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In recent years, a surprising number of distrib- 
uted termination detection algorithms with vari- 
ous characteristics have been presented. One of 
the most elegant solutions is deriv-ed stepwise to- 
gether with an invariant and is due to Dijkstra, 
Feijen and van Gasteren [9]. Discussions of the 
pr&iple and variants can be found rn [1,14,15]. 
We present a similar algorithm which detects 
termination faster under the assumption that 
whenever a (synchronous) message is sent from 
some process Pi to another process Pi, an 
acknowledgement carrying a one-bit status mfor- 
mation is sent in the opposite direction. This can 
usually be done at negligible cost without an 
explicit message. 

We consider n processes PI, . . . , P, (n >/ 2), 
each being either active or pas&e. In an underly- 
ing computation, the processes cooperate by ex- 
changing synchronous messages (so called basic 
messages). The computation satisfies the following 
conditions [IQ]: 

(1) only active processes may send messages, 
(2) a process may change from passive to active 

only on receipt of a 
(3) a process may chang 

are not only interested in a method by which a 
given process P, is enabled to detect termination 
when it has occurred, but in an efficient control 
algorithm which enables P, to determine whether 
the underlying computation 

(a) has terminated before the control algorithm 
finished, or 

(b) had not yet terminated when the algorithm 
was started. 

If the underlying computation terminates while 
the control algorithm is running, either result is 
accepta call an algorithm with these prop- 
erties a tion test. Such an algorithm can be 
regarded as a specialization of a general stable 
property detection algorithm for distributed sys- 
tems [8]. Notice that since nontermination is not a 
stable property, it is impossible to state that a 
distributed computation is still active “now”. We 
assume that the underlying compu&ion is started 
before the termination test. 

As opposed to a termination detection al- 

can be reactivated in 

be a more reasonable 
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never reports a “negative” result. Those detection 
algorithms which proceed in rou& (e.g., [4,12]) 
may ako detect case (b). On the other hand, any 
tetiation test algorithm can easily be trans- 
formed into a detection algorithm (with possibly 

unbounded message complexity) by simply restart- 
ing the algorithm after a negative result. 

Although the algorithm in [9] is not efficient 
when used as a termination test, we use it as a 
starting point by presenting a version with a 
slightly changed set of rules, to allow for the early 
announcement of a “negative” result. We assume 
that for the purposes of the termination test, a 
control token circles around a ring P,, P,_ ,, . . . , P,, 
Pn. Notice that being passive does not prevent a 
process from sending or receiving the token. We 
further assume that the token and the processes 
can be either black or white; initially, all processes 
are supposed to be white. The following rules 

A process sending a basic message to a 
recipient with a higher index than its own be- 

P,, when passive, may initiate a test by 

active process keeps the token until 

process Pi (i # n) which has 
s a black token if Pi or the 

token is black, otherwise it propagates a white 

A process transmitting the token be- 

receives a black token for the first 

f P’ receives a black token the second 

sent to P, that has no effect, it simplifies Rules 
6-8.) 

To see why a second round is necessary in most 
cases (Rule 7), a time diagra (Fig. 1) is useful. 
According to Rule 1, Pz becomes black when 
sending message (a). If this were the last message 
of the underlying computation and all processes 
were passive shortly afterwards, the system would 
already be terminated at the time instant the 
“current’ ontrol round is started. The token then 
becomes ack when passing by P2, resulting in a 
false alarm. A second round is guaranteed to 
return a white token, since the first round made 
all processes white (Rule 5). To avoid false alarms, 
an algorithm has to distinguish case (a) from case 
(b) where a message is sent to a node which has 
already been visited by the token in the currergt 
control round. 

According to Rule 3, active processes delay the 
propagation of the token While this is acceptable 
for termination detection (in every control round 
except the last one, at least one basic message is 
exchanged, thereby bounding the number of token 
passes), it slows down the termination test. Espe- 
cially to enable a fast negative response in the case 
the computation is not terminated, Rule 3 could 
be replaced by the following rule. 

3’. An active process Pi (i’ z n j which has 
the token propagates a black token. 

When the token encounters an active process, a 
second confirmation round (Rule 7) is not neces- 
sary. The changes of the rules which take into 
account this possibility are straightforward. 

. 

previous 
control round 

current 
control round 

/ I.-&b 
black 

2 
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time - 

Fig. 1. 
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Fig. 2. 

We now show how to modify the algorithm in 
order to enable a test in one single round (even if 
the loken did not encounter an active process) 
such that Rule 7 and Rule 8 can be replaced by 
the following one. 

