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Abstract—Current smart thermostats aim to increase the
efficiency of heating and cooling systems by adjusting the temper-
ature whenever the conditioned zone becomes empty. However,
targeting energy savings, these systems often fail to achieve a
comfortable thermal environment for the inhabitants. We propose
to increase thermal comfort by automatically monitoring the
inhabitants’ satisfaction with the thermal environment using
commodity hardware. To this end we designed the Comfstat
infrastructure and publish detailed temperature and heart-rate
data of seven users of the system to the community. Using this
data we show that thermal comfort can be inferred automatically
from a combination of sensor data within 0.5 points on the
ASHRAE scale.

I. INTRODUCTION

A vital goal of current building automation systems is to
reduce the energy consumption of heating, ventilation and air
conditioning (HVAC) units. To this end, numerous projects in
research [1], [2], [3] and industry [4], [5] have shown that it
is feasible to build systems and algorithms to autonomously
regulate the temperature in buildings in a ”smart” way, for
example based on actual occupancy.

However, non-technical challenges like sensor placement,
uncertainty about the choices made by the system and doubts
regarding achievable savings mean that user acceptance for
such smart thermostats is still quite low [6], [7], [8]. And
even if they show how energy consumption can be reduced,
they often struggle with providing thermal comfort for the
occupants. In fact, to save the maximum amount of energy,
one could simply switch off the HVAC system altogether [9].

The strategy of most modern HVAC systems is to define a
single comfort temperature. The building is then kept at this
temperature throughout the day whenever it is occupied. While
its value may have been obtained from experiments, the fixed
temperature makes no allowances for the individual occupants’
thermal preferences. In this paper, we target this problem by
evaluating techniques to automatically sense thermal comfort
from the occupants’ heart rates as well as ubiquitous temper-
ature and humidity sensors.

Thermal comfort has been described by the American
Society of Heating, Refrigerating and Air Conditioning En-
gineers (ASHRAE) as “that condition of mind that expresses
satisfaction with the thermal environment” [10]. As such it is
defined by a combination of environmental as well as personal
factors – including the clothing, health and mental state of the

occupants. Since Ole Fanger first examined these factors in
1970 [11], further research has culminated various standards
such as ASHRAE 55 [10] and ISO 7730 [12].

Following the observations made by Fanger, various re-
searchers have sought to build systems to sense comfort
automatically [13], [14], [15], [16]. As obtaining some of
the parameters which influence thermal comfort (e.g., air
speed and mean radiant temperature) is difficult in real-world
settings, these systems combine sensory input (e.g., infrared
temperature sensors) with user participation (i.e., through
voting on the current comfort level) to enhance the accuracy
of their models. While some of these systems include the
metabolic rate in their calculations, none use available sensors
to sense the heart rate as a proxy for the metabolic rate.

The importance of the metabolic rate for thermal comfort
has recently been re-affirmed by Luo et al. [17]. The authors
have shown that an increase in the metabolic rate is often a
sign for discomfort. We build upon this work and the fact that
the heart and the metabolic rate are closely related [18]. The
Comfstat architecture allows for the collection of heart rate
data from both Android Wear smartwatches and compatible
Bluetooth chest straps. By using a machine learning approach
and combining the heart rate with temperature and humidity
data, we present a system that may deduce comfort automat-
ically from the raw sensor data.

Besides showing that our approach can deduce thermal
comfort with a mean error between 0.06 and 0.36 on the 7-
point ASHRAE scale, we make the following contributions:

• An infrastructure1 to collect sensory data from Android
Wear watches, compatible BLE heart rate monitors, tem-
perature and humidity sensors; as well as an application
for registering ground truth thermal comfort through
voting on both Android and Android Wear devices.

• A thermal comfort data set2 comprised of seven partici-
pants, and including three different experiments.

• A comparison between heart rate data collected on current
smartwatches and dedicated chest straps.

• An overview of the feature space and a detailed analysis
of the performance of two approaches to predict thermal
comfort.

1https://github.com/LilianaB/ComfstatInfrastructure
2https://github.com/LilianaB/ComfstatDataSet



The goal of this study is to provide a first analysis of
using commodity hardware to automatically sense thermal
comfort. To the best of our knowledge, the resulting data
set, which we make publicly available, is the first of its kind.
Our contributions are thus especially relevant for researchers
interested in exploring the possibilities of using wearable
technology to support thermal comfort prediction.

