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SUlMlMARY 
An efficient and systematic LL(1) error recovery method is presented that has been 
implemented for an LL( 1) parser generator. Error messages which provide good diagnostic 
information are generated automatically. Error correction is done by discarding some input 
symbols and popping up some symbols from the parsing-stack in order to restore the parser 
to a valid configuration. Thus, symbol deletions and insertions are simulated. The choice 
between different possible corrections is made by comparing the cost of the inserted 
(popped) symbols with the reliability value of the recovery symbol (the first input symbol 
that is not discarded). Our concept of reliability is based on the observation that input 
symbols differ from each other in their ability to serve as recovery points. A high reliability 
value of a symbol asserts that it was probably not placed in the input by accident. So it is 
reasonable not to discard that symbol but to resume parsing. This is done even if a string with 
high insert-cost has to be inserted before that symbol in order to fit it to the part of the 
program that has already been analysed. The error recovery routine is invoked only when an 
error is detected. Thus, there is no additional time required for parsing correct programs. 
Error-correcting parsers for different languages, including Pascal, have been generated. 
Some experimental results are summarized. 
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INTRODUCTION 

Error recovery is one major task of compilers for high-level programming languages. 
The handling of syntactic errors is important, because modern compilers are syntax- 
directed, and thus the syntactic analysis of erroneous programs forms the basis for the 
detection of other types of errors. A complete and precise error diagnosis is of great 
practical importance: the detection of all errors in one compiler pass with no spurious 
errors may lead to a considerable speed-up of program development. 

The interest in systematic and language independent error recovery strategies has 
increased considerably in the past ten years. The main reason for this development is 
the automation process in compiler-design itself (parser generators, compiler- 
compilers). An automatically generated parser into which error recovery is built later 
by hand seems to be of little value! 

Dissertations by Leinius, LaFrance, Levy and Peterson dating from the early 70s 
are milestones in this development. They investigate for the first time the problems of 
systematic syntax error recovery based on context-free grammars. 
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The situation before the 70s is best illustrated by two quotations. Pollack’ writes: 
Chapter 5 treats the most poorly documented topics in compiler writing, those of 
error detection and error correction. Few general techniques are currently known for 
these subjects, perhaps accounting for the dearth of available literature.’ Feldman and 
Gries’ write: ‘There has been very little effort on the problem of automatic error 
detection and recovery in syntax-directed processors. Once again, even a bad system 
would be of great value to the users!’ 

In the 70s a variety of error recovery methods were developed. Best known is the 
strategy developed by Wirth and Amman3 which is used in most Pascal compilers. 
However, it is systematic to a certain extent only, and it contains a number of 
language-dependent heuristics. The  suffix analysis developed by Moll4 is not yet 
operable in practice and does not permit checks of static semantics after the first error. 
Fischer, Milton and Quiring’ describe an experimental method which corrects all 
errors by mere symbol insertions. Parts of the method developed by Pai and Kieburtz6 
are similar to the method described here. There is also a number of methods which 
were designed for LR- and precedence-parsers. Graham and Rhodes’ and Graham, 
Haley and Joy* are mentioned most frequently. Another interesting method has been 
developed by Lewi et ul.’ It can be used for both top-down and bottom-up parsers. A 
good survey of various methods is presented by Rohrich.” 

Ripley and Druseikis” have made a statistical analysis of the errors committed by 
programmers and have set up an error benchmark. They criticize that hardly any of 
the suggested methods has been used in practice. ‘Most evaluations in print consist at 
best of an illustration of the technique on a few examples, almost invariably leaving 
the reader wondering how representative these examples are, and how well the 
technique works in general.’ Aho and Ullman” confirm that an investigation of this 
topic is still valuable: ‘Although a considerable amount of theoretical and practical 
effort has been expended in exploring recovery and repair techniques for syntactic 
errors, the optimal strategy for any programming language is still an open question.’ 

