
22 May 1989 Information Processing Letters 31 (1989) 203-208
North-Holland

Friedemann N

Department of Computer Science, Universrty of Kaiserslautern, P.O. Box 3049, D 6750 Kaiserslautern, Fed Rep. Germany

Communicated by T. Lengauer
Received 2 November 1987
Revised 4 December 1988

Keywords: Termination detection, distributed algorithm, CSP, distributed computing

In recent years, a surprising number of distrib-
uted termination detection algorithms with vari-
ous characteristics have been presented. One of
the most elegant solutions is deriv-ed stepwise to-
gether with an invariant and is due to Dijkstra,
Feijen and van Gasteren [9]. Discussions of the
pr&iple and variants can be found rn [1,14,15].
We present a similar algorithm which detects
termination faster under the assumption that
whenever a (synchronous) message is sent from
some process Pi to another process Pi, an
acknowledgement carrying a one-bit status mfor-
mation is sent in the opposite direction. This can
usually be done at negligible cost without an
explicit message.

We consider n processes PI, . . . , P, (n >/ 2),
each being either active or pas&e. In an underly-
ing computation, the processes cooperate by ex-
changing synchronous messages (so called basic
messages). The computation satisfies the following
conditions [IQ]:

(1) only active processes may send messages,
(2) a process may change from passive to active

only on receipt of a
(3) a process may chang

are not only interested in a method by which a
given process P, is enabled to detect termination
when it has occurred, but in an efficient control
algorithm which enables P, to determine whether
the underlying computation

(a) has terminated before the control algorithm
finished, or

(b) had not yet terminated when the algorithm
was started.

If the underlying computation terminates while
the control algorithm is running, either result is
accepta call an algorithm with these prop-
erties a tion test. Such an algorithm can be
regarded as a specialization of a general stable
property detection algorithm for distributed sys-
tems [8]. Notice that since nontermination is not a
stable property, it is impossible to state that a
distributed computation is still active “now”. We
assume that the underlying compu&ion is started
before the termination test.

As opposed to a termination detection al-

can be reactivated in

be a more reasonable

sevier ience 203

Volume 31, Number 4 INFORMATION PROCESSING LETTERS 22 M;ry 1989

never reports a “negative” result. Those detection
algorithms which proceed in rou& (e.g., [4,12])
may ako detect case (b). On the other hand, any
tetiation test algorithm can easily be trans-
formed into a detection algorithm (with possibly

unbounded message complexity) by simply restart-
ing the algorithm after a negative result.

Although the algorithm in [9] is not efficient
when used as a termination test, we use it as a
starting point by presenting a version with a
slightly changed set of rules, to allow for the early
announcement of a “negative” result. We assume
that for the purposes of the termination test, a
control token circles around a ring P,, P,_ ,, . . . , P,,
Pn. Notice that being passive does not prevent a
process from sending or receiving the token. We
further assume that the token and the processes
can be either black or white; initially, all processes
are supposed to be white. The following rules

A process sending a basic message to a
recipient with a higher index than its own be-

P,, when passive, may initiate a test by

active process keeps the token until

process Pi (i # n) which has
s a black token if Pi or the

token is black, otherwise it propagates a white

A process transmitting the token be-

receives a black token for the first

f P’ receives a black token the second

sent to P, that has no effect, it simplifies Rules
6-8.)

To see why a second round is necessary in most
cases (Rule 7), a time diagra (Fig. 1) is useful.
According to Rule 1, Pz becomes black when
sending message (a). If this were the last message
of the underlying computation and all processes
were passive shortly afterwards, the system would
already be terminated at the time instant the
“current’ ontrol round is started. The token then
becomes ack when passing by P2, resulting in a
false alarm. A second round is guaranteed to
return a white token, since the first round made
all processes white (Rule 5). To avoid false alarms,
an algorithm has to distinguish case (a) from case
(b) where a message is sent to a node which has
already been visited by the token in the currergt
control round.

