
SOFTWARE-PRACTICE AND EXPERIENCE, VOL. 14(1 I) , 1095-1 107 (NOVEMBER 1984)

A Language Independent Error Recovery Method
for LL(1) Parsers

MICHAEL SPENKE, HEINZ MUHLENBEIN, MONIKA MEVENKAMP, FRIEDEMANN MATTERN+
AND CHRISTIAN BEILKEN+

Gesellschaft f u r Mathematik und Datenverarbeitung, POB 1240, 0 - 5 2 0 4 S t . Augustin, Germany

SUlMlMARY
An efficient and systematic LL(1) error recovery method is presented that has been
implemented for an LL(1) parser generator. Error messages which provide good diagnostic
information are generated automatically. Error correction is done by discarding some input
symbols and popping up some symbols from the parsing-stack in order to restore the parser
to a valid configuration. Thus, symbol deletions and insertions are simulated. The choice
between different possible corrections is made by comparing the cost of the inserted
(popped) symbols with the reliability value of the recovery symbol (the first input symbol
that is not discarded). Our concept of reliability is based on the observation that input
symbols differ from each other in their ability to serve as recovery points. A high reliability
value of a symbol asserts that it was probably not placed in the input by accident. So it is
reasonable not to discard that symbol but to resume parsing. This is done even if a string with
high insert-cost has to be inserted before that symbol in order to fit it to the part of the
program that has already been analysed. The error recovery routine is invoked only when an
error is detected. Thus, there is no additional time required for parsing correct programs.
Error-correcting parsers for different languages, including Pascal, have been generated.
Some experimental results are summarized.

KEY WORDS Syntax error recovery LL(1)-parsing Parser-generator Backtrack-free correction

INTRODUCTION

Error recovery is one major task of compilers for high-level programming languages.
The handling of syntactic errors is important, because modern compilers are syntax-
directed, and thus the syntactic analysis of erroneous programs forms the basis for the
detection of other types of errors. A complete and precise error diagnosis is of great
practical importance: the detection of all errors in one compiler pass with no spurious
errors may lead to a considerable speed-up of program development.

The interest in systematic and language independent error recovery strategies has
increased considerably in the past ten years. The main reason for this development is
the automation process in compiler-design itself (parser generators, compiler-
compilers). An automatically generated parser into which error recovery is built later
by hand seems to be of little value!

Dissertations by Leinius, LaFrance, Levy and Peterson dating from the early 70s
are milestones in this development. They investigate for the first time the problems of
systematic syntax error recovery based on context-free grammars.

Present address: Souderforschungsbereich 124, Universitat Kaiserslautern POB 3049, D-6750 Kaiserslautern,
Germany.

0038-0644/84/111095-13$01.30 Received 18 February 1983
@ 1984 by John Wiley & Sons, Ltd.

1096 MICHAEL SPENKE ET AL.

The situation before the 70s is best illustrated by two quotations. Pollack’ writes:
Chapter 5 treats the most poorly documented topics in compiler writing, those of
error detection and error correction. Few general techniques are currently known for
these subjects, perhaps accounting for the dearth of available literature.’ Feldman and
Gries’ write: ‘There has been very little effort on the problem of automatic error
detection and recovery in syntax-directed processors. Once again, even a bad system
would be of great value to the users!’

In the 70s a variety of error recovery methods were developed. Best known is the
strategy developed by Wirth and Amman3 which is used in most Pascal compilers.
However, it is systematic to a certain extent only, and it contains a number of
language-dependent heuristics. The suffix analysis developed by Moll4 is not yet
operable in practice and does not permit checks of static semantics after the first error.
Fischer, Milton and Quiring’ describe an experimental method which corrects all
errors by mere symbol insertions. Parts of the method developed by Pai and Kieburtz6
are similar to the method described here. There is also a number of methods which
were designed for LR- and precedence-parsers. Graham and Rhodes’ and Graham,
Haley and Joy* are mentioned most frequently. Another interesting method has been
developed by Lewi et ul.’ It can be used for both top-down and bottom-up parsers. A
good survey of various methods is presented by Rohrich.”