A method to be used in a compiler generator should have the following properties: 
(a) language-independent 
(b) efficient 
(c) automatic generation of user-oriented error messages (no language-dependent 

messages) 
(d) suited for compilers, not only for parsers (analysis of static semantics enabled, 

no changes of the grammar required) 
(e) detection of all errors, no spurious errors. 
It should be mentioned that it cannot be exactly decided if the last point is met, 

since ‘spurious error’ and ‘error position’ are pragmatical terms which cannot be 
formalized completely. 

The usual analysis methods (LL,  LR) have the valid-prefix property, i.e. they detect 
an error as soon as the read input is no longer any prefix of a syntactically correct 
program. The following example shows that the error position defined by the valid- 
prefix property is not always identical with the ‘real’ error position: 

VALUE : = 0.3*(A+B)+0.7*C+D); 
7 

It  cannot be decided if and where an opening bracket is missing or whether a closing 
bracket is redundant. A parser cannot figure out the ‘real’ error. Therefore it should 
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confine itself to ‘regaining foothold’ as soon as possible and to continue program 
analysis, i.e. to carry out a quick and secure recovery. A correction in the strict sense can 
be in principle carried out only by the programmer. 

In the LL(1)-case further restrictions usually have to be met by an efficient error- 
correcting parser: 

1. The  input is read from left to right in one single pass. 
2. Just as in the normal analysis, in case of an error the look-ahead is limited to one 

3. The input already accepted cannot be corrected. 
4. No backtracking, even in the case of an error. 
According to these restrictions, in the following example the parser has to decide 

immediately whether the semicolon terminates the if-statement or whether it is 
misplaced and then will come later. 

symbol. 

if x = 5; / / / / / I / / / / / /  
When the next input symbol is read a wrong decision cannot be annulled. 

T H E  METHOD 

The error-correcting parser presented here is based on the table-driven (strong) 
LL(1)-analysis, as described by Aho and Ullman.” The  parsing method is slightly 
extended to ensure an even earlier error detection. If an error occurs, the error 
recovery routine (ERR) is called. The ERR performs a correction, so that the LL(1)- 
analysis can be continued. A correction is a modification of the parser configuration by 
skipping some input symbols (T,. .T,.-,) and popping up some symbols (Al. .Ai.-l) 
from the stack, which leads to a valid configuration (see Figure 1). mi p .. .T ..T, 

I) 

Figure 1 .  Parser reconfiguration 

The strong LL(1)-parser detects an error as soon as the current input symbol T,  is 
not contained in FIRST(A,.FOLLOW(A,)). Therefore an error is detected if T, 
cannot be derived at the first position from A, (or equals Al). In the case that the 
empty word LAMBDA can be derived from A,, an error is only detected if T,  can 
never follow A, in any sentential form. However it is certain that there is an error 
unless T,E FIRST(A,. .A,,). If LAMBDA can be derived from A,, a valid con- 
figuration is not yet guaranteed if T,  is only a symbol which may in principle follow Al  
(is in FOLLOW(A,)). Instead it is necessary that T, can follow A, in this specific 
situation, i.e. T,E FIRST(A,. A,,). Therefore, the strong LL(1)-parser in some cases 
performs moves, though it has already encountered an erroneous symbol. 

By an additional inspection of the stack (for computing FIRST(A,. A,,)) before 
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applying LAMBDA rules (popping non-terminals from the stack) the immediate- 
error-detection property (IEDP) is obtained. The  IEDP has been proposed by Fischer, 
Tai and Mi1t0n.I~ This property is even stronger than the valid-prefix property 
mentioned above: a parser with the IEDP never performs a move when it has 
encountered the erroneous symbol. Fischer, Tai and MiltonI3 further show how to 
obtain the IEDP without additional effort for parsing correct program passages. (In 
grammars where LAMBDA can be derived indirectly from a non-terminal A,  the 
stack has to be inspected in some additional cases as well.) Ghezzi14 shows how to 
obtain the IEDP without parser modification, but by extending the grammar. 

