
Experience with a New

Distributed Termination Detection Algorithm

F r i e d e m a n n M a t t e r n

Department of Computer Science, SFB124, University of Kaiserslautern,
P.O. Box 3049, D 6750 Kaiserslautern, Federal Republic of Germany

A b s t r a c t

A termination detection algorithm for a general model of distributed computations where processes communicate over

asynchronous non-FIFO channels is presented. It has O(mn) message complexity if the control network is a ring, a (span-

ning) tree, or a general undirected graph and O(m) message complexity on star networks and complete networks. Several

variants of the basic principle are discussed, one of which is a symmetric version where any process can start the algo-

rithm independently from the other processes. Preliminary experimental results show that far less control messages than

indicated by the worst case behavior are usually generated. In a distributed puzzle-solving system used as a test applica-

tion only about ,]ffa control messages have been counted. The constraint based puzzle-solving method is explained and

several test cases are reported.

1. The distributed termination problem

Detecting when a distributed computation has terminated is an interesting and non-trivial problem.

Let us consider a distributed system of n processes, where each process is either active (still comput-

ing and possibly sending messages to other processes) or passive. A passive process does not send

messages and can only become active again when receiving a message. If at some instant in time all

processes are passive and no message is in transit, no further computation is possible and the system is

terminated. Since a priori no process has complete knowledge of the global state, no process can,

without further action, decide whether the system has tem~inated. The distributed termination problem

consists in devising an algorithm which can be superimposed on the original computation and allowing

processes to detect the global termination condition by means of additional control communication.

A surprising variety of termination detection algorithms with varying assumptions about the under-

lying model of distributed computation has been proposed in recent years (cf. among others [FRA80],

[FRR82], [TOP84], [SHF86]); and an overview of their different properties can be found in [BMR851

and [TAL86]. Whereas most solutions are based on a synchronous modei of communication (notably

CSP) where messages cannot be in transit if all processes are passive, we present and discuss a solu-

tion for a more general model where message passing is asynchronous and messages are not neces-

sarily delivered in the order they were sent. Algorithms for such a model have been previously

described in [DIS80], [KUM85], [LAI86], [MAT87a], and [MAT87b]. Compared to these solutions the

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) as part of the INCAS project (SFBI24-
DI). Electronic mail address: mat tern@incas .UUCP or mattern%uklirb.uucp@Germany.csnet

128

vector method described here has a number of interesting properties, among others it has bounded

message complexity and does not require the basic messages (i.e. the messages of the underlying

computation) to be time-stamped. First implementations show that it typically uses far less control

messages than can be expected from the worst case behavior.

The rest of the paper is organized as follows: After presenting the principles of the vector termina-

tion detection algorithm in Section 2, Section 3 describes a distributed puzzle-solving system used as a

test application for the empirical evaluation of the termination detection algorithm. Its implementation

is outlined in Section 5 preceded by some aspects of the distributed high-level programming language

CSSA in Section 4. In Section 6 the results of the experiments concerning the message complexity

are displayed. Several important variants of the algorithm for various control topologies are discussed

in Section 7. Finally, we present our conclusions in Section 8.

2. The p r i n c i p l e of the vec to r a l g o r i t h m

We consider systems with a fixed number of processes Pj (l_<j<_n) connected by unidirectional

channels represented by a strongly connected (directed) graph. For simplicity of exposition of the vec-

tor algorithm we assume that control messages travel along an unidirectional control ring connecting

all processes independently of the channels for the basic messages of the underlying computation. This

control topology will be generalized to arbitrary sequential (and parallel) traversal schemes in Section

7.

! 0'

(1>o
F , 0 , °

Every process Pj has a local vector variable V[l:n] of length n, initialized to the null vector

[0,...,0]. Whenever Pj sends a basic message to another process Pi' it increments Vii] by one, and

whenever it receives a basic message from any other process it decrements V[j] by one. After the start

of the basic computation a control vector C begins to circle around the ring, accumulating the local

values of V and resetting them to [0,...,0] as it passes by. The circulating vector signals global termi-

nation when it becomes the null vector, has made at least one round, and has found all processes pas-

sive during the last round.

129

Figure 1 shows a snapshot of a distributed computation with 5 processes, the history of the compu-

tation from a global point of view is depicted in Figure 2 (t 2 is the time instant of the situation de-

picted in Figure 1). The duration of the active phases is irrelevant if a process hands over the control

vector only when it is passive. The 'resting' of the circulating vector at a process is signaled by a

local flag HAVE_VECTOR. Initially it is set to false, when the circulating vector is received by a

process it is set to true and when it leaves the process it is reset. V[j] could be initialized to -1 in

every process Pj - with all other components of V remaining 0 - in order to guarantee that at least one

round is completed; the circulating vector then starts with [1 1]. However, this initialization trick is

circulating

not used in Figure 2.

control
vector

° o o O O O o o , 3 o

;j :,
1 1 t2 t3

Fig. 2

The local vector V indicates how many messages have been received and sent since the last visit of

the control vector. At any global time instant, the sum of the k-th components of all n local vectors V

(including the circulating control vector C when it is in transit between two processes) equals the

number of basic messages currently on their way to Pk" By virtue of the algorithm, this is a global

invariant. For the situation depicted in Figure 1 the sum vector Z indicates that a message to process

P1 and another message to P3 are yet to be received.