Ripley and Druseikis” have made a statistical analysis of the errors committed by
programmers and have set up an error benchmark. They criticize that hardly any of
the suggested methods has been used in practice. ‘Most evaluations in print consist at
best of an illustration of the technique on a few examples, almost invariably leaving
the reader wondering how representative these examples are, and how well the
technique works in general.’ Aho and Ullman” confirm that an investigation of this
topic is still valuable: ‘Although a considerable amount of theoretical and practical
effort has been expended in exploring recovery and repair techniques for syntactic
errors, the optimal strategy for any programming language is still an open question.’

A method to be used in a compiler generator should have the following properties:
(a) language-independent
(b) efficient
(c) automatic generation of user-oriented error messages (no language-dependent

messages)
(d) suited for compilers, not only for parsers (analysis of static semantics enabled,

no changes of the grammar required)
(e) detection of all errors, no spurious errors.
It should be mentioned that it cannot be exactly decided if the last point is met,

since ‘spurious error’ and ‘error position’ are pragmatical terms which cannot be
formalized completely.

The usual analysis methods (LL, LR) have the valid-prefix property, i.e. they detect
an error as soon as the read input is no longer any prefix of a syntactically correct
program. The following example shows that the error position defined by the valid-
prefix property is not always identical with the ‘real’ error position:

VALUE : = 0.3*(A+B)+0.7*C+D);
7

It cannot be decided if and where an opening bracket is missing or whether a closing
bracket is redundant. A parser cannot figure out the ‘real’ error. Therefore it should

LANGUAGE INDEPENDENT ERROR RECOVERY 1097

confine itself to ‘regaining foothold’ as soon as possible and to continue program
analysis, i.e. to carry out a quick and secure recovery. A correction in the strict sense can
be in principle carried out only by the programmer.

In the LL(1)-case further restrictions usually have to be met by an efficient error-
correcting parser:

1. The input is read from left to right in one single pass.
2. Just as in the normal analysis, in case of an error the look-ahead is limited to one

3. The input already accepted cannot be corrected.
4. No backtracking, even in the case of an error.
According to these restrictions, in the following example the parser has to decide

immediately whether the semicolon terminates the if-statement or whether it is
misplaced and then will come later.

symbol.

if x = 5; / / / / / I / / / / / /
When the next input symbol is read a wrong decision cannot be annulled.

T H E METHOD

The error-correcting parser presented here is based on the table-driven (strong)
LL(1)-analysis, as described by Aho and Ullman.” The parsing method is slightly
extended to ensure an even earlier error detection. If an error occurs, the error
recovery routine (ERR) is called. The ERR performs a correction, so that the LL(1)-
analysis can be continued. A correction is a modification of the parser configuration by
skipping some input symbols (T,. .T,.-,) and popping up some symbols (Al. .Ai.-l)
from the stack, which leads to a valid configuration (see Figure 1). mi p .. .T ..T,

I)

Figure 1 . Parser reconfiguration

The strong LL(1)-parser detects an error as soon as the current input symbol T, is
not contained in FIRST(A,.FOLLOW(A,)). Therefore an error is detected if T,
cannot be derived at the first position from A, (or equals Al). In the case that the
empty word LAMBDA can be derived from A,, an error is only detected if T, can
never follow A, in any sentential form. However it is certain that there is an error
unless T,E FIRST(A,. .A,,). If LAMBDA can be derived from A,, a valid con-
figuration is not yet guaranteed if T, is only a symbol which may in principle follow Al
(is in FOLLOW(A,)). Instead it is necessary that T, can follow A, in this specific
situation, i.e. T,E FIRST(A,. A,,). Therefore, the strong LL(1)-parser in some cases
performs moves, though it has already encountered an erroneous symbol.

By an additional inspection of the stack (for computing FIRST(A,. A,,)) before

1098 MICHAEL SPENKE ET AL.

applying LAMBDA rules (popping non-terminals from the stack) the immediate-
error-detection property (IEDP) is obtained. The IEDP has been proposed by Fischer,
Tai and Mi1t0n.I~ This property is even stronger than the valid-prefix property
mentioned above: a parser with the IEDP never performs a move when it has
encountered the erroneous symbol. Fischer, Tai and MiltonI3 further show how to
obtain the IEDP without additional effort for parsing correct program passages. (In
grammars where LAMBDA can be derived indirectly from a non-terminal A, the
stack has to be inspected in some additional cases as well.) Ghezzi14 shows how to
obtain the IEDP without parser modification, but by extending the grammar.

