
1

Clippee: A Large-Scale Client/Peer System
Keno Albrecht, Ruedi Arnold, Roger Wattenhofer
{kenoa,rarnold,wattenhofer}@inf.ethz.ch

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland

Abstract— This paper introduces a client/peer architec-
ture providing services similar to Group Communication
systems, but with the scalability of peer-to-peer systems
and its dynamic behavior. We present Clippee, a first
prototype of this client/peer architecture. Clippee employs
a data replication scheme based on an optimistic use of
locks, without running an expensive consensus protocol.
We believe that such a “best effort” approach is an
important key to large-scale communication systems. We
further show the applicability of this approach through
experimental measurements conducted with our prototype.

I. INTRODUCTION

A. Client/Server vs. Peer-to-Peer

The formerly predominant client/server networking
paradigm has recently been queried by distributed
systems dubbed “peer-to-peer.” Peer-to-peer computing
takes advantage of existing desktop computing power
and networking connectivity, allowing off-the-shelf ma-
chines to leverage their collective power beyond the sum
of their parts. In a peer-to-peer system, peers (a blend
of clients and servers) share computer resources and
services by direct exchange. Currently available peer-to-
peer systems like Gnutella, Kazaa, or eDonkey primarily
focus on the task of sharing multimedia data. With
the growing popularity of these systems, the research
community has developed schemes how to structure the
data in an overlay network; the same basic idea can
be found in a variety of proposals (e.g. the system of
Plaxton et al. [12], Chord [15], and Pastry [14]). Some
of these systems have become full-blown file systems
(e.g. Farsite [1]).

Peer-to-peer systems overcome the major drawbacks
of client/server systems: (i) Peer-to-peer systems are
more dependable, reliable, and available because there is
no single point of failure – instead information is usually
replicated at several peers. (ii) Peer-to-peer systems
scale better because there is no single point of access
- there is no extraordinary machine called server, and
also no server farm. Almost as a consequence of (i) and

The work presented in this paper was supported (in part) by the
Hasler Stiftung under grant number 1828 and the Swiss National
Science Foundation under grant number 21-66768.01.

(ii), (distributed) denial of service attacks are less of a
problem in peer-to-peer than in client/server systems.

However, peer-to-peer systems are not without diffi-
culty themselves. Generally, in a client/server system,
the server needs to trust the clients, and vice versa also
the clients need to trust the server. In a peer-to-peer
system, this one-to-many organization is not available.
Instead every peer must trust every other peer, and since
in principle any IP-capable machine can become a peer,
peers in essence need to blindly trust everything in the
Internet.

Moreover, peer-to-peer systems are no egalitarian
utopia. Measurements show that many real-existing peers
“take” more than they “give”. In the long run it is not
clear that the concept of “free sharing” can survive in the
mostly anonymous Internet cosmos with mostly selfish
owners of the peers.

Finally, a peer-to-peer system is not homogeneous:
Some peers have much more bandwidth, memory, stor-
age, and/or processing power than others. Some peers
are even placed behind firewalls or network address
translation systems and cannot be contacted.

B. Client/Peer

For these three reasons we believe that it might be par-
ticularly interesting to study the middle ground between
the extremes client/server and peer-to-peer. In this paper,
we advocate to take the best of the thesis client/server
and the anti-thesis peer-to-peer, and synthesize that into
what we christen “client/peer.”

A client/peer system consists of two types of machines
(or agents): clients and peers. The peers form a peer-to-
peer system; the peers can be geographically distributed.
However, peers are all owned by the same organization.
This solves the problems of trust between the peers and
of the egalitarian utopia. For an example of a client/peer
system see Figure 1.

Clients of a client/peer system behave like a client in a
client/server system. A client can connect to an arbitrary
peer. A large number of clients can be connected to the
same peer. The contacted peer will ensure that the client
receives the requested services and that other peers will

2

C

P

P

P

P

C

C

C

C

C

Fig. 1. Illustration of a client/peer system.

be informed about the effects of the client’s request. A
client can be a simple device behind a firewall, allowing
the system to be heterogeneous.