The outline of this paper is as follows. In Section II we
introduce the main factors influencing thermal comfort and
discuss related work. In Section III we show the components
making up the Comfstat infrastructure. In Section IV we
briefly describe the data set before we explain the feature
extraction and selection in Section V. After we present our
results in Section VI we conclude the paper in Section VII.

II. BACKGROUND

ASHRAE 55 identifies six primary factors (metabolic rate,
clothing level, air temperature, mean radiant temperature3, air
speed and humidity) that influence the occupants’ satisfaction
with the thermal environment. Based on climate chamber ex-
periments, the standard provides equations to compute thermal
comfort from these factors.

The metabolic rate thereby plays a crucial role. The
metabolic heat production is determined by the energy balance
of the human body [19]. Thermal balance is obtained when
the heat loss to the environment is equal to the metabolic
rate. The human body normally maintains a core temperature
around 37 ◦C. When the hypothalamus (i.e., the portion of the
brain controlling the core temperature) detects any changes in
the surrounding conditions, it sends signals to the rest of the
body to regulate the temperature by sweating or shivering. The
person feels uncomfortable.

Following the 7-point scale first introduced by Fanger, the
ASHRAE standard puts the thermal sensation of an individual
on a scale ranging from +3 (hot) to −3 (cold). A value of 0
thereby indicates thermal neutrality and thus a comfortable
environment. By combining the votes from multiple occu-
pants, Fanger introduced the Predicted Mean Vote (PMV) and
Predicted Percentage Dissatisfied (PPD) metrics. The PMV
indicates the overall (average) satisfaction with the thermal
environment. The PPD on the other hand shows the number
of people who are feeling either too cold or too warm in the
current environment.

a) Systems for sensing comfort: As both PMV and PPD
do not explicitly track individual occupants’ thermal comfort
levels, Gao et al. introduced the “Predicted Personal Vote”
model which extends the PMV for individual occupants [13],
[14]. The model allows to achieve different micro-climates
using personal heating and cooling appliances. Similarly to our
approach, Gao et al. measure the temperature near the surface
of the occupants’ clothing using an infrared thermometer
directed by a Microsoft Kinect camera. However, for the
metabolic rate they depend on pre-computed tables.

3The average temperature of surfaces like the floor and the walls.
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Fig. 1. Overview of the main components of the Comfstat sensing infras-
tructure.

Other work examines how occupants can dynamically vote
on their current thermal comfort. In [15], Erickson et al. allow
occupants to use their iPhone to vote on the 7-point ASHRAE
scale, periodically. In [16], Lam et al. provide a mobile
application for occupants to express their thermal satisfaction.
We build on these ideas and extend it to smartwatches to gather
ground truth for our Comfstat system.

Only few systems currently attempt to measure the
metabolic rate to assess thermal comfort. Ciabattoni et al.
propose a system very similar to ours, utilizing a Raspberry Pi
to measure environmental parameters like the temperature and
CO2 levels [20]. In addition they use a smartwatch to measure
the heart rate and skin temperature. However, while we learn
individual comfort levels using user participation, the authors
depend on fixed equations from ISO 8996 to deduce thermal
comfort from the raw measurements [18].

Revel et al. propose an environmental monitoring system
to monitor the PMV in an environment. However, while
they discuss the importance of using the correct metabolic
rate during the calculation they require the user to input
their clothing level and metabolic rates manually through an
Android device [21].

Abdallah et al. [22] employ an artificial neural network to
link sensor data from wearable devices to thermal comfort.
However, while their work seeks to approximate Fanger’s
equations, our model infers thermal comfort directly.

III. SYSTEM DESIGN

Comfstat’s goal is to unobtrusively sense users’ thermal
comfort levels. We envision it to be installed as part of smart
heating and cooling systems to better regulate setpoint tem-
peratures. To achieve this, Comfstat is built around a mobile
phone application supported by different sensors. Figure 1
shows the three key components of our architecture. Sensors
worn on the body or placed in the room, a smartphone as
sensing hub, and a server for data collection and analysis.

A. Server

As sensing and recording users’ metabolic rates can be
considered an intrusion into their privacy, one requirement of
our system is to work standalone inside their home. However,
in order to sense comfort, environmental parameters (e.g.,
air temperature) as well as personal factors (e.g., heart rate
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Fig. 2. The mobile applications (left: smartphone, right: smartwatch) collect
votes on the 7-point ASHRAE scale.

and thermal comfort votes) have to be combined. We thus
aggregate the data on a local server. To this end we designed a
Web application that allows for the storage and analysis to run
on a low-cost single board system such as the Raspberry Pi.
The Raspberry Pi runs a Apache HTTP Server and a MySQL
database to store all user data for processing.

