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Abstract

It is shown that distributed termination detection algorithms can be

transformed into e�cient algorithms to approximate the so-called Global

Virtual Time (GVT) of a distributed monotonic computation. Typical in-

stances of such computations are optimistic distributed simulations based

on the time-warp principle. The transformation is exempli�ed for two ter-

mination detection algorithms, namely an algorithm by Dijkstra et al. and

a new scheme based on the principle of \sticky ags". The general idea of

the transformation is that many termination detection algorithms (viz., one

for each possible GVT value) run in parallel. Each algorithm determines a

speci�c lower bound on the current GVT value. In a straightforward way,
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the possibly in�nite bundle of parallel termination detection algorithms

can be combined into a single distributed algorithm which computes a

tight lower bound on the GVT.

Categories and Subject Descriptors: D.1.3 [Programming Tech-

niques]: Concurrent Programming|Distributed programming; I.6.8 [Simula-

tion and Modeling]: Types of Simulation|Distributed ; C.2.4 [Computer{

Communication Networks]: Distributed Systems|Distributed applications.

General Terms: Algorithms, Theory, Veri�cation.

Additional Keywords and Phrases: Distributed Algorithms, Distributed

Termination Detection, Parallel Simulation, Time Warp, GVT, Program Trans-

formations, Assertions, Invariants.

1 Introduction

The purpose of this paper is twofold. First, to present a simple distributed

termination detection scheme based on the paradigm of \sticky ags", and sec-

ond to show how this and other distributed termination detection algorithms

can be transformed into algorithms which determine a lower bound on the so-

called Global Virtual Time (GVT ) of distributed monotonic computations. GVT
approximation algorithms are of great practical importance for distributed simu-

lation systems [14], in particular for those based on the time-warp principle [16].

It was already noted by Je�erson [16] that GVT approximation algorithms are

generalizations of distributed termination detection algorithms. Therefore, GVT
approximation algorithms can be used to detect termination. In this paper we

show that the converse is also true, namely that distributed termination detection

algorithms can be transformed to obtain GVT approximation algorithms.

The paper is structured as follows. Section 2 states the distributed termina-

tion detection problem, presents a simple generic solution based on the \sticky

ag" paradigm, and describes a speci�c instance of it for a virtual ring topology.

In Section 3 the GVT problem and its relation with termination detection are ex-

plained. Also a general transformation from a collection of termination detection

algorithms running in parallel to an algorithm for GVT approximation is given.

Section 4 presents the GVT approximation algorithm that results if we apply

the transformation to the algorithm from Section 2, together with its correctness

proof. Next the transformation is applied to the termination detection algorithm

of Dijkstra et al. Section 5 contains some further remarks and generalizations.
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2 Termination Detection

Distributed termination detection is a \prototype problem" from the area of

distributed computing, which is closely related to other important problems of

the �eld, such as distributed garbage collection [33] and snapshot computation

[6]. It has gained considerable interest in recent years, see for example [5, 11,

12, 20, 21, 32]. This section introduces the termination detection problem and

demonstrates that straightforward solutions to it can be based on simple ideas

whose correctness can be understood intuitively.

2.1 The Problem

Consider a distributed system that consists of processes P1; � � � ; Pn (n � 2).

With respect to the so-called basic computation, a process is always in one of

two states, passive or active. The processes communicate solely by messages,

which are assumed to be transmitted instantaneously. Some of these messages

(but not necessarily all of them) are referred to as activation messages, i.e., they
may render the receiver active. The basic computation behaves according to the

following rules:

(R1) Only an active process is allowed to send activation messages.

(R2) A passive process becomes active when it receives an activation message.

(R3) At any time, a process may change from active to passive.

It is usually assumed that initially at least one process is active. If at some

instant of time all processes are (simultaneously) passive, the basic computation

has reached a stable state and it is said to be terminated. It is easily seen that

when the basic computation is terminated, no activation messages will be sent

any more, and all processes will remain passive forever.

Formally, we model the basic computation as follows. Each process Pi has

a variable statei with values from factive, passiveg. To distinguish activation

messages from other messages of the basic computation, we denote messages as

ht; � � �i where t takes values from factive, passiveg. Thus hactive,� � �i represents an
activation message. We model the behavior of the basic computation by means

of atomic actions such that rules R1, R2, and R3 are obeyed. A process Pi can

execute three di�erent atomic actions: �Ii, �Xi, and �Ri. (A process may execute

other operations that a�ect only variables di�erent from the ones mentioned here.

Since this is of no concern here, such operations are not modeled by actions.) Rule

R3 corresponds to the internal action �Ii.

�Ii: statei := passive

The transmission of a message to a process Pj is described in action �Xi where we

have to take rule R1 into account.
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�Xi: if statei = passive then t := passive ;
send ht; � � �i to Pj

(Note that an active process is allowed to send hpassive,� � �i-messages.) The

receipt action of the basic computation reects that a process becomes activated

by the receipt of an activation message (rule R2).

�Ri: receive ht; � � �i;
if t = active then statei := active

Since we assume instantaneous message transmission, messages can never be in

transit. Therefore, we demand that corresponding send and receive actions are

executed simultaneously. Otherwise, the actions of the computation are executed

sequentially, and they can be executed at any time and in any order.

In this model, termination is equivalent to: 8i statei = passive. The termina-
tion detection problem consists of superimposing on a given basic computation a

control algorithm which detects this global property without interfering with the

underlying computation. The algorithm should satisfy the following two formal

properties.

(T 1) Safety: The algorithm does not detect termination unless the basic compu-

tation has terminated.

(T 2) Liveness: If the basic computation has terminated then the algorithm will

detect termination in �nite time.

Since in a distributed system it is in general impossible to inspect the states of

all processes simultaneously, termination detection is a non-trivial problem.

2.2 A Simple Termination Detection Principle

For a �rst attempt to solve the problem, assume that each process Pi has a state
indicator Si reecting the state of the process (i.e., Si = statei). Then an initiator

may start a control wave which visits all processes and returns the values of the

state indicators. (More e�ciently, it could only return the \accumulated" value

passive if all processes were passive, and active otherwise.) To model algorithms

that implement control waves the concept of total algorithms was introduced in

[31]. Such algorithms can be implemented in various ways; examples include a

control message circulating on a (virtual) ring connecting all processes (see also

Raynal and H�elary [25]), parallel distributed graph traversal schemes such as the

echo algorithm [8], and (virtual) broadcast schemes on a spanning tree.

Unfortunately, however, the values of the state indicators collected in that

way do not allow the conclusion that the basic computation has terminated.

Because of possible reactivations of processes \behind the back" of the wave,

the observation that all processes were passive when being inspected (by the
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wave) does not imply that all processes were passive simultaneously. (Notice that

control messages are not assumed to be transmitted instantaneously; however,

even for instantaneous control messages the complete execution of the control

wave algorithm is not instantaneous because the wave may be delayed at processes

it inspects. Therefore, processes may be reactivated while the wave is in progress.)

An algorithm that announces global termination when it �nds that all Si were

passive may erroneously detect termination.

Sticky Flags. Fortunately, the simple scheme sketched above can easily be

transformed into a correct algorithm. Assume now that the state indicators Si

are \sticky" in the following sense. If a process Pi is activated, the value of Si

becomes (or remains) active. If a process becomes passive, however, Si \sticks"

to active. Before the start of the termination detection algorithm, the state

indicators of all processes are initialized to the value of statei, thus correctly

reecting the state.

Formally, we need to augment the receipt action �Ri of the basic computation

with the proper assignment to Si. The receipt action �Ri becomes:

�Ri: receive ht; � � �i;
if t = active then begin statei := active; Si := statei end

As Si is not set to passive when the state of the process becomes passive, the
internal action �Ii is not changed, nor is action �Xi.

