copy of the agent will be transferred
to the new host. To achieve security we use two different
mechanisms. Distributed transaction processing guaran-
tees a consistent state of the whole system during trans-
port. Encryption guarantees protection against modifica-
tion during the transfer of the agent in an unreliable net-
work.

Trader

Host HO

Agent X
Host HT

Host HN

Host HM

Bank
Trust

Service

(H
O

->
H T

),S
K

EY
_R

eq

tx
_b

eg
in

{S
K

EY
} PP

{A
ge

nt
 X

, (
H O

->
H T

)} S

{2
PC

} S

{tx_begin}S

{Agent-Code}S

{Ack}S

{2PC}S

{(H
O ->H

T),SK
ey}

PP

1 13

5

2 364

4

6

Figure 1: Protocol steps of an agent transfer

Figure 1 illustrates the different protocol steps of an
agent transfer:

1. The originator host (HO) demarcates the begin of a dis-
tributed transaction (tx_begin), in which the trust
service and the target host (HT) will be involved. This
implies that all action and commands will be executed
in a transactional context.

2. The originator host requests a session key (S) [Sch96]
for the secure transfer of the agent to the target host.

3. The trust service generates a session key and propa-
gates it to the originator and the target host by using
public key protocol (PP).

4. The originator host transfers a copy of the agent, en-
crypted with the session key, to the target host. The
open design of our architecture allows to use various
mechanisms or protocols for the agent transfer. So we
can use E-mail [Bor94], HTTP like it is used in
[LDD95] or the suggested Agent Transfer Protocol
[Lan96].

5. After decrypting, the target host initializes the copy of
the agent and acknowledges the receipt.

6. The originator host initiates the 2PC protocol to con-
clude the transaction. A successful conclusion of the
transaction implies that the results, i.e. deletion of the
old agent, start of the new agent and update of data at
the trust service, are made permanently visible. With

the end of the transaction the session key is invali-
dated.

Money transactions
Being transferred successfully the agent can be in-

volved in a business transaction either as a buyer or as a
seller. After an agreement is arranged, the buyer gives his
virtual account number to the seller, who contacts the
bank and transmits the virtual account number together
with information concerning the business, the identifiers
of both parties and the host. The bank checks the consis-
tency of the information, acknowledges the validity of the
business transaction and transfers the money to the
seller's account.
Termination of an agent

There exist various methods to eliminate a mobile
agent in our system. If an agent finished its work it will
either return to its owner or terminate at the current host.
In both cases an appropriate message has to be sent to the
trust service, which logs this information. From this mo-
ment the agent becomes invalid.

An agent can also be eliminated on behalf of its owner
or the trust service. Therefore the trust service sends a
message to the current host, which deletes the agent.
Similar to the first case the agent is now invalid and can
not perform any further actions. Also the virtual account
number in conjunction with the agent ID is invalid.

3.3 Benefits for mobile agent systems

Using distributed transaction processing as a reliability
concept brings various benefits into mobile agent systems.

Fault tolerance and reliable agent transfer
The most significant benefit of our architecture is the

reliability of the whole agent system. With the usage of
distributed transaction processing we achieve a reliable
agent transfer and guarantee the exactly-once-semantic.
This new technique for the agent migration avoids the
duplication of an agent as well as its loss. In case of error
situations and host crashes the recovery and rollback
mechanisms of the DTP system cater for a reliable and
consistent resumption of the agent transport. During the
critical phase of the transport of an agent the 2PC proto-
col guarantees the preservation of consistent states at the
hosts and the trust service.

The usage of distributed transaction processing in our
protocol offers high-level fault tolerance for a mobile
agent system. With additional checkpoints (with a copy of
the agent), the agent can be recovered or rolled back to
this point. Checkpoints are useful e. g. if a host cannot
recover an agent after a crash occurs. A rollback mecha-
nism for the agent might be useful in case of cycle detec-
tion and a possible reinitialization of the agent to the state
before the cycle occurred.