C. Group Communication

Group Communication (GC) is a widely used abstrac-
tion for distributed applications. We consider GC an
important influence for our work, because of the clear
specification of its abstraction model for services and
properties. Much research has been done in the GC area
over the past almost 20 years. Isis [3] was the first and
probably best-known system, followed by Phoenix [11],
Horus [16], Ensemble [9] among various others. For a
comprehensive study on GC specifications see [6].

GC systems typically offer two main services. The
first is group membership: This service provides the
notion of views that are sets of active and connected
processes, which all processes agree upon. The second
service of GC systems is multicast. There are several
variants of multicast services with different properties
and guarantees. Atomic (reliable and totally ordered)
broadcast is typically paid most attention to.

Group Communication systems aim at small numbers
of processes which are fully connected. Group Com-
munication is orthogonal to architectures for distributed
systems (e.g. client/server or peer-to-peer), as it does not
focus on the architecture of systems, but on the services
provided. GC has to be seen as a building block for
distributed applications or as “middleware.”

The abstraction of GC has shown useful in many
domains, but it has two well-known drawbacks when
applied to large-scale settings:

• Complete Graph: GC systems typically work on
a set of directly connected processes.

• Expensive Synchronization: The number of mes-
sages exchanged to reach agreement on a view is
in the order of O(n2), where n is the number of
processes in the group [2].

These two reasons motivate our research and distin-
guish our work from classical GC systems, as our system
is based on a peer-to-peer topology and does not con-
centrate on providing (expensive) group membership and
multicast services. In contrast, we focus on scalability
and dynamics.

D. Large-Scale Systems

The long-term goal of this project is to tackle the
question, which (GC) services can be implemented in a
dynamic large-scale system with what effort. There are
other approaches to this problem. One is using proba-
bilistic algorithms as in gossip-based protocols. Proposed
systems of that kind include SCAMP [8] and Spinglass
[4]. Such systems typically employ services like prob-
abilistic atomic broadcast [7] or adaptive gossip-based
broadcast [13] and offer some kind of optimistic or “best
effort” services, such as the lightweight membership ser-
vice described in [8]. This is a clear distinction from our
approach, since we do not employ gossiping. Neither do
we provide an explicit notion of (partial or probabilistic)
membership information. Another promising approach is
providing multicast services on top of an existing peer-
to-peer system, as for example demonstrated by SCRIBE
[5].

The goal of our system is to provide services to a
large number of clients, where frequent changes within
the sets of clients and peers are supported:

• Scalability: Our system is aimed to scale better than
classical GC systems.

• Dynamics: Our system adapts more gracefully to
dynamic changes in the topology, such as processes
joining and leaving. We have no explicit notion of
views1 nor does our system provide an (expensive)
atomic broadcast primitive. However we do provide
different services at different costs.

In this paper we introduce Clippee (spoof of
“client/peer”), a first prototype system following the
client/peer approach. With the current Java implemen-
tation, we ran a series of successful experiments.

The remainder of this paper is structured as follows.
In Section 2 we present an outline of Clippee. Section
3 summarizes the results of performance measurements,
showing the practicability of Clippee. Finally Section 4
concludes the paper.

II. ARCHITECTURE

In Figure 2 we present our peer-architecture that
consists of three basic components: (a) The network

1There is therefore no need to conduct expensive view-change
operations.

3

Network
Send / Receive Messages
(Re-)Connect

Topology
Complete Graph
2-Hop-Routing

Storage
Eager Global Write
Local Read
Lazy Replication Process

Fig. 2. The peer-architecture consists of a network, topology, and
storage component.

component provides connectivity between hosts and
primitives for sending and receiving messages, (b) the
topology component defines an overlay network, and
(c) the storage component manages data stored in the
system. Notice that, although we arrange these services
as layers, there is no common interface between them.
The reason is that the components depend on each
other.2 Therefore implementations cannot be swapped
without reconsidering dependencies. Furthermore layers
are allowed to use any other layer’s functionality directly,
for instance the application can send messages using
network operations and bypass the replication or topol-
ogy layer. We emphasize that the following subsections
describe our prototype implementation and thus ongoing
work.

A. Model and Assumptions

We consider an asynchronous system with processes
that communicate by message passing and fail only by
crashing. A message can take an arbitrary long time to
arrive at its destination; the processing time of messages
is also unbounded.