7’. If P, receives a black token it an- 
no s the failure of the test. 

The general idea of the improvtment is simply 
that (according to the comments concluding the 
last section) a process has to register precisely 
those messages it sends to other processes which 
have already been visited by the token in the 
current control round. These are necessarily 
processes with a higher index. For that purpose a 
binary state indicator with values 0 (or “even”) 
and 1 (“odd”) is postulated to exist in each pro- 
cess which is initia’iized to 0. To achieve that the 
control token changes the value of the state indi- 
cator (see Fig. 2), Rule 5 is replaced by Rule 5’. 

5’. A process sending the token becomes 
white and changes its state. 

If care is taken that at any time at most one 
token exists (i.e., P, does not restart the algorithm 
before the completion of a previous control round), 
then exactly those messages which cross the diago- 
nal line representing a “control wave” in the time 
diagram (messages (b), (c), and (d) in Fig. 2) are 
received in a different state than they were sent. 
Only messages of type (b) are of interest here, 
le the following replacement cf Rule 1. 

A process sending a basic r:essage to a 
recipient in a different state and with a higher 
index than its own becomes black. 

Obviously, the sender of the message must be 
informed about the state of the receiver. We will 
discuss in the next section how this can be 
achieved. Surprisingly, in CSP this can be 

without explicit messages and without changing the 
underlying communication protocol. 

Notice that on the one hand %‘Z 
I’, 5’, and 7’ other hand are al 
(i.e., an algorithm based on I’, 2, 3 (instead of 3’), 
4, 5’, 6, 7’ is also a valid termination test). 

When used as a termination detector an&~- 

gously to [9] (i.e., when the next round is initiated 
auton atically after an unsuccessful test), the origi- 
nal Rule 3 should be used instead of Rule 3’ in 
order to bound the number of control messages. 
Rule 7’ then becomes as follows. 

7”. If P, receives a black token it starts h 

The new detection algorithm (based on Rules 1’ \ 
2, 3, 4, 5’, 6, 7”) usually generates less messages 
and detects termination faster than [9] (based on 
Rules l-6, 7”), since no extra round after 
termination is necessary. The original algorithm 
[9] needs an extra confirmation round whenever 
some process sent a message to a process with a 
higher index after the previous round. In particu- 
lar, a single round is sufficient if the algorithm is 
initiated after termination. 

In [9] an invariant is established which (when 
stated verbally) reads “if the token is white then 
all processes the token has visited in the current 
round are passive or at least one process the token 
has not yet visited is black”. It is easy to see that 
our variant of the algorithm satisfies this invariant 
and is therefore correct. 

4. An im entatim in CS 

Rule 1’ requires that the sender is informed 
about the state of the receiver. We contend that in 
virtually all cases this can be done at no extra cost 
once a connection between two processes has been 
established by an un&+ying protocol and the 
processes have synchronized for communication. 
Since usually the transmission of a message is 
acknowledged by a control message (which un- 
blocks the sender), it shou be easy to let the 
one-bit state information piggyback” on the 

ment. Abstract im 
cation 

recesses co 
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information about the state of each process must 
be exchanged by the nontrivial handshaking pro- 
tocol anyhow in order to reach agreement among 
the processes in selecting matching communica- 
tion commands [7,11,13]. 

We now show how a CSP program P = 
[PI ii - 11 Pm] without a termination test can be 
systematically transformed into another program 
P’ with an incorporated termination test based on 
the previously stated rules. As usual we make use 
of an extended version of the original CSP defini- 
tion [lo], where not only input commands are 
allowed in guards, but also output commands [5]. 
This extension is powerful since it allows signals 
to propagate backwards as has been notified by 
Rouge 161. As shown in 12,161 we may assume 
without loss of generality that each process Pi is 
already transformed into a semantically equivalent 
normal form 

Pi : : INIT; 

1 
with a top level repetitive command, where each 

is m optional boolean expression list and none 
the lists IN~T and S, contains an I/O command 

or repetitive command. The index sets Fi and r. 
are assumed to be disjoint (F, n F. = @). We only 
consider simple variables and expressions in I/O 
commands; structured variables and expressions 
[lo] can be handled analogously by tagging the 
construction identifier with “even” or “odd”. 

For the purpose of termination detection, those 
alternative parts c B, ; Pj,?Vk with input gu ~3s 

for which j, < i (a message is received from a 
process with a smaller index) are split up into two 
parts: 

Cl state = 0 ; B, ; qJeven( V,) + S,, 
q state = 1 ; k ; <sodd(&) + S,. 