Security for the host

With our architecture we guarantee that an agent is
only introduced in the system by a trusted user and can
only itinerate on a chain of trusted hosts. We log all the
relevant data about the visiting agent, like information
about the owner and the life cycle of the agent. In case of
a breach of trust by the agent the originator of the agent
can be ascertained and called to account for the actions of
his agent. With our architecture we achieve an indirect
security for the host without any restriction to the capa-
bilities of the agent in contrast to the concept of "safe"
languages. So applications which also need critical
commands (e.g. write operations) like remote software
update or network management can be performed by
mobile agents.

Security for the agent
Our guarantee for the security of the agent include

various aspects. We guarantee that besides the scope of
trusted hosts no other instance has access to the agent due
to the encryption methods used. So no untrusted third
party can copy, modify, destroy or rob the agent. If one of
the trusted host attacks the agent, the logging facilities of
our system can trace back this breach of trust and similar
to the host security case, call the responsible person to
account.

In comparison with other concepts for securing an
agent, like the usage of a digital signature for a static
agent or the static parts of the agent, our system achieves
an indirect security for the agent without any restrictions
to its capabilities.

The trust service offers the possibility for the agent to
encrypt its collected data with the public key of the trust
service and to compare these data at a safe place inside
the trust service. This method avoids a modification of
already collected information and a manipulation of the
agent by a host. So a fair competition of concurrent hosts
is guaranteed and the agent can e.g. buy at the host with
the most reasonable offer.

Electronic commerce enhancement for mobile agents

Our architecture offers an agent to cope with money
transactions based on the concept of First Virtual. Addi-
tionally, the bank service can check the consistency of a
money transaction by aid of the logging information. It
can be validated that an agent involved in the business
actually resides at the host from where the money trans-
action was announced to the bank. In case of an error or
cheating of one party this can be detected an the money
transaction will be refused. It is then up to the seller and
the trust service to initiate further action.

Agent control and management

With the information about the agent and its itinerary
at the trust service, suitable control and management

functions can be implemented. The owner of an agent can
always locate it and give new instructions to it. Also a
control of its lifetime and its goals can be achieved. The
trust service can additionally offer to store a copy of the
agent in the case that a host does not have a persistent
storage or recovery mechanisms.

4 Realization with the Transaction Internet
Protocol

The realization of our protocol is based on the recently
published Transaction Internet Protocol (TIP) by Micro-
soft and Tandem [LEK97]. The Internet Engineering
Task Force (IETF) currently examines to standardize TIP
for the Internet. There exists also a publicly accessible
reference implementation of TIP in JAVA [TIP97].

TIP includes a one and a two phase commit protocol
and is based on TCP/IP. For every node involved in the
transaction a TCP/IP connection will be established.
Because TIP uses the end-to-end communication mecha-
nisms of TCP/IP like time-outs, the implementation is
rather simple and easy to extend for the special use for
agent communication and migration. The main objective
of TIP lays in the definition of state machines for all
nodes involved in a transaction to achieve a common
state.

TIP distinguishes two models, pushing and pulling a
transaction, for propagating a transaction between two
nodes. For the current realization we use the pushing
mechanism, where first the transaction managers propa-
gate a transaction identifier before the resource managers
will be involved. At the hosts no multi-user access to a
single resource takes place, so the realization of a trans-
action manager and a resource manager is quite simple.
Only the corresponding interfaces must be realized. At the
trust service and the bank service the usage of commercial
transaction and resource managers might be adequate.

Messages in TIP are defined as plain ASCII strings.
The design of our system demands that all communica-
tion, including the transaction coordination messages,
must be encrypted. So we use an enhanced version of TIP,
where the encryption mechanisms are layered between
TIP and the TCP/IP stack. This modification is necessary
because in TIP no security mechanisms are supported.

For all commands in TIP it is possible to include com-
ments, which will normally be ignored by the state ma-
chine. We use these comments to transmit additional
information, e.g. in the BEGIN command for the trust
service we include the information about the agent ID and
the location of the new host.