Analysing the erroneous input if P**2/4;-0>0 then . . a parser without the IEDP 
will still perform the derivation (expr-rest)  -+LAMBDA, whereas a parser having the 
IEDP will immediately stop when the semicolon is detected, thus maintaining the 
important information that the expression will possibly continue. 

In  a parser with the IEDP an important prerequisite for error recovery holds: in 
case of an error all terminal suffices for the input already accepted can be derived from 
the stack: A,. .A, &- w if only and only if T I .  . T , _ , w d ( G ) .  Since T,  is erroneous, 
A, .  .A, % T,. .T, does not hold. 

If we assume that any incorrect program is a ‘near miss’, i.e. that it is strongly 
similar to a correct program, there exists an r (e f r f rn) and an i (1 did n)  such that 
the following holds: Ai. .A, 2s T,. .T,  (unless the program includes further errors). 
By skipping T,. . T, - and popping A .Ai- , the parser can be reconfigured. It is easy 
to see that popping the symbols A,. .Ai-, from the stack corresponds to the virtual 
insertion of the symbols at the error position. Thus, the ERR does not correct the 
incorrect program in the sense that it transforms it into a correct terminal string. 
However, each incorrect program is transformed into a sententid form, namely 
T , .  .T,- ,  A,. .Ai-, T,. .T,. In this way, a whole class of possible corrections is 
suggested by the ERR. The resulting error messages are better understandable to the 
programmer than a message reporting the insertion of some specific terminal string 
that can be derived from A,. .Aip1. 

The method described performs only those insertions which can be simulated by 
popping the stack. Consequently, only those symbols are used as recovery points 
which will certainly become legal followers in a future configuration regardless of the 
actual recovery action that will eventually be used. Thus, the ERR uses a dynamically 
computed set of symbols which are already ‘expected’ in the sense described above. 
The set of recovery points can even be increased by expanding those non-terminals for 
which there is a unique rule, immediately after pushing them into the stack. For 
example, when (compoundstmt)  is pushed into the stack it can immediately be 
replaced by  begin(strntAist) end. As a consequence all statement beginnings and end 
are turned into potential recovery points. 

Of course, the ERR cannot foresee for given r and i whether Ai. .A, ?+ T,. .T,  will 
be true, since it knows the input until T, only. Therefore, it can only guarantee that 
T, E FIRST(Ai), and thus a valid configuration is obtained. 

Since in general there is more than one correction possible, it is the task of the ERR 
to select a plausible correction: According to certain heuristics a correction is selected 
for which Ai. .A, 2% T,. .T,  is most likely and for which only a short part of the 
program is skipped. 

The  heuristics are based on certain assumptions concerning the errors committed by 
programmers: 
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1 .  An incorrect program is usually very similar to a correct program. 
2. An error is very soon followed by a correct piece of a program. 
3 .  There are important symbols (such as keywords) which are omitted quite rarely, 

whereas other, less important, symbols (such as the redundant characters comma 
or semicolon) are frequently omitted. 

4. There are very reliable symbols which most likely do not occur in the input by 
accident or error and which always occur in a specific context (e.g. a then is 
always part of an if-statement). 

5 .  If an error cannot be corrected by deletion and/or insertion of a few symbols, the 
reason is often a complete, misplaced syntactic unit, such as a whole expression 
where only a single constant is, allowed or a type-declaration following the 
variable-declarations (which is not allowed in Pascal). 

6. A frequent reason for syntax errors is typing errors. In addition, similar basic 
symbols, such as round and square brackets or I : '  and '. .' may easily be confused. 

The first two assumptions are taken into account by first looking for such 
corrections where only few symbols are skipped: the symbols following the error are 
examined in sequence to determine whether they can serve as a recovery point. 

