An Approach for Mobile Agent Security and Fault Tolerance using

Distributed Transactions

Hartmut Vogler, Thomas Kunkelmann, Marie-L ouise Moschgath
Darmstadt University of Technology
Information Technology Transfer Office
Alexanderstr. 10
D-64283 Darmstadt, Germany
{vogler, kunkel, malu} @ito.th-darmstadt.de

Abstract

Mobile agents are no longer a theoretical issue since
different architectures for their realization have been
proposed. With the increasing market of electronic
commerce it becomes an interesting aspect to use
autonomous mobile agents for electronic business trans-
actions. Being involved in money transactions, supple-
mentary security features for mobile agent systems have
to be ensured.

In this paper we present an architecture for a mobile
agent system which guarantees security for the host as
well as security for the agent. This architecture addi-
tionally offers fault tolerance for the whole agent system
at a high level. To handle these issues for mobile agents
we use various encryption mechanisms and we apply a
novel method for mobile agent systems by using dis-
tributed transactions processing based on the OMG Ob-
ject Transaction Service in our architecture. With this
security architecture an agent will be enabled to do
money transactions.

Keywords: mobile agents, security, fault tolerance,
electronic commerce, distributed transactions, CORBA,
oTS

1 Introduction

Mobile agents [HCK95] offer a new possibility for the
development of applications in distributed systems. Mo-
bile agents are no longer a theoretical issue since different
architectures for their implementations have been pro-
posed. Research ingtitutes as well as companies develop
high-quality prototype systems for mobile agents, e.g.
ARA [Pesto7], Mole [SBH96] or Telescript [Whi94]. Yet,
these agent systems typically satisfy not all requirements
mobile agents need for afull environment. However, these

systems are open for further extensions to include addi-
tional characteristics.

For new and useful applications, mobile agent systems
must also provide additional features to handle the se-
curity for the agent and the host [FGS96], fault tolerance
and electronic commerce [Kawh96]. Only with those
security guarantees and extensions, mobile agents will be
used in awide range of applications.

In this paper we describe a security architecture for
mobile agents that can be used on top of existing systems.
To handle the open issues for maobile agents we adopt a
different method by using distributed transactions in our
architecture.

The core of our secure agent system builds an instance
called trust service and a specia protocol for the agent
migration, which is a combination of data logging, en-
cryption mechanisms and distributed transactions. For the
agent we offer to be aso part of the electronic market
place due to a bank service, based on the concept of First
Virtual [FV96] with a specia extension for mobile agents.

In section 2 we discuss the importance of a reliable
agent transfer. Based on this analysis we explain our
architecture of a secure mobile agent system, which intro-
duces the concept of distributed transactions, and discuss
its benefits. After describing our realization using
CORBA and OTS in Section 4 we conclude the paper
with a summary and an outlook on our future work.

2 Reliable Agent Transfer

Fault tolerance for mobile agent systemsis an unsolved
topic, to which more importance should be attached. Be-
sides the security problems by intended attacks it is very
important to realize that an agent can simply get lost by
errors of the network or the hosts. If an agent itinerates
autonomoudly in the network, there is no instance which
can guarantee that the agent reaches the next host cor-
rectly and won't get lost. For example, when using SMTP

(E-mail) as a transport medium there are no mechanisms
for the reliability of the transport or any recovery han-
dling in case of errors. There are even no standardized
mechanisms to detect this fault situation.

Besides the network errors, fault situations also can be
originated by problems or a breakdown of the host. In
case of such a failure, there have to be suitable recovery
mechanisms for the agent.

Based on network or host errors an agent can aso be
duplicated. Such an inconsistent state of the agent system
can cause significant problems and must be avoided.

2.1 Classes of fault semantics

The problem of fault tolerance for agentsis an applica
tion level topic. After areliable transfer an agent has to be
initiated at the new host. This offers various fault situa-
tions, which can easily cause an inconsistent state for the
whole agent system.

The transfer of an agent can be compared with a re-
mote procedure call (RPC), which guarantees the exactly-
once-semantic (only-once-type-2-semantic) [M1Sc92].