Clearly, if at the start of the control wave some process Pj was active, the

algorithm will not announce global termination because the value of Sj is still

active when it is eventually collected by the wave. Or, to put it in another way: If
the algorithm reports termination, then no process was active at the start of the

wave; hence the basic computation has actually terminated because it was already

terminated when the wave was started. This shows that the implicit semantics of

the sticky state indicators ensures the safety of the resulting termination detection

algorithm.

Unfortunately, however, in the scheme as it stands termination will never be

announced unless all processes were initially passive. To guarantee liveness it is
necessary to repeatedly �rst reset the sticky state indicators to the true values

of their processes' states and then start a new control wave. Then, when the

basic computation terminates, eventually the sticky state indicators will be set to

passive (and never reset to active). Consequently, termination will be announced

at the end of the next wave. In order not to compromise the safety property

however, a state indicator must not be reset to passive between the start of a

wave and the collection of its value.

A concrete instance of the \sticky-ag" scheme using a circulating control

message will be shown in the next section; a formal proof of the liveness and the

safety property for a generalized variant of the \sticky ag" scheme will be given

in Section 4.2.
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2.3 A Termination Detection Algorithm

We now present a concrete instance of the general scheme described above. For

the superimposed termination detection algorithm we assume that the processes

P1; � � � ; Pn (n � 2) are arranged to form a logical ring on which a control message

circulates. (Recall that messages of the basic computation can be sent from any

process to any other process.) The termination detection algorithm makes use

of the variable Si, the sticky state indicator, which reects whether process Pi

has been active since the last visit of the control wave. A dedicated process, Pn,

initiates the algorithm by sending a control message to the next process (i.e., P1)

on the ring:

send hpassivei to P1

When receiving the circulating control message, process Pi executes action �Wi

atomically.

�Wi: (1) receive hMi;
(2) if Si = active then M := active;
(3) if i = n and M = passive then signal termination;

(4) if i 6= n then send hMi to Pi+1

(5) else send hpassivei to P1;

(6) Si := statei

In line (1) the contents of the received message is assigned to M . In line (2)

M accumulates the value of the state indicator Si. If after a complete round M

is still passive (3), termination can be signaled according to the arguments of

Section 2.2. In any case the control message is propagated; at Pn, however, it

must be reinitialized to passive (4, 5). In line (6) the state indicator is reset to

the current value of the system variable statei as described in Section 2.2.

We deliberately dispense with two modi�cations that would make the algo-

rithm more e�cient. First, instead of stopping the algorithm once termination

has been established, the control message continues to circulate. Second, the

control message is not deferred in active processes (i.e., control messages are

propagated in a non{lazy way). In fact, the decision of a process when to prop-

agate the control message is independent of its state. This property becomes

important when the algorithm is used for GVT approximation in Section 4.1.

The algorithm we just described is reminiscent of the well-known termination

detection algorithm by Dijkstra et al. [11]. However, whereas in that algorithm a

ag is set when an activation message is sent, our scheme uses a ag (the sticky

state indicator) which is set when an activation message is received. We shall

come back to Dijkstra's algorithm in Section 4.3.

6



2.4 Variants

Telepathic Computations. Interestingly, the termination detection principle

derived above works independently of the mechanism by which active processes

reactivate passive processes. As far as termination detection is concerned, reac-

tivations may as well be caused by some sort of \telepathy", rather than by the

explicit exchange of activation messages. To model telepathic computations, we

dispense with ruleR1 (i.e., we do not model the sending of messages) and replace

rule R2 by the following \telepathic reactivation rule".

(R20) A passive process may only become active if there exists another process

which is active at that moment.

Of course, due to the lack of global time and common state in distributed sys-

tems, the observance of rule R20 by the basic computation requires some hidden

mechanism using messages. The point is, however, that the \activator" is not

aware that it activates another process. Therefore, in contrast to virtually all

other known termination detection algorithms, the \sticky ag" algorithm does

not need to consider the messages and the send actions �Xi of the underlying

basic computation|the only thing it has to do is to take notice of the fact that

a process becomes active.

It should be noted that termination of \telepathic computations" is not a

stable property in the sense of Chandy and Lamport [6] or Lai and Yang [17]1.

Nevertheless, once an instant of time has been reached where all processes are si-

multaneously passive (i.e., the computation has terminated), the processes remain

passive. Our algorithm can be used to detect this global termination property

of \telepathic computations" as the following argument shows. Whenever some

process Pi becomes active according to rule R20, there exists another active pro-

cess Pj. Conceptually, it can be assumed that Pj sent an activation message to

Pi which reactivated Pi. Hence, rules R1 and R2 are observed. Since nothing

has to be done when sending a (conceptual) message, the \sticky ag" algorithm

can directly be applied on underlying \telepathic computations". This is not the

case for most other termination detection algorithms2.

Synchronous Communication. Instantaneous message transmissions are not

realizable in practice, they are merely an idealization of synchronous communica-
tion [9]. Interestingly, however, the \sticky ag" principle can also be used with

1Since messages do not necessarily exist, it is easy to construct a (consistent) cut where

all processes are passive and a later cut where one or more processes are active. This is due

to the fact that interference between processes by another mechanism than message passing is

not considered. Thus one should rede�ne the concept of \consistent cut" and hence of \stable

property" for telepathic computations.
2For example, the algorithm of Dijkstra et al. [11] requires some control activity whenever a

process sends a message, namely coloring the sending process black. In other schemes, activation

messages must be counted [20] or acknowledged [12].
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the more realistic synchronous communication mode, where the send operation

blocks until the sender knows that the receiver is also blocked and ready to accept

the message. Because the receiver is blocked while the activation message is in

transit (which disables the visit of the receiver by a control wave), one may de�ne

the receiver to be active already at the moment the message is sent (instead of

being activated when the message is actually received). Since by rule R1 the

sender is also active at the moment of sending the message, rule R20 is observed.

Asynchronous Communication. The \sticky ag" scheme can also be

adapted to asynchronous communication. (In that case, the basic computation is

considered to be terminated if all processes are passive and no activation messages

are in transit.) One possibility to detect termination in the asynchronous case is

to acknowledge each activation message and to consider a process to be engaged

in a send operation (and hence to remain active) until the acknowledgement is

received. Obviously, this can be realized by locally counting sent messages and

received acknowledgements and by keeping Si active while there are outstanding
acknowledgements for process Pi. Then, again, rule R20 is observed. It is also

possible to use indirect acknowledgements and to batch acknowledgements; these

techniques are used, for example, in the vector counter algorithm [20].

3 Global Virtual Time and its Approximation

In this section, a particular distributed computation scheme is considered, which

de�nes a monotonic function of the global state. A simplifying assumption is

made about the domain of this function, namely, that it is a set of real numbers.

The Global Virtual Time approximation problem consists of computing a suitable

approximation of this function, as to be de�ned in this section. A treatment of

the generalized problem, in which the domain of the monotonic function is an

arbitrary partially ordered set, is given in [22, 29, 30, 32].

After de�ning the GVT problem, we show how termination detection and

global virtual time approximation are related. This relation then leads to a gen-

eral transformation of termination detection algorithms to GVT approximation

algorithms.

3.1 The Global Virtual Time Problem

Distributed Monotonic Computations. Consider a system of n processes

P1; � � � ; Pn (n � 2). Each process Pi maintains a real{valued variable Ci, referred

to as the clock of Pi. The processes interact by exchanging timestamped mes-

sages. (Again, message transmission is assumed to be instantaneous; basically the

same arguments hold for synchronous communication, however. Asynchronous

communication will be discussed in Section 5.1.)
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The timestamps of the messages and the modi�cation of the clocks satisfy the

following rules.

