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A b s t r a c t .  It is shown that the termination detection problem for distributed com- 
putations can be modeled as an instance of the garbage collection problem. Conse- 
quently, algorithms for the termination detection problem are obtained by applying 
trausformations to garbage collection algorithms. The transformation can be ap- 
plied to collectors of the "mark-and-sweep" type as well as to reference counting 
garbage collectors. As an example, the scheme is used to transform the weighted 
reference counting protocol. 

1 In troduct ion  

A substantial amount of the research efforts in distributed algorithms design has been de- 

voted to the problem of detecting when a distributed computation has terminated. There 

are several reasons for the impressive number of publications on this subject. First, as 

the problem has shown up under varying model assumptions and there are several solu- 

tions for each model, a really large number of different algorithms has emerged. All these 

algorithms were published separately, because unifying approaches, treating a number of 

algorithms as a class, have been rare. Second, the problem of termination detection, being 

su~ciently easy to define and yet non-trivial to solve, has been seen as a good candidate 
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to illustrate the merits of design or proof methods for distributed algorithms. Third, it 

has been observed that the fundamental difficulties of the termination detection problem 

are the same as those of other problems in distributed computing. Termination detection 

algorithms are related to algorithms for computing distributed snapshots [CL85], and 

detecting deadlocks [CMH83]. Thus the problem is seen to be important both from a 

practical, algorithmical, and from a theoretical, methodological point of view. 

From both points of view we consider it useful to recognize general design paradigms 

for distributed termination detection algorithms. One such paradigm was described in 

[Te90]. A new paradigm is presented in this paper: it is shown that termination detection 

algorithms are obtained as suitable instantiations of garbage collection algorithms. A 

connection between the two problems was pointed out before. Tel, Tan, and Van Leeuwen 

[TTL88] have shown that garbage collection algorithms (of the so-called mark-and-sweep 

type, see section 1.2) can be derived from termination detection algorithms. Using a 

different transformation, garbage collection algorithms of the reference counting type can 

also be derived from termination detection algorithms, see section 4.1. The results in this 

paper further strengthen this connection by presenting a transformation in the reverse 

direction. 

Subsections 1.1 and 1.2 introduce the termination detection problem and the dis- 

tributed garbage collection problem. Section 2 describes how the termination detection 

problem can be formulated as garbage collecting one hypothetical object and derives 

the algorithmical transformation. Section 3 provides an example of the transformation. 

Section 4 contains some additional remarks and comments. 

1.1 The  Terminat ion Detec t ion  Prob lem 

The problem of termination detection is described formally as follows. A collection P of 

processes is considered, communicating by message passing. For the sake of simplicity it 

is assumed that P is a fixed collection, but the results in this paper are easily generalized 

to ilandle process creation and deletion as well. A process is either passive or active. 

Active processes can send messages, but passive processes cannot. An active process can 

spontaneously become passive, but a passive process can become active only on receipt of 

a message. Formally, the allowed actions of the processes are described as follows. (In all 

programs to follow, actions axe atomic and braces ("{" and "}') enclose a guard for an 

action.) 

Sv: { stat% = active } 

send a message (M} 
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Rv: { A message has arrived } 
receive message (M) ; state v := active 

Ip: { statep = active } 

statep := passive 

Define the termination condition as: 

No process is adtive and no messages are in transit. 

When processes behave as described, this condition is stable: once true, it remains so. The 

problem of termination detection now is to superimpose on the described basic computa- 

tion a control computation which enables one or more of the processes to detect when the 

termination condition holds. To this end a new special state terminated is introduced for 

each process. The following two criteria specify the correctness of the control algorithm. 

T1 Safety. If some process is in the terminated state then the termination condition 

holds. 

T2 Liveness. If the termination condition holds, then eventually some process will be in 

the terminated state. 

A passive process may take part in this control computation, and receiving control mes- 

sages does not make a passive process active. 