B. Mobile application on the smartphone

The mobile application serves as the central hub for gath-
ering personal sensory data. It connects via Bluetooth Low
Energy (BLE) to an Android Wear smartwatch and a chest-
worn strap to collect heart rate data. It also obtains humidity
and temperature values from sensors worn by the participants.
All sensory values are quickly accessible to the user through
the application.

The mobile application is realized on a Nexus 5 smartphone
running the Android operating system. It synchronizes its data
with the in-home server every five minutes. To preserve pri-
vacy and battery life, data is only collected and synchronized
when the smartphone is situated within the home. This is
achieved by validating that the user is connected to her home
Wi-Fi.

In addition to the raw sensor values, the application allows
us to collect ground truth thermal comfort data on the 7-
point ASHRAE scale. A companion app on the smartwatch
also allows for quick voting (cf., Figure 2). The data can be
collected at frequencies between 5 and 15 minutes. Note that
the collection of this “ground truth” data is only necessary
for training the system. Once trained, the system should sense
comfort automatically using the sensors introduced in the next
section.

C. Sensors

The goal of Comfstat is to use sensors to automatically sense
the users’ comfort levels through a combination of body-worn
and stationary sensors.

a) Heart rate: Heart rate (HR) measurements are a proxy
for the metabolic rate. The metabolic rate is closely linked to
thermal comfort as it determines how much thermal energy
leaves the body [18]. Comfstat offers two modalities to reliably
collect heart rate data.

First, a smartwatch application for the Android Wear operat-
ing system (running on an LG Watch R W110), which obtains
heart rate values directly from an optical HR sensor built into
the watch. The data are then transferred via the smartphone
application to the server.

Secondly, heart rates can be collected directly through a
dedicated sensor which implements the Bluetooth profile for
heart rate service advertisement. We use an off-the-shelf Polar
H7 heart rate sensor. As the Polar H7 uses a chest strap to
measure the heart rate, its measurements are more accurate
than those of the smartwatch.

In the following analysis, we will rely mainly on values
from the Polar H7 strap to analyze the feasibility of automati-
cally sensing comfort from the users’ heart rates. Section VI-D
gives an indication of the accuracy possible with current wrist-
worn optical sensors.

b) Room temperature sensor: In order to collect the
temperature in the conditioned area we use a DS18B20 tem-
perature sensor connected to a Raspberry Pi. The temperature
is retrieved every five minutes and forwarded to the in-home
server.

c) Armband sensors: Normally, the air temperature
varies slightly throughout the conditioned area (e.g., it will be
slightly warmer near the windows due to the solar radiation).
Therefore we provided users with an armband carrying an
additional DHT22 temperature and humidity sensor. Note that
the close proximity of the sensor to the body of the participant
also means that its reading is likely to be influenced by the
participant’s body temperature. We will discuss this further
in Section V when we elaborate on the features used to
automatically deduce comfort.

The sensor is sampled every three seconds by an Adafruit
Feather 32u4 Bluefruit LE board. The sensor data is exposed to
the smartphone through the Bluetooth profile for environmen-
tal sensing. The board is powered by a Lithium Ion Polymer
Battery with 2500 mAh, which allows for approximately five
days of uninterrupted sensing.

IV. THE COMFSTAT DATA SET

The analysis presented in this paper is based on sensor
data collected from seven participants in three controlled
experiments. We refer to this data as the Comfstat data set
and make it available to the research community.

Table I shows the recorded variables and their respective
sampling interval. To achieve a higher accuracy for the HR
measurements, participants were asked to use the Polar heart
rate monitor instead of the smartwatch. Before each exper-
iment, participants were asked to sign a consent form for
volunteer subjects in an ergonomics investigation involving
exposure to hot or cold temperatures. This consent form is
based on the ISO 12894 standard [23].

The preliminary “cold” experiment was carried out with
p1 and p2 only. Participants p1, p3, p4, p5, p6 and p7 took
part in the main “controlled” temperature experiment. In a
third experiment (“non-sedentary”) with p1 we assessed the
effects of physical exercise on thermal comfort. Table III



TABLE I
COLLECTED VARIABLES.

Variable Abbrev. Interv.
Room temperature (◦C) room_temp 5 min
Temperature (armb.) (◦C) ard_temp 3 sec
Rel. humidity (armb.) (%) ard_hum 3 sec
Heart rate (bpm) hr 1 sec
Comfort (7-point scale) comfort 1-5 min

TABLE II
PARTICIPANTS’ PROFILES.