All peers are connected as a complete graph (except
two-hop-routes, see section II-C) acting as one logical
server for all clients. Peers can seamlessly join and
leave without affecting the system, but at least one peer
storing all replicated data is expected to be alive at any
time. We guarantee message delivery with at most n−2
simultaneous link failures, thus there exists at least a
two-hop-route between any pair of peers.

A peer can store small data objects. We provide
concurrent read and exclusive write/create operations.

2For example, an instance of the replication service might rely
on FIFO communication over links, whereas not every network
component has to support this type of message delivery.

Data is fully replicated; we use a quorum-ROWA-A-
like mechanism [10] with global locking as a basis for
our optimistic replication scheme. Since we are aware
of possible inconsistencies, we employ a background
process called lazy replication process to ensure eventual
consistency.

Clients can register with any known (login-)peer.
Several clients can login to the same peer simultaneously,
thus the number of clients can be much larger than
the number of peers. If a login-peer fails, its clients
automatically connect to another randomly chosen peer.
If no peer is known, user-action is required.3 Clients can
join at any time and leave after an arbitrary period of
time without affecting any peer or client. We assume
that in absence of any failure a client does not change
its login-peer, thus it remains with its once chosen login-
peer until (intentionally or unintentionally) disconnecting
from it.

A client does not store any data itself. Instead, it
can read and write data via its login-peer. A client
is allowed to modify an arbitrary number of different
objects concurrently.

B. The Network Component

The lowest layer of our architecture handles the deliv-
ery of messages between peers over TCP-connections.
Each connection uses a single sender thread taking
messages from a buffer that stores outgoing messages
for this connection. A message is either sent directly
to the receiver or – if the direct link failed before –
via a two-hop-route using information delivered by the
topology component. Incoming messages are handled
concurrently by a bounded but adjustable number of
threads. Since multithreading in Java does not guarantee
fairness between concurrent processes, we do not provide
FIFO on a single connection, unless we set the number
of threads handling incoming messages to one (which
results in a decrease of efficiency). Furthermore, our
current prototype drops incoming messages if there is no
free thread to handle it. We do not want to use queues to
buffer messages, since this leads to long response times
(especially under high load), which we want to minimize.

Requests asking for reply messages are handled by
employing a timeout mechanism. Missing requests must
be handled by its sender, for instance by resending
or error handling. Timeout expiration might occur due
to crash, dropping of a message, or slow processing.
Replies arriving after their timeout has expired are
dropped.

3This problem arises in virtually every pure peer-to-peer system
and is known as the peer-to-peer bootstrapping problem.

4

An additional feature is that indirect connections using
two-hop-routing try to reestablish direct connections.

C. The Topology Component

Our topology component ensures that every peer is
connected to every other peer in the system. All peers
are connected as a complete graph. Information about
joining peers is sent to every other peer, the joining
peer receives a message containing a list of all current
peers, and leaving peers (gracefully or by crashing) are
detected on every remaining peer by a failure detector.
Additionally the information about live peers is spread
regularly. Depending on the ID4, only one of two peers
trying to (re)establish a connection is allowed to do so
in order to avoid mutual connection setup.

Upon link failures, a two-hop-route is sought for by
pinging the destination peer via a forward request to all
other peers. The first reply (including the new route)
is subsequently used until reestablishment of a direct
connection by the network layer. Since both peers related
to the link failure try to reconnect concurrently, differ-
ent two-hop-routes might be found. We can guarantee
message delivery up to n− 2 simultaneous link failures,
since there exist n− 1 routes (one direct and n− 2 two-
hop-routes) from every peer to any other peer.

Our system was implemented with considering virtual
failures; thus we can send messages to a peer to simulate
a crash or a link failure.

D. The Storage Component

In our peer-system we can store small (in the order
of some kBytes) data objects. Data is fully replicated,
every peer is storing every data object. Using an eager
replication algorithm, the size of data objects linearly
increases the time necessary to store it.

A joining peer automatically downloads all data from
an already existing peer (its bootstrapper). Nevertheless,
the joining peer is immediately fully operational: It
handles requests to known data objects on its own,
whereas requests to unknown objects are “forwarded”
to its bootstrapper.