In the context of an agent transfer the other classes of
fault semantic aren't sufficient. An agent transfer with the
maybe-semantic would guarantee that the agent is trans-
ferred only once, but we don't have the guarantee that the
agent is received and initiated correctly at the new host.
In the class of the at-least-once-semantic we have the
guarantee that the agent is received and initiated correctly
by the new host. However we can not avoid that the agent
may be duplicated if any communication errors occur and
the agent has to be resent. The at-most-once-semantic
(only-once-type-1) guarantees the atomicity of the agent
transfer. In this class the agent will either be transferred
correctly or, in case of a fault, an error message will be
sent to the sending host, and no further action takes place
at the recelving host. Even this fault semantic isn't
sufficient for an agent transfer due to a possible host
crash. Only the exactly-once-semantic guarantees a con-
sistent recovery after a host crash, so an agent will always
be transferred exactly once and will not get lost or dupli-
cated. This can only be achieved with persistent storage
and a protocol for distributed transactions.

After this analysis we see that only distributed transac-
tion processing (DTP) offers the possibility to control the
state of a mobile agent system and also offers the scal-
ability of the system to involve further parties.

2.2 Introductionin DTP

The usage of transactions [BeNe96] is a very popular
concept for the management of large data collections.
Transactions guarantee the consistency of data records
when multiple users or processes perform concurrent
operations on them. In general, the properties of transac-

tions are known as the ACID properties (Atomicity, an
indivisible set of operations, Consistency is guaranteed
for the data; Isolation of parallel data access in different
transactions; Durability, the events are stored perma
nently or completely rejected) [GrRe93].

The access of distributed resources, e.g. databases on
different computers, within a transaction is called a
distributed transaction. For committing the result, the
peers involved in a distributed transaction usually com-
municate via the two-phase-commit protocol (2PC), see
Figure 1. The initiator of a transaction takes the role of
the coordinator, which in the first phase collects the votes
about the result of the transaction from the different
partners. In the second phase it transmits the result
(commit: make the results of the transaction permanent;
or rollback: discard al changes) to the other partners
which subsequently confirm the receipt. The 2PC thus is
quite robust for the communication in distributed systems.
In distributed systems transactions must be used through
standardized procedures and protocols due to the hetero-
geneity of the systems.

Coordinator Participant

write data Ph 1
v i to ¢ ta_se : orin
es . permanent oting case of
B storage .
L failure:
if all votes= Yes
. rollback
Phase 2:
Completion
Have_Committed
all participants /
sent

Have_Committed:
forget transaction

Figure 1: Tow Phase Commit Protocol (2PC)

In the last few years several service platforms
(middleware) came up for communication in heteroge-
neous distributed systems, which have been standardized
now. One of the most important platforms for distributed
application development is CORBA (Common Object
Request Broker Architecture) [OMG95] of the Object
Management Group (OMG). The OMG has specified
several object services, like naming service and timing
service, for CORBA. One of these services is the Object
Transaction Service (OTS) [OMG94] for object-oriented
distributed transaction processing.

Nowaday's the concept of transaction processing is used
- gpart from the "classical" database applications - in
various applications, e.g. for the management of large
distributed systems [Vog96] [MaHa96]. There also exist
first experiences and implementations using transaction
processing on the Internet [DEC964] [LEK97], which
offer a wide range of opportunities to build new secure
and fault tolerant applications. Furthermore it is impor-
tant to recognize that DTP systems are not monoalithic,
rather they are open by standardized protocols.

3 Architecture of a secure agent system

In the previous section we outlined the importance of
transactions for a reliable agent transfer. However, the
usage of distributed transactions and the 2PC protocol
contains some drawbacks like the bad performance of the
2PC protocol due to its blocking characteristics. DTP aso
introduces implementation overhead and additional soft-
ware components. Anayzing these pros and cons of DTP
in the context of mobile agents we came to the conclusion
that the benefit of distributed transactions should be used
for additional valuable features of an agent system. There-
fore we build an DTP-based enhancement of existing
systems for host security as well as agent security, which
additionally allows agent management and control. With
our system we also equip an agent for electronic com-
merce.