The analysis of Figure 2 shows that at time instant tl, when the control vector C visits P4' P4 can

deduce from C[4]+V[4] = 2-1 = 1 that there is currently a message on its way to P4" Instead of pro-

pagating the control vector as soon as it becomes passive, P4 could keep the control vector until

C[4]+V[4] becomes 0 at time instant t l ' . By generalizing this idea it can be guaranteed that at least

one basic message is received in every round of the control vector (with the possible exception of the

initial round). From this property follows inductively that the number of control messages is bounded
by n(m+l), where m denotes the number of basic messages (see [MAT87a] for a more detailed proof).

Figure 2 also shows that counting the total number of basic messages received and sent by simple

scalar counters instead of counting them individually by vectors leads to false results. The value of a

simple counter is identical to the sum of all components of a vector. At t 3 the counter would be 0

although the computation is not yet finished. This problem is analyzed in more detail in [KUM85] and

[MAT87a]. Generally it can easily be proven by algebraic means that no coding of the vector by a

linear combination L = 1~ akV[k] is sufficient.

The main factors of the vector algorithm are rather short; the counting of basic messages and ini-

tializations are as described in the text while every process Pj behaves as follows:

130

a) When receiving the control vector C:

V ~- V+C ;

HAVE_VECTOR +-- t rue ;

b) Whenever the control vector has been received or Pj becomes passive, the guard (i.e. the boolean

expression of the first line) of the following 'demon, is evaluated:

if PASSIVE and H A V E V E C T O R and V[j] <_ 0 then

i f V = [0,..,0] then TERMINATED ~-- t r u e ;

e l s e

HAVE_VECTOR (-- false ;

send V to P(j mod n)+l ; /* forward the control vector V=C */

v ~ - [0,. . . ,0] ;

fi

fi

Evaluation of the guard and execution of the demon must be performed atomically, i.e. the code

has to be run to completion before the next basic message or control message is accepted.

The algorithm is started by one (and only one) process which gets the privilege to generate the

control vector by setting H A V E V E C T O R to true and evaluating the guard. The local variable

TERMINATED should be initialized to false in every process, as global termination is detected when

it turns to true in some process.

In accordance with the explanations of Section 1, PASSIVE can be set mechanically whenever Pj

waits for a message or executes a final stop instruction and it can be reset after the arrival of a basic

message, nevertheless 'manual tuning' is possible: It can be set as soon as Pj 'knows' that it will not

send any more messages and its resetting might be left undone when the state of Pj indicates that

further messages will eventually be received because the current state cannot be part of an (acceptable)

final global state.

From the invariant and the time diagram it is easy to see that when the underlying distributed com-

putation eventually terminates, the circulating vector will become the null vector shortly thereafter and

termination will be detected by some process within one final round. In order to prove that the system

is actually terminated at the instant when the circulating vector becomes the null vector, we examine

the last cycle of the control message in the time diagram depicted in Figure 3 (recall that at least one

round is completed).

P.

compensating
message

Pn e~

Fig. 3
:t I t2"

last r o u n d ; right side

Assume that the circulating vector becomes the null vector at some process Pj (i.e. the number of

registered messages sent by each process equals the number of registered messages received) but that

t31

there is activity at the right of the diagonal line representing the last control cycle. The first process

(Pi in Figure 3) that becomes active after the last cycle at time t 2 can become so only due to an

activating message which crosses the line (the control vector is only propagated when the process is

passive). This means that the sending of the message is registered, but not its receipt. For C[i] to

become 0 again, there must be a compensating message that crosses the line from the right side to the

left side and whose arrival at Pi is detected, but whose sending goes unnoticed. Such a message must

be received before t l (the time instant at which the control vector passes Pi) and consequently

(because messages do not travel backwards in time) must also be sent out before t 1. However, every

message sent before t 1 is registered by the circulating vector and no process activity exists at the right

of the diagonal line before t 1, because the first activation takes place at t2>t 1. We conclude that a mes-

sage crossing the diagonal line affects the vector counters in such a way that it is noticed. Hence there

is no possibility of detecting 'false termination'.

We will come back to the vector algorithm in Section 7 where we make use of the fact that most

of its properties are independent of the tour the control vector follows through the graph.

3. A t o y p r o b l e m - c r y p t a r i t h m e t i c p u z z l e s

In order to evaluate the different termination detection principles and other distributed control algo-

rithms empirically, several experiments have been conducted with the INCAS research multicomputer

system [NHM87]. An illustrative example is a parallel program which solves cryptarithmetic word

puzzles by means of a distributed constraint propagation scheme [BEM86] based on an idea by Korn-

feld [KOR8I].

The problem consists of mapping the letters of three given strings onto the ten digits such that a

correct addition results, e.g.:

LONGER 207563 EUROPE 290782

+LARGER +283563 or +EUREKA +290234

MIDDLE 491126 S P I R I T 581016

To enable a parallel solution, each column is represented by a distinct process as depicted in Figure

4. initially, all letters in all column processes are assigned the maximal set of digits {0,...,9}, and the

carry-in and carry-out variables are initialized to {0,1 }. A column process can receive messages from

any other column (or from an external 'hypothesis generator') informing it of (new) constraints on

letters or the carry values. Whenever a column receives a message containing new information it

locally computes possible new constraints. One initial local transformation is performed when the pro-

cess is established. New constraints on carry-in and carry-out values are sent to the right and left

neighbor column respectively and new constraints on letters are sent to all columns which are

interested in the information; a simple solution is to broadcast any new information and to let the

receivers decide upon its usefulness. Notice that the FIFO property is not required and that the distri-

buted computation behaves nondeterministically - therefore the number of messages is not exactly

determined.