According to Rule 3, active processes delay the
propagation of the token While this is acceptable
for termination detection (in every control round
except the last one, at least one basic message is
exchanged, thereby bounding the number of token
passes), it slows down the termination test. Espe-
cially to enable a fast negative response in the case
the computation is not terminated, Rule 3 could
be replaced by the following rule.

3’. An active process Pi (i’ z n j which has
the token propagates a black token.

When the token encounters an active process, a
second confirmation round (Rule 7) is not neces-
sary. The changes of the rules which take into
account this possibility are straightforward.

.

previous
control round

current
control round

/ I.-&b
black

2

3
. . .

n-l

time -

Fig. 1.

Volume 31, Number 4 INFOR TION PROCESSING LET-E 22 May 1089

Fig. 2.

We now show how to modify the algorithm in
order to enable a test in one single round (even if
the loken did not encounter an active process)
such that Rule 7 and Rule 8 can be replaced by
the following one.

7’. If P, receives a black token it an-
no s the failure of the test.

The general idea of the improvtment is simply
that (according to the comments concluding the
last section) a process has to register precisely
those messages it sends to other processes which
have already been visited by the token in the
current control round. These are necessarily
processes with a higher index. For that purpose a
binary state indicator with values 0 (or “even”)
and 1 (“odd”) is postulated to exist in each pro-
cess which is initia’iized to 0. To achieve that the
control token changes the value of the state indi-
cator (see Fig. 2), Rule 5 is replaced by Rule 5’.

5’. A process sending the token becomes
white and changes its state.

If care is taken that at any time at most one
token exists (i.e., P, does not restart the algorithm
before the completion of a previous control round),
then exactly those messages which cross the diago-
nal line representing a “control wave” in the time
diagram (messages (b), (c), and (d) in Fig. 2) are
received in a different state than they were sent.
Only messages of type (b) are of interest here,
le the following replacement cf Rule 1.

A process sending a basic r:essage to a
recipient in a different state and with a higher
index than its own becomes black.

Obviously, the sender of the message must be
informed about the state of the receiver. We will
discuss in the next section how this can be
achieved. Surprisingly, in CSP this can be

without explicit messages and without changing the
underlying communication protocol.

Notice that on the one hand %‘Z
I’, 5’, and 7’ other hand are al
(i.e., an algorithm based on I’, 2, 3 (instead of 3’),
4, 5’, 6, 7’ is also a valid termination test).

When used as a termination detector an&~-

gously to [9] (i.e., when the next round is initiated
auton atically after an unsuccessful test), the origi-
nal Rule 3 should be used instead of Rule 3’ in
order to bound the number of control messages.
Rule 7’ then becomes as follows.

7”. If P, receives a black token it starts h

The new detection algorithm (based on Rules 1’ \
2, 3, 4, 5’, 6, 7”) usually generates less messages
and detects termination faster than [9] (based on
Rules l-6, 7”), since no extra round after
termination is necessary. The original algorithm
[9] needs an extra confirmation round whenever
some process sent a message to a process with a
higher index after the previous round. In particu-
lar, a single round is sufficient if the algorithm is
initiated after termination.

In [9] an invariant is established which (when
stated verbally) reads “if the token is white then
all processes the token has visited in the current
round are passive or at least one process the token
has not yet visited is black”. It is easy to see that
our variant of the algorithm satisfies this invariant
and is therefore correct.

4. An im entatim in CS

Rule 1’ requires that the sender is informed
about the state of the receiver. We contend that in
virtually all cases this can be done at no extra cost
once a connection between two processes has been
established by an un&+ying protocol and the
processes have synchronized for communication.
Since usually the transmission of a message is
acknowledged by a control message (which un-
blocks the sender), it shou be easy to let the
one-bit state information piggyback” on the

ment. Abstract im
cation

recesses co

Volume 31, Number 4 INFORMATION PROCESSING LElTERS 22 May 1989

information about the state of each process must
be exchanged by the nontrivial handshaking pro-
tocol anyhow in order to reach agreement among
the processes in selecting matching communica-
tion commands [7,11,13].