3.1 Trust Between Host and Agent

Analyzing the situation in the mobile agent paradigm
we came to the conclusion that it is not possible to achieve
full security with complete functionality for the agent
without trusting each other. By aid of athird party, which
has information about all instances of the closed system, a
kind of trusted situation or contract can be achieved. In
our architecture we call this instance trust service. This
trust service is the core of our architecture for agent
security and fault tolerance. On the one hand, our concept
of a trust service is based on the concept of Kerberos
[NeTs94] in the way that we also use a trusted third party
for a session key generation and distribution. On the other
hand it is important to see the difference between our trust
service and well-known security services like the security
service of the Distributed Computing Environment (DCE)
[Hu95]. Our trust service is an extension to handle the
specific problems of mobile agents and is based on com-
mon security concepts and services.

Besides a specia security protocol, which is explained
in the following section, our trust service logs data about
the agents and the hosts. These data include a record with
the agent's identity, the host ID and the time interval of
the visit. The trust service and the protocol additionally
guarantee the correctness and consistency of these data.

With these data we have enough information about the
agent and the host so that in case of a breach of trust we
can ascertain the originator and call him to account. Our
system aso offers the basis for agent control and
management.

3.2 Protocol Steps

In this section we describe our protocol for the agent
migration, which is a combination of data logging, en-
cryption mechanisms and DTP. To use PGP [Gar94] in
our system we assume that every participant in the agent
system possesses a certified public key [Kal93]. We also
assume that every instance, hosts as well as users of the
agent system, are registered at the trust service. This
registration must be associated with a legally binding
contract in order to achieve atrusted starting point.

In conjunction with the registration a user announces
to the bank that he will participate in the electronic cash
system and transmits via a secure channel his bank ac-
count number and his credit card number. The electronic
cash system establishes a virtual account and notifies the
user about the virtual account number. All purchases with
this virtual account number have to be confirmed by the
owner before the credit card will be charged. This concept
introduced by First Virtual [FV96], with freely accessible
data for the payment, seems to be the suitable mechanism
for mobile agents.

Other electronic cash systems are based either on a
secret (credit card number) like the iKP (Internet Keyed
Payment Protocol) of IBM [IBM96] or on electronic
proxies for money (electronic coins or coupons) like
DigiCash [Dig96] or Millicent [DEC96b]. In either of
these cases the agent hasto carry out a secret information.
So these solutions are not suitable for mobile agents.

The following items describe the life-cycle of an agent
in our architecture:

* The originator announces a new agent to the trust
service. Thetrust service generates a unique 1D for the
agent, which is used in conjunction with the registered
user and which is sent back. This communication is
protected by public key encryption.

* When the agent is initiated at the host of its origina-
tor, it looks for a new target host with aid of a specia
trader for agents. To find a suitable new host this
trader must have additional information concerning
the resources, environment conditions and services at
the offered host.

* When the contract between the target host and the
agent is negotiated, a copy of the agent will be trans-
ferred to the new host. To achieve security we use two
different mechanisms. Distributed transaction process-
ing guarantees a consistent state of the whole system
during transport. Encryption preserves the system

from attacks in an unreliable network. Figure 2 illus-
trates the different protocol steps of an agent transfer:

1. The originator host (Ho) demarcates the begin of a
distributed transaction (tx_begin), in which the
trust service and the target host (H:) will be in-
volved. Thisimplies that all action and commands
will be executed in atransactional context.

2. The originator host requests a session key (S)
[Scho6] for the secure transfer of the agent to the
target host.

3. The trust service generates a session key and
propagates it to the originator and the target host
by using public key protocol (PP).

4. The originator host transfers a copy of the agent,
encrypted with the session key, to the target host.
The open design of our architecture alows to use
various mechanisms or protocols for the agent
transfer. So we can use E-mail [Bor94], HTTP like
it is used in [LDD95] or the suggested Agent
Transfer Protocol [Lan96].