T o  consider the third point, insert-costs are assigned to any terminal symbol of the 
language, as proposed by Fischer, Milton and Quiring.' The  function INSERT- 
COST can be extended to strings of terminals: 

INSER T-COS T(aw) = INSER T-COST(a) + INSER T-COST(w) 

The INSERT-COST of the cheapest string derivable from X is assigned to a non- 
terminal X (INSERT-COST(LAMBDA) = 0). In  a straightforward way the 
INSERT-COST function can be extended to strings of terminals and non-terminals. 

Whereas Fischer, Milton and Quiring' consider all insertions (and only these), our 
method considers only those insertions which can be simulated by popping symbols 
from the stack. Consequently, only those symbols are inserted which are definitely 
expected, but which have not occurred. On the one hand this reduces the danger of an 
erroneous insertion and on the other it simplifies the method very much. The 
INSERT-COSTS are not necessary for choosing among various insertions in front of 
the same recovery point; instead, they are used to decide whether an input-symbol 
should be used at all for recovery or whether it should be skipped. If an important, 
reliable symbol is found in the input, the ERR shall be allowed to insert (assume as 
missing) even an expensive string. A less reliable symbol, however, should be used for 
recovery only if it fits very well with the input read so far and if no expensive insertions 
are necessary. Therefore, in addition to the INSERT-COST the RELIABILITY of 
a terminal-symbol is used here. The RELIABILITY indicates how a symbol is suited 
as a recovery point. A symbol of low reliability is more easily skipped by the ERR, 
whereas a symbol of high reliability is used as a recovery point even if the insertion of a 
whole sequence of symbols is necessary. The end-of-file symbol always has infinite 
RELIABILITY, since the ERR can never ignore it. 

The above considerations lead to the following definition: 

Definition 

-eINSERT-COST(A,. .Ai- < RELIABILITY(T,). 
A correction by deletion of T,. . Tr- , and insertion of A,. .Ai- is called plausible 
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The error recovery routine is now easily explained: the ERR selects that plausible 

Some examples will now be given to illustrate the method and provide insight into 
correction in which the fewest input-symbols are skipped. 

the scheme for specifying the two tables for Pascal. 

A = (B*C; / / / / / / / /  A = (B*C+; / / / / / / / / /  A : = (B*(C+;  / / / / / / / / /  
In the first case it is clearly plausible to assume that a closing bracket is missing 

before the semicolon. Therefore the following should be true: 

INSER T-COS T( I ) ' )  < RELIABILI T Y( '  ; ') 

In the second case (TERM)  and I)' have to be inserted if the semicolon is used as a 
recovery point. Since the cheapest terminal string derivable from ( T E R M )  should be 
an identifier, it is examined whether 

INSER T-COS T( ( TERM)' ) ' )  = INSER T-COST( ID I) ')  

= INSERT-COST(ID) + INSERT-COST(') ')  < RELIABILITY('; ') .  
In the second case it is certainly reasonable to use the semicolon as a recovery point. 

In the third case however it is quite questionable what the ERR should do. According 
to the definition of the two tables, the semicolon is used as a recovery point here 
(which may lead to spurious errors if the expression continues) or the semicolon is 
skipped and a following, more reliable symbol (e.g. the next end) is used as a recovery 
point (which may lead to undetected errors in the skipped statements before the end). 

By the definition of the two tables different strategies of error recovery can be 
implemented. The following special cases ought to be mentioned: 

1. If all RELIABILITY values are set to zero, everything following an error is 
skipped until the EOF symbol (which has infinite RELIABILITY).  This will 
never result in spurious errors, but only the first error in the program will be 
detected. 

2. If all INSERT-COSTS are set to zero and all RELIABILITY values are set to 
infinity the first possible correction will always be found to be plausible and 
therefore carried out. Very little is skipped and only few errors can be overlooked 
in this case, but the danger of spurious errors is great, since even extremely 
implausible corrections are selected, as illustrated in the following Pascal 
example: 

The ERR would assume that the dot terminates the whole program and that 
( e x p r )  end end were missing. 

3.  If the RELIABILITY and INSERT-COST values of all terminal symbols are 
set to 1 ,  the ERR will carry out a correction only if it can be done without the 
insertion of any symbol. The  result is a deletion-only method, i.e. all errors are 
recovered by mere skipping to the next legal follower. 

