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1.  Introduction 
A distributed system consists of several computers that communicate over a network to coordinate the 
actions and processes of an application. Distributed systems techniques have attracted much interest in 
recent years due to the proliferation of the Web and other Internet-based systems and services. 

Well-established techniques such as interprocess communication and remote invocation, naming services, 
cryptographic security, distributed file systems, data replication, and distributed transaction mechanisms 
provide the run-time infrastructure supporting today’s networked applications [CDK 00]. The dominant 
model is still the traditional client-server architecture. However, application development for distributed 
systems now relies more and more on middleware support through the use of software frameworks (e.g. 
CORBA or Web services) that provide higher-level abstractions such as distributed shared objects, and on 
services including secure communication, authentication, yellow pages, and persistent storage. 

In the future, distributed application frameworks may support mobile code, multimedia data streams, user 
and device mobility, and spontaneous networking [CDK 00]. Scalability, quality of service, and robust-
ness with respect to partial component failures will become key issues. 

Clearly, a shift towards large-scale systems has occurred in recent years: not only the pure Internet with 
its basic protocols, but also the higher-level World Wide Web is becoming a standard platform for dis-
tributed applications. Here, the Internet (or an all-encompassing intranet) and its resources are viewed as 
the global environment in which computations take place. Consequently, high-level protocols and stan-
dards, such as XML, enter the focus of distributed system research while low-level issues (such as operat-
ing system peculiarities) become less important. The increasing number of computers connected to the 
Internet has also laid the foundations for new application domains such as grid computing and peer-to-
peer computing. Grid computing emphasizes the fact that the Internet can be viewed as a globally distrib-
uted computer with an enormous potential for computing power. In contrast to this, peer-to-peer comput-
ing underscores the needs of the people behind all these machines. Their desires for immediate and unre-
stricted information exchange, for anonymity, and for independence from restrictive rules imposed by 
providers or governments are about to shape the Internet again.  

Rapidly evolving network and computer technology, coupled with the exponential growth of the services 
and information available on the Internet, will soon bring us to the point where hundreds of millions of 



people have fast, pervasive access to a phenomenal amount of information, through desktop machines at 
work, school and home, through mobile phones, personal digital assistants (PDA), and car dashboards, 
from anywhere and everywhere [KG 99]. The challenge of distributed system technology is to provide 
flexible and reliable infrastructures for such large-scale systems that meet the demands of developers, us-
ers, and service providers. 

Looking further into the future, essential techniques of distributed systems will be incorporated into an 
emerging new area, called “Ubiquitous Computing” [Wei 91]. The vision of Ubiquitous Computing (or 
“pervasive computing”, as it is sometimes called) is in some sense a projection of the Internet phenome-
non and the mobile phone proliferation phenomenon we observe today into the future, envisioning bil-
lions of communicating smart devices forming a world-wide distributed system several orders of magni-
tude larger than today’s Internet. 

2.  Communication Paradigms 
There are many ways in which application software components residing on different machines can 
communicate with one another over a network. One low-level technique is to directly use the call 
interfaces of the transport layer, such as the socket mechanism, together with a custom communication 
protocol. However, programming at this level of abstraction is advisable only in special circumstances 
since it leaves complex problems such as the guarantee of security, the management of heterogeneity, and 
concurrency control completely to the application programmer. Instead, developers should choose from a 
variety of higher level communication protocols and frameworks the one that best suits their needs. Some 
of these protocols such as the well-known remote procedure call are self-contained and can be used in any 
application program with almost no additional overhead. Other protocols and frameworks are confined to 
specific programming languages or execution platforms.

2.1  Remote Procedure Call 

One well-established classical communication scheme that fits well with the client-server model is the 
remote procedure call (RPC). In this model, a component acts as a client when it requests some service 
from another component; it acts as a server when it responds to a request from a client. RPC makes call-
ing an external procedure that resides in a different network node almost as simple as calling a local pro-
cedure. Arguments and return values are automatically packaged in an architecture-neutral format sent 
between the local and remote procedures. 

For each remote procedure, the underlying RPC framework needs a so-called stub procedure on the client 
side (which acts as a proxy for the remote procedure) and a similar object on the server side. The role of 
the stub is to take the parameters passed in a regular local procedure call and pass them to the RPC sys-
tem (which must be resident on both the client and server nodes) [carl b]. Behind the scenes, the RPC sys-
tem cooperates with the stubs on both sides to transfer the arguments and return values over the network 
[wash]. 

To facilitate the creation of stubs, RPC toolkits include special tools. The programmer provides details of 
an RPC call in the form of specifications encoded in an Interface Definition Language (IDL). An IDL 
compiler is used to generate the stubs automatically from the IDL specifications [carl]. The stubs can then 
be linked into clients and servers [carl b]. 

Several different RPC systems coexist today. On Unix/Linux platforms, an RPC system introduced by 
Sun Microsystems [ONC] is used for accessing many system services such as the network file system 
NFS and the network information system NIS. The DCE-RPC [DCE] is used as the basis for Microsoft’s 
COM+ middleware. RPC frameworks have become an established technique, and are typically invisible 
to application programmers since they merely represent the basic transport mechanism used by more gen-
eral middleware platforms as presented in section 3. 



2.2  XML-based RPC 

Although RPC systems explicitly address the issue of interoperability in open systems, client and server 
programs that make use of this principle are tied to a single RPC framework in order to cooperate suc-
cessfully. The main reason for this is that every RPC system defines its own encoding for data structures. 
Despite this difference, the basic semantics of most RPC systems are quite similar since all of them are 
based on a synchronous procedure call in a C-like syntax format. 

Viewing the messages sent between clients and servers in an RPC system as documents with a given syn-
tax was a major breakthrough in RPC technology. Using XML to define the syntax of RPC requests and 
replies was a simple idea, but it paved the way for interoperability between different RPC systems [BSL 
00, McL 01]. As a result, XML-based RPC systems are used today to integrate otherwise incompatible 
application programs, and they are thus an essential part of solutions in collaborative business which inte-
grate the different legacy applications used by cooperating companies. For legacy software, additional 
wrapper programs must be implemented that translate a specific set of XML-based RPC requests into 
proprietary function calls. Some modern database-centric execution platforms are even capable of proc-
essing a given XML-based RPC dialect directly. 

The essential idea in XML-based RPC frameworks is to use XML to define a type system that can be 
used to communicate data between clients and servers. These type systems specify primitive types such as 
integers, floating points, and text strings, and they provide mechanisms for aggregating instances of these 
primitive types into compound types in order to specify and represent new data types. One of the first 
XML-based RPC frameworks was the simple object access protocol SOAP [SOAP], defined by a consor-
tium of companies including Microsoft, IBM, and SAP. SOAP is now an integral part of Windows operat-
ing systems (as part of the COM+ and .NET middleware). A key advantage of SOAP is its extensibility 
by use of XML schemas and the fact that the widespread HTTP protocol can be used as the transport 
mechanism between clients and servers, thus using the Web as a communication infrastructure and a tun-
nel between cooperating distributed applications. Servers may appear in this scenario as dedicated Web 
servers with the ability to trigger servlets, scripts, or any other means of program execution.  