Analysing the erroneous input if P**2/4;-0>0 then . . a parser without the IEDP
will still perform the derivation (expr-rest) -+LAMBDA, whereas a parser having the
IEDP will immediately stop when the semicolon is detected, thus maintaining the
important information that the expression will possibly continue.

In a parser with the IEDP an important prerequisite for error recovery holds: in
case of an error all terminal suffices for the input already accepted can be derived from
the stack: A,. .A, &- w if only and only if T I . . T , _ , w d (G) . Since T, is erroneous,
A, . .A, % T,. .T, does not hold.

If we assume that any incorrect program is a ‘near miss’, i.e. that it is strongly
similar to a correct program, there exists an r (e f r f rn) and an i (1 did n) such that
the following holds: Ai. .A, 2s T,. .T, (unless the program includes further errors).
By skipping T,. . T, - and popping A .Ai- , the parser can be reconfigured. It is easy
to see that popping the symbols A,. .Ai-, from the stack corresponds to the virtual
insertion of the symbols at the error position. Thus, the ERR does not correct the
incorrect program in the sense that it transforms it into a correct terminal string.
However, each incorrect program is transformed into a sententid form, namely
T , . .T,- , A,. .Ai-, T,. .T,. In this way, a whole class of possible corrections is
suggested by the ERR. The resulting error messages are better understandable to the
programmer than a message reporting the insertion of some specific terminal string
that can be derived from A,. .Aip1.

The method described performs only those insertions which can be simulated by
popping the stack. Consequently, only those symbols are used as recovery points
which will certainly become legal followers in a future configuration regardless of the
actual recovery action that will eventually be used. Thus, the ERR uses a dynamically
computed set of symbols which are already ‘expected’ in the sense described above.
The set of recovery points can even be increased by expanding those non-terminals for
which there is a unique rule, immediately after pushing them into the stack. For
example, when (compoundstmt) is pushed into the stack it can immediately be
replaced by begin(strntAist) end. As a consequence all statement beginnings and end
are turned into potential recovery points.

Of course, the ERR cannot foresee for given r and i whether Ai. .A, ?+ T,. .T, will
be true, since it knows the input until T, only. Therefore, it can only guarantee that
T, E FIRST(Ai), and thus a valid configuration is obtained.

Since in general there is more than one correction possible, it is the task of the ERR
to select a plausible correction: According to certain heuristics a correction is selected
for which Ai. .A, 2% T,. .T, is most likely and for which only a short part of the
program is skipped.

The heuristics are based on certain assumptions concerning the errors committed by
programmers:

LANGUAGE INDEPENDENT ERROR RECOVERY 1099

1 . An incorrect program is usually very similar to a correct program.
2. An error is very soon followed by a correct piece of a program.
3 . There are important symbols (such as keywords) which are omitted quite rarely,

whereas other, less important, symbols (such as the redundant characters comma
or semicolon) are frequently omitted.

4. There are very reliable symbols which most likely do not occur in the input by
accident or error and which always occur in a specific context (e.g. a then is
always part of an if-statement).

5 . If an error cannot be corrected by deletion and/or insertion of a few symbols, the
reason is often a complete, misplaced syntactic unit, such as a whole expression
where only a single constant is, allowed or a type-declaration following the
variable-declarations (which is not allowed in Pascal).

6. A frequent reason for syntax errors is typing errors. In addition, similar basic
symbols, such as round and square brackets or I : ' and '. .' may easily be confused.

The first two assumptions are taken into account by first looking for such
corrections where only few symbols are skipped: the symbols following the error are
examined in sequence to determine whether they can serve as a recovery point.

T o consider the third point, insert-costs are assigned to any terminal symbol of the
language, as proposed by Fischer, Milton and Quiring.' The function INSERT-
COST can be extended to strings of terminals:

INSER T-COS T(aw) = INSER T-COST(a) + INSER T-COST(w)

The INSERT-COST of the cheapest string derivable from X is assigned to a non-
terminal X (INSERT-COST(LAMBDA) = 0). In a straightforward way the
INSERT-COST function can be extended to strings of terminals and non-terminals.

