
North-Holland
Microprocessing and Microprogramming 27 (1989) 455-462 455

An Automatic Distributed Calendar and Appointment System

Friedemann Mattern and Peter Sturm

INCAS ProJect,) Umverslty of Kalserslautem, Computer Science Department, P.O. Box 3049,
D-6750 Kaiserslautern, Federal Republic of Germany
E-mail: mattern@uklirb.uucp and sturm@uklirb.uucp

We give a short overview of a prototype version of a fully distributed calendar and appointment sys-
tem implemented on a network of workstations. We describe the software architecture, the appoint-
ment scheduling strategies and heuristics, the distributed implementation language, and the graphical
user interface. The motivations for the realization of the system within a distributed systems research
project are also discussed.

1. Introduction

Calendars are important tools for office workers, and
several electronic calendars with features such as auto-
matic alarm and reminder facilities have been realized
and incorporated in office computer systems. However,
as Kineaid et al. have observed [KIN85], these elec-
tronic calendars do not yet offer the power and flexibili-
ty of traditional paper calendars. Furthermore, most of
them are either stand-alone systems or do not contain
facilities for automatically scheduling appointments
involving multiple participants, although this additional
capability would be a clear advantage of automatic cal-
endars over traditional paper calendars. Two notable
exceptions are the Eden Shared Calendar Systems
[HOL85] and the Amoeba Diary [JOH88]. The latter,
however, is not a fully distributed system since it con-
tains a so-called "global module" which acts as a cen-
tralized scheduling manager.

The design and implementation of a useful and practical
automatic distributed calendar and appointment system
represents a challenge in 'many respects. To be widely
usable, appointment systems have to fulfill several
requirements: They should behave in a natural manner
in order to gain high user acceptance, they should have
a comprehensive set of functional capabilities, and the
user interface should be simple and preferably graphi-
cal, similar to a classical paper calendar. Because
users of an appointment system are typically geograph-
ically distributed, its implementation as a distributed
program seems to be quite natural. Centralized solu-
tions quickly lead to bottlenecks with a growing num-
ber of participants. However, in order to behave sensi-
bly, a fully distributed appointment system---which con-
sists of a set of cooperating autonomous calendars
without a central management process or global
database--has to solve a complex and difficult task,
comparable to a group of people trying to fix a common
schedule by sending letters to each other.

Our appointment system has been implemented within
the INCAS ("Incremental Architecture for Distributed
Systems") distributed systems research project which
investigates the benefits and problems of distributed
and parallel systems [NEH87, STU89]. The project
covers a wide scope ranging from hardware develop-
ment over distributed operating systems up to high-
level distributed applications and algorithms [MAT87]
with special focus on development tools [BUH89],
graphics based design methodologies [STU89b], pro-
gramming languages [WYB89], and debug and moni-
toring support for distributed systems [WYB88]. The
calendar and appointment system is one of several dis-
wibuted applications which have been realized within
the project to evaluate the methodologies and develop-
ment tools. The main purpose of the prototype system
was to identify and solve interesting and fundamental
problems related to decentralization of data and con-
trol. Therefore, the primary goal was not the realization
of a perfect and ready to use appointment system, but
to gain experience in the specification and programming
of a non-trivial distributed application.

The distributed calendar system, which has been imple-
mented using an experimental distributed programming
language described in Section 5, operates without glob-
al knowledge and in an open environment, therefore
new participants can be incorporated easily at any
time. Elaborate heuristics are used to guarantee a nat-
ural behavior of the scheduling mechanism and to allow
the system to react in an adaptive way to specific user
requirements. Furthermore, besides being a practical
test for distributed language constructs and program-
ming paradigms, the system serves as a prototype
application to examine various methods for distributed
problem solving and to gain experience with several
application independent distributed control algorithms
such as message-based distributed mutual exclusion,
agreement, and election protocols.

*) funded by the Deutsche Forschungsgemeinschaft as part of the Research Institute SFB 124 "VLSI-Design and Parallel Architec-
tures", Kaiserslautern - Saarbrilcken. Federal Republic of Germany

456 F. Mattern, P. Sturm /Automatic Distributed Calendar and Appointment System

2. The Architecture of the Appointment System

The architecture of the realized distributed calendar
and appointment system is shown in Figure 1. Each
user has access to the facilities offered by the system
through a dedicated dialogue manager and an associat-
ed autonomous calendar agent.

tual broadcast facilities) appropriate for the calendar
and appointment system. The message handling sys-
tem is part of an application-independent support layer
which facilitates the development of distributed pro-
grams. Besides establishing reliable communication
support, this layer comprises distributed control algo-
rithms such as mutual exclusion and global snapshot
computation which can be called by any distributed
application implemented on top of the support layer.