4. If almost all RELIABILITY values are set to zero and some few symbols are 
provided with infinite RELIABILITY, the panic-mode is obtained: a statically 
fixed set of stop symbols is defined, which can serve as recovery points. 

Apparently the definition of the two tables induces a trade-off between quick 
recovery and secure recovery; in other words, between few errors overlooked and few 
spurious errors. 

. . . begin . . . begin A :  = .  / / / / / / / / / / / /  
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The kind of considerations, which have lead to the specification of the two tables for 
Pascal, can be illustrated by another example: 

if x = 5 : / / / / / / / / / / / /  if x = 5 else / / / / / / / / / I / /  
In the first case it should rather be assumed that the semicolon was misplaced than 

that the then was missing. Therefore the following should be true: INSERT- 
COST('then') >RELIABILITY('; ') .  In the second, almost equivalent case, however, 
it is reasonable to assume that the then-part has been omitted. 

The following recommendations for defining the tables can be derived from the 
examples discussed here and from a number of practical tests: 

(a) The INSER T-COSTS of special characters, numeric constants and identifiers 
are between 1 and 5 .  

(b) Keywords have INSERT-COSTS between 20 and 30 depending on their 
length. 

(c) The  RELIABILITY of a symbol is usually set to three times its INSERT- 
COST. Thus it is, for example, possible to insert two other keywords as well as 
some other symbols in front of a keyword found in the input. 

(d) Identifiers are provided with the RELIABILITY 1 since identifiers occur very 
frequently and in many different contexts. Furthermore, an identifier is often 
obtained by a typing error in a keyword. 

(e) Some symbols are defined as stop symbols and have an extremely high 
reliability. Thus it can, for example, be ensured that an end is always matched 
to the last begin. In this way it is possible to recover even after wrong ERR 
assumptions. 

FURTHER ALGORITHMS FOR ERROR RECOVERY 

In order to take into account also the fifth and sixth assumptions on the errors 
commited by programmers the ERR is extended in two additional ways: 
the phrase-parser and the spelling correction. 

The phrase-parser avoids the skipping of longer input passages without any analysis 
and enables the analysis of misplaced syntactic units, such as declarations in the 
statement part: if a reliable symbol is found in the input which cannot serve as a 
recovery point (since it is not expected in the stack), it is checked whether the symbol 
signals the beginning of a unique syntactic phrase. In this case the phrase is pushed 
onto the stack and the parser is called recursively. Thus the isolated unit is analysed 
and skipped as a whole. Afterwards the search for a recovery point is resumed. 

If, for example, a begin is encountered by the ERR, a whole (compoundstmt) is first 
analysed and then the ERR is resumed. Symbols within the (compoundstmt) can 
therefore not be used as recovery points. 

A case that occurs quite frequently in Pascal, namely that the order of declarations is 
confused, can be handled by the phrase-parser: if, for example, a type-declaration 
follows the variable-declarations, type is the erroneous symbol and it cannot be used as 
a recovery point. Since type starts a unique phrase, the phrase parser can analyse a 
type declaration and subsequently the ERR can, for example, use the keyword 
procedure as a recovery point. 

In particular, the phrase-parser can also analyse statements following the syntactic 
end of the program, though the stack is already empty when they are encountered. 
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Starting points for the phrase-parser may be those symbols which are of high 
reliability and which have a unique right context. For example, in Pascal then is 
always part of the phrase then ( s t m t )  (e lse-part) .  Also do  has a unique right context 
(do ( s t m t ) )  though it may occur in two different statements. 

Another important reason for syntax errors is typing errors. For correcting typing 
errors the erroneous symbol is compared with the set of symbols expected instead. 
Because of the immediate-error-detection property (see above) FIRST(A, . .A,) is 
exactly the set of legal followers at the error position. I t  is checked whether the 
erroneous symbol is similar to one of the legal followers. 