Whereas Fischer, Milton and Quiring' consider all insertions (and only these), our
method considers only those insertions which can be simulated by popping symbols
from the stack. Consequently, only those symbols are inserted which are definitely
expected, but which have not occurred. On the one hand this reduces the danger of an
erroneous insertion and on the other it simplifies the method very much. The
INSERT-COSTS are not necessary for choosing among various insertions in front of
the same recovery point; instead, they are used to decide whether an input-symbol
should be used at all for recovery or whether it should be skipped. If an important,
reliable symbol is found in the input, the ERR shall be allowed to insert (assume as
missing) even an expensive string. A less reliable symbol, however, should be used for
recovery only if it fits very well with the input read so far and if no expensive insertions
are necessary. Therefore, in addition to the INSERT-COST the RELIABILITY of
a terminal-symbol is used here. The RELIABILITY indicates how a symbol is suited
as a recovery point. A symbol of low reliability is more easily skipped by the ERR,
whereas a symbol of high reliability is used as a recovery point even if the insertion of a
whole sequence of symbols is necessary. The end-of-file symbol always has infinite
RELIABILITY, since the ERR can never ignore it.

The above considerations lead to the following definition:

Definition

-eINSERT-COST(A,. .Ai- < RELIABILITY(T,).
A correction by deletion of T,. . Tr- , and insertion of A,. .Ai- is called plausible

1100 MICHAEL SPENKE ET AL.

The error recovery routine is now easily explained: the ERR selects that plausible

Some examples will now be given to illustrate the method and provide insight into
correction in which the fewest input-symbols are skipped.

the scheme for specifying the two tables for Pascal.

A = (B*C; / / / / / / / / A = (B*C+; / / / / / / / / / A : = (B*(C+; / / / / / / / / /
In the first case it is clearly plausible to assume that a closing bracket is missing

before the semicolon. Therefore the following should be true:

INSER T-COS T(I) ') < RELIABILI T Y(' ; ')

In the second case (TERM) and I)' have to be inserted if the semicolon is used as a
recovery point. Since the cheapest terminal string derivable from (T E R M) should be
an identifier, it is examined whether

INSER T-COS T((TERM)') ') = INSER T-COST(ID I) ')

= INSERT-COST(ID) + INSERT-COST(') ') < RELIABILITY('; ') .
In the second case it is certainly reasonable to use the semicolon as a recovery point.

In the third case however it is quite questionable what the ERR should do. According
to the definition of the two tables, the semicolon is used as a recovery point here
(which may lead to spurious errors if the expression continues) or the semicolon is
skipped and a following, more reliable symbol (e.g. the next end) is used as a recovery
point (which may lead to undetected errors in the skipped statements before the end).

By the definition of the two tables different strategies of error recovery can be
implemented. The following special cases ought to be mentioned:

1. If all RELIABILITY values are set to zero, everything following an error is
skipped until the EOF symbol (which has infinite RELIABILITY). This will
never result in spurious errors, but only the first error in the program will be
detected.

2. If all INSERT-COSTS are set to zero and all RELIABILITY values are set to
infinity the first possible correction will always be found to be plausible and
therefore carried out. Very little is skipped and only few errors can be overlooked
in this case, but the danger of spurious errors is great, since even extremely
implausible corrections are selected, as illustrated in the following Pascal
example:

The ERR would assume that the dot terminates the whole program and that
(e x p r) end end were missing.

3. If the RELIABILITY and INSERT-COST values of all terminal symbols are
set to 1 , the ERR will carry out a correction only if it can be done without the
insertion of any symbol. The result is a deletion-only method, i.e. all errors are
recovered by mere skipping to the next legal follower.

4. If almost all RELIABILITY values are set to zero and some few symbols are
provided with infinite RELIABILITY, the panic-mode is obtained: a statically
fixed set of stop symbols is defined, which can serve as recovery points.

Apparently the definition of the two tables induces a trade-off between quick
recovery and secure recovery; in other words, between few errors overlooked and few
spurious errors.

. . . begin . . . begin A : = . / / / / / / / / / / / /

LANGUAGE INDEPENDENT ERROR RECOVERY 1101

The kind of considerations, which have lead to the specification of the two tables for
Pascal, can be illustrated by another example:

if x = 5 : / / / / / / / / / / / / if x = 5 else / / / / / / / / / I / /
In the first case it should rather be assumed that the semicolon was misplaced than

that the then was missing. Therefore the following should be true: INSERT-
COST('then') >RELIABILITY('; ') . In the second, almost equivalent case, however,
it is reasonable to assume that the then-part has been omitted.