132

Fig. x
Many variations of the general principle are possible, but the main point is that many constraint

messages can be concurrently in transit and that the local computations of several column processes

can be performed in parallel. However this does not mean, that tile parallel solution is more efficient

than the traditional sequential depth-first search with backtracking, generally a huge number of redun-

dant computations are performed. The constraint propagation method can narrow the size of the search

space sometimes drastically, but it may not be able to find a unique solution or a contradiction. If

there is more than one possible solution it will never find any of them and the resulting sets of digits

assigned to the letters will be supersets of all possible solutions. The resulting sets of the example of

Figure 4 are L={1,2,3,4}, M={2,3,4,5,6,7,8,9}, R={1,3,5,6,8}, and E={0,2,6}; all other sets remain

unchanged.

Since in general the constraint propagation stagnates without finding a complete solution, a back-
tracking scheme must be superimposed. The system then works in a sequence of two different phases:
the parallel constraint propagation phase is used to prune the search space and when all constraint

activity has quieted a backtracking hypothesis is generated. A hypothesis is like an ordinary constraint

message; it is generated by an additional backtrack management process, which when detecting the

termination of the constraint phase, sends it to all columns. In order to detect the end of a constraint

propagation phase a termination detection algorithm is used. The principle of multiphase algorithms,
where a new phase is started after the termination detection of the previous phase, has already been

discussed in [CHM81].

column processes

Figure 5 shows the control topology of the puzzle-solving system, the control configuration is

independent of the application topology. The dialogue process constitutes the interface to the user

133

where new puzzles are specified, the logical network is established, and the results are displayed. Here

hypothesis can also be generated manually.

4. The distributed programming language C S S A

The puzzle-solving system including several different termination detection algorithms, among oth-

ers the previously described vector method, has been realized in CSSA [MAB85]. CSSA (Computing

System for Societies of Agents) is an experimental high-level programming language for expressing

message-driven distributed application algorithms which involve many loosely linked cooperating

tasks. Its underlying model of distributed computation is based on the notion of actors originally

developed by Hewitt [HEW77].

CSSA provides a powerful set of language features for expressing communication and parallelism.

Its sequential structures and data types are similar to those of Pascal, but concepts of modularization

and data-abstraction have been combined in a homogeneous way to allow a structured implementation

of distributed applications. Data values of each type, including those of recursively defined complex

types (i.e. arrays, records, sets) and structures built up by dynamic records and pointers can be

transmitted in messages.

Computations are performed by dynamically creatable agents, which are active objects that com-

municate with other agents solely by asynchronous message passing. An agent is an autonomous entity

consisting of several clusters of operations. An operation can be activated by sending a message to the

agent. Each agent processes only one message at a time without interruption and messages arriving at

an agent while it is currently executing an operation are collected in a private mailbox. Execution of

an operation may result in any number of messages being concurrently transmitted to other agents and

many agents may be sending or receiving messages at the same time.

A cluster of operations together with local variable declarations is called a facet. Dynamic replace-

ment of the current facet by another facet may change the behavior of an agent. Facets can also be set

up recursively, the return to a previous facet then restores the old state allowing very simple realiza-

tions of backtrack algorithms. A facet has the following structure:

<var-decl> /*global variables of the facet */

operation <name> <pattern> <assertion>

.... /* local sequential code possibly with send and create instructions */

endoperation
operation /* the next operation */

An agent is passive whenever it is not executing an operation while it implicitly scans the mailbox

for an executable message. A necessary condition for the triggering of an operation is name

equivalence. An operation describes the message it wants to receive by a pattern and an assertion.

Among other things the pattern is used to break up composite data structures to extract pieces of the

message and bind them to local variables; while the assertion allows the use of an arbitrary predicate

on the values of the message and the variables of the agent. If the pattern-match succeeds and the

assertion evaluates to true, the operation is executed with the actual variable-bindings, similar to the

execution of a procedure. Otherwise, the message remains in the mailbox without any side effects and

its match is retried at a later time.

134

By means of a specific agent connected to a terminal, the so-called interface agent, the user takes

part in the distributed computation. It consists of a CSSA interpreter and is 'programmed' dynami-

cally by the user during the computation. Similar to all other agents, the interface agent can send and

receive messages and create new agents.

CSSA was designed and implemented as part of the INCAS project [NHM87]. A compiler running

under UNIX generating code for a virtual stack machine was realized. A virtual machine forms the

run time environment for an agent and provides extensive test and debugging facilities. A collection of

virtual machines distributed over several hosts constitutes the distributed CSSA support and operating

system. A complete CSSA system is now running on the INCAS research multicomputer consisting

of several MC68000 based machines with a dedicated distributed operating system and on a network

of UNIX machines connected by Ethernet using a TCP/IP based protocol. Several small applications

and control algorithms are currently being implemented.