We now show how a CSP program P =
[PI ii - 11 Pm] without a termination test can be
systematically transformed into another program
P’ with an incorporated termination test based on
the previously stated rules. As usual we make use
of an extended version of the original CSP defini-
tion [lo], where not only input commands are
allowed in guards, but also output commands [5].
This extension is powerful since it allows signals
to propagate backwards as has been notified by
Rouge 161. As shown in 12,161 we may assume
without loss of generality that each process Pi is
already transformed into a semantically equivalent
normal form

Pi : : INIT;

1
with a top level repetitive command, where each

is m optional boolean expression list and none
the lists IN~T and S, contains an I/O command

or repetitive command. The index sets Fi and r.
are assumed to be disjoint (F, n F. = @). We only
consider simple variables and expressions in I/O
commands; structured variables and expressions
[lo] can be handled analogously by tagging the
construction identifier with “even” or “odd”.

For the purpose of termination detection, those
alternative parts c B, ; Pj,?Vk with input gu ~3s

for which j, < i (a message is received from a
process with a smaller index) are split up into two
parts:

Cl state = 0 ; B, ; qJeven(V,) + S,,
q state = 1 ; k ; <sodd(&) + S,.

The alternative parts IzU#~ ; qk!e, with output
i (a message is sent to a

206

The expression constructors “even” and “odd”
match a corresponding input command only if the
receiver is in state 0 or 1, r ectively. The sender
sets the boolean flag “bl ’ whenever it finds
out that it is in a different state, thus complying
with Rule 1’.

For the propagating of the token we add two
guarded commands at the top-level loop to all
processess PI,. . . , P, _ 1. They implement Rules 3’,
4, and 5’ (if i = 1, then Pi_ 1 denotes P,).

•I Pi+ ,?token(color) + have_ token :=
q have, token ;

<_ , ! token(color V black V ,PASSIVE) -D
s@;

state := (state + 1) mod 2.

PASSIVE may be seen as a system variable indicat-
ing whether the process is active or passive. 4,
possible interpretation of PASSIVE, whicn is con
sistent with the spec&cations in Section 1, con-
sists of the following definition:

PASSIVE = “ the process is at its top level loop”
/WkEl-& -,B,.

This predicate can easily be implemented. Notice,
however, that it does not handle the cases where
some output commands are enabled but perma-
nently (or temporarily) blocked because the receiv-
ing processes are not ready to accept the messages.
For the sake of simplicity we also ignore the
so-called Distributed Termination Convention [3]
and other problems caused by processes which
terminate by leaving the top-level loop of the
original program.

For the purpose of termination detection the
token should only be accepted or propagated if
the process is passive (Rule 3 instead of Rule 3’).
The guarded commands may then be changed to

CI PASSIVE ; Pi + ,?token(color) * l l 9

•I have_ token ; P~srv~ ;

Pi_ 1 ! token (color V black) + l l I .

It is not possible, however, to combine the com-
mands into one single command

•I PASUVE ; Pi+ ,?token(color) +
Pi_ 1 !token(color V black) ; l l l

since the use of an unconditional output com-

Volume 31, Number 4 22 May 1989

P, has a special role since it initiates the control
round and has to announce the result. Because of
Rule l’, P, can never become black.
that @ART and TERMINATED are two
an obvious way by the “environment” or parts of
the program not shown here according to rules 2,
6, and 7’.

state := (state -b 1) mod 2
•I &?token(color) +

TERMINATED := -,color.

When detecting termination, Pn should inform all
other processes which may then terminate prop-
erly in the sense of [lo] b;; leaving the top level
loop. Otherwise P, may restart th
some later time by setting START t

Finally, we note the initializa
trol variables added to the INIT parts:

The default initial value of START should be

The implementation in CSP makes use of a
trick due to Boug& [6] which allows to transmit
information backwards along u tional chan-
nels without explicit messages. this feature
is peculiar to CSP (it relies on the semantics of the
“alternative send”), it is always the case that in a
synchronous communication scheme (e.g., Ada,
Occam) the sender of a message gets some knowl-
edge about the receiver’s state when the message is
accepted. The only potential problem is the effi-
cient realization of Rule 1’. In practice, howe
it should be possible to “pi
ditional one-bit state informati

ge message of the underlying protocol
at no cost.