The following recommendations for defining the tables can be derived from the
examples discussed here and from a number of practical tests:

(a) The INSER T-COSTS of special characters, numeric constants and identifiers
are between 1 and 5 .

(b) Keywords have INSERT-COSTS between 20 and 30 depending on their
length.

(c) The RELIABILITY of a symbol is usually set to three times its INSERT-
COST. Thus it is, for example, possible to insert two other keywords as well as
some other symbols in front of a keyword found in the input.

(d) Identifiers are provided with the RELIABILITY 1 since identifiers occur very
frequently and in many different contexts. Furthermore, an identifier is often
obtained by a typing error in a keyword.

(e) Some symbols are defined as stop symbols and have an extremely high
reliability. Thus it can, for example, be ensured that an end is always matched
to the last begin. In this way it is possible to recover even after wrong ERR
assumptions.

FURTHER ALGORITHMS FOR ERROR RECOVERY

In order to take into account also the fifth and sixth assumptions on the errors
commited by programmers the ERR is extended in two additional ways:
the phrase-parser and the spelling correction.

The phrase-parser avoids the skipping of longer input passages without any analysis
and enables the analysis of misplaced syntactic units, such as declarations in the
statement part: if a reliable symbol is found in the input which cannot serve as a
recovery point (since it is not expected in the stack), it is checked whether the symbol
signals the beginning of a unique syntactic phrase. In this case the phrase is pushed
onto the stack and the parser is called recursively. Thus the isolated unit is analysed
and skipped as a whole. Afterwards the search for a recovery point is resumed.

If, for example, a begin is encountered by the ERR, a whole (compoundstmt) is first
analysed and then the ERR is resumed. Symbols within the (compoundstmt) can
therefore not be used as recovery points.

A case that occurs quite frequently in Pascal, namely that the order of declarations is
confused, can be handled by the phrase-parser: if, for example, a type-declaration
follows the variable-declarations, type is the erroneous symbol and it cannot be used as
a recovery point. Since type starts a unique phrase, the phrase parser can analyse a
type declaration and subsequently the ERR can, for example, use the keyword
procedure as a recovery point.

In particular, the phrase-parser can also analyse statements following the syntactic
end of the program, though the stack is already empty when they are encountered.

1102 MICHAEL SPENKE ET AL.

Starting points for the phrase-parser may be those symbols which are of high
reliability and which have a unique right context. For example, in Pascal then is
always part of the phrase then (s t m t) (e lse-part) . Also do has a unique right context
(do (s t m t)) though it may occur in two different statements.

Another important reason for syntax errors is typing errors. For correcting typing
errors the erroneous symbol is compared with the set of symbols expected instead.
Because of the immediate-error-detection property (see above) FIRST(A, . .A,) is
exactly the set of legal followers at the error position. I t is checked whether the
erroneous symbol is similar to one of the legal followers.

Two strings of at least three characters are defined to be similar if one of the
following conditions holds:

(i) They have the same length and differ in one character only.
(ii) One string can be obtained by adding one character to the other at an arbitrary

(iii) One string is produced from the other by interchanging two neighbouring

(iv) One string is a prefix of the other one.
Furthermore, certain non-standard characters, such as round and square brackets,

' : I and I . .' are defined to be similar. This definition covers about 80 per cent of all
typing errors.I5

If T, is similar to a symbol X E FIRST(A,. A,), T, is corrected to X . If X is a
prefix of T,, T, is divided into two symbols.

Spelling correction is complicated by the fact that a typing error in a keyword usually
produces an identifier. Frequently the syntax also allows an identifier instead of the
keyword, so that the error cannot be detected at once. In A : = B; whyle A = C do , .
the parser has to assume when encountering whyle that an assignment will follow. The
error will be detected only when encountering A. This would be too late for spelling
correction.

This problem is solved as follows. The scanner examines whether a declared or an
undeclared identifier has been encountered. The syntax requires that an assignment
begins with a declared identifier. In this way the error is already detected one symbol
earlier and can be corrected by spelling correction.

If an undeclared identifier is encountered and a declared identifier is expected, the
symbol-table is examined for an identifier which is similar to the erroneous symbol
and which has already been declared.

position.

characters.