The algorithm we use to manage data is related to the
ROWA-A-approach described in [10]: Data objects are
always written on all (available) peers. In contrast, the
read-operation is a local lookup only.

To write an object, a peer has to acquire a lock (token)
for that object by sending an AcquireLock-message to
every peer. The lock is acquired only if all peers grant the

4We currently use the IP address and the port number of a peer as
its unique identifier.

lock or do not answer in time. This optimistic approach
does neither guarantee unique locks nor concurrent,
mutual write-access to the same object. Note that these
cases arise very rarely – only upon timeouts or when
separated subsystems rejoin.

For safety, we additionally employ a lazy replication
process that handles and fixes possible inconsistencies
in the background by cross-checking (comparing) data
objects of randomly chosen peers. This mechanism is
also used on failures due to occurrence of inconsistency
upon write access. More precisely, a write operation
fails only in two cases: A peer denies writing an object,
because (i) the writing peer does not own the lock, or
(ii) the writing peer wants to write an object that does
not have a newer version than the current one. In both
cases the lazy replication mechanism is used to fix the
inconsistency.

After the lock has been acquired, a peer can update
the object until releasing the lock again.

III. RESULTS

In this section we provide some results of our mea-
surements. Our testing environment consists of PCs
having one or two 600 MHz processors, 256 MB of
RAM, a 100 MBit/s network adapter, and both Windows
2000 and Red Hat Linux 7.3 installed. The system is
implemented in Java using Sun’s current SDK 1.4.2. We
ran experiments with 2 to 16 peers, one per PC. Clients
were evenly spread among all peers, ensuring that the
request load was uniformly distributed among the peers.
Additionally, we used one machine to act as a central
controller to coordinate our measurements: All peers and
clients were connected to this dedicated machine and
received information about the upcoming experiment.
We emphasize that the central controller is not necessary
for running the system, but simplifies the management
of measurements.

We ran various sets of experiments. Due to lack of
space we focus on one setup: In this experiment we have
a fixed number of clients running on different machines.
Each client is assigned a fixed login-peer and sends write
requests for random data objects to its login-peer at a
given rate, using a Poisson distribution.5 The total load
of requests to the whole system ranges from 10 to 320
write requests per second.

For Linux, Figure 3(a) shows the average response
time of write requests as a function of the request rate

5A Poisson distribution is well-suited to model requests from a
large client population, since general (non-Poisson) request distribu-
tions sum up to almost a Poisson process if a large number of clients
acts independently.

5

Average Response Time (Linux)

0

100

200

300

400

500

600

10 20 40 80 160 320

Write Request Rate [s
-1

]

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 [
m

s
] 16 Peers

 8 Peers

 4 Peers

 2 Peers

(a) Linux

Average Response Time (Windows)

0

100

200

300

400

500

600

10 20 40 80 160 320

Write Request Rate [s-1]

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

[m
s] 16 Peers

 8 Peers
 4 Peers
 2 Peers

(b) Windows

Fig. 3. The average response time of write requests as a function of the request rate and different numbers of peers.

and different numbers of peers. For small request rates,
the average response time is low. With growing request
rates, the response time increases proportionally with the
number of peers. This is the expected behavior, since
with an increasing rate also the number of messages
increases and thus the total load of the peers. If peers
are overloaded and get more requests than their receiver
threads can handle, they start dropping requests. In our
experiments, the peers’ drop rates (resulting in timeouts
on client side) were always less than 1% of all requests.

Although this also holds when using Windows, unex-
pectedly, Figure 3(b) shows that for high request rates,
the curves do not only flatten, but the values even
decrease. The average response time at 320 requests per
second is for all peer numbers reproducibly better than at
160 requests per second. We currently do not understand
this behavior, but we think that it might be due to the
different threading and networking mechanisms used by
the two operating systems.

As opposed to write requests, where each request is
handled by all peers, read requests are handled locally
by a peer. For read requests, more peers therefore not
only help in reliability, but also in scalability. In fact,
read requests are so efficient that we were not able to
produce a big enough request load to bring our system to
the fringe of operability. A simple back-of-the-envelope
computation helps to understand the issue: While a read
request triggers 1 message, a write triggers 5(n − 1).
For every write request in our experiment, the Clippee
system should therefore be able to handle about 5n reads.
A system with n peers being able to handle K writes per
second should also be able to handle K(W +5nR) read
and write requests per second. Here R and W = 1 − R

denote the percentage of reads and writes, respectively.
Therefore this system can also cope with 5nK reads
per second if the system is loaded exclusively with read
requests.