Participant Gender Age Height Weight
p1 female 26 1.65 m 62 kg
p2 male 28 1.80 m 66 kg
p3 female 28 1.59 m 55 kg
p4 female 23 1.61 m 67 kg
p5 male 26 1.72 m 77 kg
p6 female 28 1.64 m 65 kg
p7 female 30 1.63 m 63 kg

summarizes which participants took part in which experiments.
The following subsections explain each experimental setting.

A. Cold experiment

This preliminary experiment was conducted to test the
Comfstat infrastructure and to measure the participants’ re-
sponses to extreme thermal conditions. Two participants, p1
and p2 were subjected to low temperatures between 8 ◦C and
14 ◦C while wearing light clothing (i.e., 0.49 clo – 0.76 clo).
The data was collected twice from 9.30 a.m. until 4.00 p.m.
on two separate days. Figure 3 shows the timeline of each
session.

During the preparation phase, participants were situated in a
comfortable environment and explained how to use Comfstat.
Next, the participants were asked to enter a cold (e.g., between
8 ◦C and 14 ◦C) environment for an hour. During this time,
the participants were requested to provide feedback through
the mobile application every one to five minutes. After one
hour, the participants returned to their offices and resumed
their normal daily routines (e.g., mainly sedentary activities).
The room temperatures in p1’s office varied from 22 ◦C to
24 ◦C, while p2’s office temperature was stable at 22 ◦C. After
their respective lunch breaks, the participants resumed their
sedentary activity until 4 p.m.

B. Controlled temperature experiment

Six participants (p1, p3, p4, p5, p6 and p7) took part in
the main experiment. Five of the participants are female
and one is male. While the previous experiment served to
measure the subjects’ responses to extreme conditions and to

TABLE III
EXPERIMENT PARTICIPANTS.

Experiment Participant
Cold p1, p2
Controlled p1, p3, p4, p5, p6, p7
Non-sedentary p1

25min 60min
ColdPreparation

120min

22-24 °C

120min

22-25 °C

Lunch breakIndoor activity

8-14 °C

Indoor activity
60min

Fig. 3. Timeline of the “cold” temperature experiment.
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Fig. 4. Timeline of the “controlled” temperature experiment.

test the system, the goal of this experiment was to measure
the subjects’ responses in more natural settings. For this
purpose, participants were exposed to three different thermal
environments: (i) warm (27 ◦C to 29 ◦C), (ii) neutral (23 ◦C),
and (iii) cold (17 ◦C to 18 ◦C).

The main goal of this experiment is to analyze the sub-
jects’ body responses to temperature changes. To achieve the
different thermal environments, three rooms were conditioned
to the warm, neutral, and cold settings, respectively. Figure 4
shows the timeline of the experiment for each participant. The
participants were exposed to each temperature setting for 30
minutes. In total, each experimental session lasted for 90 min-
utes. During the experimental period, all participants remained
seated and only engaged in sedentary activities. Environmental
data as well as the participants’ satisfaction with the thermal
environment were collected using the Comfstat infrastructure.
Each participant undertook the experimental setting twice.

C. Non-sedentary experiment

The previous two experiments investigated how thermal
comfort varies with different thermal environments when the
subjects are sedentary. In order to analyze the effect of physical
activity on thermal comfort, we conducted a separate 90-
minute experiment with participant p1. During the experiment
p1 wore light clothing (i.e., 0.44 clo) [24]. During the first
30 minutes, p1 was asked to relax during a sedentary activity
to obtain a baseline. Next, she was asked to perform physical
exercise for 30 minutes followed by another 30-minute phase
of relaxation.

D. Preliminary observations

Before going on to explain how we compute thermal com-
fort from the measured sensor values, we will identify a few
key observations from the data set.

a) Thermal comfort is subjective: Figure 5 shows how
the participants’ thermal satisfaction is linked to the current
temperature level. For each vote obtained through the smart-
phone application, Figure 5 shows the average temperature
when the vote was cast. In general, participants show different
thermal sensations at the same temperature levels, while fe-
males prefer higher temperatures. These results are confirmed
by Karjalainen et al. [25], who found a significant impact
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TABLE IV
AVERAGE HEART RATE PER COMFORT LEVEL (-3: COLD, -2: COOL, -1:
SLIGHTLY COOL, 0: NEUTRAL, 1: SLIGHTLY WARM, 2: WARM). NOTE

THAT NO DATA FOR HOT (3) IS AVAILABLE.