5. After decrypting, the target host initializes the
copy of the agent and acknowledges the receipt.

6. The originator host initiates the 2PC protocol to
conclude the transaction. A successful conclusion
of the transaction implies that the results, i.e. dele-
tion of the old agent, start of the new agent and
update of data at the trust service, are made per-
manently visible. With the end of the transaction
the session key isinvalidated.

Trust Bank
Service || Trader an
S S Ka
S @:\C?Q:’ o‘q?
X Host H
& FB/ I 5 M
; &/ e,
Y [3 ey
Q {tx_begin}i Q
HostHy [@ {Agent-Code}s Host H,
]
2PC;
@ 2P0 o

Figure 2: Protocol steps of an agent transfer

Being transferred successfully the agent can be in-
volved in a business transaction either as a purchaser
or as a vendor. After an agreement is arranged, the
purchaser gives his virtual account number to the ven-
dor, who contacts the bank and transmits the virtual
account number together with information concerning
the business, the identifiers of both parties and the

host. The bank checks the consistency of the informa-
tion, acknowledges the validity of the business trans-
action and transfers the money to the vendor's ac-
count.

» For a correct termination of an agent an appropriate
message must be sent to the trust service, which logs
this information. From this moment the agent is inva-
lid.

3.3 Bene€fitsof our architecture

We now emphasize the benefits that our architecture
brings into a mobile agent system.

Security for the host

With our architecture we guarantee that an agent is
only introduced in the system by a trusted user and can
only itinerate on a chain of trusted hosts. We log al the
relevant data about the visiting agent, like information
about the owner and the life cycle of the agent. In case of
a breach of trust by the agent the originator of the agent
can be ascertained and called to account for the actions of
his agent. With our architecture we achieve an indirect
security for the host without any restriction to the capa
bilities of the agent in contrast to the concept of "safe"
languages like Safe-TCL [BoRo093] or Safe-Python
[Pytho4].

Security for the agent

Our guarantee for the security of the agent include
various aspects. We guarantee that besides the scope of
trusted hosts no other instance has access to the agent due
to the encryption methods used. So no untrusted third
party can copy, modify, destroy or rob the agent. If one of
the trusted host attacks the agent, the logging facilities of
our system can trace back this breach of trust and similar
to the host security case, call the responsible person to
account. This indirect security for the agent is aso
achieved without any restrictions to its capabilities.

Fault tolerance and reliable agent transfer

The usage of distributed transaction processing in our
protocol offers a new opportunity for the fault tolerance of
an agent system. This new technique for the agent migra-
tion avoids the duplication of an agent as well as its loss.
During the critical phase of the transport of an agent the
2PC protocol guarantees the preservation of a consistent
state of the whole system. In case of all error situations
and host crashes the recovery and rollback mechanisms of
the DTP system cater for a reliable and consistent
resumption of the agent transport.

Electronic commer ce enhancement for mobile agents

Our architecture offers an agent to cope with money
transactions based on the concept of First Virtual. Addi-

tionally, the bank service can check the consistency of a
money transaction by aid of the logging information. It
can be validated that an agent involved in the business
actually resides at the right host, from where the money
transaction was announced to the bank. In case of an error
or cheating of one party this can be detected an the money
transaction will be refused. It is then up to the vendor and
the trust service to initiate further action.

Agent control and management

With the information about the agent and its itinerary
at the trust service, suitable control and management
functions can be implemented. The owner of an agent can
every time locate it and give new instructionsto it. Also a
control of its lifetime and its goals can be achieved. The
trust service can additionally offer to store a copy of the
agent in the case that a host does not have an persistent
storage or recovery mechanisms.

4 Realization with CORBA and OTS

After the description of the protocol steps and the com-
ponents of our architecture we give in this section a
description about the realization. The communication is
based on CORBA with its object service for transactions
(OT9).

4.1 OTSlIntegration

It is important to notice that our system is an en-
hancement on top of existing mobile agent systems. The
communication of our system is based on CORBA calls,
while the agent migration to a new host will be done with
the specific protocol of the mobile agent system.