5. A distributed implementation of the puzzle-solving sys tem

In the CSSA realization of the puzzle-solving system, the backtrack manager sends all its messages

along the control cycle shown in Figure 5. The ring structure has the advantage in so far as the

manager gets an implicit acknowledgement when all column processes have received the information,

which is useful for synchronizing the columns. Backtracking is realized by recursive facets; the back-

track manager requests the columns to change their facet by two messages ' godown ' or 'go_up'. A

'report' message collects the sets of digits assigned to the letters, allowing the backtrack manager to

get a snapshot of the global state. The snapshot is consistent when the constraint propagation phase

has quieted. The backtrack manager can also propagate a hypothesis - an artificial constraint - and start

the termination detection algorithm.

s t ~ ~ send go hypo- down thesis
~ requet I ~ I ~ _ 4 ~ repot

go up
Fig. 6

~_~ start termin. detect.

terminated

The control flow of the backtrack manager is summarized in Figure 6. When it gets a snapshot

after the end of a constraint propagation phase, either a solution is found, which is displayed, or a con-

tradiction has been detected if some sets are empty, or some letters are still ambiguous. The backtrack

manager reacts according to the backtracking principle and some hypothesis generating heuristics.

Each column process is realized by a CSSA agent and contains several operations for the accep-

tance of constraints and command messages in addition to an operation for detecting termination:

135

operation TERlVI_TEST (C~RL_VEC)

assert LOC_VEC[MY_NO] + CTRL VEC[MY NO] <_ 0

LOC_VEC := LOC_VEC + CTRL_VEC ;

if LOC_VEC = [0,..,0] then

send TERM TEST(LOC_VEC) to B_MANAGER ;

else

send TERM TEST(LOC_VEC) to NEXT ;

LOC_VEC := [0,...,0] ;

endif ;

endoperation

The code of the operation should be self-explanatory. The main stratagem lies in the assertion: the

TERM_TEST message is only accepted and the operation is only executed when the assertion evalu-

ates to true, i.e. the acceptance of the control message is delayed until the agent has received a

sufficient number of basic messages. This is equivalent to the guard V[j]_<0 used in Section 2. It

should be annotated, that because of its message driven computational model, an agent is always pas-

sive at the moment of accepting a TERM_TEST message.

As soon as termination is detected by some column agent the backtrack manager is informed. No

extra provision has to be made to ensure a complete first round, because before the termination test of

a phase is started a hypothesis is sent to all columns. To initiate the first constraint propagation phase

the backtrack manager sends a dummy hypothesis to the columns.

We do not advocate using a distributed system to solve puzzles as it was mainly used as a test case

for our multicomputer system and several distributed control algorithms. The general problem is hard:

While there are 'only' 10! different assignments of letters and digits to try, D. Eppstein [EPP87] has

shown that a slight generalization, where the base of representation for the numbers is given as part of

the problem (rather than always being decimal), is NP-complete. Nevertheless, one may be curious

whether the distributed constraint propagation solution is more efficient than a pure sequential back-

tracking method. The efficiency of the distributed solution naturally depends on various system and

implementation characteristics. Our experiments have shown that when using real-time as an efficiency

measure in most cases the sequential method is faster, but for some puzzles the distributed solution is

more efficient. For puzzles with 5 to 10 columns typically 20 to 80 basic messages are generated in

one phase and a column agent usually performs less than 10 transformations per phase. Compared to

the traditional sequential backtracking algorithm where about 1000 to 5000 hypotheses are generated,

the constraint-based solution generates only about 20 to 100 hypotheses when using a very simple

hypothesis generating heuristic [BEM86]. This shows that the search tree is pruned drastically and that

the distributed constraint propagation method can be a valuable principle for large search spaces in

more serious applications. Of course, the constraint propagation principle can also be used in a

sequential algorithm where it might be possible to avoid some redundant computations, but a potential

performance gain is mainly to be expected from the parallel computation of the local transformations.

Several variants of the general principle have been implemented, among them a distributed back-

tracking version where several hypotheses are tested in paralM, and variants with other termination

detection algorithms, e.g. with problem oriented termination conditions.

136

6. A n e m p i r i c a l e v a l u a t i o n of the vec tor a l g o r i t h m

How efficient is the vector termination detection algorithm? We know from Section 2 that the worst

case message complexity is O(mn) for the ring configuration, and it is also the worst case time com-

plexity. Other configurations with lower message complexity and parallel traversal schemes yielding

lower time complexity will be considered in the next Section. However, we expect the worst case

situation in which only one basic message is received in every round to be very unlikely and we

would like to know the 'typical' complexity of the algorithm. The behavior of the termination detec-

tion algorithm is highly dependent on the communication pattern of the underlying computation and

the communication delay of the basic messages. The execution speed of local computations is also

relevant but in the message driven model this can be subsumed to the communication delay, at least

theoretically. Unfortunately there does not seem to be any canonical probability distribution on the

delays and the message generation patterns (i.e. the number of messages sent as a reaction to a mes-

sage received) which would enable us to compute the average complexity. We are therefore limited to

statistical results of typical distributed computations.