Other XML-based RPC dialects such as standard XML-RPC have also been specified [McL 01]. Most of 
them, however, do not incorporate XML schemas and are thus limited to a fixed set of primitive data 
types, as are traditional RPC systems. Fortunately, having to cope with different dialects of XML-based 
RPC systems is not as involved as dealing with incompatible classical RPC frameworks, because in many 
situations simple transformation rules can be defined to convert XML encoded messages between differ-
ent RPC platforms. 

2.3  Remote Method Invocation 

Whilst RPC is reasonably well suited to the procedural programming paradigm, it is not directly applica-
ble to the object-oriented programming style that has gained much popularity in recent years. Here, Re-
mote Method Invocation (RMI) – a newer technique for Java-based systems – comes into its own. RMI is 
similar to RPC, but integrates the distributed object model into the Java language in a natural way [MIT]. 
With RMI, it is not necessary to describe the methods of remote objects in a separate type definition file. 
Instead, RMI works directly from existing objects, providing seamless integration [jsol]. Furthermore, 
remote objects can be passed as parameters in remote method calls, a feature that classical RPC systems 
usually do not possess. 

In classical RPC systems, client-side stub code must be generated and linked into a client before a remote 
procedure call can be made. RMI is more dynamic in this respect: owing to the Java capability of transfer-
ring code, the stubs that are needed for an invocation can be downloaded at runtime (in architecture-
neutral bytecode format) from a remote location, for example directly from the server just before the re-
mote method is actually invoked. Internally, RMI makes use of object serialization to transmit arbitrary 
object types over the network, and because downloaded code can potentially be harmful to the system, it 
uses a security manager to check this. 



RMI seems to fit well with the general trend of distributed systems becoming increasingly dynamic. 

2.4  Asynchronous Protocols 

RPC and RMI are basically synchronous calls: the client is blocked while the call is processed by the 
server. Asynchronous variants that require multithreading are difficult to handle and are error prone. 
However, the trend in distributed systems is towards asynchronous and reactive systems – systems that 
cannot wait indefinitely for a synchronous call to terminate. Typical examples are user interface systems 
or real-time systems. 

Such reactive and asynchronous systems are better served by a more abstract communication paradigm 
based on events. Events are simple asynchronous messages, but they are attractive because they represent 
an intuitive (although somewhat restricted) way of modeling that something has happened that is poten-
tially of interest to some other objects. Distributed infrastructures based on this paradigm are often called 
“publish and subscribe middleware” or simply “event channel” or “software bus”. 

The concept of such a software bus is quite simple: all clients (i.e. consumers of events) are connected to 
a shared medium called a “bus”. They announce their interest in a certain topic (i.e. type of events) by 
subscribing to it. Objects or processes that want to send a message or an event to clients publish it under a 
certain topic to the bus. If the receiver’s topic matches the sender’s topic, the message is forwarded to the 
receiver. 

From a software design point of view, the event paradigm offers the benefits of direct notification instead 
of busy-probing: an object tells the environment to inform it when something happens, and when some-
thing happens it reacts accordingly [cal]. It thus eliminates the need for consumers to periodically poll for 
new events. Furthermore, the concept easily allows the use of adapters that act as programmable middle-
men in the event streams. They may for example multiplex, filter, or aggregate events. 

However, although the publish/subscribe paradigm is attractive due to its conceptual simplicity and has 
the benefit of decoupling objects in space and time (while at the same time abstracting from the network 
topology and the heterogeneity of the components), it requires a powerful brokering mechanism that takes 
care of event delivery. Furthermore, its use requires the implicit or explicit semantics of the brokering 
mechanism to be carefully analyzed – a priori it is not clear how quickly events are to be delivered, 
whether events are to remain on the bus for a certain period of time (for example, so that subscribers who 
miss anything due to system failure can catch up on missed events) and whether there are any guarantees 
on the delivery order. It should be noted that the publish/subscribe paradigm is basically a multicast 
scheme, and it is well known from distributed systems theory that broadcast semantics, in particular for 
dynamic environments, is a non-trivial issue. 

The overall trend in communication paradigms seems to be clear: it is progressing from the simple proce-
dural paradigm requiring relatively little system support, via the object-oriented method invocation prin-
ciple, towards Web-based infrastructures and more abstract schemes for loosely-coupled asynchronous 
systems that require complex run-time infrastructures. One can expect platforms supporting such abstract 
communication paradigms on the global Internet scale to become increasingly important in the future, 
probably being integrated with the routing and management schemes for general Internet-based messaging 
services. Scalability and efficient realization of such infrastructures is a real challenge, however. 

3.  Trends in Infrastructures and Middleware 
Middleware and software infrastructures for distributed systems provide basic communication facilities to 
application components and handle issues such as platform heterogeneity that are due to differing hard-
ware systems, operating systems, or programming languages. Furthermore, they provide a set of standard 
services that are typically needed by distributed applications such as directory services and cryptographic 
security. 



One of the first commercially available middleware systems was DCE [DCE], which is still being used in 
many large legacy applications. Communication in DCE is based on RPC, and it essentially provides 
directory services, security services (based on the well-known Kerberos system), and a distributed file 
service. Many middleware concepts were initially implemented using DCE and evolved over time as part 
of more modern middleware systems. Some of today’s most prominent candidates are presented in the 
following sections.

3.1  COM+ 

The component object model COM and its latest version COM+ have their roots in the basic clipboard 
mechanisms provided by early Microsoft operating systems to enable the exchange of data between dif-
ferent applications [EE 99]. This simple mechanism was iterated over the years and evolved into a prag-
matic component platform. The COM+ platform is widely used in industry and a huge variety of COM+ 
components are available and can be purchased from specialized vendors. 

Components in COM+ are defined through a set of interfaces. The interface definition language MIDL is 
an extension of the DCE IDL. This IDL allows the definition of common static and dynamic data types 
(essentially variable-length arrays). It is object-oriented in the sense that single inheritance is possible for 
interfaces. Unfortunately, there is no implementation inheritance, thus a component defining a derived 
interface must implement all functions of the base interfaces again, no matter whether the semantics of 
the method are changed or not. The root of all interface hierarchies is the IUnkown interface with its main 
method of downcasting to any derived interface if possible. Interfaces are identified by 128-bit random 
numbers called global unique identifiers (GUID). COM+ allows the representation of meta-information 
about interfaces by means of type libraries (generated automatically by the IDL compiler). This type in-
formation is used in a process called “automation”, where the calling application can interrogate imple-
mented interfaces, method signatures, and data types of a component at runtime. Based on this informa-
tion, the caller can build and issue method calls to a component step by step by using the rather involved 
IDispatch interface. 