Solutions to the termination detection problem are non-trivial, mainly due to the 

possibility that a process becomes active a~ter being observed as passive by the control 

algorithm. Several classes of solutions are known. The most important ones are those 

based on probes and those based on acknowledgements. The best known example of the 

former class is [DFG83], and a general treatment is given in [Te90]. Examples of the 

latter class are [DSS0, SF86]. Solutions based on counting sent and received messages are 

proposed in [Ma87]. 

1.2 T h e  D i s t r i b u t e d  Garbage Col lec t ion  P r o b l e m  

As our approach for deriving termination detection algorithms is based on solutions to 

the garbage collection problem, we shall now describe this problem in a model which is 

close to the model of Lermen and Maurer [LM86]. The advantage of this model is that it 

abstracts from aspects which are not relevant to our purposes, such as processors, memory 

cells, and the difference between "local" and "remote" references. 
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An (object-oriented) distributed system consists of a collection O of cooperating ob- 
jects. A subset of O is designated as root objects. Objects are able to hold references to 

other objects. These references can be transmitted in messages, see below. A reference 

to an object r will be called an r-reference. An object r is a descendant of q if q holds an 

r-reference or a message containing an r-reference is in transit to q. An object is reach- 
able if it is a root object or a descendant of a reachable object. An object p holding an 

r-reference may delete it, after which p no longer holds this reference. Also, a reachable 

object p holding an r-reference may copy the reference to another object q, by sending 

an r-reference in a message to q. Object q will hold an r-reference after receipt of this 

message. An object can have multiple references to the same target object. 

An object is called garbage if it is not reachable. As only reachable objects Copy refer- 

ences, only references to reachable objects are copied, and thus a garbage object remains 

garbage forever. For reasons of memory management it is required that garbage objects 

are identified and collected. This task is taken care of by a garbage collecting algorithm. 

The following two criteria define the correctness of a garbage collecting algorithm. 

G1 Safety. If an object is collected, it is garbage. 

G2 Liveness. If an object is garbage, it will eventually be collected. 

Many solutions have been proposed to the distributed garbage collection problem, 

most of which fall into one of two categories: collectors of the reference counting type and 

collectors of the mark-and-sweep type. Both types of solutions have been known for over 

30 years for classical, non-distributed systems [Co60, McC60]. 

Collectors of the first type [LM86, WW87, Be89] maintain for each non-root object 

a count of the number of references in existence to that object. References in other 

objects as well as references in messages are taken into account. The reference count 

is incremented when a corresponding reference is copied, and decremented when such a 

reference is deleted. When the count for an object drops to zero, it can be concluded that 

the object is garbage and consequently the object can be collected. Reference counting 

garbage collectors are unable to collect cyclic garbage (a collection of garbage objects 

pointing to each other). As will be seen at the end of section 2, this does not render our 

transformation invalid for reference counting garbage collectors. 

Collectors of the second type [Dij78] mark all reachable objects as such, starting from 

the roots and recursively marking all descendants of marked objects. In this way all 

reachable objects become marked eventually. The design of the marking a~gorithm is 

complicated by the possibility that references are copied and deleted during its operation. 

The objects must cooperate with the marking algorithm, e.g., by also marking objects 
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when references are copied, cf. [Dij78]. When the marking phase is terminated a sweep 

through all objects is made, in which all unmarked objects are collected. These two phases 

are repeated as long as necessary. 

2 Termination Detection Using Garbage Collection 

In this section we describe how the termination detection problem in general can be 

modeled as an instance of the garbage collection problem. As a result, solutions to 

the termination detection problem can be derived from garbage collection algorithms, of 

which an example will be shown in section 3. First the collection O of objects used for 

this purpose is described, as well as the behavior of these objects. Next it is shown that 

the termination condition is equivalent to one particular object becoming garbage, so 

termination can be detected by a garbage collection algorithm. 

Recall that P is the set of processes whose termination is to be detected. The collection 

O of objects consists of one root object A~ for every process p in P, and a single indicator 

object Z. Object Ap mimics the behavior of process p as far as the basic computation 

is concerned (it sends and receives p's basic messages, and has all the variables p has). 