(S1) The timestamp of a message is at least the clock value of the sender (at the

moment the message is sent).

(S2) On receipt of a message with timestamp t the receiver's clock is set to

Ci := min(Ci; t).

(S3) At any time, a process can increase its clock.

Computations that behave according to these rules are called distributed mono-
tonic computations [22] because the global minimum of all clocks Ci increases

monotonically during the computation. This global minimum is referred to as

the Global Virtual Time (GVT ) of the computation, see Je�erson3 [16]. Typi-

cal instances of distributed monotonic computations are parallel discrete event

simulation systems [14] where local simulator processes cooperate by scheduling

so-called remote events using timestamped messages.

Rules S1{S3 translate to the following three atomic actions to model the

behavior of a distributed monotonic computation. According to rule S3, a process
can increase its clock by an internal action Ii:

Ii: choose d > 0;

Ci := Ci + d

The transmission of a message is governed by rule S1:

Xi: choose t � Ci ;

send ht; � � �i to Pj

The receipt of a message can cause a process Pi to set back its clock. This is

modeled by executing Ci := min(Ci; t) after receipt of a message with timestamp

t (rule S2).

Ri: receive ht; � � �i;
Ci := min(Ci; t)

The Global Virtual Time is de�ned for each global state of the system by the

relation GV T = miniCi. It will �rst be shown that GV T is indeed a non{

decreasing function.

Theorem 3.1 GVT is monotonically non{decreasing, that is, if it is changed, it
is increased.

3Je�erson's original de�nition allows in{transit messages, see also Section 5.1.
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Proof. Computations of the system are modeled as sequences of atomic actions,

so it su�ces to show that GV T does not decrease as the result of an atomic

action.

An internal action Ii increases Ci, possibly increasing, but never decreasing

GV T . As message transmission is instantaneous, a receipt action Ri always

corresponds to a send action Xj for some j (process Pj sends a message to Pi).

For the timestamp t of the message sent t � Cj holds, and min(Ci; t) is assigned

to Ci. Thus min(Ci; Cj) is not decreased, and neither is GV T . 2

GVT Approximation. The GVT approximation problem consists of super-

imposing on the distributed monotonic computation a control algorithm which

maintains a suitable approximation of GV T without interfering with the basic

computation. The approximation should satisfy the following two formal prop-

erties.

(G1) Safety: The approximation never exceeds GV T .

(G2) Liveness: If GV T reaches a value x 2 IR then within �nite time the ap-

proximation, say, G satis�es and continues to satisfy G � x.

GV T is a function of the global state of the system, and since the global state is

not directly observable by a process, GVT approximation is a non{trivial problem.

The determination of a tight lower bound on the current GV T value is of

great importance for distributed simulation systems, see, e.g., Fujimoto [14] and

Je�erson [16]. Since in optimistic distributed simulations a simulator process has

to roll back to an earlier state when a message with an earlier timestamp than

its current clock value arrives, it must save its state regularly. The GVT is the

earliest virtual time to which any simulator process can ever roll back. There-

fore, all checkpoints (possibly except the most recent one) older than the GVT
approximation can be removed to save memory. The liveness of the approxima-

tion ensures that eventually all oblivious states (possibly except the last one)

are discarded. A lower bound on GVT is also necessary to know when irrevo-

cable actions (e.g., simulation animation or display of statistical results) can be

committed.

3.2 The Relation between GVT and Termination

Termination Expressed as Global Virtual Time. It has already been ob-

served by Je�erson and others [16, 29, 32] that distributed termination detec-

tion is a special case of GVT approximation. To see this, model an arbitrary

distributed computation (cf. the rules in Subsection 2.1) as a monotonic com-

putation, where the values of the clocks are restricted to two arbitrary values,

denoted by active and passive, ordered as active < passive. Activation messages

are timestamped with active, other messages with passive.
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As the processes originally satisfy rules R1{R3, under this transformation

they observe rules S1{S3: A process whose clock value is passive only sends

messages with timestamp passive. A process sets back its clock to active when a

message with timestamp active is received. When a process becomes passive, it

advances its clock from active to passive. It is now the case that GV T = passive
means that all processes are passive|hence, the computation has terminated.

Thus, anyGVT approximation algorithm can be used as a distributed termination

detection algorithm|when the approximated GV T reaches the value passive,
termination can be concluded.

Termination and a Lower Bound for GVT. Conversely, however, it is also

possible to check for a general distributed monotonic computation whether GV T

has reached some threshold value t by using a termination detection algorithm

[29, 32]. For that purpose, �x t 2 IR and divide IR in two intervals [�1; t) and

[t;1], and call the �rst t{active and the second t{passive. Then, as above, we

can consider a distributed monotonic computation as a basic computation for

(t){termination, whereby t{termination is equivalent to GV T 2 [t;1]. Formally,

we have the following correspondence.

Theorem 3.2 Let t 2 IR. De�ne the pseudo-variable state
(t)
i to have the value

t{passive if Ci � t and t{active if Ci < t. De�ne the timestamp x of a message
hx; � � �i to be t{passive if x � t and t{active if x < t. De�ne t{terminated as

state
(t)
i = t{passive for all i.

Then a distributed monotonic computation (modeled by Ii, Xi, and Ri) can
be considered as a basic computation for t{termination (modeled by �Ii, �Xi, and
�Ri).

Proof. We show that for every t 2 IR rules R1{R3 are observed. Consider

atomic action Ii. As the value of d with which Ci is increased is positive, the

value of state
(t)
i can change from t{active to t{passive, namely if Ci < t � Ci + d

for the old value of Ci. In all other cases state
(t)
i remains the same. (R3)

Consider action Xi. For the timestamp x of the message transmitted we have

x � Ci. Thus it is a t{activation message for those t with t > x. Since t > Ci

for those t, t{activation messages are only sent by processes for which state
(t)
i =

t{active. (R1)

Consider action Ri. Upon receipt of a message with timestamp x, Ci is set

to min(Ci; x). For those values of t for which x is t{active (i.e., t > x), Ci is set

to a value < t, hence state
(t)
i is set to t{active. (R2) 2

Notice that if a computation (a process) is t{terminated (t{passive), then it is

also t0{terminated (t0{passive) for all t0 � t. As a distributed monotonic compu-

tation behaves according to rules R1{R3, t{termination is a stable property (i.e.,
once a computation is t{terminated it remains t{terminated) and a termination
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detection algorithm can be applied to detect t{termination. The crucial point for

GVT approximation is stated in the following theorem.

Theorem 3.3 A distributed monotonic computation is t{terminated if and only
if GV T � t.

Proof. Consider the following equivalences. t{terminated , 8i state
(t)
i =

t{passive , 8i Ci � t, mini Ci � t, GV T � t. 2

The safety and liveness properties of the (t{)termination detection algorithm

imply the following.

1. The algorithm does not detect t{termination unless GV T � t.

2. If GV T � t then t{termination will be detected in �nite time.

The basic idea of our GVT approximation scheme is to run many t{

termination detection algorithms for di�erent values of t in parallel. The approx-

imation is chosen to be the largest value for which t{termination is detected. The

two properties listed above ensure the safety and progress of the resulting approx-

imation, provided that t{termination detection algorithms for an appropriate set

of t{values are used. Fortunately, it is possible to simulate the parallel execution

of many termination detection algorithms by a single algorithm. In the combined

algorithm a control message (of �nite length) represents the control messages of

a possibly in�nite number of virtual termination detection algorithms. This idea

will be worked out in more detail in the next section.