Since COM+ is a binary component standard, a component itself ships as a dynamic link library (DLL) 
with tables holding function pointers to the methods of each interface. Each component is again identified 
by another 128-bit GUID. The most prominent usage of components is through so-called inproc servers 
by linking the requested DLL to the virtual address space of the client program and accessing methods 
using indirect function calls. The mapping between the component identifier (GUID) and the path of the 
dynamic library is stored in the registry of the Windows operating system. Additionally, components can 
also be executed within their own virtual address space, for example as dedicated servers or more com-
monly as a dynamic library linked into a specialized surrogate process. A third possibility is to use a 
component of a remote server. In this case, RPC requests and replies are generated transparently by the 
COM+ runtime platform. The required stub and proxy functions, generated automatically by the MIDL 
compiler, are implemented as additional dynamic libraries. They are again identified by the COM+ run-
time system using the Windows registry and the 128 bit interface identifier. 

Most of the functionality of Microsoft Windows operating systems has subsequently been converted to 
COM+ services. Some of these components are rather heavyweight such as Internet Explorer, the office 
program suite, or DirectX (for efficiently accessing multimedia devices), and most of them are used only 
locally. But an increasing number of COM+ components form an integral part of standard services in Mi-
crosoft Windows networks and may be used remotely, such as directory services (Active Directory), 
event propagation, file and printer sharing, and even remote desktops. 

Despite its widespread use, COM+ middleware has a number of deficiencies and limitations. Most impor-
tantly, the implementation of components is quite complex and requires the implementation of an impres-
sive number of additional methods. Integrated development environments such as Visual Studio try to 
tackle this problem by offering assistance (for example, using so-called wizards) to ease the burden on the 
component developer. Because of the flat namespace, the COM+ components available on a given system 
are also difficult to manage and organize. Furthermore, the packing of components into one or more dy-



namic libraries and the flat identifier namespace for interfaces as well as components within the Windows 
registry are susceptible to system instability in the event of program installation or updates. 

3.2  The .NET Framework 

Some of the deficiencies of COM+ middleware are addressed by Microsoft’s more recent initiative, the 
.NET framework [TL 02, Ric 02]. Primarily introduced as a rival product to Sun’s Java platform, .NET 
defines a virtual runtime system CLR (Common Language Runtime) for most components and applica-
tions. The CLR is based on a Common Type System (CTS), a single-inheritance object-oriented hierarchy 
of common built-in types such as integers, floating points, and text strings. Ideally, components and ap-
plication programs implemented in a given programming language are translated into an intermediate lan-
guage (IL), comparable to Java bytecode, using the CTS. This so-called “managed code” can be executed 
by the CLR. Currently, IL compilers are available for Visual Basic, JScript, C++ (with restrictions, of 
course), and C# as part of Visual Studio .NET. Any IL code is translated into native machine language on 
a per method base before it is executed within the CLR. In contrast to the Java virtual machine, this in-
termediate language is never interpreted at the instruction level. The CTS enables the immediate use of 
built-in types as well as user-defined types within different programming languages, e.g. a class in man-
aged C++ code (C++ code within the restrictions defined by the CTS) can be derived from a Visual Basic 
super class (something all serious developers have been wanting to do for years). 

More interesting with respect to distributed systems are advances in component packaging, so-called as-
semblies. Assemblies are used to keep track of all the resources required by a single component or appli-
cation. Each assembly is accompanied by a manifest which stores the assembly name and version, secu-
rity information, names and versions of other assemblies referenced by this assembly, and type informa-
tion about the public classes defined in this assembly. Additionally, a code base URL can be defined 
where all the files of an assembly can be downloaded if necessary. Since all the meta-information making 
up an assembly is stored in a single manifest file, management of installed assemblies and their interde-
pendencies is  substantially improved compared to the classical registry approach. The technique used in 
.NET resembles the packaging of enterprise beans in Java (see also section 4.1) in a broader sense, al-
though the manifest information itself is not described by a self-descriptive language such as XML. In 
contrast to enterprise beans which ship as a single jar file, assemblies may still consist of several files in 
order to allow for the partial download of complex components. 

3.3  CORBA 

One of the most widely-used infrastructures for distributed systems based on an object-oriented model is 
still CORBA, the Common Object Request Broker Architecture, which is supported by a large industry 
consortium. The first CORBA standard was introduced in 1991, and it has undergone continual and sig-
nificant revisions ever since [wash]. Part of the specification describes an Interface Definition Language 
(IDL) that all CORBA implementations must support. The CORBA IDL is based on C++ and is used by 
applications to define the externally visible parts of object methods that can be invoked by other objects. 
It has a similar function to the IDL of COM+. 

The central component of a CORBA system is the object request broker (ORB). The ORB provides a 
mechanism for transparently communicating client requests to target object implementations. It simplifies 
distributed programming by decoupling the client from the details of the method invocations: when a cli-
ent invokes an operation, the ORB is responsible for finding the object implementation, transparently ac-
tivating it if necessary, delivering the request to the object, and returning any response to the caller 
[Corba]. 

In addition to the ORB, CORBA defines what are known as object frameworks: object services (applica-
tion-independent services at the system level such as naming, trading, or security services), common fa-
cilities (application-independent services at the application level such as printing services), and domain 
facilities (services for specific application fields). 



CORBA has gained much momentum in industry and research. Implementations of the standard are avail-
able from a large number of vendors and even exist as freeware [PR 01]. CORBA supports all major pro-
gramming languages, is suited for almost every combination of hardware and operating system, and is 
also being used to realize mission-critical applications in industries as diverse as health care, telecommu-
nications, banking, and manufacturing. 

While in the past almost all additions to the CORBA specification have been integrated by vendors into 
their products over time, this will probably become increasingly difficult in the future. The recent 
CORBA-3 specification is huge and includes the following major additions: Internet integration (CORBA 
through firewalls, URL addressing for CORBA objects), quality of service control (fault tolerance, real-
time), and a component model similar to EJB (Enterprise Java Beans). It is questionable whether CORBA 
and in particular implementations of the standard can, in the long run, adopt all these and other foresee-
able developments in the field of distributed systems. 

Furthermore, CORBA was conceived for static distributed systems, requires considerable resources at run 
time, and uses the traditional client-server model as the basic metaphor. It is therefore not well suited for 
small devices, highly dynamic systems, and services that are spontaneously integrated into a federation. 
This, however, is a major trend in distributed systems, to which Jini and similar systems are better 
adapted. 