Messages may contain a reference, in which case the message is a copy message for that 

reference. Object Ap is called passive (active) when the mimicked process p is passive 

(active). As Ap is a root object, it is always reachable. 

The indicator object Z is not a root object. Its only purpose is to indicate the termi- 

nation condition with its teachability status by the following equivalence, which will be 

maintained during execution. 

(IND) Z is garbage ¢~ the termination condition holds. 

Theorem 2.1 IND holds when the following two rules are observed: 

R1 An object holds a Z-reference if and only if it is active. 

R2 Each message of the basic computation contains a Z-reference. 

Proof .  Z is garbage is equivalent to: Z is not a descendant of any of the A v. By 

definition, this means that no A v holds a Z-reference, and to no A v a message is in 

transit containing a Z-reference. By R1 and R2 this is equivalent to: no A v is active and 

to no Ap a message (of the basic computation) is in transit. This is the definition of the 
termination condition. O 
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It remains to be shown how R1 and 1t2 can be maintained. It is possible to ensure 

through proper initialization that R1 and R2 hold initially. To this end, assume that active 

objects are initialized with the necessary Z-reference, and passive objects without it, and 

that messages in transit initially contain the reference also. To maintain R1 and R2 during 

the distributed computation, each transmission of a message copies the Z-reference, and 

processes delete their Z-reference when they become passive. More explicitly, the actions 

to be carried out by A~ axe modified as follows: 

Sp: { state n =  active } 

send a message (M~ Z) 

1%: { A basic message has arrived } 

receive message (M, Z) ; s t a t e  n := active ; 

insert Z in the references of A n 

{ state n = active } 

state n := passive ; 

delete Z from the references of Ap 

With these modifications R1 and R2 are maintained indeed. R1 is maintained because 

Z-references are deleted in action I~, and inserted in action P~,. The latter is possible 

because the message contains a Z-reference by R2. R2 is maintained because in action Spa 

Z-reference is included in every message. This is possible because only active objects send 

messages, and these objects contain a Z-reference by R1. Thus R1 and R2 are maintained 

during computation, and by theorem 2.1 IND holds. To arrive at a termination detection 

algorithm, superimpose upon the objects as described a garbage collection algorithm to 

detect that Z is garbage. The garbage collection algorithm is then modified so as to 

inform the objects Ap when Z is identified as gazbage. (On receiving this notice, the root 

objects enter the terminated state. We omit this (trivial) operation from the description 

of the algorithms that will follow.) 

T h e o r e m  2.2 The algorithm as constructed satisfies conditions T1 and T#. 

Proof .  Assume any process enters the terminated state. This happens upon notice that 

Z is collected. By the correctness of the garbage collection algorithm (condition G1) this 

implies that Z is garbage. By IND the termination condition holds. 

Assume the termination condition holds. By IND, Z is garbage, hence, by the liveness 

of the garbage collector (condition G2) Z will eventually be collected. Notice of this will 

be sent to the processes, and these will enter the terminated state in finite time. [] 
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Garbage collectors of the reference counting type are not able to collect cyclic struc- 

tures of garbage, which may possibly harm the liveness of the termination detection 

algorithm. It is, however, easily seen that Z is not part of such a cyclic structure, and in 

fact the following, stronger equivalence holds. 

There are no references to Z ~ the termination condition holds. 

S u m m a r y  of  t h e  t r ans fo rmat ion .  The construction of a termination detection algo- 

rithm is summarized in the following four steps. 

1. Form the set O of objects, consisting of the root objects Ap and one indicator object 

Z. 

2. Superimpose upon the actions of the basic computation the handling of the Z-  

reference. 

3. Superimpose upon this combined algorithm a garbage collection algorithm. 

4. Replace the collection of Z (or its identification as garbage) by a notification of 

termination. 

3 A n  E x a m p l e  of  the  Transformat ion 

The transformation described in section 2 can in principle be applied to any garbage col- 

lection scheme, of the reference counting as well as the mark-and-sweep type, or working 

according to other principles. In this section we consider the transformation of a garbage 

collection algorithm based on weighted reference counting. The resulting termination 

detection algorithm turns out to be an already known algorithm: it was proposed in 

[Ma89]. More derivations, yielding new and non-trivial termination detection algorithms, 

are found in the full paper [TM90]. 