To evaluate the vector termination detection method the puzzle-solving system was used. A large

number of puzzles have been executed and for every phase the basic messages and the control mes-

sages have been counted. The following table shows typical results of the ring based termination

detection algorithm for some selected puzzles:

puzzle initial

hypotheses

basic

msgs m

ABC+ABC=DDEC 30

LONGER+LARGER=MIDDLE 47

RIVER+WATER=SHIPS 38

V=4, E=3 121

DONALD+GERALD=ROBERT 47

A=4, B=3 153

ABCDEAABCDEA+ 135

FGHDEAFGHDEA= A=5 (phase 2) 319

HBIGHJHBIGHJ D=4, I=3, H=7 468

ABCDAAB CDA+EFG DAEFG DA= C=4, D=3 429

HIBJHHIBJH

control

msgs

7

9

I1

12

8

13

15

22

20

23

theor, max

(n+l)(m+l)

155

336

234

732

336

1078

1768

4160

6097

4730

Various runs of the same puzzle usually produce slightly different figures since the computation is

nondeterministic. One has to be careful when assessing and generalizing the results; although a puzzle

computation usually shows a rather 'random' behavior with communication peaks alternating with

periods of low communication activity we have no actual justification to regard it as a 'typical' distri-

buted computation. However, in all runs the number of control messages was far less than could be

expected from the worst case behavior (n+l)(m+l); in fact x/m seems to be a rather good approxima-

tion. Basic messages and control messages are treated with equal priority. Even less control mes-

sages would be needed if we could give control messages a lower priority; in which case, whenever

137

several messages are in the mailbox of an agent, a termination test message will only be selected if no

basic message is acceptable. The unbounded version of the algorithm without the assertion to delay

'early ' control vectors did not perform significantly worse. This can be explained by the fact that in

our system messages are mostly delivered in the same order they have been sent.

To gain more confidence in the low empirical message complexity we are currently implementing

the vector algorithm in other small applications. Similar results have already been obtained from a

distributed program for computing the greatest common divisor of several numbers. A more ambitious

project consists in the realization of a general testbed for distributed control algorithms where various

network structures and stochastic communication patterns can be specified. First experimental results

with that system confirm the low message complexity of the algorithm.

Recently a similar termination detection algorithm has been implemented in the distributed run time

system of CSSA. Various pragmatic conditions had to be taken into consideration, e.g., input from the

environment, restart of the algorithm after termination detection, dynamic creation of agents. Also,

several optimizations could be applied; among other things internal message buffers are regarded as

'processes' which are only passive when they are empty. Whenever the run time system detects termi-

nation, a synchronous notification message is automatically sent to all agents which allows any agent

to start the next phase.

7. The vector algorithm revisited - important variants

In the puzzle-solving system any column that detects termination of a constraint phas~ directly

informs the backtrack manager. Other columns normally do not notice the fact until they 'suddenly'

get a request message from the backtrack manager. A review of the algorithm as it was described in

Section 2 shows that only one process eventually knows that the system has terminated. However, by

simply removing the 'else ' in line 3 of the termination demon the null vector will continue to circle

and inform all processes. To stop the vector after one round the guard should be extended by another

condition 'and not TERMINATED' . One may be tempted to 'approximate common knowledge' by let-

ting the vector accomplish just one more round to inform each process that every process knows that

the system has terminated...

Some additional measures have to be taken providing every process should have the possibility to

restart the system in a multiphase application and not just one single process as in the puzzle-solving

system. After restarting the system (only if TERMINATED is true!) a process sets its local predicate

variable PASSIVE to false and sends out a start control message which travels around the controI ring

resetting all TERMINATED flags to false. This enables the control vector to leave the process where

it was hidden (the process with H A V E V E C T O R = true). Some care has to be taken because several

processes may start the system independently and the revitalized control vector can overtake start mes-

sages. A preventive countermeasure to possible confusion consist in considering a process active until

it gets back its own start message. Since the control vector must perform at least one round (which has

to be ensured by some simple additional mechanisms not discussed here) before setting any TER-

MINATED flags to true, any control vector which is too fast will be blocked in its first round at the

starting process until all processes have been informed about the new phase. Another potential prob-

lem could exist with processes which restart the system too early, before all other processes are

informed about the termination of the previous phase. This problem can be overcome by numbering

138

the phases and rejecting control messages of a later phase. The problem of independent restart is rem-

iniscent of the distributed election problem.

When considering control topologies other than rings it is important to realize that the proof of the

main property of the algorithm (that the distributed computation is actually terminated when the circu-

lating control vector becomes the null vector) is not limited to rings (or Hamiltonian cycles) where

each process is visited exactly once. 'Cycle ' can be substituted by any serial traversat scheme visiting

all nodes at least once and in any such traversal (with the possible exception of the first one) it is

guaranteed that at least one basic message is received. (To keep the invariant correct it is important

however that the local vectors are reset to [0,...,0] when their values are accumulated by the control

vector). Since it is reasonable to assume that the network is strongly connected (otherwise there exists

a node which can never know whether all other nodes are passive), there exists always a closed traver-

sal scheme - additional communication channels solely for control messages are therefore not neces-

sary. However, the efficient construction of short closed traversals in directed networks is a non-trivial

problem [GAA84]. Kutten [KUT87] also investigates this problem; his serial "non-retreating traversal

algorithm" has an expected message complexity of O(n nq-n~) for (random) graphs of n nodes and e

edges. The PIF algorithm (Propagation of Information with Feedback) presented in [TEL87] can also

be used to propagate a control vector through a directed network, however its message complexity is

O(n 3) and an upper bound for the diameter of the network must be known to all processes.