Two strings of at least three characters are defined to be similar if one of the 
following conditions holds: 

(i) They have the same length and differ in one character only. 
(ii) One string can be obtained by adding one character to the other at an arbitrary 

(iii) One string is produced from the other by interchanging two neighbouring 

(iv) One string is a prefix of the other one. 
Furthermore, certain non-standard characters, such as round and square brackets, 

' : I  and I .  .' are defined to be similar. This definition covers about 80 per cent of all 
typing errors.I5 

If T, is similar to a symbol X E FIRST(A,. A,), T,  is corrected to X .  If X is a 
prefix of T,, T, is divided into two symbols. 

Spelling correction is complicated by the fact that a typing error in a keyword usually 
produces an identifier. Frequently the syntax also allows an identifier instead of the 
keyword, so that the error cannot be detected at  once. In A :  = B; whyle A = C do , . 
the parser has to assume when encountering whyle that an assignment will follow. The 
error will be detected only when encountering A. This would be too late for spelling 
correction. 

This problem is solved as follows. The  scanner examines whether a declared or an 
undeclared identifier has been encountered. The  syntax requires that an assignment 
begins with a declared identifier. In this way the error is already detected one symbol 
earlier and can be corrected by spelling correction. 

If an undeclared identifier is encountered and a declared identifier is expected, the 
symbol-table is examined for an identifier which is similar to the erroneous symbol 
and which has already been declared. 

position. 

characters. 

T H E  ERROR RECOVERY ROUTINE 

The  ERR actions can be described as follows: the ERR looks for the smallest r 
( e  < r < m) for which there is an i (1 < i <  n), so that the following is true: 

(a) T,EFIRS T(Ai) 
(b) INSERT-COST(A1. .Ai- 1) <RELIABILITY( T,) 

Note: ( 1 )  A,.  .Ai-, denotes for i = 1 the empty string LAMBDA. (2) Since 
T,  = EOF and A, = EOF and since the RELIABILITY of EOF is infinite, there is 
always such an r .  

For the obtained r the smallest valid i is selected and the following recovery action is 
performed: 
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(i) T,. .T,- are skipped (deletion). 
(ii) A,. are popped from the stack (insertion). 
The following algorithm also incorporates the phrase-parser and spelling 

correction. 

Algorithm for parser reconfiguration 
A1 . . . An stack contents. STACKTOP = A1 
TOKEN the current input symbol 
U N I QU E (TO KEN) 
UNIQUE-PHRASE(T0KEN) indicates the unique phrase starting with TOKEN 
PREDICT(PHRASE) 

states whether TOKEN starts a unique phrase 

writes a phrase on top of the stack 

procedure ERROR-RECOVERY; 
begin 

loop for X in FIRST(A1. .An) do 
if S I M I LAR (TO KEN,X) 

return; 
then begin TOKEN: = X; (*  spelling-correction*) 

end; 
endloop; 

if TOKEN = (NEW-IDENTIFIER) and (OLD-IDENTIFIER) in FIRST(A1. .An) 
then (* misspelt or undeclared identifier *); 

loop until RECOVERY do 

loop for I in 1. .N 
while INSERT-COST(A1.. .Ai-1) < RELlABILITY(T0KEN) 

if TOKEN = Ai or TOKEN in FIRST(Ai) then signal RECOVERY 
do 

endloop; 
if UNIQUE(T0KEN) 

then begin (* phrase-parser *) 
PREDICT(U NlQU L P H  RASE (TOKEN)); (* push*) 
(* recursive call of the parser *) 

end 

exit RECOVERY is 
else GET-NEXT-TOKEN; (* deletion *) 

POP(A1.. .Ai-I  ) ;  (* insertion *) 
en dl oop; 

end; 

First it is checked whether the error can be corrected by spelling correction. If this 
is impossible, the until-loop is executed until the event RECOVERY is signalled and the 
exit block is executed. 