In a weighted reference counting scheme, each reference has an associated positive 

weight. Each object o maintains a reference count, which equals (barring certain update 

delays) the total weight of existing o-references. (The term "reference weight accumu- 

lator" might be more appropriate for this variable, but in accordance with the existing 

literature we shall continue to use the word "count".) When a reference is copied, its 

weight is split among the existing and the new reference. Thus, although the number of 

references increases, the weight remains the same, and the reference count need not be in- 

cremented and no message need be sent to the referenced object. When an object deletes 

an r-reference, a decrement message is sent to r, reporting the weight of the deleted 
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reference. Upon receipt of this message, r subtracts this weight from its reference count 

(and is collected if the count drops to zero). 

3.1 Description of the Scheme 

Distributed weighted reference counting schemes have been given by Watson and Watson 

[WW87], Bevan [Be89], and others. In the description below the mechanism to create 

new objects is omitted, because in the transformation no new objects are ever created. 

An o-reference is a tuple (o, w), where w denotes the weight of the reference. Initially 

for each non-root object o, the reference count RCo equals the sum of the weights of all 

existing o-references. The following (atomic) actions can take place. ( C I ~  represents 

the sending of a copy message, R R  v the receipt of such a message, D I ~  the deletion 

of a reference and the associated sending of a decrement-weight message, and RDo the 

receipt of such a message.) 

CP~: { p holds reference (o, w) } 

send cop(o, w/2)  to q ; w := w / 2  

rtl%: { A message cop(o, w) has arrived at p } 

receive cop(o, w) ; 
if p has an o-reference 

t h e n  add w to its weight 

else insert the o-reference with weight w 

Dl%: { p holds reference (o, w) } 

send dec(o, w) to o ; delete the o-reference 

RDo: { A dec(o, w) message has arrived at o } 

receive dec(o, w) ; RCo := RCo - w ; 

if  RCo = 0 t h e n  collect o 

Action R I ~  guarantees that in this scheme an object has at most one reference to 

each other object. A correctness proof and analysis of the scheme is found in [WW87] or 

[Be89] and is based on invariance of the following two assertions: 

1. Each reference has a positive weight; each delete message contains a positive weight. 

2. RCo = ~.~R=(o,w) w + ~D=dec(o,w) w, where R ranges over all o-references in existence 

(including cop messages) and D ranges over all delete messages in transit. 
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3 . 2  T r a n s f o r m a t i o n  i n t o  a T e r m i n a t i o n  D e t e c t i o n  A l g o r i t h m  

To transform the garbage collection scheme into a termination detection algorithm we 

apply the four--step construction of section 2. 

1. The set O of objects consists of the objects A n and the indicator object Z. 

2. Superimpose upon the actions of the basic computation the handling of the Z -  

reference. This yields the following program text. 

Sn: { s ta te  n =  active } 

send a message (M, Z) 

{ A basic message has arrived } 

receive message (M, Z) ; s tate  n := active ; 

insert Z in the references of A n 

{ s ta te  n = active } 

s ta te  n := passive ; 

delete Z from the references of Ap 

. Superimpose the reference counting scheme upon these actions. To this end, action 

C R  n is included in action Sn, action R R  n is included in action Rv, and action 

D R  n is included in action I n. For o the object Z is substituted. This results in the 

following program text. 

Sp: { s ta te  n = active and p holds reference (Z, w) } 

send a message (M, cop(Z, w/2)) ; w := w / 2  

{ A basic message has arrived } 

receive message (M, cop(g,  w)); staten := active; 

if p has a Z-reference 

t h e n  add w to its weight 

else insert the Z-reference with weight w 

{ staten = active } 

s ta te  n := passive ; 

send dec(Z, w) to Z ; delete the Z-reference 
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RDz:  { A dec(Z, w) message has arrived at Z } 

receive dec(Z, w) ; R C z  := R C z  - w ; 

if  R C z  = 0 t h e n  collect Z 

. Replace the collection of Z by a notification of termination. Some more simpli- 

fications can be made in addition: the actual handling of the Z reference can be 

removed; instead we equip every process p with a variable Wp, representing the 

weight of p's (virtual) Z-reference (0 if p has no such reference). The subscript Z 

is dropped. This finally results in the following algorithm. 