The traversal sequence of the control vector C needs not to be the same in every traversal. How-

ever, to guarantee the progress of the algorithm every process Pj for which C[j]>0 must eventually be

visited. This suggests an interesting traversal strategy for complete networks: The control vector starts

with C=[1 1] and the local vector variables V of any Pj have all components initialized to 0 except

V[j], which is set to -1. Until it becomes the null vector, C is propagated to some process Pi for which

the i-th component of the accumulated vector is greater than 0. This can be interpreted as if the con-

trol vector chases previously sent basic messages. Definitely n+m control messages at the maximum

are used. For normal computations, where every process receives at least one basic message or where

m>>n, this is (almost) optimal; Chandy and Misra have shown that any distributed termination detec-

tion algorithm uses at least m control messages in the worst case [CHM86].

The solution for complete networks also suggests a variant for a star network with bidirectional

channels using at most 2(n+m) control messages: instead of propagating the control vector directly to

some other process, it is always returned to the central node. The central node sends the 'deficit'

D=C[j] to some process Pj for which C[j]>0. According to the previously described strategy, Pj sends

back its vector V when it is passive and D+V[j]<0. Pj resets its local variable V and the central node

accumulates the values by C<--C+V.

Instead of sequentially visiting the nodes, the central node can request in parallel all processes Pj

for which C[j]>0 to send back their vector V. After having received the answers to all requests it starts

a new 'round' until C=[0,...,0]. This solution seems particularly attractive if the request together with

the deficits D[j], where D[j] is the last rounds' C[j], can be broadcast to all processes.

Both variants, the sequential and parallel version of the star configuration have been implemented

in the puzzle-solving system with the backtrack manager acting as the central process. The following

table compares the results for the same puzzle instances as shown in the previous table. Notice that

due to the nondeterministic behavior of the computation the number of messages for the ring topology

are not always the same as those listed in the first table.

139

basic
messages

32 7
47 11
38 11

t36 13
47 8

138 13
t35
386
501
436 17

control messages
ring star (seq.) star (par.)

~ o i i
12 18
10 14
14 20
11 11
14 17

15 25 29
19 30 34
19 30 35

26 38

We observe that usually the sequential and parallel star configurations use more control messages

than the ring based variant (1 : 1.32 : 1.56 on the average for all our experiments), although their

worst case message complexity is only 2(m+n) compared to (m+l)(n+l) . Again, one has to be

extremely careful when generalizing this result since the number of control messages and the relative

performance of the algorithms is dependent on the application and various characteristics of the under-

lying system. Nevertheless, the experiments show that under some conditions the theoretical bounds

for the number of messages are of little importance, therefore in such cases an unbounded but simpler

algorithm could be more appropriate (e.g. [KUM85], [MAT87a]),

Another canonical control structure for a termination detection algorithm when considering net-

works with bidirectional channels is a fixed spanning t r ee ([FRA80], [FRR82], [TOP84]). A wave of

deficit control vectors D (copies of the accumulated control vector of the previous round) sent out by

the root process moves through the tree. Every node stores the deficit vector D and propagates D+V.

Eventually the deficit wave reaches the leaves where the request messages are turned into 'echoes'

moving upwards. The wave of deficit vectors moving down the tree is only started or accepted and

propagated by any node Pj if D[j]+V[j]_<0. Echoes carry the accumulated control vectors of the sub-

trees; a root of a subtree combines all its subtree control vectors including its own vector V. It sends

an echo vector back only when D plus the vector components of all the nodes in its subtree are 0 or

negative, otherwise the respective subtrees are revisited with a new deficit vector. The previously

described star configuration can be seen as a degenerated tree of depth one.

In trees, it is also possible to split the 'circulating' vector and visit the subtrees in parallel: When a

vector is received from the parent node it is added to the Iocal vector. Then for each subtree those

components of the vector are extracted which represent nodes of the subtree. If at least one of those

components is non-zero a new vector is constructed (with all other components set to 0) which is sent

to the root of the subtree. When the echoes have been received, and its values have been accumulated,

this procedure can be repeated until no more subtrees can be revisited. Then the accumulated vector is

sent back. Technically, this scheme is equivalent to the previously described principle using deficit

vectors on trees. Notice that by splitting the vector, the invariant is kept valid. The splitting vector
technique can be regarded as a generalization of the vector principle, the previously described realiza-

tions for rings and star networks are merely variants of special cases.

Most interesting are traversal schemes for undirected networks based on echo algorithms which do

not need any additional communication channels or predefined control structures. The classical parallel

traversal scheme with a given initiator has time complexity proportional to the diameter of the network

and uses O(n 2) messages ([CHA821, [SEG83]), but improvements for dense networks and an O(n)

sequential depth first traversal scheme for networks in which nodes know the identities of their neigh-

bors have recently been presented ([HMP87], [HMR86]). Notice that the neighborhood knowledge

140

can easily be obtained by exchanging 2e messages once with e denoting the number of edges (e<n2).