-3 -2 -1 0 1 2
(p1) 75 72 69 81 86 87
(p2) 84 84 77 93 94 -
(p3) 74 67 72 74 70 71
(p4) 84 80 84 85 84 -
(p5) - 79 76 79 81 80
(p6) 79 80 81 78 84 83
(p7) - 69 68 72 65 68

of gender on thermal comfort. Our results indicate that to
automatically infer thermal comfort it may be necessary to
create and train multiple models.

b) Heart rate higher in extreme environments: Figure 6
shows the distributions of the measured heart rates per thermal
comfort level for p1. The figure shows that the median heart
rate (red line) tends to increase towards both cold and hot
thermal sensations. Table IV summarizes these results for all
participants. Our results are confirmed by Maohui Luo et
al. [17], who found that the metabolic rate increases when
the thermal sensation tends towards either end of the scale.

c) Thermal comfort indicated by temperature: During
the preliminary analysis we also observed a correlation be-
tween participants’ thermal comfort and the temperature mea-
sured by both the armband and the stationary sensor. Figure 7
shows, exemplary for p1, how ard_temp, the temperature
measured on the participants’ arms, the room temperature
room_temp and thermal satisfaction comfort change over
the course of one “controlled” session. A summary of the
correlation between ard_temp and comfort for all par-
ticipants is shown in Table V.

V. MODEL

Our goal is to show how thermal comfort can be deduced
automatically from the sensory input collected by the Comfstat
infrastructure. According to the ASHRAE 55 standard, the

__

Fig. 6. P1 heart rate per thermal comfort level.

TABLE V
PEARSON CORRELATION BETWEEN ARD_TEMP AND COMFORT

(“CONTROLLED” TEMPERATURE EXPERIMENT).

Pearson correlation
p1 p3 p4 p5 p6 p7

Session 1 0.85 0.80 0.81 0.79 0.76 0.78
Session 2 0.80 0.89 0.84 0.76 0.79 0.73

satisfaction with the thermal environment can be expressed
on a 7-point scale where −3 indicates cold and +3 indicates
hot. This is also how thermal comfort is registered through the
mobile application (cf. Figure 2).

Thus, thermal comfort may be considered a categorical
variable. In Fanger’s PMV and PPD calculations, however,
fractional values are also possible. In the following we will
therefore use two regression techniques – linear regression
and logistic regression4 to model the relationship between
the measured data and thermal comfort. While the former
outputs values on a continuous scale, the latter uses the discrete
ASHRAE scale.

A. Feature extraction

Before we evaluate the performance of the two regression
approaches in Section VI, we show how we identified and ex-
tracted a set of features which serve as good indicators for the
comfort level. The features are based on the six fundamental
factors (metabolic rate, clothing level, air temperature, mean
radiant temperature, air speed and humidity) which define
human thermal comfort [11].

1) Environmental factors: From the environmental factors
(i.e., air temperature, mean radiant temperature, air speed and
humidity), we only include air temperature and humidity by
means of the ard_temp, ard_humidity and room_temp
features. The first two are based on the sensor worn on the
participant’s arm while the latter is situated at a fixed position
in the room.

4Regularization parameter set to 1 and not tuned for for best possible alpha.
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TABLE VI
FEATURES COMPUTED ON COLLECTED DATA.

# Feature name Description
f1 polar Heart rate in bpm in 1s intervals
f2 room_temp Room temperature interpolated to 1s intervals
f3 ard_temp Armband temperature sensor interpolated to 1s internals
f4 ard_humidity Armband humidity sensor interpolated to 1s internals
f5 temp_delta Difference between room temperature and armband temperature interpolated to 1s intervals
f6 weight Participant’s weight in kilograms
f7 height Participant’s height in meters
f8 age Participant’s age in years
f9 gender Participant’s gender (1: female and 0: male)
f10 polar_1min_min Minimum heart rate (bpm) value registered in the last minute (sliding window)
f11 polar_1min_max Maximum heart rate (bpm) value registered in the last minute (sliding window)
f12 polar_1min_mean Mean heart rate (bpm) value registered in the last minute (moving average)
f13 room_temp_1min_min Minimum room temperature value registered in the last minute (sliding window)
f14 room_temp_1min_max Maximum room temperature value registered in the last minute (sliding window)
f15 room_temp_1min_mean Mean room temperature value registered in the last minute (moving average)
f16 ard_temp_1min_min Minimum armband temperature value registered in the last minute (sliding window)
f17 ard_temp_1min_max Maximum armband temperature value registered in the last minute (sliding window)
f18 ard_temp_1min_mean Mean armband temperature value registered in the last minute (moving average)
f19 ard_hum_1min_min Minimum armband humidity value registered in the last minute (sliding window)
f20 ard_hum_1min_max Maximum armband humidity value registered in the last minute (sliding window)
f21 ard_hum_1min_mean Mean armband humidity value registered in the last minute (moving average)

We do not model the air speed or the mean radiant tem-
perature as both are difficult to measure outside the controlled
environment of a climate chamber.