3.3 GVT Approximation with Termination Detection

In this section it is shown that a GVT approximation algorithm can be obtained

from a termination detection algorithm. The resulting transformation will be

exempli�ed further down in Section 4 by applying it to the \sticky ag" algorithm

presented earlier.

The General Transformation. The GVT approximation algorithm consists

of parallel invocations of a termination detection algorithm A, where the invo-

cation A(t) is responsible for the detection of t{termination. The collection of

invocations of A is referred to as a bundle of termination detection algorithms.

An approximation of GV T is held in a variable G such that the safety property

(G1) GV T � G is maintained.

As was noted in Section 3.2, the detection of t{termination implies that

GV T � t. Hence, the assignment G := t can safely be executed when t{

termination is detected. It is possible, however, that at a later time t0{termination

is detected, for t0 < t. In that case this assignment would set G back, and the

liveness requirement (G2) would not be satis�ed. In order to obtain a monotonic
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approximation and avoid the problem with the liveness sketched, we will use the

assignment G := max(G; t) instead of G := t.

The approximation algorithm is obtained by transforming a termination de-

tection algorithm A as follows.

� Consider an invocation A(k) of A for every k 2 IR, responsible for detecting

k{termination.

� Replace the detection of termination in A(k) by the statement G :=

max(G; k).

� Execute all invocations in parallel with the basic computation.

Note that the approximation algorithm is composed of an in�nite number of

parallel algorithm invocations. It must be assumed for a while that it is possible

to execute all these invocations in parallel in such a way that progress is made

in each of them. It will be shown later how the combined algorithm can be

transformed to a �nite algorithm.

Theorem 3.4 The resulting GVT approximation algorithm satis�es safety and
liveness.

Proof. To show the safety, consider the value of GV T in some system state. By

Theorem 3.3, k-termination holds for all k � GV T , but for no k > GV T . Hence,

by the safety of each A(k), k{termination could only be detected for k � GV T

and thus by our transformation G := max(G; k) was only executed for values

k � GV T . Consequently, G � GV T holds.

To show the liveness, assume that at some time GV T = k. This implies

that k{termination holds, and hence, as the bundle includes an invocation A(k),

k{termination will be detected in �nite time and the assignment G := max(G; k)

will be executed. After the assignment, G � k will continue to hold. 2

We shall now discuss briey whether the liveness can also be obtained using

a bundle which does not contain an invocation A(k) for each value of k.

Assume that the bundle does not include A(k), and neither does it include an

A(k0) for k � � < k0 < k, for some � > 0. Furthermore, assume that GV T = k at

some time, but GV T does not grow beyond k. In this case, t{termination holds

for all t � k, but for no t > k. As a result of the liveness of A, G := max(G; t)

will be executed for all t < k for which an invocation A(t) is present, and as a

result of its safety it will not be executed for any t > k. Because of the \� interval

gap" in the bundle, it follows that G := max(G; t) will not be executed for any

t > k��, hence G � k�� continues to hold. In this case the liveness requirement

is not satis�ed.

It remains to study the case where the bundle does not include A(k), but does

include an A(k0) for k� � < k0 < k, for every � > 0. Again assume that GV T = k
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at some time and GV T does not grow beyond this value. For every � > 0 there is

a k0 with k�� < k0 < k for which G := max(G; k0) will be executed in �nite time,

and hence for every � > 0, G � k� � will hold in �nite time. This, however, does

not imply that G � k holds within �nite time, because, for example, G � k�1=n

may hold only after n time units.

The conclusion of this discussion is that the liveness of the resulting algorithm

cannot be guaranteed if the bundle does not include A(k) for every k 2 IR which

is a possible value of the GV T . In the general case this implies that an invocation

A(k) must be included for every k 2 IR.

Practicability. Although the derived algorithm satis�es the formal correct-

ness requirements of a GVT approximation algorithm, its implementation still

faces a problem. In practice it is not possible to execute an in�nite (and even

uncountable) number of separate algorithm invocations concurrently.

There may be special applications where it is not necessary to execute all

invocations. For example, in computations where it is known that the GVT only

takes values of a �nite set fk1; � � � ; kmg it su�ces to execute A(k1); � � � ; A(km).

Another example includes situations where a �{approximation (� > 0) su�ces;

the liveness requirement is replaced by the weaker requirement that if the GVT
is at least k, then the approximation is at least k �� in �nite time. Under this

requirement it su�ces to execute the invocations related to multiples of �; if

it is known in addition that the GVT will take values only from a �nite length

interval, it again su�ces to execute a �nite number of invocations.

The feasibility of the scheme for the general case, however, depends largely

on our ability to combine the steps of an in�nite bundle into a �nite number of

steps. Fortunately, this is indeed possible for the termination detection algorithms

considered here.

A �rst concern to manage the computational complexity is to prevent the

sending of an in�nite number of messages. A bundle of algorithms is called co-
herent if each of its invocations exhibits the same pattern of message exchanges.

That is, although the message contents may be di�erent, the decision whether a

message is sent should be independent of the state of a process. Obviously, the

non{lazy control message propagation principle (see Section 2.3) is the key prop-

erty for obtaining a coherent bundle of termination detection algorithms. For

such a bundle it is then (at least theoretically) possible to assume that the mes-

sages of the di�erent invocations are combined into one single message (possibly

of in�nite length which will subsequently be reduced to �nite length), carrying

the information of the messages of all invocations.

Upon receipt of such a combined message by a process Pi, all invocations

become simultaneously activated in Pi. (A next concern will indeed be to combine

this local activity in a similarmanner.) Because of the coherence of the bundle, all

invocations will generate the same pattern of messages in response to the receipt.
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Consequently, these messages can also be combined into a single message. Thus

the total number of messages sent by the combined algorithm is the same as the

number of messages sent by a single execution of A.

The next concern will be to bound the storage used in a process. Consider the

pseudo-variable state
(k)
i used by A(k) in process Pi. Because state

(k)
i = passive for

all k � Ci, and active else (see Theorem 3.2) the in�nite collection of variables

state
(k)
i is succinctly represented by the \boundary value" Ci. It turns out that

the same can be done for all variables of the termination detection algorithm of

Section 2.3, and also for the information transmitted in the control message. This

will be demonstrated in the next section, where the transformation is carried out

in detail.

Not only for the algorithm of Section 2.3, but for arbitrary termination detec-

tion algorithms a transformation of the in�nite bundle to a �nite algorithm can

be carried out. For example, in Section 4.3 we do it for the algorithm of Dijkstra

et al. [11], and it is done in [29] for the case of the vector counting algorithm

[20]. In the general case, for each variable vi of the termination detection algo-

rithm, the real line is always partitioned into a �nite number of intervals, such

that v
(k)
i is constant for all k of an interval. (The boundaries of these intervals

are determined by the timestamps which actually occur in the computation.) In

that case, the in�nite collection of variables v
(k)
i can be �nitely represented by

maintaining the intervals and the value of vi for each interval, as is also proposed

in [29].

4 Two Simple GVT Approximation Algo-

rithms

In this section the transformation described in Section 3.3 will be applied to the

\sticky ag" termination detection algorithm of Section 2.3. The resulting �nite

and elegant GVT approximation algorithm turns out to be an already known

algorithm|it was originally proposed by Tel [30] and was recently reinvented by

Baldwin et al. [2]. We will rigorously prove its correctness, thereby also obtaining

a correctness proof for the \sticky ag" termination detection algorithm as a

special case. We conclude the section with the transformation of the DFG{

algorithm by Dijkstra et al. [11].