3.4  Jini 

Jini is an infrastructure that runs on top of Java and RMI to create a federation of devices and software 
components implementing services. Jini enables any device that can run a Java Virtual Machine to inter-
operate with others by offering and using services. A service is defined as an entity that can be used by a 
person, a program, or another service [darm]. Typical examples of services are printing a document or 
translating from one data format to another, but functional hardware devices are also considered to be 
services. 

All services are granted as leases. Each service, when in use, is registered as being leased by another ser-
vice. Leases are time-dependent and have to be renewed upon expiration. If the lease is not renewed, then 
Jini removes the service from the list of services offered. 

A device or a service uses a standard mechanism to register with the federation. First, it polls the local 
network to locate a so-called lookup service. Then, it registers itself with the lookup service. The lookup 
service is similar to a bulletin board for all services in the federation. It can store not only pointers to the 
services, but also the code for these services or proxies representing the service, as well as defining ser-
vice characteristics and attributes (e.g. a printer may specify whether it supports color printing) [jini]. 

When a client wants to use a service offered to the community, it can download the required proxy object 
from the lookup service (after having located and contacted the lookup), including any code such as de-
vice drivers or user interfaces. Dynamic code mobility enables clients to take advantage of services with-
out pre-installing or loading drivers. The downloaded proxy object can then be used locally to interact 
directly with the selected device or service, with any device-specific details being hidden by the proxy. 

Jini and similar infrastructures (e.g. Universal Plug and Play or UPnP, which is a service discovery 
framework at a somewhat lower level than Jini) are thus well-suited for highly dynamic distributed sys-
tems where components may be mobile and typically form spontaneous networks – an important trend in 
distributed systems [Ker 00]. 

3.5  Bridges Between Different Middleware Systems 

Each middleware system presented in the previous sections is supported by strong commercial forces. 
Together with the inertia of existing legacy software – all closely tied to one of these infrastructures (es-
pecially in the case of Microsoft’s COM+ platform) – it is unlikely that any one of them will surpass its 



competitors. For this reason, bridges have been defined and standardized for the most widely used mid-
dleware platforms. 

One such bridge mediates between the two major middleware parties CORBA and COM+. It is derived 
from the standard IOP protocol (Inter-ORB protocol) that allows basic interaction between CORBA ob-
jects served by ORBs from different vendors. Because CORBA-1 compliant ORBs were not able to talk 
to ORBs from other vendors, this Inter-ORB protocol was a major improvement in CORBA-2. It still al-
lows proprietary protocols between two or more ORBs  to exist, but requires a General Inter-ORB proto-
col (GIOP) to be understood by any CORBA-2 compliant ORB [GIOP]. This abstract protocol defines the 
syntax and semantics of messages to allow independently developed ORBs to communicate over any 
connection-oriented transport protocol. Two instances of this GIOP exist: the IIOP (Internet Inter-ORB 
protocol) implements GIOP over TCP streams, and the DCE-IOP, which forms the basis for the interac-
tion between COM+ components and CORBA objects [DCE-IOP]. 

The Java platform tightly integrates CORBA through its org.omg.CORBA package, a library with more 
than 100 classes that can interact with CORBA ORBs and CORBA objects [j2ee]. These classes represent 
the mapping between Java and the interface of a CORBA object defined in the CORBA IDL. The package 
also comprises a Java implementation of an ORB. 

Within the Microsoft middleware, bridges are also defined to provide backward compatibility. COM+ 
components written in languages such as Visual Basic or C# are now compiled to and thus accessible in 
the .NET environment. Moreover, any managed component (code that is based on the Common Type Sys-
tem) can directly be used as a COM+ component. For COM+ components implemented in unmanaged 
programming languages such as C++, appropriate .NET wrappers can be generated automatically if type 
libraries for these components exist. With the aid of these wrappers, unmanaged components are accessi-
ble within .NET-compliant applications and vice versa. In the open source community there is also a pro-
ject called MONO [MONO] which aims at creating a .NET conforming platform for the Linux operating 
system. 

Basic obstacles in bridging middleware systems are substantial performance penalties due to additional 
marshalling costs, friction losses because of incompatible models, and limitations in the expressiveness of 
the involved IDLs. The mutual sympathies of the participating companies and their licensing plans as well 
as their patent politics also have a strong influence on the proliferation of bridges between different mid-
dleware platforms. Currently, most of the bridges have been used in simple applications only as a proof of 
concept, and serious commercial usage seems to be rare. 

4.  Trends in Distributed Application Structures 
Dramatic changes at the application level accompany the evolution of distributed middleware. In e-
commerce and cooperative business, the Web and its underlying HTTP protocol are becoming the stan-
dard execution platform for distributed and component-based applications. The increasing number of 
computers and users on the Internet has led to new cooperation structures such as peer-to-peer computing, 
an interesting exercise in scalability with almost political implications for the networked society. It has 
also stimulated new developments in the area of computing clusters and so-called grids. Independent of 
the application domain, the integration of mobile clients into a distributed environment and the ad-hoc 
networking of dynamic components are becoming ever more important.

4.1  Application Servers 

The client-server model is still the prevalent pattern of communication in distributed systems. But pro-
grammed client-server systems based on a traditional RPC scheme are losing ground in favor of Web-
based communication between clients and servers. Enhanced HTTP servers receive client requests (typi-
cally a URL get request) and are capable of performing the necessary computation to satisfy the client 
request and replying with a dynamically generated HTML document. A variety of technologies are avail-
able for servers as well as for clients. Client-side technologies primarily deal with user interface issues. 



Server-side technologies, on the other hand, define how application code gets executed upon the arrival of 
a client request. Heavyweight mechanisms such as CGI (Common Gateway Interface) and ASP (Active 
Server Pages, [ASP]) are widely used where scripts or whole executables are started on receipt of each 
incoming request. However, besides performance penalties, these mechanisms raise a number of problems 
regarding security, authentication, and state management. 

With respect to application architectures, a shift from 2-tier solutions with front-end clients and back-end 
servers (legacy programs or database platforms) towards 3-tier structures can be observed. In a 3-tier cli-
ent-server system, functional issues (what is known as business logic) are separated from the issues con-
cerning data modeling and persistent storage. The latter are still realized by traditional database systems, 
but the business logic is typically executed on a so-called application server (middle-tier), a specialized 
platform for the execution and management of application components. Typically, this application server 
is tightly coupled with a Web server, and client requests are delivered directly to the responsible business 
object. Two opposing approaches on modeling, deploying, and managing business logic exist today – the 
Enterprise Java Beans (EJB, [EJB]) standard defined on top of the Java platform, and the COM+ compo-
nent model extended with the Microsoft Transaction Server (MTS). 