T H E ERROR RECOVERY ROUTINE

The ERR actions can be described as follows: the ERR looks for the smallest r
(e < r < m) for which there is an i (1 < i < n), so that the following is true:

(a) T,EFIRS T(Ai)
(b) INSERT-COST(A1. .Ai- 1) <RELIABILITY(T,)

Note: (1) A,. .Ai-, denotes for i = 1 the empty string LAMBDA. (2) Since
T, = EOF and A, = EOF and since the RELIABILITY of EOF is infinite, there is
always such an r .

For the obtained r the smallest valid i is selected and the following recovery action is
performed:

LANGUAGE INDEPENDENT ERROR RECOVERY 1103

(i) T,. .T,- are skipped (deletion).
(ii) A,. are popped from the stack (insertion).
The following algorithm also incorporates the phrase-parser and spelling

correction.

Algorithm for parser reconfiguration
A1 . . . An stack contents. STACKTOP = A1
TOKEN the current input symbol
U N I QU E (TO KEN)
UNIQUE-PHRASE(T0KEN) indicates the unique phrase starting with TOKEN
PREDICT(PHRASE)

states whether TOKEN starts a unique phrase

writes a phrase on top of the stack

procedure ERROR-RECOVERY;
begin

loop for X in FIRST(A1. .An) do
if S I M I LAR (TO KEN,X)

return;
then begin TOKEN: = X; (* spelling-correction*)

end;
endloop;

if TOKEN = (NEW-IDENTIFIER) and (OLD-IDENTIFIER) in FIRST(A1. .An)
then (* misspelt or undeclared identifier *);

loop until RECOVERY do

loop for I in 1. .N
while INSERT-COST(A1.. .Ai-1) < RELlABILITY(T0KEN)

if TOKEN = Ai or TOKEN in FIRST(Ai) then signal RECOVERY
do

endloop;
if UNIQUE(T0KEN)

then begin (* phrase-parser *)
PREDICT(U NlQU L P H RASE (TOKEN)); (* push*)
(* recursive call of the parser *)

end

exit RECOVERY is
else GET-NEXT-TOKEN; (* deletion *)

POP(A1.. .Ai-I) ; (* insertion *)
en dl oop;

end;

First it is checked whether the error can be corrected by spelling correction. If this
is impossible, the until-loop is executed until the event RECOVERY is signalled and the
exit block is executed.

Apart from the grammar the two tables with INSERT-COST and
RELIABILITY values present the only information about the specific language the
ERR knows, I t does not have any language-dependent heuristics, such as ‘In Pascal
the order of declarations is frequently confused’.

The proposed algorithm has to meet the restrictive LL(1)-prerequisites and is easy
to implement. Nevertheless, when compared in practice with other, more sophisti-

1104 MICHAEL SPENKE ET AL.

cated methods tailored specifically to Pascal, it yielded at least equivalent results (see
below).

AN EXAMPLE

The proposed method was implemented in an LL(1)-parser generator, and an error-
correcting Pascal parser was generated. The INSERT-COST and the
RELIABILITY were specified for each terminal-symbol of Pascal. The Pascal
grammar used is however not unambiguous because of the well-known dangling-else
problem and therefore it does not possess the LL(1)-property. Though unambiguous
grammers can be constructed for ($-statement), according to Aho and Ullman"
there is no such LL(1)-grammar. The parser generator signals the violation of the
LL(1) condition, but generates an analysis matrix matching each else to the last if.

The example in Figure 2 shows how the Pascal parser reacts to a demonstration
program. The error lines are marked with arrows, the erroneous symbol is underlined.
Skipped passages are underlined by a broken line. The error messages indicate how
the ERR has corrected the program so that the programmer can easily see whether the
assumptions of the ERR are correct or whether he has to expect spurious errors. Note
that all error messages are generated automatically and are not tailored specifically to
Pascal.

Explanatory notes concerning error messages
Line 14: Because of the IEDP the ERR knows all legal followers. One of them

(else) is similar to the erroneous symbol, therefore spelling correction.
Line 15: The scanner examines if and where an identifier has been declared and

returns a corresponding token: (new-identifier), (local-identifier) or
(global-identifier). The error is thus detected earlier and spelling cor-
rection is still possible.