4.1 Transformation of the Sticky Flag Algorithm

For convenience, the text of the termination detection algorithm presented in

Section 2.3 is �rst repeated here. Process Pn initiates the algorithm by sending a

control message hpassivei to the next process (i.e., P1) on the ring. When receiving

the circulating control message, process Pi executes action �Wi atomically.

15



�Wi: (1) receive hMi;
(2) if Si = active then M := active;
(3) if i = n and M = passive then signal termination;

(4) if i 6= n then send hMi to Pi+1

(5) else send hpassivei to P1;

(6) Si := statei

Forming the In�nite Bundle. In a �rst transformation step an invocation

A(k) of this algorithm is formed for each k 2 IR. This invocation is responsible for

detecting k{termination. Each algorithm A(k) has its own instances of local vari-

ables M (k), S
(k)
i , and conceptually, state

(k)
i . Instead of reporting k{termination,

a shared variable G is set to max(G; k) in process Pn, as explained in Section

3.3. Since Ci = k represents the boundary between k{active and k{passive, the
statement \S

(k)
i := state

(k)
i " in line (6) can be replaced by \if Ci � k then

S
(k)
i := passive else S

(k)
i := active". The atomic action executed by Pi of the

resulting algorithm A(k) upon a visit of the control message is shown below. As

described in Section 3.3, this is already a GVT approximation algorithm if the

bundle of invocations fA(k)g
k2IR is run in parallel (and terminates within �nite

time).

(1) receive hM (k)i;

(2) if S
(k)
i = active then M (k) := active ;

(3) if i = n and M (k) = passive then G := max(G; k);

(4) if i 6= n then send hM (k)i to Pi+1

(5) else send hpassivei to P1;

(6) if Ci � k then S
(k)
i := passive else S

(k)
i := active

Merge to a Single Algorithm. In the second transformation step, a single
algorithm is obtained which simulates the whole bundle. This transformation em-

ploys the non{laziness of the termination detection algorithms thereby enabling a

coherent execution of the bundle. The basic idea is to combine the in�nite num-

ber of control messages to a single (in�nitely long) control message hfM (k)gk2IRi.
Process Pn initiates the algorithm which simulates the entire bundle by sending

hfpassivegk2IRi (i.e., a control message that contains the value passive for each

k 2 IR) to P1. When receiving the circulating control message, Pi executes the

following action atomically.

(1) receive hfM (k)gk2IRi;
forall k2 IR do

(2) if S
(k)
i = active then M (k) := active ;

(3) if i = n and M (k) = passive then G := max(G; k)

enddo;
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(4) if i 6= n then send hfM (k)gk2IRi to Pi+1

(5) else send hfpassivegk2IRi to P1;

forall k2 IR do

(6) if Ci � k then S
(k)
i := passive else S(k)

i := active
enddo

The statements in the forall loops can be thought of as being executed for

each k in parallel.

Con�ning to Finite Resources. For the next step in the derivation (the

combination of the in�nite number of two{valued variables into one real{valued

variable) we need the following theorem. It states that for each variable of the

algorithm the in�nite bundle of boolean variables can be represented by a single

real{valued variable (which may include the values 1 and �1). The proof of

the theorem implies how these real{valued variables must be updated under the

operations of the bundle of algorithms.

In proofs of theorems about distributed algorithms we use the method of

\system{wide invariants" [28]. The idea is to express the desired (safety) property

of an algorithm as an assertion about values of program variables and to prove

its correctness by means of invariants. An invariant is an assertion with the

following properties: (1) The assertion holds initially (i.e., for the initial values

of the program variables before any action is executed), and (2) for every atomic

action we have the following: Assuming the assertion holds before, it also holds

after the execution of the action. It is clear from this de�nition that an assertion

which is an invariant is always true during any execution of the system. Hence

this is an orderly way to formally prove properties of distributed algorithms.

Theorem 4.1 (a) At any time for each process Pi there exists a real number si
such that for each k, S

(k)
i = active for k > si and S

(k)
i = passive for k � si.

(b) For each transmission of the control message hfM (k)gk2IRi there exists a real
number m such that M (k) = active for k > m and M (k) = passive for k � m.

Proof. (a) According to the initialization of the \sticky ag" termination de-

tection algorithm, S
(k)
i is initialized to active for those k for which Pi is initially

k{active, and to passive otherwise. Thus, initially S
(k)
i is active for k > Ci and

passive for k � Ci, hence (a) is satis�ed with si = Ci.

The variable S
(k)
i is assigned to only in line (6) of the algorithm and in action Ri

of the underlying basic computation when Pi becomes k{active (see Section 3.1

and the modi�cation to action �Ri in Section 2.2). Immediately after an execution

of line (6), S
(k)
i = active for k > Ci and S

(k)
i = passive for k � Ci, hence the

value of Ci satis�es the requirement for si.

Now assume (a) is satis�ed for some value si before action Ri and Pi becomes

k{active for some k. This happens when Ci decreases (upon receipt of a basic
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message). After this decrease the statement S
(k)
i := active must be executed for

all k > Ci (see action �Ri in Section 2.2 and the de�nition in Theorem 3.2). Thus,

after this execution S
(k)
i = active holds if and only if k > si or k > Ci. (In the

former case S
(k)
i = active held already before the execution, in the latter case it

became true as a result of the execution.) But k > si _ k > Ci is equivalent to

k > min(si; Ci), hence (a) is now true if the value min(si; Ci) is substituted for

the original value of si.

(b) When the control message is sent out by Pn, M
(k) = passive for all k,

hence (b) is satis�ed for m =1.

The value of theM (k) is changed only in line (2) of the algorithm. We can assume

that prior to the execution there exist values m and si such that S
(k)
i = active i�

k > si, and M (k) = active i� k > m. Hence after the execution M (k) = active i�
k > m or k > si. (In the former case M (k) was active already, in the latter case

it became true as a result of the execution.) But k > m _ k > si is equivalent to

k > min(m; si), so after the execution (b) is true if min(m; si) is substituted for

the original value of m. 2

The Sticky Flag GVT Approximation Algorithm. Theorem 4.1 is the

key for obtaining a practicable and e�cient GVT approximation algorithm. It

shows that it is su�cient for each process to maintain the \boundary value" si as

indicated in the theorem instead of a possibly in�nite number of passive, active
values. For a control message transmission it su�ces to transmit the value m.

The proof of the theorem describes directly how variables si and m change as

the result of the combined action of the bundle given above. The resulting GVT
approximation algorithm is rather simple. It is initiated by Pn, sending h1i to
P1. When receiving the circulating control message, Pi executes the following

action Wi atomically.

Wi: (1) receive hmi;
(2) m := min(m; si);

(3) if i = n then G := max(G;m);

(4) if i 6= n then send hmi to Pi+1

(5) else send h1i to P1;

(6) si := Ci

The following two remarks can be made about the initialization and modi-

�cation of the approximation G. (1) In order to satisfy the safety requirement,

G must be initialized satisfying G � k for all possible GVT values k. Thus G

should be initialized to �1, or to zero if negative values do not appear. (2) It is

a property of the algorithm that the statement G := max(G;m), which is called

after each control round, is executed with non{decreasing values of m. As a result

of this property, we can replace the statement G := max(G;m) by G := m. That

G is still non{decreasing follows from Theorem 4.3 which is proved below.
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This completes the derivation of the GVT approximation scheme. We con-

tinue this section with the superimposition that must be made on the three ac-

tions Ii, Xi, and Ri which model the behavior of a general distributed monotonic

computation in order to approximate GV T .