2) Metabolic rate: ISO 7730 establishes a linear relation-
ship between the heart and metabolic rates of a person [12].
However, the calculation of the metabolic rate from the heart
rate requires additional calibration to obtain parameters like
the resting heart rate. To avoid this overhead, we decided to use
the raw heart rate as a feature. In previous work, the heart rate
has proved to be a good indicator for approximating energy
expenditure [26]. We use the polar feature to denote the
heart rate in bpm over a 1 s interval.

3) Clothing level and temperature differences: In addition
to the heart rate, we model the difference temp_delta
between the temperature measured on the body using the
armband ard_temp and the temperature measured by the
fixed sensor (i.e., room_temp). temp_delta is influenced

by both, the room temperature and the participant’s heat
dissipation. As the armband is worn over the clothing, the
weight of each temperature is influenced by the clothing level
of the participant.

4) Temporal variations: Table VI summarizes the selected
features. All features are computed at 1-second intervals.
Whenever the granularity of the raw data was less than 1 s,
linear interpolation was used. In addition to the raw data
from the sensors (i.e., polar, room_temp, ard_temp and
ard_humidity), we introduce, for each, their respective
minimum, maximum and mean over the previous 60 seconds
to capture temporal variations. We denote these by adding the
suffixes _1min_min, _1min_max and _1min_mean.

Using the temporal variations on the polar feature (i.e.,
features f10, f11 and f12) our goal is to recognize when a
person’s activity level has increased for a short period of time
(e.g., a person just climbed the stairs to reach her office). The



thus increased metabolic rate may cause thermal discomfort
only for a brief moment, making an adjustment to the thermal
environment unnecessary.

Features f13 to f21 capture recent changes in the environ-
mental conditions (i.e., temperature and humidity). This is
important as the human body needs time to adapt to changes
in the thermal environment. Figure 7 shows that when a
participant entered a neutral from a warm environment, she
needed several minutes before feeling comfortable.

5) Regression over multiple participants: Features f6 to
f9 (e.g., weight, height, age and gender) are used
specifically for evaluating the performance of the regression
on different participants.

VI. RESULTS

We investigate whether the satisfaction with the thermal
environment – expressed on the 7-point ASHRAE scale by
our participants – can be determined automatically from the
raw sensor data. To this end, we tested both linear regression
and logistic regression on the Comfstat data set. We will use
the subscripts LIR and LOR to denote performance figures for
the linear and logistic regression, respectively.

A. Evaluation

To evaluate the approaches, we merged all available data
for each participant. The data was then shuffled and split
into training and testing sets using 10-fold cross validation.
For each fold, the regression was tested on 1/10 of the data
and trained on the remaining 9/10. To ensure that each fold
contained sufficient training data, the folds were chosen to
preserve the distribution of samples for each thermal comfort
category.

1) Metrics: We use four different metrics to measure the
performance of the approaches. ē and ê denote the mean and
median absolute error, respectively. These two metrics give an
indication of how many points (on the ASHRAE scale) the
comfort prediction is away from the actual sensation of the
participants. The R2 measure is included for reference in the
figures as it is the standard means for determining the fit of a
regression line.

As the median absolute error ê is less useful for logistic
regression – which outputs a categorical variable – we have
also included the classification accuracy Acc as a metric.
The accuracy gives the percentage of samples that have been
classified correctly (e.g., the system correctly classified that a
participant was feeling “cold” at a particular interval).