The EJB standard defines two types of beans, where a bean is a specialized Java class that conforms to 
certain rules in order to reflect the class structure. Entity beans represent data objects inside the applica-
tion server. They are instantiated when they are first referenced by some other component. Two types of 
instantiation are possible: the data members of the object are retrieved automatically from databases using 
the Java database connectivity mechanism JDBC (container-managed persistency) or manually by any 
application-defined mechanism (bean-managed persistency). Container-managed persistency can be used 
as an automated migration of a database-centric system structure to a more modern object-oriented appli-
cation architecture. The bean-managed approach may serve as an object-oriented wrapper for legacy ap-
plications. The flow of control is modeled in EJB by so-called session beans. Session beans come in a 
stateless and a stateful flavor. A stateful session bean stores conversational state encompassing successive 
client requests only inside the application server. It is never stored persistently. A similar architecture is 
used with COM+ and MTS, the Windows counterpart of the application server. In this environment, 
COM+ components implementing specific interfaces correspond to entity beans or session beans. 

In component-based application architectures, a tendency to distinguish between functional and non-
functional aspects can be observed. Entity components and session components are still being developed 
with traditional programming languages such as C, C++, Java, or even Visual Basic, for implementing the 
functional part. But non-functional issues such as transactional scope, role-based security mechanisms, 
connection and object pooling (reusing connection and objects for independent requests), as well as load 
balancing are not being implemented as part of a component anymore; instead, each component is being 
augmented by supplementary attributes. In the case of COM+, some of these attributes are defined as part 
of the source code or the interface definition using a special syntax. In the EJB context, all attributes are 
defined in a dedicated XML manifest file that is part of the bean’s jar file. Attributes are recognized and 
implemented by the application server together with specific wrappers that surround each component 
(containers in the context of EJB or so-called interceptors in the Windows environment). By these means, 
complex applications can be managed on a more abstract and descriptive level without the need for spe-
cific programming skills. For this purpose, dedicated management consoles are used by application ad-
ministrators that provide access to all non-functional aspects of an application. 

4.2  Peer-to-Peer Computing 

The Internet boom in the late 1990s led to an unexpected explosion in the number of private computers 
connected to the global network. According to [isc], a rough estimate for the number of hosts connected 
to the Internet in January 2002 was 147 million (hosts advertised in the DNS). The major technical chal-
lenge for the Internet and its protocol suite IPv4 was to keep up with this growing number of hosts and 
users. One specific risk was that of running out of IP addresses. In particular, a shortage of class B net-
works and the small size of class C networks have led to a number of competing enhancements to the ex-
isting addressing schemes of IPv4.  



Besides classless Internet domain routing (CIDR, [CIDR]) and network address translation (NAT, 
[NAT]), a widely-used approach to remedy this situation is based on the assumption that most private 
computers are connected to the Internet only sporadically. Therefore, no static IP addresses are assigned 
to these hosts anymore. Instead, the Internet provider uses a fixed contingent of addresses and assigns a 
dynamic IP address temporarily whilst one of these private hosts is connected to the Internet. As a conse-
quence, the majority of computers in the Internet cannot be identified by unambiguous IP addresses any-
more, since these addresses change frequently over time. 

The millions of new users mostly had rather different expectations about the network and its opportuni-
ties. This new community did not fit into the traditional client-server scheme where only a minority of 
servers stored most of the information accessed by the majority of clients. Many of the new users were 
primarily interested in exchanging information with each other, be it mp3 audio files, movies, or more 
questionable things such as license keys, operating systems, application programs, and cracked games. 

This shift in the perception of the Internet and its functionality has given rise to the peer-to-peer (P2P) 
movement [P2P 01]. Today, P2P comprises a variety of different application domains, but the above-
mentioned exchange of data amongst peers is the most prominent one. Technically, programs for this pur-
pose are complicated due to scalability issues and because of the dynamic IP addresses of most of their 
clients. Basically, these systems store only meta-information about the documents available in the P2P 
network, the data itself being kept by the peers and downloaded directly by the client (disregarding the 
fact that the widespread use of asymmetric DSL modems – a remnant of the earlier client-server structure 
– leads to weak uplinks when peers act as servers). Due to legal and copyright issues, storing this meta-
information in a single place, e.g. by dedicated servers, can be prohibitive. Napster [naps], one of the first 
P2P networks, implemented this approach and became much less attractive due to several lost lawsuits. 
Other P2P networks such as Gnutella [gnut] and its clients (e.g. BearShare [bear], Morpheus [morph], and 
LimeWire [lime]) bypass this single point of storage by circulating the meta-information within the over-
lay network itself. By these means, however, they introduce a huge additional network load. 

The peer-to-peer movement also has a political dimension [P2P 01]. The classical client-server structured 
Internet can be viewed as a political system where a small number of residents define the rules for the 
masses. In this respect, peer-to-peer is sometimes interpreted as a process of democratization. This is also 
one of the reasons why the Open Source community has strong relations with the P2P movement. A num-
ber of projects emerged from this political motivation. One driving force behind these projects is the im-
petus to provide anonymity for clients accessing sensitive information, to protect against governmental 
supervision, to prohibit censorship, and to protect privacy. 

4.3  Grid Computing 

The latent computing power of the Internet is vast, and with the ever-increasing quality and bandwidth of 
network technology it is possible to tap some of this potential. Unlimited computing power is needed in 
many application domains, especially in research disciplines such as physics, chemistry, bio-chemistry, 
astronomy, and meteorology, where many simulations are computationally expensive. Many of these 
simulations have previously been performed on vector supercomputers, but the availability of high-
performance networks has led to a shift towards arrays of inexpensive personal computers and worksta-
tions [FK 98, grid]. In the Linux environment, there is even a competition for the largest number of Linux 
boxes connected to form a single virtual supercomputer. Impressive systems are also commercially avail-
able – not for everyone’s wallet – with more than 8000 processors [top]. 

Because of the quality of the network connection, computer clusters with an increasing diameter can be 
deployed successfully, although the vision of a global computer grid comprising most of the hosts avail-
able in the Internet is still several years away. The project coming closest to this vision is seti@home 
[seti]. Technically, seti@home is a client-server based loosely-coupled cluster system, where any client 
computer can download a set of radio data. Clients perform a Fourier analysis during idle times to look 
for signals of artificial origin. The results are then sent back to the server system. The total statistics of 
this project as of March 23, 2002 are quite impressive: more than 3.6 million clients have contributed to 



seti@home until now, 1.42E+21 floating point operations have been performed, and a total computation 
time of 921,190 CPU years has been spent so far.  

A number of middleware projects such as JXTA [jxta], Globus [glob], and Legion [leg] aim at providing 
a virtual platform for the execution of distributed applications on such grid computer systems. Most of 
them are based on early middleware for cluster computers such as PVM [pvm] and MPI [mpi]. In the lat-
est middleware systems, emphasis is put on the establishment and maintenance of a computer grid, the 
ease of communication between heterogeneous computer systems, and enhanced communication patterns 
essential to vector-based mathematics. 