Apart from the grammar the two tables with INSERT-COST and 
RELIABILITY values present the only information about the specific language the 
ERR knows, I t  does not have any language-dependent heuristics, such as ‘In Pascal 
the order of declarations is frequently confused’. 

The proposed algorithm has to meet the restrictive LL( 1)-prerequisites and is easy 
to implement. Nevertheless, when compared in practice with other, more sophisti- 
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cated methods tailored specifically to Pascal, it yielded at least equivalent results (see 
below). 

AN EXAMPLE 

The proposed method was implemented in an LL(1)-parser generator, and an error- 
correcting Pascal parser was generated. The INSERT-COST and the 
RELIABILITY were specified for each terminal-symbol of Pascal. The  Pascal 
grammar used is however not unambiguous because of the well-known dangling-else 
problem and therefore it does not possess the LL( 1)-property. Though unambiguous 
grammers can be constructed for ($-statement), according to Aho and Ullman" 
there is no such LL(1)-grammar. The parser generator signals the violation of the 
LL(1) condition, but generates an analysis matrix matching each else to the last if. 

The example in Figure 2 shows how the Pascal parser reacts to a demonstration 
program. The  error lines are marked with arrows, the erroneous symbol is underlined. 
Skipped passages are underlined by a broken line. The  error messages indicate how 
the ERR has corrected the program so that the programmer can easily see whether the 
assumptions of the ERR are correct or whether he has to expect spurious errors. Note 
that all error messages are generated automatically and are not tailored specifically to 
Pascal. 

Explanatory notes concerning error messages 
Line 14: Because of the IEDP the ERR knows all legal followers. One of them 

(else) is similar to the erroneous symbol, therefore spelling correction. 
Line 15: The scanner examines if and where an identifier has been declared and 

returns a corresponding token: (new-identifier), (local-identifier) or 
(global-identifier). The  error is thus detected earlier and spelling cor- 
rection is still possible. 

Line 16: Spelling correction by  comparison with the set of all declared identifiers. 
Line 17: If a spelling correction is impossible, a declaration error is assumed. 
Lines 14-17: Correction at token level. 
Line 18: Recovery by skipping (deletion). 
Line 19: CAR = DAMAGED is already a complete expression. Recovery by  or is only 

Lines 18-19: Pure deletion. 
Line 20: The RELIABILITY of then is greater than the INSERT-COST for the 

Line 21: RELIABILITY(e1se) > INSERT-COST(then (statement)) =s insertion. 
Lines 20-21 : Pure insertion. 
Line 22: Combined deletion/insertion. Note: no recovery at WALK in 

(statement)-though this would be correct-since INSER T-COST of 
then is too high. 

possible thanks to the IEDP! 

missing parts of the expression =- insertion. 

Line 25: INSERT-COST(then) > RELIABILITY(' , ' )  * no recovery at', '. 
Line 27: No recovery at until  in (repeat-statement) because of costing: 

RELIABILIT Y(until) < INSERT-COST (to (expr) do (statement) 
end). 

Line 32: The phrase-parser analyses the misplaced label declaration and detects 
the ','-error; spurious errors are avoided. 
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1 
2 
3 
4 
5 
6 
7 

9 
1 0  

12  
1 3  

* 1 4  
= 1 5  
* 16 
* 17  

* 19  
* 20 
= 21 
* 22 

23 
24 

==. 25 
26 

* 27 
28 
29 
30 
31 

* 32 
33  

* 34 
35 

a 

==. i a  

Line 14  
Line 1 5  
Line 16 
Line 17  
Line 1 8  
Line 19  

program ERROR-DEMO(0UTPUT); 

type WEEKDAY = (MO,TU,WE,TH,FR,SA): 
var DAY: WEEKDAY; 