2) Baseline: As baseline we used three models. Temper-
ature only, denoted by the subscript TEM is the performance
obtained by using linear regression on the temperature data
alone (i.e. only f2 – room_temp – is used to predict comfort).
The Neutral model (subscript NEU) always assumes that a
person is feeling comfortable (i.e., the vote on the ASHRAE
scale is 0). This neutral vote is in the middle of the scale
and has a maximum error of 2. The Random model (subscript
RND) assigns a uniform probability to all seven points on the
ASHRAE scale and predicts a random comfort level at each

TABLE VII
REGRESSION PERFORMANCE (CONTROLLED TEMPERATURE

EXPERIMENT).

p1 p3 p4 p5 p6 p7 Avg.
Linear R. ēLIR 0.46 0.53 0.47 0.39 0.43 0.25 0.42

êLIR 0.38 0.47 0.42 0.32 0.37 0.16 0.35
Logistic R. ēLOR 0.36 0.28 0.10 0.11 0.27 0.06 0.20

AccLOR 68% 75% 94% 89% 77% 94% 83%
Temp. only ēTEM 0.67 0.60 0.53 0.56 0.57 0.53 0.58

(Lin. Reg.) êTEM 0.67 0.85 0.40 0.40 0.49 0.48 0.55
Neutral ēNEU 1.02 1.17 0.94 0.89 0.86 0.83 0.95

AccNEU 33% 28% 49% 43% 36% 47% 39%
Random ēRND 1.95 2.05 2.02 1.92 1.93 1.91 1.96

AccRND 15% 15% 14% 14% 14% 14% 14%
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Fig. 8. P1 Linear regression.
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Fig. 9. P1 Logistic regression.

interval. While the latter two approaches do not require any
knowledge about the distribution of the comfort levels, they
serve as lower bounds for the performance of the regression.



B. Regression performance

Table VII shows the performance of the two regression
approaches on the data from the controlled temperature exper-
iment (cf. Section IV-B). Both regression approaches clearly
outperform the baseline strategies. When only the temperature
is used to deduce the participant’s comfort levels, the mean
error ēTEM is on average 0.58 points. The Neutral strategy has
a mean error ēNEU between 0.83 and 1.17, while AccNEU is
only 39% in the best case. As expected, the Random approach
performs even worse with ēRND between 1.91 and 2.05 and an
average AccRND of 14%.

For the linear regression, the mean error ēLIR varies between
0.25 and 0.53 for p7 and p3, respectively. This means, the
prediction falls on average within 0.5 points of the actual
thermal satisfaction of the participants. Similarly, the median
error êLIR ranges from 0.16 to 0.47, meaning that 50% of
the time, the actual vote is within less than 0.5 points of the
prediction. Using the full feature set means the mean error
incurred (i.e., ēLIR) is 0.16 points lower than the mean error
incurred when only the temperature data is used (i.e., ēTEM).
The effect of the additional heart rate features is strongest for
p1 and p7 where the respective differences in ē are 0.21 and
0.28.

Figure 8 shows the results of the linear regression for
p1 over all data points. This data has been obtained by
concatenating the results from all 10 testing folds. While it
fails to notice short changes in the thermal sensation, the green
regression line tracks the ground truth (expected) comfort
level quite closely. As the output from the linear regression
is continuous, it also seems5 to capture intermediate comfort
levels. However, as the thermal satisfaction is measured on the
7-point scale, these intermediate levels are deemed erroneous.

Thus, as the logistic regression models a categorical vari-
able, one might expect it to show smaller errors. Indeed,
Table VII shows that ēLOR varies between 0.06 for p7 and
0.36 for p1. The Accuracy AccLOR shows that between 68%
(i.e., p1) and 94% (i.e., p4 and p7) of intervals are classified
correctly.

To understand why the logistic regression fails to achieve
a higher accuracy for p1, Figure 9 shows the result of the
regression over the whole duration of the cold experiment. The
uncertainty regarding the current comfort level results in a lot
of fluctuations of the predicted thermal sensation. When the
linear regression outputs a value between two distinct comfort
levels (cf., Figure 8), the logistic regression often oscillates
between them. While having a lesser effect on ēLOR, this
reduces the overall accuracy of the regression.

1) Discussion: The two regression approaches follow dif-
ferent goals. While the linear regression tries to model the
relationship between the input variables (e.g., heart rate and
temperature) and the output (i.e., thermal sensation) on a
continuous scale, the logistic regression follows a classification
(i.e., assigning input data to a number of distinct classes)

5The votes captured by the Comfstat infrastructure are expressed on the
7-point ASHRAE scale and thus do not allow for this granularity.
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Fig. 10. Generalizability - Using other participants’ data to predict comfort.

approach. Thus, both strategies have advantages and disadvan-
tages. The linear regression results in a higher average error
also because it may produce values outside the [−3, 3] interval.
On the other hand, it allows for detecting fractional comfort
levels – something that the logistic regression is not capable
of. The logistic regression may thus oscillate between two
comfort levels as the available input data cannot be used to
conclusively determine a single level.