We focus in our description on the usage of the OMG
object transaction service, which provides the necessary
operations
 to control the context and the duration of atransaction
» for the participation of multiple objects in a single

transaction
» to combine internal changes of object states within a

transaction
» for the coordination of the 2PC protocol at the end of a
transaction

Figure 3 shows the coherence of the different compo-
nents and objects of OTS.

* An object whose methods can be called in a transac-
tional context is called a transactional object (TO).
A TO is characterized by including some persistent
data or pointers to persistent data, which can be
modified by its methods.
A cal of a TO need not be transactional, even if the
call iswithin the context of a transaction. It is left to
the object for which calls it behaves transactional.

Transactional servers and recoverable servers are
implemented using TOs .

* A TOwhich isaffected by acommit or arollback of a
transaction is called arecover able object (RO).

* A transactional server (TS) consists of one or more
objects involved in a transaction, but doesn't have
any state information about the transaction.

* Arecoverableserver (RS) includes at least one RO.

» A transactional client (TC) can be any program
which calls methods of transactional objects in the
context of asingle transaction.

Distributed
Client/Server Application

Recoverable
Server

Resource

Transactional
Server

Transaction
Object

Transactional
Operation

I
I

I

I

I Transactional

, Client

I

not involved in
transaction completion,
may force rollback

begin or end
transaction

register resource in
transaction completion,
may force rollback

Y

Participates
in transaction
completion

transaction
o sen
Transaction Service

Figure 3: The Components and Objects of an OTS

To use OTS within the protocol steps of our architec-
ture, a correct assignment of the different components is
necessary. The originator host of an agent migration is
the initiator of a transaction and acts as a transactional
client. The target host of the migration and the trust
service act as recoverable servers in the transaction. The
respective recoverable objects are an agent receiver with
the resource object "copy of the agent” at the target host
and the account manger with the resource object "agent
account” at the trust service. A realization of the recover-
able servers is much easier than the implementation of a
distributed database. Due to the fact that thereis no multi-
user access on the recoverable objects no concurrency
control is necessary. Only rollback and recovery mecha-
nisms must be available for the recoverable objects.

Figure 4 shows the transactional operations:

1. The originator host acts as a transactional client and
starts the transaction. In the OTS a so-called Thread
of Control (ToC) will be created, which is assigned to
this specific transaction.

2. The transaction context is transmitted to the recover-
able objects with each request.

3. The recoverable objects (Account Manager and Agent
Receiver) register their resource objects (Account of
the Agent respective Agent) for the agent completion.
They may force arollback of the transaction.

4. The resource objects participate in the transaction
completion (2PC).

Trust Server New Host

Account
of the
Transaction Agent
Originator
(Old Host)

Agent
Receiver

ORB

Figure 4: Objects of our system in the context of OTS

One drawback of distributed transaction processing re-
sultsin a loss of performance. However, for the transport
of amobile agent there exist no real-time requirements, so
this problem is less significant for our protocol. Also the
additional loss of performance in relation to a normal
agent transfer without transactions is not significant.
Exact performance data will be available with the first
benchmarks of different mobile agent systems. Neverthe-
less, distributed transaction processing and the 2PC pro-
tocol offer a standardized and easy-to-handle way to cope
with distributed data in a consistent manner.

4.2 Scalingfor largedistributed systems

The design of our architecture is suitable for scaling in
large distributed systems like the Internet. Similar to
CORBA or OTS our trust service is responsible for a
specific agent domain, which can cooperate with other
domains. In OTS, all instances of a transaction, servers as
well as clients, pertain to one domain. It is important to
see that an OTS domain is absolutely independent of a
CORBA domain. If several CORBA domains can interop-
erate, this enables to span one OTS domain over the vari-
ous CORBA domains.

When an agent itinerates across an agent domain,
which can be similar to a CORBA domain, the control of
this agent will be given to the new trust service. This
includes that the new trust service will be involved in the
agent transfer and the corresponding distributed transac-
tion. Figure 5 illustrates the rel ationship between an agent
and an OTS domain.