5 Conclusion and Future Work

In this paper we presented a concept how to use distrib-
uted transaction in a mobile agent system to achieve reli-

ability for the agent transfer. Based on this concept we de-
veloped a security architecture for a mobile agent system
which is highly secure against external attacks. The integ-
rity and internal security is guaranteed by a trust service
and by logging all relevant information. So in case of a
fraud the offender can be ascertained and called to ac-
count. Additionally, we offer the agent to carry out money
transactions based on an enhancement of the payment
concept of First Virtual. Our architecture can be used on
top of existing mobile agent systems, e.g. as an
enhancement of the “GO-Statement“, and offers a high
reliability because the implementation is based on stan-
dardized components.

We believe that every mobile agent-based application
needs a special degree of security and fault tolerance. So
we see as future work the integration of additional secu-
rity mechanisms to incorporate application-specific se-
curity models into our architecture.

One direction will be the integration of the security
models and policies of different agent languages like Java
and TCL [OLW96]. Thus we can build various classes of
security by the language and can assign them to the spe-
cific agent and its application. Another direction of en-
hancing our system is the integration of a personal secu-
rity assistance [RaJa96], which observes an agent and
permits critical commands only after a check by an ex-
pert. This decision is based on the degree of trust to the
agent and the already executed commands.

So as the objective for the future we will extend our
system to a toolbox with various features to build the right
degree of security, fault tolerance and electronic
commerce capabilities, specific for different agent-based
applications.

We also investigate other distributed transaction pro-
cessing systems like the CORBA-based Object Transac-
tion Service (OTS) [OMG94] in a related project. For the
mobile agent project we will examine the replacement of
TIP with OTS and a complete integration of our system
into CORBA.

Literature

[ArGo96] K. Arnold, J. Gosling: The Java Programming
Language, Addison-Wesley, ISBN 0201-63455-4, 1996

[CGH+95] D. Chess, B. Grosof, C. Harrison, D. Levin, C.
Parris, G. Tsudik: Itinerant Agents for Mobile Computing,
IBM Research Report #RC 20010, IBM Research Division,
1995

[BeNe96] P. Bernstein, E. Newcomer: Principles of Transac-
tion Processing, ISBN 1-55860-415-4, Morgan Kaufmann
Publisher, 1996

[BoRo93] N. S. Borenstein, M. T. Rose: MIME Extensions for
Mail-Enabled Applications: application/Safe-Tcl and multi-
part/enabled-mail, Distributed as part of the Safe-Tcl 1.2,
November 1993, Working Draft

[Bor94] N. S. Borenstein: EMail With A Mind of Its Own:
The Safe-Tcl Language for Enabled Mail, ULPAA '94,
Barcelona

[DEC96a] Digital Equipment Corporation: Enterprise TP on
the Internet,
http://www.software.digital.com/tpi/TPI_CO.HTMl, 1996

[DEC96b] Digital Equipment Corporation: MILLICENT
Digital's Microcommerce System
http://www.research.digital.com/SRC/millicent/, 1996

[Dig96] DigiCash Home Page: http://www.digicash.com/
[FGS96] W. Farmer, J. Guttman, V. Swarup: Security for

mobile agents: Issues and requirements, In Proc. of the 19th
National Information Systems Security Conference,
Baltimore, MD, 1996

[FV96] First Virtual Home page: http://www.fv.com
[Gar94] S. Garfinkel: PGP: Pretty Good Privacy. ISBN 1-

56592-098-8, O'Reilly & Associates, 1994
[GrRe93] J. Gray, A. Reuter: Transaction Processing: Con-

cepts and Techniques, ISBN 1-55860-190-2, Morgan
Kaufmann Publisher, 1993

[HCK95] C.D. Harrison, D.M. Chess, A. Kershenbaum:
Mobile Agents: Are they a good idea?; IBM Research
Report #RC 19887, IBM Research Division, 1995