These fluctuations are not good for heating and cooling
systems as they may cause the system’s setpoint temperature
to fluctuate as well. In the worst case, this may lead to further
oscillations breaking the control loop. In order to alleviate this
problem, an additional smoothing step should be employed to
reduce the number of fluctuations. A similar post-processing
step could remove extreme values for the linear regression,
effectively capping its output at −3 and 3.

However, the choice of method to predict thermal comfort
also depends on how the individuals’ thermal sensations are
used. If the smart thermostat subsequently combines all votes
from multiple inhabitants to compute a single assessment
of the current thermal comfort level like Fanger’s PMV,
individual fluctuations may be less important. As our sample
of seven participants is too small for such an analysis, we
leave this question for future work.

C. Generalizability of trained model

During our preliminary analysis of the data set in Sec-
tion IV-D we observed that thermal sensations varied sig-
nificantly between participants for the same thermal environ-
ments. To understand how this affected the trained regression
models, we used 5-fold cross validation. By leaving one
participant out and training on all available data from the
other participants we want to examine how well the regression
generalizes over different participants. For this experiment,
features f6 to f9 were introduced to model the weight, height,
age and gender of the participants.



Fig. 11. HR monitoring accuracy (smartwatch vs chest strap). Pearson
correlation: −0.045.

Figure 10 shows the result of this experiment for the logistic
regression. As before, ē denotes the average absolute error,
while Acc denotes the accuracy. For all participants ē is
above 0.5. Moreover, by using the other participants’ data
to predict p2 to p5, the logistic regression is wrong by a
whole comfort level on average. This figure is similar to the
performance of the Neutral baseline for both the controlled and
cold temperature experiments. As the Neutral approach has no
knowledge about any of the participants, thermal sensation
does not seem to generalize for multiple people. This is
important to note when considering alternative approaches like
measuring the six primary factors defined in ASHRAE 55 and
using equations derived from climate chamber experiments to
deduce comfort [10]. By introducing a small training overhead
that is made less strenuous through the use of smartwatches,
our Comfstat approach offers personalized comfort prediction.

D. Replacing the chest strap

The major drawback of our current system is that it relies
on a chest strap to measure the participants’ heart rates. To
understand whether current smartwatches might be a suitable
substitute, we used the Comfstat infrastructure to collect
heart rate data from a LG Watch R (W110) Android Wear
smartwatch. In contrast to the Polar H7 chest strap which
was sampled at 1 Hz, the smartwatch was only sampled every
minute. Higher sampling frequencies were not possible as the
watch would often time out as no value was detected.

Figures 11 and 12 show the result of a two-hour experiment
during which we tested both the accuracy and the resulting
battery drain. During this experiment, the smartwatch was only
used to measure the heart rate. Notifications were disabled and
the watch was not otherwise used.

Figure 11 shows that the heart rate measured by the smart-
watch can deviate substantially from the chest strap, at times
logging only half the value and well outside a reasonable

Fig. 12. Smartwatch battery drain.

range. This means that without significant thresholding and
smoothing, the values from the smartwatch cannot currently
be used to monitor comfort. The sampling interval is also
restricted by the battery drain of the sensor. Over the course
of the two-hour experiment, the smartwatch lost 25% of its
capacity. This means that even if it was only used for sensing
comfort, a smart thermostat could depend on the smartwatch
for merely eight hours a day.

The low accuracy and restricted sampling interval thus
make current smartwatches an unsuitable candidate for sensing
the heart rate. However, as previous work has shown how
pedometers and accelerometers can be used to monitor phys-
ical activity [27], future work might show how these can be
integrated with the heart rate data to overcome periods of low
accuracy and to reduce battery drain.

VII. CONCLUSIONS

We introduced our Comfstat infrastructure and showed how
thermal comfort may be derived from participants’ heart rates
as well as environmental data including the room temperature
and humidity. Furthermore, we made our data set publicly
available to the research community. We show that high
accuracies are possible when training a regression model using
individual thermal sensation data and highlight that one cannot
easily generalize the thermal sensation experienced by one
participant in a particular environment to other participants.
We propose to solve this problem by offering an easy to use
calibration tool on both smartphones and smartwatches that
allows occupants to periodically vote on the 7-point ASHRAE
scale. Finally, we look into the future and examine the
suitability of current smartwatches to measure the participants
heart rates and conclude that further developments in sensor
technology are necessary before they may be used to sense
comfort.
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