4.4  Mobility 

People have an increasing desire for ubiquitous access to information, anywhere, anyplace, and anytime. 
For that, they need not only mobile and portable devices, but also adequate communication systems and 
software infrastructures. 

Mobile devices in the form of portable telephones, PDAs, and notebook computers are now common-
place. Technologies such as WAP, imode, GSM, and in particular UMTS and similar so-called third gen-
eration cellular communication standards will soon give rise to new mobile devices providing fast and 
immediate (i.e. “always connected”) access to the Internet. 

However, mobile devices are currently poorly integrated. One example is data synchronization: since 
from the mobile worker perspective it is crucial that data (such as phone numbers and calendar informa-
tion) remains consistent across the various devices, automatic synchronization is a necessity. Current syn-
chronization software consists of proprietary products that only allow synchronizing between specific 
devices and applications. The trend here is moving towards standards (such as SyncML, propagated by an 
industry consortium) and more general synchronization middleware [HMNS 00]. 

Another infrastructure problem is transparent roaming. Although protocols and systems such as mobile IP 
provide users the freedom to roam beyond their home subnet whilst consistently maintaining their home 
IP address, this is not as simple as roaming in cellular phone networks and has several drawbacks with 
respect to efficiency and scalability. 

It is not only people and computing devices that can be mobile, but also program code. Mobile code is 
executable program code that moves from a source machine to a target machine where it is executed. Mo-
bile code may help to support user mobility: personalized environments can follow a user between com-
puters [cam]. Platform independence of mobile code is usually achieved by using scripting languages for 
which interpreters are available on most systems, or by compiling into some platform-independent repre-
sentation such as Java bytecode. 

Mobile code is an important programming paradigm and opens up new possibilities for structuring dis-
tributed software systems in an open and dynamically changing environment. It can improve speed, flexi-
bility, structure, and the ability to handle disconnections, and it is particularly well-suited if adaptability 
and flexibility are among the main application requirements. It has applications in many areas, such as 
mobile computing, active networks, network management, resource discovery, software dissemination 
and configuration, electronic commerce, and information harvesting [KM 00]. 

Java applets are a prime example of mobile code components. Applets are best known as small Java pro-
grams, embedded in a Web page, that can be executed within the Web browser. However, applets to-
gether with the ubiquitous availability of the Java Virtual Machine, Java’s class loading mechanism, its 
code serialization feature, and RMI make Java a full mobile code system where arbitrary code can be 
downloaded over the network and executed locally. Of course, security is a major concern in this context. 

A more elaborate form of mobile code, based on the “push principle” as opposed to the “pull principle” of 
mere code downloading, is that of mobile agents [KM 00]. They consist of self-contained software proc-
esses which can autonomously migrate from one host to another during their execution. In contrast to 
simple mobile code systems, mobile agents have navigational autonomy, they decide on their own (based 



on their programmed strategy and the current state of the context) whether and when they want to mi-
grate. While roaming the Internet or a proprietary intranet and visiting other machines, they do some use-
ful work on behalf of their owners or originators. 

Compared to traditional distributed computing schemes, mobile agents promise, at least in some cases, to 
cope more efficiently and elegantly with a dynamic, heterogeneous, and open environment which is char-
acteristic of today’s Internet. Certainly, electronic commerce is one of the most attractive areas in this 
respect: a mobile agent may act (on behalf of a user or owner) as a seller, buyer, or trader of goods, ser-
vices, and information. Accordingly, mobile agents may go on a shopping tour of the Internet – they may 
locate the best or cheapest offerings on Web servers, and when equipped with a negotiation strategy (i.e. 
if they are “intelligent agents”) they may even carry out business transactions on behalf of their owners 
[FM 99]. 

Another general application domain is searching for information on the Internet or information retrieval 
in large remote databases when queries cannot be anticipated. Other uses of mobile agent technology in-
clude monitoring, remote diagnosis, groupware applications, and entertainment. 

In general, mobile agents seem to be a promising technology for the emerging open Internet-based service 
market. They are well-suited for the personalization of services, and dynamic code installation by agents 
is an elegant means of extending the functionality of existing devices and systems. Agent technology 
therefore enables the rapid deployment of new and value-added services. Furthermore, mobile code and 
mobile agents are of interest for future Ubiquitous Computing applications, where small mobile devices 
may be “spontaneously” updated with new functionality or context-dependent program code. 

Some important problems remain to be solved, however. The most important issues are probably security 
concerns: protecting hosts from malicious agents, but more crucially also protecting agents and agent-
based applications from malicious hosts. The second issue is crucial for applications such as electronic 
commerce in an open world, but unfortunately it is difficult to tackle. The main point is that, as an agent 
traverses multiple hosts which are trusted to different degrees, its state can be changed by its temporary 
hosts in ways that adversely impact its functionality [nist]. Transactional semantics for migration (i.e. 
“exactly-once migration” in the event of communication failures), interoperability with other systems, 
coordination issues, and the management of large societies of mobile agents also still pose non-trivial 
challenges. Furthermore, a seamless integration of mobile agents into the Web environment is crucial for 
the success of mobile agent technology. 

4.5  Spontaneous Networking 

Device mobility and the emergence of information appliances are spurring on a new form of networking: 
unmanaged, dynamic networks of devices, especially mobile devices, which spontaneously and unpre-
dictably join and leave the network. Underlying network technologies already exist – for example, Blue-
tooth. Consumers will expect these ad hoc, peer-to-peer networks to automatically form within the home, 
in networked vehicles, in office buildings, and in various arbitrary environments [IBM]. 

In such environments, the ability to dynamically discover devices and services (“service discovery”) is a 
key component for making these networks useful [ibm]. Service discovery protocols provide a standard 
method for applications, services, and devices to describe and to advertise their capabilities to other ap-
plications, services, and devices, and to discover their capabilities. Such protocols also enable them to 
search other entities for a particular capability, and to request and establish interoperable sessions with 
these devices to utilize those capabilities [eet]. 

The most important technologies to date for service discovery are Jini (as described in section 3.4), Salu-
tation, Universal Plug and Play (UPnP) from Microsoft, E-speak from Hewlett-Packard, and the Service 
Location Protocol (SLP), which has been jointly developed by researchers from both academia and indus-
try as a widely accepted and usable Internet standard for service discovery. 