The O(n 2) messages of this initialization phase can be subsumed under the O(mn) messages of the ter-

mination detection algorithm for most reasonable cases (e.g. m>n). The echo traversal schemes dynam-

ically construct a spanning tree, superimposed termination detection algorithms are therefore similar to

the previously sketched fixed spanning tree variant with the exception that a dedicated revisiting of

subtrees is a priori not possible. Echo based termination detection algorithms, which use a scalar

counter instead of a vector, are discussed in [MAT87b].

For strongly connected directed networks the use of trees is slightly more complicated. For a given

root a directed out-tree and a different in-tree can be constructed without adding new communication

channels [GAA84], [KUT87]. The root uses the out-tree to propagate the deficit vector to every node.

At the leaves of the in-tree it evokes a wave directed towards the root, while inner nodes of the in-tree

accumulate the results of the subtrees. The nodes delay the propagation of the wave on the in-tree

until at least as many basic messages as indicated by the deficit vector have been received.

Instead of accumulating the local vectors it might be possible to collect the values without resetting

them to [0,...,0]. This is feasible if the values of every process are collected exactly once during a

traversal. Appropriate configurations are rings, but also trees (either fixed or generated implicitly by

echo algorithms). On trees and echo traversals the value of a node is collected just before the control

vector is sent back to the father. Since no local variables in the processes are changed, several

independent control waves can be concurrently active in such a reentrant variant. For a potential appli-

cation consider a ring where any process suspecting termination could send out a collecting vector

(initialized to [0,...,0]) independently of all other processes. When the process gets back its own vector

it can announce global termination if it is the null vector. Notice that this is a completely symmetric

realization because there is no privileged process. However, if no information from the previous

round is carried over to the next round the number of control rounds is not bounded. This can easily

be seen by considering the ring configuration and a very slow basic message that travels in the oppo-

site direction than the control messages. For rings a simple solution consists in altemating the direction

of the control cycle, then in every other round at least one basic message is received.

For bounded symmetric versions on other topologies it is necessary to carry over some information

from the previous round by splitting the control vector C[t:n] into two components S[t:n] and R[l:n]

(C=S+R) and adding a third vector L[l:n]. S[k] denotes the number of basic messages sent, R[k] the

number of basic messages received. L is a copy of the vector S of the last round (or [0,...,0] in the

first round). Instead of C, a 3-tupel (L,S,R) is propagated (S and R are initialized to [0,...,0] when

starting a round). A process Pi accepts the control vector (L,S,R) only if V[i]+L[i]_<0. Then S and R

are updated according to S[k]~-S[k]+V[k] for all k~i and R[i]~-R[i]+V[i]. After the initiator has got-

ten back its vector (L,S,R) and added its own values to S and R it announces termination if

S+R=[0,...,0]. By virtue of the guard V[i]+L[i]_<0 it is guaranteed that at least one basic message is

received in every round (except for the first round). L[k] represents the knowledge of the number of

messages sent to Pk which has been gathered during the previous round; at least as many messages

must have been received in the next round.

The use of fixed length vectors is inappropriate for dynamic systems; however, sets of pairs consist-

ing of process identification and counter value could be used instead. To cope with the dynamics, a

process creating a new one could send a virtual message to this new process, to itself, or to some

other dedicated process by setting the appropriate component in its local vector. The virtual message is

141

only considered as being received when the new process has been integrated into the control

configuration. More control is needed for terminating processes.

8. C o n c l u s i o n

We have proposed a new algorithm for detecting termination of distributed computations. Com-

pared to most other solutions the vector algorithm is not restricted to synchronous communication or

FIFO channels. The message complexity is bounded by O(mn) for rings, trees and sequential depth

first traversal schemes and by O(m) lbr stars and complete graphs; but our experimental results have

shown that usually far less messages are generated than can be expected from the worst case. A draw-

back of the method is the length of the control message, it consists of a vector of length n. Only three

other methods based on the same general model of distributed computation are known:

a) The sceptic algorithm using scalar counters ([KUM85], [BMR85], [MAT87a]): The message com-

plexity is not bounded and at least two full rounds are required.

b) The time algorithm ([LAI86], [BMR85], [MAT87a]): It has message complexity O(mn) and each

basic message must be augmented with a time stamp of a virtual clock.

c) The diffusing computations scheme ([DIS80], [SHF86]): By a signaling scheme each basic message

is acknowledged, resulting in exactly m control messages. While the worst case is optimal, there is

no better average case.

The general principle of our method, which consists in counting the basic messages individually per

process, gives rise to a whole class of termination detection algorithms with bounded message com-

plexity. The scheme can be superimposed on different traversal algorithms, resulting in sequential and

parallel variants for various topologies. It is simple, readily implementable, and the local computations

are short and efficient. Symmetric and reentrant versions allow any process to start a termination test

independently of all other processes.

The results of our experiments indicate that an empirical evaluation of distributed control algo-

rithms is useful, and that the worst case message complexity should not be the only evaluation cri-

terion when assessing distributed algorithms. The number of control messages is often highly depen-

dent on the communication patterns of the underlying computation and the characteristics of the com-

munication system. We will continue our experiments to see how sensitive different termination detec-

tion algorithms and other control algorithms are with respect to various characteristics of the environ-

ment.