Agent Domain A

Trust | [Host|

Service

EControI
: v

sevie| [Fo]

Agent Domain B

Figure5: Agent and OTS Domain

5 Conclusion and Future Work

We presented an architecture for a mobile agent system
which is highly secure against external attacks. The in-
tegrity and internal security is guaranteed by a trust
service and by logging all relevant information. So in case
of a fraud the offender can be ascertained and called to
account. Based on this procedure our architecture offers
the possibility to make money transactions for an agent,
and to be a part of the electronic market place. As a
further profit, high-level mechanisms for fault tolerance
introduced by distributed transaction processing and dif-
ferent encryption methods, are provided.

As future work we see the integration of special secu-
rity models for mobile agents, like a personal security
assistance [RaJag6], which observes an agent and permits
critical commands only after a check by an expert. We
also want to integrate the security policies of different
agent languages like Java [ArGo96] and TCL [OLW96].

In [VKM97] we already proposed an alternative reali-
zation of our system based on the recently published
Transaction Internet Protocol (TIP) by Microsoft and
Tandem [LEK97]. The Internet Engineering Task Force
(IETF) currently examines to standardize TIP for the
Internet. There exists also a public accessible reference
implementation of TIP in JAVA [TIP97]. We also will
investigate an aternative of our system based on DCE
[RFK92] and the X/Open DTP standard [XOP96].

Further enhancements of our architecture are the pos-
sibility of a specific duplication of an agent, which can
easily be applied to the protocol, and which is supported
by the distributed transaction processing mechanism.
Severa agents now work together to fulfill the same goal,
using the trust service as a location service for the differ-
ent instances of a specific agent.

Literature

[ArGo96] K. Arnold, J. Gosling: The Java Programming
Language, Addison-Wesley, ISBN 0201-63455-4, 1996

[BeNe96] P. Bernstein, E. Newcomer: Principles of Transac-
tion Processing, ISBN 1-55860-415-4, Morgan Kaufmann
Publisher, 1996

[BoR093] N. S. Borenstein, M. T. Rose: MIME Extensions for
Mail-Enabled Applications: application/Safe-Tcl and multi-
part/enabled-mail, Distributed as part of the Safe-Tcl 1.2,
November 1993, Working Draft

[Bor94] N. S. Borenstein: EMail With A Mind of Its Own:
The Safe-Tcl Language for Enabled Mail, ULPAA '94,
Barcelona

[DEC96a] Digital Equipment Corporation: Enterprise TP on
the Internet,
http://www.software.digital.com/tpi/TPI_CO.HTMI, 1996

[DEC96b] Digital Equipment Corporation: MILLICENT
Digital's Microcommer ce System
http://www.research.digital.com/SRC/millicent/, 1996

[Dig96] DigiCash Home Page: http://www.digicash.com/

[FGS96] W. Farmer, J. Guttman, V. Swarup: Security for
mobile agents: Issues and requirements, In Proc. of the 19th
National Information Systems Security Conference,
Baltimore, MD, 1996

[FV96] First Virtual Home page: http://www.fv.com

[Gar94] S Garfinkel: PGP: Pretty Good Privacy. ISBN 1-
56592-098-8, O'Reilly & Associates, 1994

[GrRe93] J. Gray, A. Reuter: Transaction Processing: Con-
cepts and Techniques, ISBN 1-55860-190-2, Morgan
Kaufmann Publisher, 1993

[HCK95] C.D. Harrison, D.M. Chess, A. Kershenbaum:
Mobile Agents: Arethey a good idea?; IBM Research
Report #RC 19887, IBM Research Division, 1995

[Hu95] W. Hu: DCE Security Programming,
ISBN 1-56592-134-8, O'Reilly & Associates, 1995

[IBM96] IBM Research Hawthorne and Zirich: Internet
Keyed Payment Protocaols, http://www.zurich.ibm.com/
Technology/Security/extern/ecommerce/iK P.html, 1996