Line 16: Spelling correction by comparison with the set of all declared identifiers.
Line 17: If a spelling correction is impossible, a declaration error is assumed.
Lines 14-17: Correction at token level.
Line 18: Recovery by skipping (deletion).
Line 19: CAR = DAMAGED is already a complete expression. Recovery by or is only

Lines 18-19: Pure deletion.
Line 20: The RELIABILITY of then is greater than the INSERT-COST for the

Line 21: RELIABILITY(e1se) > INSERT-COST(then (statement)) =s insertion.
Lines 20-21 : Pure insertion.
Line 22: Combined deletion/insertion. Note: no recovery at WALK in

(statement)-though this would be correct-since INSER T-COST of
then is too high.

possible thanks to the IEDP!

missing parts of the expression =- insertion.

Line 25: INSERT-COST(then) > RELIABILITY(' , ') * no recovery at', '.
Line 27: No recovery at until in (repeat-statement) because of costing:

RELIABILIT Y(until) < INSERT-COST (to (expr) do (statement)
end).

Line 32: The phrase-parser analyses the misplaced label declaration and detects
the ','-error; spurious errors are avoided.

LANGUAGE INDEPENDENT ERROR RECOVERY 1105

1
2
3
4
5
6
7

9
1 0

12
1 3

* 1 4
= 1 5
* 16
* 17

* 19
* 20
= 21
* 22

23
24

==. 25
26

* 27
28
29
30
31

* 32
33

* 34
35

a

==. i a

Line 14
Line 1 5
Line 16
Line 17
Line 1 8
Line 19

program ERROR-DEMO(0UTPUT);

type WEEKDAY = (MO,TU,WE,TH,FR,SA):
var DAY: WEEKDAY;

CAR, DAMAGED, BROKEN, AGE: INTEGER;
NO-GAS, CRASH, VACATION: BOOLEAN:

procedure WORK; begin end:
procedure GO-BY-CAR; begin end;
procedure WALK; begin end;

if CAR = DAMAGED then WALK else GO-BY-CAR;
if CAR = DAMAGED then WALK GO-BY-CAR;
IFCAR = DAMAGED then WALK else GO-BY-CAR; m= DAMAGED then WALK else GO-BY-CAR;
if= =DAMAGED then WALK else GO-BY-CAR;
if CAR = DAMAGED BRQKEN then WALK else GO-BY-CAR;
if CAR = DAMAGED or NO-GAS then WALK else GO-BY-CAR;
if CAR = then WALK else GO-BY-CAR;
if CAR = DAMAGED e& GO-BY-CAR;
if CAR = DAMAGED - SO W_AK else GO-BY-CAR;

begin

repeat
if not VACATION L

then begin
for DAY: = MO until F R do WORK;
write (‘WEEKEND’);

end;
until AGE = 65;

M I , L 2 :

write (1 081 5) (* end of comment missing . . .
end.

typing-error - ’ELZE’ changed to ’else’
concatenation-error - ’ I FCAR’ changed to ‘if CAR‘
transposition-error - ‘DAMAGDE’ changed to ‘DAMAGED‘
undeclared identifier ’BUS‘
’. BROKEN‘ deleted before ‘then‘
‘.‘ deleted before ‘or’

Line 201 ‘(SIMPLE-EXPRESSION)‘ inserted before ’then’
Line 21: ‘then (STATEMENT)‘ inserted before ‘else’
Line 22: ‘So WALK’ changed to ’then (STATEMENT)’
Line 25: ’;’ deleted before end of line
Line 27: ‘until FR’ changed to ‘to (EXPRESSION)‘
Line 32: misplaced (LABEL-DECLARATION) found

Line 34: second quote missing
I,‘ deleted before ‘2’

”’ deleted before ‘081 5‘
missing end-of-comment. ‘ *) ’ inserted at end of line

Figure 2. PascaI program and error messages

1106 MICHAEL SPENKE ET AL.

Line 34: Restriction of comments and string constants to one line allows early
recovery (language design).

PRACTICAL RESULTS

The quality of a syntactic error recovery method cannot be proved by theoretical
considerations, but has to be tested by practical experiments. The Pascal version of
our method was tested in 1981 by more than a hundred students for several thousand
programs. It was shown that the method indeed produced spurious errors very rarely
and overlooked hardly any error. The generated error messages were understandable
even to Pascal beginners.