Re fe rences

[BEM86]

[BMR851

BEILKEN C., MATI'ERN F. (1986) Verteiltes Probleml'dsen am BeispieI von Zahlenratseln -
Ein Experiment mit CSSA. Technical Report SFB124-29/86, Department of Computer
Science, University of Kaiserslautern, West-Germany

BEILKEN C., MATTERN F., REINFRANK M. (1985) Verteilte Terminierung - e i n wesentlicher
Aspekt der KontrolIe in verteiIten Systemen. Technical Report SFB124-41/85, Department
of Computer Science, University of Kaiserslautern, West-Germany

142

[CHA82]

[CHM811

[CHM86]

[DIS80]

[EPP87]

[FRA80]

[FRR82]

[GAA84]

[HEW77]

[HMP87]

[HMR86]

[KOR8t]

[KUM85]

[KUT871

[LAI86]

[MAB85]

[MAT87a]

[MAT87b]

[NHM871

CHANG E.J.H. (1982) Echo Algorithms: Depth Parallel Operations on General Graphs.
IEEE Transactions on Software Engineering SE-8:4, pp. 391-401

C~ANDY K.M., MISRA J, (1981) Asynchronous Distributed Simulation via a Sequence of
Parallel Computations. Comm. of the ACM 24:4, pp. 198-205

CHANDY K.M., MISRA J. (1986) How Processes Learn. Distributed Computing 1, pp. 40-
52

DIJKSTRA E.W., SCHOLTEN C.S. (1980) Termination Detection for Diffusing Computations.
Information Processing Letters 11:1, pp. 1-4

EPPSTEIN D. (1987) On the NP-Completeness of Cryptarithms. ACM SIGACT News
18:3, pp. 38-40

F~ANCEZ N. (1980) Distributed Termination. ACM Trans. on Prog. Lang. and Sys. 2:1,
pp. 42-55

FRANCEZ N., RODEH M. (1982) Achieving Distributed Termination without Freezing. IEEE
Transactions on Software Engineering SE-8:3, pp. 287-292

GAFNI E., AFEK Y. (1984) Election and Traversal in Unidirectional Networks. Proc. of the
3rd Annual ACM Symposium on PODC, pp. 190-198

HEwrrT C. (1977) Viewing Control Structures as Patterns of Passing Messages. Art.
Intell. 8, pp. 323-364

HEIARY J.-M., MtADDI A., PLOUZEAU N., RAYNAL M. (1987) Parcours et apprentissage
dans un reseau de processus communicants. Technique et Science Informatiques 6:2, pp.
127-I39

HELARY J.-M., MADDI A., RAYNAL M. (1986) Calcul distribue d'un extremum et du
routage associe clans un reseau quelconque. Technical Report 516, INRIA, France

KORNFEI_D W.A. (1981) The Use of Parallelism to Implement a Heuristic Search. Proc. of
the International Joint Conference on Artificial Intelligence, pp. 575-580

KUMAR D. (1985) A Class of Termination Detection Algorithms for Distributed
Computations. In: Maheshwari N. (ed) Fifth Conference on Foundations of Software
Technology and Theoretical Computer Science, Springer-Verlag, LNCS 206, pp. 73-100

KUrrEN S. (1987) Stepwise Construction of an Efficient Distributed Traversing Algorithm
for General Strongly Connected Directed Graphs. Technical Report 431 (draft), Technion -
Israel Institute of Technology, Computer Science Department, Haifa, Israel

LAI T.-H. (1986) Termination Detection for Dynamic Distributed Systems with Non-first-
in-first-out Communication. Journal of Parallel and Distributed Computing 3, pp. 577-599

MAT'fERN F., BEILKEN C. (t985) The Distributed Programming Language CSSA - a Very
Short Introduction. Technical Report 123/85, Department of Computer Science, University
of Kaiserslautern, West-Germany

MATrERN F. (1987) Atgorithms for Distributed Termination Detection. Distributed
Computing 2:4 (to appear)

MATTERN F. (1987) Asynchronous Distributed T~ ,mination - Parallel and Symmetric
Solutions with Echo Algorithms. Technical RepoJ : SFB124-21/87, Department of Computer
Science, University of Kaiserslautern, West-Gel~ ~any

NEHMER J., HABAN D., MATI'ERN F., ROMBACH) . , WYBRANIETZ D. (1987) Key Concepts
of the INCAS Multicomputer Project, IEEE Tr~ nsactions on Software Engineering SE-13:8,
pp. 913-923

143

[SEG83]

[SHF86]

[TAL86]

[TEL87]

[TOP84]

SECAL A. (1983) Distributed Network Protocols. IEEE Transactions on Information
Theory IT-29:1, pp. 23-35

Sr~AVlT N., FRANCEZ N. (1986) A New Approach to Detection of Locally Indicative
Stability. Technical Report RC 11925, IBM Th. J. Watson Research Center, Yorktown
Heights, USA

TAN R.B., VAN LEEUWEN J. (1986) General Symmetric Distributed Termination Detection.
Technical Report RUU-CS-86-2, Computer Science Department, University of Utrecht,
Utrecht, The Netherlands

TEL G. (1987) Directed Network Protocols. In: Gafni E., Raynal M., Santoro N, van
Leeuwen J., Zaks S. (eds) Proc. 2nd Int. Workshop on Distributed Algorithms, Springer-
Verlag, LNCS

ToPOR R.W. (1984) Termination Detection for Distributed Computations. Information
Processing Letters 18:1, pp. 33-36