[Hu95] W. Hu: DCE Security Programming,
ISBN 1-56592-134-8, O'Reilly & Associates, 1995

[IBM96] IBM Research Hawthorne and Zürich: Internet
Keyed Payment Protocols, http://www.zurich.ibm.com/
Technology/Security/extern/ecommerce/iKP.html, 1996

[Kal93] B. Kaliski: Privacy Enhancement for Internet Mail:
Part IV: Key Certification and Related Services, RFC 1424,
RSA, February 1993

[KaWh96] R. Kalakota, A. B. Whinston: Frontiers of
Electronic Commerce, ISBN 0-201-84520-2, Addison-
Wesley Publishing Company, Inc., 1996

[Lan96] D. B. Lange: Agent Transfer Protocol ATP/0.1
Draft, http://www.ibm.co.jp/trl/aglets/atp/atp.html, July
1996

[LDD95] A. Lingnau, O. Drobnik, P. Dömel: An HTTP-based
Infrastructure for Mobile Agents, World Wide Web Journal
- 4th Int. World Wide Web Conference Proceedings, Boston,
December 1995

[LEK97] J. Lyon, K. Evans, J. Klein: Transaction Internet
Protocol, Internet-Draft,
http://204.203.124.10/pdc/docs/TIP.txt

[MaHa96] P. Mandl, B. Hackler: Transaktionsorientierte Man-
agementsysteme und Managementprotokolle, Praxis der
Informationsverarbeitung und Kommunikation, Vol. 19, No.
4, 1996

[MüSc92] M. Mühlhäuser, A. Schill: Software Engineering für
verteilte Anwendungen, ISBN 3-540-55412-2, Springer
Verlag, 1992

[MRK96] T. Magedanz, K. Rothermel, S. Krause: Intelligent
Agents: An Emerging technology for next generation
telecommunication, Proc. of INFOCOM’96, 1996

[NeTs94] B. C. Neuman and T. Ts'o, Kerberos: An
Authentication Service for Computer Networks, IEEE
Communications Magazine, Volume 32, Number 9, 1994

[OLW96] J. K. Ousterhout, J. Y. Levy, B. B. Welch: The
Safe-Tcl Security Model, http://www.sunlabs.com/research/
tcl/SafeTcl.ps, Draft, November 1996

[OMG94] Object Management Group: Object Transaction
Service, 1994

[PeSt97] H. Peine and T. Stolpmann: The Architecture of the
Ara Platform for Mobile Agents, Proc. of the First Int'l.
Workshop on Mobile Agents MA'97 Berlin, LNCS No.
1219, Springer Verlag, 1997

[Pyth94] Safe-Python Homepage:
http://minsky.med.virginia.edu/sdm7g/Projects/Python/Safe
Python.html, 1994

[RaJa96] A. Rasmusson, S. Janson. Personal security
assistance for secure Internet commerce. In New Security
Paradigms '96, ACM Press, Sept. 1996

[Riv92] R. Rivest: The MD5 Message-Digest Algorithm,
RFC 1321, MIT, April 1992

[SBH96] M. Straßer, J. Baumann, F. Hohl: Mole - A Java
based Mobile Agent System, Proc. of the ECOOP '96
Workshop on Mobile Object Systems, 1996

[Sch96] B. Schneier: Applied Cryptography, ISBN 0-471-
11709-9, J. Wiley & Sons, Inc., 1996

[TIP97] Transaction Internet Protocol, Reference
Implementation, http://204.203.124.10/pdc/docs/TIP.zip

[Vog96] F. Vogt: Werkzeuge für die
Transaktionsverarbeitung heute - morgen; Proc. of the 19th
European Congress Fair of Technical Communication -
ONLINE'96, Congress VI, Hamburg, Feb. 1996

[Whi94] J. E. White: Telescript Technology: The foundation
for the electronic Marketplace, White Paper. General Magic
Inc., 1994