The termination detection algorithm does not require any superimpositions on

the actions �Ii and �Xi, hence no modi�cation of the corresponding actions Ii and

Xi for GVT approximation is necessary. For the termination detection algorithm

the statement Si := statei was added to action �Ri (see Section 2.2). Thus for the

case of GVT approximation the state indicators S
(k)
i must be updated (if t < Ci

holds when the message with timestamp t is received) in action Ri in order to

reect the transition from k{passive to k{active for all k 2 (t; Ci]. This is easily

done for all relevant k in a single assignment to the variable si as indicated in

the proof of Theorem 4.1.

Ri: receive ht; � � �i;
Ci := min(Ci; t);

si := min (si; Ci)

Analogously to the original termination detection algorithm where the sticky

state indicator is initialized to the current state, si should initially be set to the

value of the local clock Ci.

4.2 Correctness of the Sticky Flag Algorithm

We will now prove the correctness of the algorithm presented above.

Lemma 4.2 (a) si � Ci is invariant in each process Pi.
(b) Let GV T0 denote the GVT at the start of the current control wave (i.e., at
W1), and let Pi be the next process to be visited by the control wave. Then the
following inequality holds invariantly:

GV T0 �
i�1

min
j=1

sj

Proof. (a) Obvious from the actions and the initialization of the sj .

(b) Initially the inequality holds vacuously as min0j=1sj is de�ned as 1. Actions

Ik and Xk do not change any variables involved. Action Rk may decrease sk.

Hence, if k � i�1, mini�1j=1 sj may be decreased. However, if sk is indeed changed,

it is set to the current value of Ck, and hence to a value � GV T . As GV T is

non{decreasing, GV T � GV T0. Thus mini�1j=1 sj cannot be decreased to a value

< GV T0 by Rk. Consider action Wi, for i 6= n. As process Pi is visited here,

\the next process to be visited" becomes Pi+1 after execution ofWi, and we have

to prove that the inequality holds for i increased by 1. In Wi, si is set to Ci �
GV T � GV T0, hence the inequality holds for the new value of i. Consider action

19



Wn. Here GV T0 is increased to GV T as a new control wave is started, and i is

set to 1. For this new value of i the inequality holds vacuously. 2

Theorem 4.3 Let GV T0 denote the GVT at the start of the current control wave
(i.e., at W1), GV T�1 the GVT at the start of the previous control wave (de�ned
as �1 if there is no previous one), GV T

�2 the GVT at the start of the control
wave before that (de�ned as �1 if there is none), and let Pi be the next process
to be visited by the control wave. Then the following inequalities hold invariantly:

GV T
�2

(a)

� G
(b)

� GV T
�1

(c)

� min(m;
n

min
j=i

sj)
(d)

� min(GV T0;
n

min
j=i

sj)
(e)

�
n

min
j=1

sj
(f)

� GV T

Proof. Initially GV T
�2 = G = GV T

�1 = �1, m = 1, i = 1, sk = Ck (for all

k), and GV T0 = minnj=1 sj = GV T . Hence the inequalities hold. Notice that by

Lemma 4.2(a) and the de�nition of GVT, inequality (f) is always true.
Consider action Ik. There Ck is increased, and of the variables in the in-

equalities, only GV T might be increased as a result (recall that by de�nition

GV T = minnj=1 Cj), thus all inequalities remain true.

Action Xk does not change any of the variables involved.

Consider action Rk. Variable G is not changed, hence (a) and (b) remain true.

Variable sk is set to min(sk; Ck). Consider the following two possibilities. First, sk
remains the same. Then all inequalities remain unchanged and true. Second, sk
is set to Ck, whereby it is decreased. As Ck � GV T by de�nition, sk � GV T still

holds. As GV T is monotonically increasing, we also have sk � GV T0 � GV T
�1.

Hence (c) remains true and the value of min(GV T0;minnj=i sj) is not changed.

Because min(m;minnj=i sj) can only decrease, (d) continues to hold. Property

sk � GV T0 also guarantees that (e) remains true.

Consider actionWi for i 6= n. Here process Pi is visited by the wave, and \the

next process to be visited by the wave" becomes Pi+1. Thus we have to prove

that the inequalities hold for a value of i that is increased by 1. Since line (3) does

not apply, G is not changed and (a), (b) remain true. In line (2) m is assigned

the value min(m; si). Hence the value of min(m;minnj=i sj) before the execution

of line (2) is the same as min(m;minnj=i+1 sj) after line (2). Note that line (6)

does not a�ect the inequality GV T
�1 � min(m;minnj=i+1 sj). Hence (c) is kept

invariant. Inequality (d) remains true because the value of the right-hand side can

only increase when substituting i by i+1, whereas then the value of the left-hand

side does not change as shown above. For (e) we observe that by Lemma 4.2(b)

we haveGV T0 � mini�1j=1 sj and hence min(GV T0;minnj=i+1 sj) � minnj=1 sj. (Note

that in line (6) si is set to a value Ci � GV T � GV T0.) Hence inequality (e)

does also hold if we set i to i+ 1.

Consider action Wn. Here process Pn is visited and P1 becomes the next

process to be visited. We denote the value of a variable v before the execution of

Wn by v0. Because a new control wave is started by Wn, GV T�2, GV T�1, and
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GV T0 attain the values of the oldGV T
0

�1, GV T
0

0, and GV T
0. As we had GV T 0

�1 �
min(m0; s0n) before the action, the new value of m = min(m0; s0n) (after line (2))

and hence the new value of G = m (line (3)) are � GV T 0

�1 = GV T
�2. Hence

(a) is true. As before Wn min(m0; s0n) � min(GV T 0

0; s
0

n) � GV T 0

0, we now have

G = m = min(m0; s0n) � GV T 0

0 = GV T
�1. Hence (b) is true. From Lemma 4.2(b)

we have GV T 0

0 � minn�1j=1 sj. As sn is set to Cn and Cn � GV T � GV T 0

0, now

GV T 0

0 � minnj=1 sj. Hence GV T
�1 = GV T 0

0 � minnj=1 sj = min(1;minnj=1 sj)

which proves that (c) holds for i = 1 and m = 1. For the start of the new

wave we set i := 1, m := 1, GV T
�2 := GV T 0

�1, GV T�1 := GV T 0

0, and GV T0
:= GV T 0. As minnj=1 sj � minnj=1 Cj = GV T = GV T 0 = GV T0 (observe that

GVT=GVT' because the clock values Cj do not change in action Wn), we have

min(m;minnj=1 sj) = minnj=1 sj = min(GV T0;minnj=1 sj). Thus inequalities (d)

and (e) do also hold. 2

Corollary 4.4 The presented algorithm is a correct GVT approximation algo-
rithm.

Proof. For the safety (property G1, see Section 3.1) we note that G � GV T

follows directly from Theorem 4.3. To prove liveness (property G2), consider
the leftmost inequality GV T

�2 � G of Theorem 4.3. It implies that when GV T

reaches some value, the approximation G will have reached this value after two

rounds have been completed. From this and the monotonicity of G and GV T

follows liveness. 2

This correctness proof also applies to the \sticky ag" termination detection

algorithm presented in Section 2.3 since termination detection is a particular

instance of GVT approximation.

4.3 The DFG-Algorithm

Termination Detection. In [11] Dijkstra, Feijen, and van Gasteren presented

a ring-based termination detection algorithm for distributed computations with

instantaneously transmitted activation messages. Their algorithm is similar to

the ring-based \sticky ag" algorithm developed in Section 2.3. The basic idea4

of the DFG-algorithm is that a process Pi sets a ag Ŝi to active whenever it

might reactivate a process that the wave has already visited. This is the case

whenever it sends a message to some process Pj such that j < i. Ŝi is reset to

passive when the circulating control message which collects the states and the

ags of all processes is propagated from Pi to P(i mod n)+1. If after a complete

round the accumulated value of the control message is passive, then all processes

were visited when they were passive and no process has been reactivated after

the wave, hence termination can be concluded.