Sp: { s tar% = active } 

send a message (M, W . / 2 )  ; Wp := Wp/2 

%: { A basic message has arrived } 

receive message (M, W}; s tar% := active; 

{ s ta t% = active } 

statep := passive ; 

send dec(Wp) to Z ; Wp := 0 

RD: { A dec(W) message has arrived at Z } 

receive dec(W) ; R C  := R C  - W ; 

if R C  = 0 t h e n  send t e r m  to all Ap 

The initial conditions for this algorithm are: Wp = 0 if p is passive; Wp > 0 if p is 

active; R C  = ~p Wp; and no messages are in transit. (Or, if there are messages, 

R C  correctly reflects their weight.) 

The termination detection algorithm that has just been derived is known as the Credit 

Recovery algorithm [Ma89]. The algorithms discussed in this section face the problem 

of so-called weight underflow. When weights are represented in a finite number of bits, 

there exists a smallest positive value a weight can take, and it is not possible to split 

this weight in two positive parts. Furthermore, the accumulation of small fragments may 

cause problems. Solutions to these problems and variants of the scheme may be found in 

[Be89, Ma89]. 
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4 C o n c l u s i o n s  

In this paper we have presented a transformation of garbage collection schemes into ter- 

mination detection algorithms. Applying the transformation to the weighted reference 

counting scheme, we have derived the Credit Recovery algorithm for termination detec- 

tion. Virtually all garbage collection schemes can be transformed into sensible termination 

detection algorithms. The full paper [TM90] contains derivations of more termination 

detection algorithms, including three new ones: the Activity Counting algorithm, the 

Generational termination detection algorithm, and a "dual-tour" token algorithm for a 

ring of processes. It also contains a discussion of several related aspects, of which we only 

sketch two here. 

4.1 Reverse  Transformation 

It is also possible to transform a termination detection algorithm into a reference counting 

garbage collection scheme. The aim of a reference counting algorithm is to collect an object 

o when all o-references (in objects) have been deleted and no more o--references are in 

transit (in copy messages)° 

An object is defined to be o-active if it holds an o-reference and o-passive otherwise, 

and a message is called an o-activation message if it carries an o-reference. Under these 

definitions, an o-passive object becomes o-active only upon receipt of an o-activation 

message, and only o-active objects send o-activation messages. Now the o-termination 

condition, defined as: 

No process is o-active and no o-activation messages are in transit 

is stable and can be detected by a termination detection algorithm. Furthermore 

(RT) There are no o-references ~e~ the o-termination condition holds. 

To arrive at a reference counting garbage collection algorithm, a termination detection 

algorithm is superimposed on the o-reference handling. When o-termination is detected, 

o is collected. For each object a separate instance of the termination detection algorithm 

is executed concurrently. 

Although this transformation could be applied to any termination detection algorithm, 

the resulting reference counting garbage collection scheme would not be feasible in all 

cases. A complete algorithm along these lines, based on the algorithm in [DSS0], was 
proposed by Rudalics [Ru90]. 
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4.2 Deadlock  Detec t ion  

The termination detection problem is an instance of a class of detection problems in 

distributed systems. Communication deadlock detection is a generalization where also 

a part of the network can be terminated. In this problem, for each passive process a 

subset of the processes is determined at the moment it becomes passive. The process can 

become active only by receiving a message from a process in this subset. The termination 

detection problem is obtained, when each process always chooses the full set of processes. 
We are currently investigating how the approach in this paper can be generalized to derive 

(mark-and-sweep) deadlock detection algorithms from garbage collection algorithms. 
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