IV. CONCLUSIONS

In this paper we introduced the client/peer architec-
ture. We presented a first prototype Clippee, a distributed
system to provide services in a scalable and dynamic
distributed environment. We have shown our system to
be operable with no atomic broadcast or consensus pro-
tocol, instead employing a simple but effective locking
mechanism combined with a (background) update thread
to provide eventual consistency.

Our measurements with the current Java implementa-
tion have shown that read requests are processed rather
fast, since they can be handled locally and their response
time does not depend on the number of peers in the
system. Write response times on the other hand grow
with increasing number of peers.

REFERENCES

[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaikena,
J. R. Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. Wat-
tenhofer. Farsite: Federated, available, and reliable storage for
an incompletely trusted environment. In OSDI, 2002.

[2] G. Berket, L. Moser, and P. Melliar-Smith. The intergroup
protocols: Scalable group communication for the internet. In
Proceedings of the IEEE Global Telecommunications Con-
ference GLOBECOM, Global Internet ’98 Mini-Conference
Record, pages 100–105, Sydney, Australia, November 1998.

[3] K. P. Birman. Isis: A system for fault-tolerant distributed
computing. Technical report, Cornell University, Department
of Computer Science, April 1986.

6

[4] K. P. Birman, R. van Renesse, and W. Vogels. Spinglass:
Secure and scalable communications tools for mission-critical
computing. In International Survivability Conference and
Exposition. DARPA DISCEX, Anaheim, California, June 2001.

[5] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron.
SCRIBE: A large-scale and decentralized application-level mul-
ticast infrastructure. IEEE Journal on Selected Areas in com-
munications (JSAC), 2002.

[6] G. V. Chockler, I. Keidar, and R. Vitenberg. Group communica-
tion specifications: A comprehensive study. In ACM Computing
Surveys, number 33(4), pages 1–43, December 2001.

[7] P. Felber and F. Pedone. Probabilistic atomic broadcast. In
21th IEEE Symposium on Reliable Distributed Systems (SRDS),
2002.

[8] A. J. Ganesh, A.-M. Kermarrec, and L. Massoulie. SCAMP:
Peer-to-peer lightweight membership service for large-scale
group communication. In Proceedings of the 3rd International
workshop on Networked Group Communication, London, UK,
November 6-9 2001.

[9] M. Hayden and R. van Renesse. Optimizing layered communi-
cation protocols. Technical report, Dept. of Computer Science,
Cornell University, November 1996.

[10] A. Helal, A. Heddaya, and B. Bhargava. Replication Techniques
in Distributed Systems. Kluwer Academic Publishers, 1986.

[11] C. P. Malloth, P. Felber, A. Schiper, and U. Wilhelm. Phoenix:
A toolkit for building fault-tolerant, distributed applications in
large scale. In Workshop on Parallel and Distributed Platforms
in Industrial Products, October 1995.

[12] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing
nearby copies of replicated objects in a distributed environment.
In ACM Symposium on Parallel Algorithms and Architectures,
pages 311–320, 1997.

[13] L. Rodrigues, S. Handurukande, J. Pereira, R. Guerraoui,
and A.-M. Kermarrec. Adaptive gossip-based broadcast. In
Proceedings of the International Conference on Dependable
Systems and Networks (DSN), page (accepted for publication),
San Francisco (CA), June 2003.

[14] A. Rowstron and P. Druschel. Pastry: Scalable, decentralized
object location, and routing for large-scale peer-to-peer systems.
Lecture Notes in Computer Science, 2218, 2001.

[15] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrish-
nan. Chord: A scalable Peer-To-Peer lookup service for internet
applications. In SIGCOMM, 2001.

[16] R. van Renesse, K. P. Birman, and S. Maffeis. Horus: A flexible
group communication system. In Commun. ACM, number 39,
pages 76–83, April 1996.