Furthermore, the Pascal parser was tested with the error benchmark developed by
Ripley and Druseikis.” The material was taken from 237 erroneous Pascal programs
written by students (about 12,000 lines). The errors were isolated and provided with
minimal context. Identical errors were included only once but provided with a
weighting factor. This resulted in 127 program examples which can be obtained from
Ripley .

The generated error diagnoses were divided into three categories:
(i) ‘Excellent’: human diagnosis would produce the same results

(ii) ‘good’: incorrect parser assumptions, but no spurious errors
(iii) ‘poor’: one or more spurious or undetected errors
In Table I the method presented here is denoted by the abbreviation BMS. The

IBM Pascal/VS-compiler performs an error recovery according to the method
developed by Wirth.3 It produced the result denoted by IBM. The ‘global context
recovery’ developed by Pai and Kieburtz6 was also evaluated by means of the error
benchmark. This yielded the result denoted by GCR.

Table I . Benchmark results

Excellent 52 68 77
Good 26 9 14
Poor 22 23 9

Consequently the proposed method leads, in 90 per cent of the tested cases, to
correct recovery actions, thus avoiding spurious errors. Wrong parser reactions were
mainly to be explained through incorrectly used keywords or missing comment
brackets and quotes. Such errors present great problems to all methods. Therefore,
they should be avoided by an appropriate language design (cf. comments in Ada).

REFERENCES

1. B. W. Pollack (ed).), Compiler Techniques, Auerbach Publishers, Philadelphia 1972.
2. J . Feldman and D. Gries, ‘Translator writing systems’ CACM, 11 (2), 77-113 (1968).
3. N. Wirth, ‘Die Behandlung von syntaktischen Fehlern’, in Compilerbau, Teubner-Verlag, 1977.
4. Karl-Rudolf Moll, ‘Suffixanalyse, ein Konzept zur Behandlung von syntaktischen Fehlern’,

Informatik Spektrum 4, 82-89 (1981).

LANGUAGE INDEPENDENT ERROR RECOVERY 1107

5. C. N. Fischer, D. R. Milton and S. B. Quiring, ‘Efficient LL(1) error-correction and recovery using

6. A. B. Pai and R. B. Kieburtz, ‘Global context recovery: a new strategy for syntactic error recovery by

7. S. L. Graham and S. P. Rhodes, ‘Practical syntactic error recovery’, CACM, 1 8 (l l) , 639-650

8. S. L. Graham, C. B. Haley and W. N. Joy, ‘Practical LR error recovery’, S I G P L A N Notices,

9. J . Lewi, K. De Vlaminck, J. Huens and M. Huybrechts, ‘The ELL(1) parser generator and the error

only insertions’, Acta Informatica, 13 (2), 141-154 (1980).

table-driven parsers’, A C M T O P L A S , 2 (l) , 18-41 (1980).

(1975).

14(18), 168-175 (1979).

recovery mechanism’, Acta Informatica, 10, 209-228 (1978).
10. Johannes Rohrich, ‘Behandlung syntaktischer Fehler’, Inforrnatik Spektrum, 5 , 174184 (1982).
1 1 . G. D. Ripley and F. C. Druseikis, ‘A statistical analysis of syntax errors’, Computer Lunguuges,’3 (4),

12. A. V. Aho and J. D. Ullman, Principles of Compiler Design,’ Chap. 1 1 ‘Error detection and recovery’,
Addison-Wesley, 1977, pp. 382-405.

13. C. N. Fischer, K. C. Tai and D. R. Milton, ‘Immediate error detection in strong LL(1) parsers’,
Information Processing Letters, Vol. 8 (S) , 261-266, (1979).

14. C. Ghezzi, ‘LL(1)-grammars supporting an efficient error handling’, Information Processing Letters,
3 (6), 174-176 (1975).

15 . D. Gries, Compiler Construction for Digital Computers, Chap. 1 5 ‘Error recovery’, Wiley, 1971, pp.
314-326.

16. C. Beilken, F. Mattern and M. Spenke, ‘Bibliography of error handling in compilers’. University of
Kaiserslautern, internal report. The very extensive bibliography (more than 200 titles) contains
abstracts and cross references and can be obtained from F. Mattern.

227-239 (1978).