However, a crucial point is service mediation: matching requests for services with service descriptions. 
This is not as easy as it seems (e.g. does or should a request for a 300 dpi printer match a 600 dpi 



printer?), and designing a framework for service types is an especially difficult problem for open, dy-
namic networks, in which the communicating parties may have never encountered each other before, and 
cannot assume shared code or architectures [ncsa]. Technologies such as XML may provide at least a syn-
tactical basis for that problem. Another technology currently being developed by the World Wide Web 
Consortium (W3C) is the Resource Description Framework (RDF), which provides interoperability be-
tween applications that exchange machine-understandable information. However, none of these technolo-
gies addresses the underlying fundamental conceptual and semantic problem of service mediation, which 
remains an important open issue. 

5.  Towards Ubiquitous Computing 
Given the continuing technical progress in computing and communication, it seems that we are heading 
towards an all-encompassing use of networks and computing power, a new era commonly termed “Ubiq-
uitous Computing”. Its vision is grounded in the firm belief amongst the scientific community that 
Moore’s Law (i.e. the observation that the computer power available on a chip approximately doubles 
every eighteen months) will hold true for at least another 15 years. This means that in the next few years, 
microprocessors will become so small and inexpensive that they can be embedded in almost everything – 
not only electrical devices, cars, household appliances, toys, and tools, but also such mundane things as 
pencils (e.g. to digitize everything we draw) and clothes. All these devices will be interwoven and con-
nected together by wireless networks. In fact, technology is expected to make further dramatic improve-
ments, which means that eventually billions of tiny and mobile processors will occupy the environment 
and be incorporated into many objects of the physical world. 

Portable and wireless Internet information appliances are already now a hot topic in the computer indus-
try. Soon everything from laptops and palmtops to electronic books, from cars and telephones to pagers, 
will access Internet services to accomplish user tasks, even though their users may have no idea that such 
access is taking place [Kot]. It is clear that today’s mobile phones and PDAs, connected to the Internet, 
are only the first precursors of completely new devices and services that will emerge. This will give rise 
to many interesting new applications and business opportunities. 

5.1  Smart Devices 

Progress in technologies for sensors (and thus the ability to sense the environment), together with the ex-
pected increase in processing power and memory, will render classical devices or everyday objects 
“smart” – they may adapt to the environment and provide useful services in addition to their original pur-
pose. Most of these new emerging “smart devices” will be small and therefore highly mobile; some might 
even be wearable and be worn much as eyeglasses are worn today. They will be equipped with spontane-
ous network capabilities and thus have access to any information or provide access to any service “on the 
net”. Connected together and exchanging appropriate information, they will form powerful systems. 

Future smart devices will come in various shapes and sizes and will be designed for various task-specific 
purposes. They all have in common the fact that they are equipped with embedded microprocessors and 
are connected (usually by wireless means) to other smart devices or directly to the Internet. Some of these 
devices may also be equipped with appropriate task-specific sensors. Others, known as “information ap-
pliances”, will allow users to gain direct and simple access to both relevant information (e.g. daily news 
and email) and services [Nor 98] [ibm]. Their user interface may be based on speech recognition, gesture 
recognition, or some other advanced natural input mode technology that is appropriate for their purpose, 
size, and shape. Multimodal human-computer interaction techniques will also help to identify people and 
thus protect access to the device. All these devices will be so highly optimized to particular tasks that they 
will blend into the world and require little technical knowledge on the part of their users – they will be as 
simple to use as calculators, telephones or toasters [ibm]. 

Extremely flat and cheap screens that can be fixed to walls, doors and desks are conceivable. The displays 
could be configured to present information such as weather, traffic, stock quotes or sports results ex-



tracted from the Web. Once configured, users could place these displays wherever they felt it was con-
venient. As humans, we are accustomed to looking in particular places for particular pieces of informa-
tion [MIT b]. This way, dynamic information would become much easier to find and assimilate – a user 
might, for example, place today’s weather forecast on the wardrobe door. 

Smart toys are another appealing prospect. Compared to an ordinary toy, a networked toy would have ac-
cess to a huge world of information and could be more responsive to its owner and environment. For ex-
ample, a toy that teaches spelling could access a large dictionary. It could also invoke a speech recogni-
tion process running on a remote computer to convert a child’s story into text. Or it might know the cur-
rent weather and other global or local news and events. A toy (such as a smart teddy bear) might also act 
as a telecommunication device or even a telepresence device and serve as an avatar for the friends and 
family of the toy owner [MIT c]. 

Of course, many other types of smart devices are conceivable. Wearable computing devices will be used 
to keep people informed, connected, and entertained. Just like the carriage clock of 300 years ago that 
subsequently became a pocket watch and then a wristwatch, personal electronic devices will become 
items that can be worn as clothing, jewelry, and accessories [phil]. Wearable electronics may even be-
come a new clothing concept: textiles that are electrically conductive but also soft and warm to touch 
exist already. As a result, it is relatively easy to move audio, data, and power around a garment. Conduc-
tive fibers can be integrated into woven materials, and conductive inks allow electrically active patterns 
to be printed directly onto fabrics. 

One of the unique aspects of mobile devices is that they can have an awareness of the location where they 
are used. However, location-awareness is only one aspect of context-awareness as the encompassing con-
cept, which describes the ability of a device or program to sense, react to, or adapt to the environment in 
which it is running. Context-awareness enables new applications based on the special nature of the con-
text, for example interactive guide maps. However, it may also be exploited in determining the form of 
interaction supported and modifying interface behavior. For example in a car system, unimportant feed-
back may be limited during periods of rapid maneuvering [RCDD 98]. 

A dominant constraint for many information appliances will be their power consumption. If we assume a 
future where many task-specific devices exist instead of few general purpose machines, clearly users will 
not be interested in charging or replacing dozens of batteries. For mobile and wearable devices, however, 
only one of the devices (e.g. a mobile phone) that a user carries will need to communicate with wide-area 
networks. Other, more power-thrifty personal devices may communicate over a link that only covers a 
person’s immediate space [wash b]. 

Prototypes of such personal area networks already exist. IBM has developed a technology that uses a tiny 
electrical current to transmit information through the body of a person [IBM b]. In this way, a user’s 
identification and other information can be transmitted from one person to another, or even to a variety of 
everyday objects such as cars, public telephones and ATMs. The bandwidth is relatively small, but more 
than enough to carry identification, or medical information [IBM c]. 

Networked embedded processors, which form the heart of all smart devices, will become an important 
research and development field. New types of low-power processors will be developed specifically for 
networked embedded applications. Also of primary interest are advances in networking technology that 
could allow large numbers of embedded computers to be interconnected so they can share information 
and work together as part of a larger system. Reliability is crucial in embedded computing systems, since 
such systems will increasingly control critical functions where safety is a factor (e.g. braking, navigation, 
driving) and, in some applications, may be given authority to take some actions with little or no human 
intervention. Ensuring the reliability of networked embedded computing systems could be difficult since 
large, interconnected information systems are notorious for becoming unstable. Such problems could be 
magnified by the presence of millions of interconnected embedded systems [NRC]. 