The alternative parts IzU#~ ; qk!e, with output 
i (a message is sent to a 

206 

The expression constructors “even” and “odd” 
match a corresponding input command only if the 
receiver is in state 0 or 1, r ectively. The sender 
sets the boolean flag “bl ’ whenever it finds 
out that it is in a different state, thus complying 
with Rule 1’. 

For the propagating of the token we add two 
guarded commands at the top-level loop to all 
processess PI,. . . , P, _ 1. They implement Rules 3’, 
4, and 5’ (if i = 1, then Pi_ 1 denotes P, ). 

•I Pi+ ,?token(color) + have_ token := 
q have, token ; 

<_ , ! token(color V black V ,PASSIVE) -D 
s@; 

state := (state + 1) mod 2. 

PASSIVE may be seen as a system variable indicat- 
ing whether the process is active or passive. 4, 
possible interpretation of PASSIVE, whicn is con 
sistent with the spec&cations in Section 1, con- 
sists of the following definition: 

PASSIVE = “ the process is at its top level loop” 
/WkEl-& -,B,. 

This predicate can easily be implemented. Notice, 
however, that it does not handle the cases where 
some output commands are enabled but perma- 
nently (or temporarily) blocked because the receiv- 
ing processes are not ready to accept the messages. 
For the sake of simplicity we also ignore the 
so-called Distributed Termination Convention [3] 
and other problems caused by processes which 
terminate by leaving the top-level loop of the 
original program. 

For the purpose of termination detection the 
token should only be accepted or propagated if 
the process is passive (Rule 3 instead of Rule 3’). 
The guarded commands may then be changed to 

CI PASSIVE ; Pi + ,?token(color) * l l 9 

•I have_ token ; P~srv~ ; 

Pi_ 1 ! token (color V black) + l l I . 

It is not possible, however, to combine the com- 
mands into one single command 

•I PASUVE ; Pi+ ,?token(color) + 
Pi_ 1 !token(color V black) ; l l l 

since the use of an unconditional output com- 
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P, has a special role since it initiates the control 
round and has to announce the result. Because of 
Rule l’, P, can never become black. 
that @ART and TERMINATED are two 
an obvious way by the “environment” or parts of 
the program not shown here according to rules 2, 
6, and 7’. 

state := (state -b 1) mod 2 
•I &?token(color) + 

TERMINATED := -,color. 

When detecting termination, Pn should inform all 
other processes which may then terminate prop- 
erly in the sense of [lo] b;; leaving the top level 
loop. Otherwise P, may restart th 
some later time by setting START t 

Finally, we note the initializa 
trol variables added to the INIT parts: 

The default initial value of START should be 

The implementation in CSP makes use of a 
trick due to Boug& [6] which allows to transmit 
information backwards along u tional chan- 
nels without explicit messages. this feature 
is peculiar to CSP (it relies on the semantics of the 
“alternative send”), it is always the case that in a 
synchronous communication scheme (e.g., Ada, 
Occam) the sender of a message gets some knowl- 
edge about the receiver’s state when the message is 
accepted. The only potential problem is the effi- 
cient realization of Rule 1’. In practice, howe 
it should be possible to “pi 
ditional one-bit state informati 

ge message of the underlying protocol 
at no cost. 

revious solutions to the distributed termina- 
problem based on synchronous communica- 

tion which require only one control rcund after 
termination have been published by Rana [12] and 
by Apt and Richier [4]. ana’; solution uses syn- 
chronized real time clocks. Apt and Richier pre- 
sent a symmetric algorithm with tightly synchro- 
nized virtual clocks. In their solution the clocks of 
the sender and the receiver are synchronized after 
every basis co unication, requiring two control 
messages fez each basic message. 

Our principle can also be applied to control 
topologies other than ring3 (e.g., trees [14], star 
networks, and parallel or sequential graph traver- 
sal schemes) where a particular process can “col- 
lect” the colors of the other processes. To detect 
messages which are sent to already visited 
processes and to differentiate these messages from 
messages which, during a pri=viaus control round, 
have been sent by already visited processes to 
processes which have not yet been visited (mes- 
sages of type (b) and (9) in Fig. 2), a state module 
3 is sufficient. Rule 1’ is then replaced by the 

1”. A process in state s sending a basic 
message to a recipient in state (s + 1) mod 3 be- 
comes black. 

PI 

121 

131 

141 

161 
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