[Ka93] B. Kadliski: Privacy Enhancement for Internet Mail:
Part 1V: Key Certification and Related Services, RFC 1424,
RSA, February 1993

[Kawhoe] R. Kaakota, A. B. Whinston: Frontiers of
Electronic Commerce, ISBN 0-201-84520-2, Addison-
Wesley Publishing Company, Inc., 1996

[Lan96] D. B. Lange: Agent Transfer Protocol ATP/0.1
Draft, http://www.ibm.co.jp/trl/aglets/atp/atp.html, July
1996

[LDD95] A.Lingnau, O. Drobnik, P. D6mel: An HTTP-based
Infrastructure for Mobile Agents, World Wide Web Journal
- 4th Int. World Wide Web Conference Proceedings, Boston,
December 1995

[LEK97] J. Lyon, K. Evans, J. Klein: Transaction Internet
Protocol, Internet-Draft,
http://204.203.124.10/pdc/docs/ TIP.txt

[MaHa96] P. Mandl, B. Hackler: Transaktionsorientierte Man-
agementsysteme und Managementprotokolle, Praxis der
Informationsverarbeitung und Kommunikation, Vol. 19, No.
4, 1996

[MSc92] M. Mihlhéuser, A. Schill: Software Engineering fir
verteilte Anwendungen, ISBN 3-540-55412-2, Springer
Verlag, 1992

[NeTs94] B. C. Neumanand T. Tso, Kerberos: An
Authentication Service for Computer Networks, |EEE
Communications Magazine, Volume 32, Number 9, 1994

[OLW96] J. K. Ousterhout, J. Y. Levy, B. B. Welch: The
Safe-Tcl Security Model, http://www.sunlabs.com/research/
tcl/SafeTcl.ps, Draft, November 1996

[OMG94] Object Management Group: Object Transaction
Service, 1994

[OMGO5] Object Management Group: The Object Request
Broker : Architecture and Specification, Revision 2.0, 1995

[PeSt97] H. Peineand T. Stolpmann: The Architecture of the
Ara Platform for Mobile Agents, Proc. of the First Int'l.
Workshop on Mobile Agents MA'97 Berlin, LNCS No.
1219, Springer Verlag, 1997

[Pyth94] Safe-Python Homepage:
http://minsky.med.virginia.edu/sdm7g/Projects/Python/Safe
Python.html, 1994

[RaJa96] A. Rasmusson, S. Janson. Personal security
assistance for secure Internet commerce. In New Security
Paradigms '96, ACM Press, Sept. 1996

[RKF92] W. Rosenberry, D. Kenney, G. Fisher: Understand-
ing DCE, ISBN 1-56592-005-8, O'Reilly & Associates, 1992

[Riv92] R. Rivest: The MD5 Message-Digest Algorithm,
RFC 1321, MIT, April 1992

[SBH96] M. StrafZer, J. Baumann, F. Hohl: Mole - A Java
based Mobile Agent System, Proc. of the ECOOP '96
Workshop on Mobile Object Systems, 1996

[Sch96] B. Schneier: Applied Cryptography, ISBN 0-471-
11709-9, J. Wiley & Sons, Inc., 1996

[TIP97] Transaction Internet Protocol, Reference Implemen-
tation, http://204.203.124.10/pdc/docs/TIP.zip

[VKM97] H.Vogler, T. Kunkelmann, M.L. Moschgath,
Distributed Transaction Processing as a Reliability Concept
for Mobile Agents, Proc. 6th |[EEE Workshop on Future
Trends of Distributed Computing Systems, Tunis, Oct. 1997

[Vog96] F. Vogt: Werkzeuge fir die Transaktionsver-
arbeitung heute - morgen; Proc. of the 19th European
Congress Fair of Technical Communication - ONLINE'96,
Congress VI, Hamburg, Feb. 1996

[Whi94] J. E. White: Telescript Technology: The foundation
for the electronic Marketplace, White Paper. General Magic
Inc., 1994

[XOP96] X/Open Guide: Distributed Transaction Processing:
Reference Model, Version 3, X/Open Company Ltd., 1996