CAR, DAMAGED, BROKEN, AGE: INTEGER; 
NO-GAS, CRASH, VACATION: BOOLEAN: 

procedure WORK; begin end: 
procedure GO-BY-CAR; begin end; 
procedure WALK; begin end; 

if CAR = DAMAGED then WALK else GO-BY-CAR; 
if CAR = DAMAGED then WALK GO-BY-CAR; 
IFCAR = DAMAGED then WALK else GO-BY-CAR; m= DAMAGED then WALK else GO-BY-CAR; 
if= =DAMAGED then WALK else GO-BY-CAR; 
if CAR = DAMAGED BRQKEN then WALK else GO-BY-CAR; 
if CAR = DAMAGED or NO-GAS then WALK else GO-BY-CAR; 
if CAR = then WALK else GO-BY-CAR; 
if CAR = DAMAGED e& GO-BY-CAR; 
if CAR = DAMAGED - SO W_AK else GO-BY-CAR; 

begin 

repeat 
if not VACATION L 

then begin 
for DAY: = MO until F R do WORK; 
write (‘WEEKEND’); 

end; 
until AGE = 65; 

M I  , L 2 :  

write (1 081 5 ) (* end of comment missing . . . 
end. 

typing-error - ’ELZE’ changed to ’else’ 
concatenation-error - ’ I  FCAR’ changed to ‘if CAR‘ 
transposition-error - ‘DAMAGDE’ changed to ‘DAMAGED‘ 
undeclared identifier ’BUS‘ 
’. BROKEN‘ deleted before ‘then‘ 
‘.‘ deleted before ‘or’ 

Line 201 ‘(SIMPLE-EXPRESSION)‘ inserted before ’then’ 
Line 21: ‘then (STATEMENT)‘ inserted before ‘else’ 
Line 22: ‘So WALK’ changed to ’then (STATEMENT)’ 
Line 25: ’;’ deleted before end of line 
Line 27: ‘until FR’ changed to ‘to (EXPRESSION)‘ 
Line 32: misplaced (LABEL-DECLARATION) found 

Line 34: second quote missing 
I,‘ deleted before ‘2’ 

”’ deleted before ‘081 5‘ 
missing end-of-comment. ‘ * ) ’  inserted at end of line 

Figure 2. PascaI program and error messages 
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Line 34: Restriction of comments and string constants to one line allows early 
recovery (language design). 

PRACTICAL RESULTS 

The quality of a syntactic error recovery method cannot be proved by theoretical 
considerations, but has to be tested by practical experiments. The  Pascal version of 
our method was tested in 1981 by more than a hundred students for several thousand 
programs. It was shown that the method indeed produced spurious errors very rarely 
and overlooked hardly any error. The  generated error messages were understandable 
even to Pascal beginners. 

Furthermore, the Pascal parser was tested with the error benchmark developed by 
Ripley and Druseikis.” The material was taken from 237 erroneous Pascal programs 
written by students (about 12,000 lines). The  errors were isolated and provided with 
minimal context. Identical errors were included only once but provided with a 
weighting factor. This resulted in 127 program examples which can be obtained from 
Ripley . 

The generated error diagnoses were divided into three categories: 
(i) ‘Excellent’: human diagnosis would produce the same results 

(ii) ‘good’: incorrect parser assumptions, but no spurious errors 
(iii) ‘poor’: one or more spurious or undetected errors 
In Table I the method presented here is denoted by the abbreviation BMS. The 

IBM Pascal/VS-compiler performs an error recovery according to the method 
developed by Wirth.3 It produced the result denoted by IBM. The  ‘global context 
recovery’ developed by Pai and Kieburtz6 was also evaluated by means of the error 
benchmark. This yielded the result denoted by GCR. 

Table I .  Benchmark results 

Excellent 52 68 77 
Good 26 9 14 
Poor 22 23 9 

Consequently the proposed method leads, in 90 per cent of the tested cases, to 
correct recovery actions, thus avoiding spurious errors. Wrong parser reactions were 
mainly to be explained through incorrectly used keywords or missing comment 
brackets and quotes. Such errors present great problems to all methods. Therefore, 
they should be avoided by an appropriate language design (cf. comments in Ada). 
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