Progress in material science, chemistry, and physics will eventually change the appearance of information 
appliances. For example, light emitting polymer (LEP) displays that are now available in first prototypes 
offer many processing advantages, including the possibility of making flexible large-area or curved dis-



plays capable of delivering high-resolution video-rate images at low power consumption, visible in day-
light and with wide viewing angles [cdt]. 

Somewhat speculative are techniques known as “electronic ink” or “electronic paper”. Although initial 
prototypes exist, there is still a long way to go before paper can be replaced by electronic versions. How-
ever, the impact of this technology, once it is available, is significant: just imagine carrying your calendar 
and contact list on a foldable piece of electronic paper, or pulling out a large screen from a mobile phone 
or a tubular scroll containing the remaining electronics of a PC! Combined with small GPS receivers, 
maps that display their exact location (“you are here”) are a real possibility. 

5.2  Remote Identification 

One of the major problems in Ubiquitous Computing is the identification of objects [HMNS 00]. For re-
tail-based applications, barcode labels are typically used, but these have a number of drawbacks (such as 
the visibility of the barcode and the fact that it is a read-only item). So-called smart labels or RFID tags 
represent a newer and more interesting concept for identifying objects [Fin 99]. 

A smart label is a small, low-power microchip combined with an antenna, implanted in a physical object. 
Each label has a unique serial number and can contain other programmable information. The information 
contained in a label can be transmitted to a nearby reader device by a radio frequency (RF) signal [aim]. 
Hence, smart labels are contactless, and require neither touch nor line of sight. In particular, they work 
through plastic, wood, and other materials [MIT d]. 

Such identification tags can be battery powered or unpowered, and can be manufactured in a variety of 
sizes and configurations. The simplest give out a single pre-programmed number when placed in the vi-
cinity of a reader [MIT d]. It is also possible to store a limited amount of information on the tags. More 
elaborate forms of smart labels are contactless smart cards. In addition to storage memory, they contain a 
processor (with an operating system) and are able to process data (e.g. perform cryptographic functions 
and thus disclose their state only to authorized entities). Smart card technology is already well-established 
(smart cards have been used for many years as secure tokens for access control and authentication), but 
low-power requirements for contactless variants pose new challenges. Research is currently also under-
way to produce tags that report information about their physical environment, such as temperature or po-
sition [MIT d]. 

Battery-powered labels, known as active tags, can transmit their information over relatively large dis-
tances. Their disadvantages are that they have a limited operating life, and are more expensive than pas-
sive devices [cwt]. Passive tags, on the other hand, collect the energy they require to operate from the RF 
field emitted by a reader device, and therefore do not need a battery. They are less expensive (approx. 10 
cents to $1), but can only be sensed at distances of up to a few meters. In some of these passive systems, 
the antenna is replaced by non-metallic, conductive ink. The substrate of the labels is usually paper or 
plastic, yielding a paper-thin and flexible label, which can be self-adhesive and be printed on. The labels 
are small enough to be laminated between layers of paper or plastic to produce low-cost, consumable 
items. 

Smart labels are already used to identify packages for express parcel services, airline baggage, and valu-
able goods in retail. Industry estimates the smart label market will reach 1 billion items in 2003. Future 
smart labels equipped with sensors and more processing power will be capable of monitoring their envi-
ronmental conditions, actively sending alerts or messages, and recording a history of status information, 
location, and measurement data. 

Once most products carry an RFID tag (similar to today’s ubiquitous barcode labels), scenarios that go 
beyond the original purpose of those tags are conceivable. For example, an intelligent refrigerator may 
make use of the labels attached to bottles, which could be useful for minibars in hotel rooms. Even more 
intriguing are scenarios where prescriptions and drugs talk to a home medicine cabinet, allowing the 
cabinet to say which of those items should not be taken together, in order to avoid harmful interactions 



[MIT e]. In a similar manner, packaged food could talk to the microwave, enabling the microwave to 
automatically follow the preparation instructions. 

The underlying idea is that everyday objects can, in some sense, become smart by having RFID labels 
attached to them and by equipping the environment with sensors for those labels. The information on the 
label would then not be merely an identity, but a URL-like pointer to an infinite amount of information 
somewhere on the Internet. This means that each object could acquire an electronic identity in addition to 
its physical structure [MIT f]. These electronic identities might then interact within a virtual world, inde-
pendently from the physical world. If more and more of the physical world were to become “smart”, and 
both worlds were more closely linked, they would both be richer [hp]. 

5.3  The Prospects 

The ultimate vision of Ubiquitous Computing, where inanimate everyday objects communicate and coop-
erate, seems to be realizable in the long term. This would then provide us with an unparalleled level of 
convenience and productivity [MIT e]. Much remains to be done, however, on the conceptual level and 
quite a considerable infrastructure would have to be implemented before this vision could become a real-
ity. The long-term consequences of a world in which things “talk” to each other are not yet clear, but the 
prospects are fascinating. 

However, there are many concerns and issues to consider, even on the political, legal, and social level. 
Privacy is of course a primary concern when devices or smart everyday objects can be localized and 
traced, and when various objects we use daily report their state and sensor information to other objects. 
Another issue is information overload. Internet users are already overwhelmed by the sheer volume of 
information available, and the problem will get worse as the Internet grows and we enter the era of Ubiq-
uitous Computing. Search engines, portals, and email filtering are existing technologies that allow the 
user to reduce the torrent to a manageable stream, but these technologies are still quite limited [Kot]. New 
technologies and services are definitely required. 

It is clear that we are moving only gradually towards the ultimate vision of Ubiquitous Computing. Much 
progress in computer science, communication engineering, and material science is necessary to render the 
vision economically feasible and to overcome current technological hurdles such as energy consumption. 
However, it is also clear that Ubiquitous Computing will, in the long run, have dramatic economic effects: 
many new services are possible that could transform the huge amount of information gathered by the 
smart devices into value for the human user, and an entire industry may be set up to establish and run the 
infrastructure for the new smart and networked information appliances. 

Applications for Ubiquitous Computing will certainly be found in areas where the Internet already plays 
an important role, such as mobile commerce, telematics, and entertainment, but without doubt many other 
traditional areas (e.g. healthcare and education) and newly emerging areas will benefit from Ubiquitous 
Computing technologies. 

6.  Conclusion 
Mark Weiser, the pioneer of Ubiquitous Computing, once said “in the 21st century the technology revolu-
tion will move into the everyday, the small and the invisible”. And at the turn of the century Randy Katz, 
Professor at UC Berkeley, succinctly stated “as we approach 2001, we are in the Information Age, not in 
the Space Age.” Seen that way, the future of distributed systems and Ubiquitous Computing is indeed 
promising, fascinating, and challenging at the same time! 
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