4We sketch the algorithm in a slightly di�erent way than it was originally presented in [11].
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The main di�erence with the \sticky ag" algorithm is that the DFG-

algorithm uses send-ags Ŝi, whereas our algorithm uses receive-ags Si. It is

easy to see that if Ŝi is active, then Si would be active too. The converse, how-
ever, is not true; Figure 1 depicts a scenario in which, at the second wave, all

Si are active and all Ŝi are passive. In this example, the DFG-algorithm de-

tects termination already at the end of the second wave whereas the \sticky ag"

algorithm detects termination only at the end of the third wave.
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Figure 1: Termination detection based on control waves.

GVT Approximation. In the same way as the \sticky ag" algorithm, the

DFG-algorithm can be transformed into a GVT approximation algorithm. The

internal action Ii remains unchanged. The update of ŝi now no longer takes place

in the receive action R̂i, but in the send action X̂i.

R̂i: receive ht; � � �i;
Ci := min(Ci; t)

X̂i: choose t � Ci ;

send ht; � � �i to Pj ;

if j < i then ŝi := min(ŝi; t)

According to the DFG-algorithm, the wave reects both the value of the state and

the ag Ŝi, and as ŝi � Ci does not necessarily hold for this algorithm, the state

of a process (i.e., Ci) has to be considered in addition to ŝi when accumulating

the minimum in action Ŵi:

Ŵi: (1) receive hm̂i;
(2) m̂ := min(m̂; ŝi; Ci);

(3) if i = n then Ĝ := max (Ĝ; m̂);
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(4) send h1i to P1

(5) else send hm̂i to Pi+1;

(6) ŝi :=1

Setting Ŝi to passive in the DFG-algorithm transforms into ŝi := 1 in the last

line of action Ŵi.

Correctness. It is interesting to note that a direct transformation of the in-

variant given in [11] for the correctness of the termination detection algorithm

leads to an invariant implying the correctness of the GVT approximation version

given above.

Theorem 4.5 Let GV T0 denote the GVT at the start of the current control wave
(i.e., at W1), GV T�1 the GVT at the start of the previous control wave (de�ned
as �1 if there is none), GV T

�2 the GVT at the start of the control wave before
that (de�ned as �1 if there is none), and let Pi be the next process to be visited
by the control wave. Then the following inequalities hold invariantly:

GV T
�2 � Ĝ � GV T0 �

i�1

min
j=1

ŝj

GV T
�1 � min(m̂;

n

min
j=i

ŝj) �
i�1

min
j=1

Cj

Proof. Initially, i = 1, GV T
�2 = GV T

�1 = Ĝ = �1, GV T0 = GV T , m̂ = ŝj =

1 for all j, while min0j=1 is de�ned as 1 for all arguments.

Action Îk = Ik increases Ck which leaves the inequalities true.

As message transmission is instantaneous, we only consider send actions to-

gether with the corresponding receive action. Hence, consider action X̂kR̂h where

a message is sent from Pk to Ph. In R̂h Ch might be decreased which could have

an e�ect on mini�1j=1 Cj if h < i. We distinguish two cases.

Case (1): h < k. Then ŝk is set to min(ŝk; t), but if it is changed, it cannot be

decreased beyond GV T0 as t � Ck. If mini�1j=1 Cj is actually decreased because Ch

is set to t, then we have that h < i � k and (because of the last line in action X̂k)

min(m̂;minnj=i ŝj) � t. (Note that mini�1j=1 Cj is not decreased if k < i because

then the timestamp t sent by X̂k and received by R̂h is � Ck).

Case (2): h > k. Only Ch might be decreased, but not mini�1j=1 Cj for the same

reason as mentioned above (i > h > k).

Hence the inequalities continue to hold.

Consider action Ŵi for i 6= n. Here process Pi is visited by the control wave

and \the next process to be visited" becomes Pi+1, hence we have to prove that

the inequalities hold for i increased by 1. Since Ĝ is not changed, the �rst and the

second inequality continue to hold. In line (2) m̂ may be decreased, but ŝi was
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already included in min(m̂;minnj=i ŝj) before the action, and Ci is added to both

m̂ (line (2)) and mini�1j=1 Cj when i is increased by 1 in line (5). Hence the �fth

inequality continues to hold. If min(m̂;minnj=i ŝj) is actually decreased that can

only be due to the inclusion of Ci in the minimum, hence it cannot be decreased

beyond GV T0 and the fourth inequality remains true. As ŝi is set to1, the third

inequality also holds for i increased by 1.

Consider action Ŵn. Here process Pn is visited and a new control wave

is started. Hence we have to prove that the inequalities hold for i = 1 and

the new values for GV T
�2, GV T�1, GV T0, and Ĝ. The value of a variable v

before Ŵn will be denoted by v0. From the second invariant we have GV T 0

�1 �

min(m̂0; ŝ0n) � minn�1j=1 Cj before line (2). Because Cn � GV T 0

�1, this yields

GV T 0

�1 � m̂ = min(m̂0; ŝ0n; Cn) � minnj=1 Cj = GV T = GV T 0 after line (2).

As GV T
�2, GV T�1, GV T0, and Ĝ attain the values of GV T 0

�1, GV T
0

0, GV T
0,

and m̂, now the �rst invariant GV T
�2 � Ĝ � GV T0 � min0j=1 ŝj holds. From

the third inequality we have GV T 0

0 � minn�1j=1 ŝ
0

j. As ŝn and m̂ are set to 1
and GV T

�1 = GV T 0

0, this yields GV T�1 � min(m̂;minnj=1 ŝj) � min0j=1Cj = 1.

Hence action Ŵn preserves all inequalities. 2

The safety and liveness now follow from GV T
�2 � Ĝ � GV T0 � GV T for

the same reasons as for the \sticky ag" algorithm.

Corollary 4.6 The presented algorithm is a correct GVT approximation algo-
rithm.

For the same reason why the DFG-algorithm might detect termination earlier

than the algorithm of Section 2.3, this variant might yield a better approxima-

tion of the current GVT value (Ĝ � GV T0) than the algorithm of Section 4.1

(G � GV T
�1). Unfortunately, however, it does not generalize as easily to the

asynchronous case as the \sticky ag" based scheme. We come back to this

problem in the next section.

5 Discussion

In this section directions to extend the results of this paper are discussed, as well

as the relation with some other work.

5.1 Extensions

Asynchronous Communication. The GVT approximation algorithms de-

scribed so far require that activation messages be transmitted instantaneously.

However, the algorithms are also applicable to synchronous communication and

so-called causally ordered communication [2, 9], and they can also be adapted to
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the asynchronous case where messages may be in transit. In the asynchronous

case, GV T is the minimum of all clocks Ci and of all timestamps of messages

which are in transit. Hence, if all processes are t{passive and no t{activation

messages are in transit then GV T � t. Whether t{activation messages are

in transit can be checked using acknowledgements: De�ne a process Pi to be

t{engaged if it is t{active or the receipt of a t{activation message sent by Pi

is not yet acknowledged. Then GV T � t holds if no process is t{engaged. Let

UNACKi denote Pi's multiset of timestamps of unacknowledged messages. Then

Pi is x{engaged for all x > min(fCig [ UNACKi), and not x{engaged for all

x � min(fCig [ UNACKi).