revious solutions to the distributed termina-
problem based on synchronous communica-

tion which require only one control rcund after
termination have been published by Rana [12] and
by Apt and Richier [4]. ana’; solution uses syn-
chronized real time clocks. Apt and Richier pre-
sent a symmetric algorithm with tightly synchro-
nized virtual clocks. In their solution the clocks of
the sender and the receiver are synchronized after
every basis co unication, requiring two control
messages fez each basic message.

Our principle can also be applied to control
topologies other than ring3 (e.g., trees [14], star
networks, and parallel or sequential graph traver-
sal schemes) where a particular process can “col-
lect” the colors of the other processes. To detect
messages which are sent to already visited
processes and to differentiate these messages from
messages which, during a pri=viaus control round,
have been sent by already visited processes to
processes which have not yet been visited (mes-
sages of type (b) and (9) in Fig. 2), a state module
3 is sufficient. Rule 1’ is then replaced by the

1”. A process in state s sending a basic
message to a recipient in state (s + 1) mod 3 be-
comes black.

PI

121

131

141

161

K.R. Ap:; Correctness proofs of distributed termination
dgorii~?W+ 4 CM Trans. Programming Languages .%tems

(1986) 388-405.
.R. Apt, L. Bough and Ph. Cbrmont, Two normal fo

theorems for CSP programs., Inform. Process. L&t.
(1987) 165-171.
K.R. Apt and N. Framxz, odeling the distributed

termination convention of CSP, ACM Trans. Progrum-
ming Languages Syswns 45 (1984) 370-379.
K.R. Apt and J..,L. Richier, Real time clocks versus virtual
clocks, In: M. Broy, ed., Control Flow and Data Flow:
Concepts of Distributed Programming (Springer, Berlin,
lCP5) 475-501.
A.J. Bernstein, Output min

‘%xnmunicating sequen Pro-

gramming Languages and Systems 2 (1
e existence cf generic broadcast al-

s

207

Volume 31, Number 4 INFOiUUTION PROCESSING LETTERS 22 May i989

processes, In: J. van Leeuwen, ed., Prxz 2nd Internat.
Workshop o,t Distributed Algorit!uns, Lecture Notes in
Computer Science, Vol. 312 (Springer, Berlin, 198&)
388-407.

[7] G.N. Buckley and A. Silberschatz, An effective impI+
mentation for the generalized input-output construct of
CSP, ACM Trans. Programming Languages Systems 5
(1983) 223-235.

[8] K.M. Chandy and L. Lamport, Distributed snapsh.3ts:
Determining gIobaI states of distributed systems, ACA4
Trans. Comput. Systems 3 (1985) 63-75.

[9] E.W. Dijkstra, W.H.J. Feijen and A.J.M. van Gasttren,
Derivation of a termination detection algorithm for dis-
tributed computations, Inform. Process. L,ett. 16 (1383)
217-219.

[lo] C.A.R. Hoare, Communicating sequential processes,
Comm. ACM 21 (1978) 666-677.

[ll] R.B. Kieburtz and A. Silberschatz, Comments on “Com-
muticating sequential processes”, ACM Trans. Program-
ming Languages Systems I (1979) 218-225.

[12] S.P. Rana, A distributed solution of the distributed
termination problem, Inform. Process. Lett. ‘I (1983)
43-46.

[13] A. Stiberschatz, Communication and synchronization in
distributed systems, IEEE Trans. Software Eng. SE5
<I9799 542-546.

[14] R.W. Topor, Termination detec for distributed com-
putations, Inform. Process. Lett. 1984) 33-36.

[15] J.P. Verjus, On the proof of a distributed algorithm,
Inform. Process. L.ett. 25 (1987) 145-147.

[16] D. Zabel, Normalform-Transformationen fir CSP-Pro-
gramme, Informatik - Forschung und Entwickiung 3
(1988) 64-76.