For the \sticky ag" algorithm, approximation of GVT in the asynchronous

case can be done in the same way as before, basically by substituting \t{engaged"
for \t{active". Observe that a process which is not t{engaged can only become

t{engaged if at that moment there exists another t{engaged process. Therefore,

rule R20 (Section 2.4) is observed and hence the \sticky ag" algorithm can be

applied to check whether GV T � t. For that purpose, only the last line in action

Wi has to be changed into

si := min(fCig [ UNACKi)

in order to reect the new interpretation of the local state.

The DFG-algorithm has already been adapted so as to detect termination of

computations using asynchronous communication [5]. In those variants, however,

the control wave is \lazy" in the sense that a process does not propagate the

control message as long as it is active or engaged. As the process is engaged all the

time between the sending of a message and the receipt of the acknowledgement,

it obviously does not matter at what moment the state indicator is assigned. A

lazy execution of the control wave, however, makes the algorithm less suitable for

our transformation.

The reason why a non{lazy variant of the DFG-algorithm does not generalize

as easily to the asynchronous case as the \sticky ag" scheme is that in the

DFG-algorithm the sender is responsible for setting the state indicator. It is not
aware of the moment at which the message is received. Thus is is not obvious

at what moment (between the sending of the message and the receipt of the

acknowledgement) the state indicator ŝi must be set if instantaneous message

transmission is to be simulated. However, a possibility to cope with asynchronous

communication in non{lazy versions of the DFG-algorithm is to reset the state

indicator ŝi to the current value of min (UNACKi) (rather than 1) after each

visit of the control wave. In this way, the state indicator is logically assigned all

times between the sending and the receipt of the acknowledgement, and thus in

particular at the moment when the message is received. This essentially yields a

GVT approximation scheme which was presented (without proof) by Bellenot in

[3].
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Another approach to adapt GVT approximation algorithms to the asyn-

chronous case was used by Schoone and Tel in [29]. Instead of sending acknowl-

edgements for messages, the timestamps of messages to be acknowledged are

accumulated in multisets ACKi[j] (a process needs an entry for each originator).

At a visit of the control message, these multisets are then transferred to the con-

trol message, thus sending all acknowledgements at once. Likewise, the multiset

UNACKi is transferred to the control message upon a visit, whereby acknowl-

edged and unacknowledged messages can cancel each other. For more details we

refer to [29].

Lazy Algorithms. In this paper we have applied our transformation to two

particular non{lazy algorithms where the control message is propagated indepen-

dently of the state of the process. Most termination detection algorithms known

to date can be made non{lazy by a simple modi�cation, but there are inherently

lazy algorithms with favorable properties, such as the algorithm by Dijkstra and

Scholten [12]. Although the results of Section 3.3 are in principle applicable to

lazy algorithms, the reduction to a �nite algorithm is not so easy in this case.

The application of the transformation to the algorithm of Dijkstra and Scholten

is currently under investigation.

Distributed In�mum Approximation. The notion of a monotonic dis-

tributed computation can be generalized by replacing the domain IR of the clocks

and timestamps by an arbitrary partially ordered set. The resulting problem, of

which termination detection and GVT approximation are instances, is called

distributed in�mum approximation. This problem was de�ned by Tel [30] and

algorithms to approximate a distributed in�mum were given in [30, 32].

It was already noted in [29] that a termination detection algorithm can be

transformed to yield an algorithm for distributed in�mum approximation. There,

however, only the transformation for a particular algorithm (the so-called vec-

tor counter algorithm [20]) is shown, and that transformation yields a rather

complicated algorithm for the general case of arbitrary posets and asynchronous

communication. In the current paper we have demonstrated that the transfor-

mation is general enough so as to be applicable to any termination detection

algorithm, and have exempli�ed it with a transformation yielding a simple, prac-

tical algorithm.

The generalization of our current work to distributed in�ma is straightforward

as far as non{lazy termination detection algorithms are considered. The construc-

tion of a distributed in�mum approximation algorithm from a lazy termination

detection algorithm is left as a subject for further research.
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5.2 Further Remarks

Related Work. A large number of termination detection algorithms have been

published in recent years, and many of those published before 1987 are listed in

the bibliography in [20]. As we showed in Section 4.3, our \sticky ag" algorithm

(which was also derived in [33] when applying to Ben-Ari's garbage collection al-

gorithm [4] a scheme that systematically transforms garbage collection algorithms

into distributed termination detection algorithms) is similar to the termination

detection algorithm by Dijkstra, Feijen, and van Gasteren [11]. Because of its

simplicity (messages need not be considered; a single ag is used which is only

set when a process actually becomes active) our algorithm compares favorably

with this and other termination detection algorithms based on synchronous com-

munication.

Some of the ideas that are developed in this paper were already used, often

implicitly, in earlier papers. The idea of using a bundle of termination detection

algorithms to approximate GVT did already appear in a distributed garbage

collection algorithm by Hughes [15]. This algorithm, however, which is based on

Rana's termination detection scheme [24], requires a global clock. The idea has

also been sketched by Chandy and Sherman [7] although their resulting algorithm

is not used for GVT approximation. Connections between termination detection

and GVT approximation were made by Je�erson [16] and Tel [30, 32] and, as

mentioned above, by Schoone and Tel [29].

The idea of using acknowledgements to catch the timestamps of in-transit

messages in GVT approximation schemes was already used by Samadi et al. [27].

Other solutions to the GVT approximation problem were given by Bauer et al.

[1], Conception and Kelly [10], Lin and Lazowska [18], Preiss [23], and, as already

mentioned above, by Bellenot [3] and Baldwin et al. [2]. Most of these solutions,

however, are either rather involved or not proved to be correct. Because of the

importance of a fast and e�cient GVT approximation for distributed simulation,

hardware solutions have also been proposed ([13, 19, 26]).

Since GVT is a monotonic function of the global state, it is also possible to

use distributed snapshot algorithms (as given by Chandy and Lamport [6] or Lai

and Yang [17]) in order to approximate GVT. In [22] a snapshot based solution

for asynchronous communications is proposed which does not rely on acknowl-

edgements. The results of Lai and Yang [17] indicate that for the detection of

termination it is not necessary to compute a so{called consistent snapshot. As is
shown in [22], inconsistent snapshots are also su�cient for GVT approximation.

Conclusions. In this paper algorithms for termination detection and GVT ap-

proximation were studied; their correctness was proved using an assertional ver-

i�cation technique. It was �rst shown that distributed termination detection is,

although non{trivial, not a complicated problem; the \sticky ag" paradigm was

introduced, which allows to design termination detection algorithms that are eas-
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ily understood from an intuitive point of view. We also showed how algorithms

for instantaneous (or synchronous) message transmission can be transformed into

algorithms for asynchronous communications.

Computing a lower bound on the GVT of a distributed monotonic compu-

tation is a generalization of the distributed termination detection problem. In

principle, any termination detection algorithm can be used to check whether

some \guessed" value k is a lower bound on the GVT by determining whether

all processes are k{passive (or no process is k{engaged). It is then possible to

run detection algorithms for many di�erent values of k in parallel and to take the

best approximation.

We demonstrated that the synchronized execution of termination detection

algorithms based on the \sticky ag" paradigm or a similar principle can be

simulated in a practicable way yielding e�cient GVT approximation algorithms.

The principle of our GVT approximation scheme is rather simple: Each process

remembers the smallest value its clock has assumed since the last visit of the

wave. The wave collects the minimum of all those values which is then taken

as a new approximation of the current GVT. This simple and provably correct

scheme compares favorably with other known GVT approximation algorithms. It

is left for further investigation whether termination detection schemes based on

other principles, such as the di�using computation paradigm [12] or the credit

recovery paradigm [21], do also yield interesting GVT approximation algorithms.
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