3. Scheduling Strategies and Heuristics

Fig. 1: Architecture of the Appointment System

The dialogue manager provides a graphical user inter-
face and resides on a workstation with a bitmap dis-
play. It enables the user to inspect and manage his or
her private calendar, offers facilities to schedule new
appointments, and notifies the user when new appoint-
ments are scheduled, conf'mnations are requested, or
already fixed appointments are changed. The dialogue
manager communicates solely with its associated cal-
endar agent.

A calendar agent manages the user's private calendar.
It provides basic management functions, among other
things the addition of new private appointments
(involving no other participants), the modification and
deletion of already fixed appointments, and the query-
ing of the calendar's contents. The calendar agents
have no direct access to the calendars of other partici-
pants. However, by sending messages to each other,
they cooperate to schedule an appointment which
involves multiple participants. Viewed in this way, the
calendar agents act as a society of communicating prob-
lem-solving experts; the negotiation protocol can there-
fore be seen as a heuristics driven anthropomorphic d/s-
tributed problem solving process.

Communication between calendar agents is estab-
lished by a message handling system which provides
various high-level communication features (such as vir-

Besides the basic management functions concerning
the private calendar of each user, the major task of a
calendar agent consists in the negotiation of appoint-
ments involving multiple participants. Most systems
are only capable to schedule an appointment when at
least one proposal made by the initiator does not col-
lide with the calendar contents of all participants. The
probability of a successful negotiation therefore
decreases rapidly the more participants are involved.

To be truly useful, more sophisticated negotiation
strategies should be incorporated into an appointment
system. Two extensions are conceivable and are real-
ized in our system. First, the system should be capable
of rescheduling less important appointments if no pro-
posal made by the initiator is acceptable to all partici-
pants. Second, it should be possible to automatically
remove less important participants if their calendar con-
tents disable all proposals of the initiator and if the col-
liding appointments cannot be rescheduled. Often,
appointments can only be scheduled successfully when
both strategies are applied.

To realize these strategies, additional information must
be available to the calendar and appointment system.
For example, a priority number should be assigned to
each user which reflects his or her importance within
the organization. This priority value serves as a deci-
sion base for appointment rescheduling. Only schedul-
ing commands initiated by more important users are
allowed to reschedule appointments of initiators with a
smaller priority value. Already fixed appointments also
have a priority value. This appointment priority deter-
mines the easiness of automatic adjournment. As part
of the appointment information, a third type of priority
is assigned to every participant which is needed for the
decision to remove less important participants.

The automatic rescheduling of appointments enforces
the system to be aware of user preferences. This
knowledge has been incorporated into the appointment
system by the use of so-called user profiles which can
be easily specified in a graphical manner (cf. Figure 2).
By a user profile, every participant tells the system for
which time periods he or she is willing to accept
appointments. The "degree of reluctance" can be speci-
fied by using a value between 1 and 11; the value 11
signifies that an appointment is definitely not possible.
The user profile reflects general user attitudes and pref-

Ft. Mattern, P. Sturm /Automatic Distributed Calendar and Appointment System 457

erences on a weekly basis which are independent of
specific appointments.

M o n d a y

F

o t 2 3 '~ ,~ ~ t o ~.z ~L2 ~.3 t 4 ~s t ~ ~.7 ~.e 1.~ 2O 2'1 ~ ~3 Z4

o i 2 ~ ~ ~ s 10 ~ 12 ~3 X4 ~n 16 ~;' l a ~ z o 2 i 22 z:z

F
o t 2 I ~ • e ~.o ~x t 2 t ~ t 4 t ~ 1~ ~ t e ~ ~ z~ z~ z a

5 4 t u r d a ~ l - - - -

S u n d a ~

Fig. 2: Graphical Specification of a User Profile

A user who wants to schedule an appointment defines
an appropriate appointment profile. This profile con-
sists of a copy of the initiator's user profile (possibly
updated by additional and specific time constraints),
the list of participants, and an indication of the expect-
ed appointment duration. Optional attributes such as

• time range,

• dependence on other appointments,

• importance of every participant of this appointment,

• a value indicating the possibility of automatic
adjournment,

• explicit conga'mat'ion request

complete the profile. Also, additional scheduling hints
such as "schedule as early as possible" can be speci-
fied. All attributes are initialized with appropriate
default values

After the receipt of a scheduling command, the initia-
tor's calendar agent determines several proposals
within the indicated time range. This make proposals
strategy (of. Figure 3) is assisted by heuristics which,
among other things, decide whether the proposals
should be chosen at random, or selected partially from

the beginning, middle, and end of the time interval, or
whether the proposals should be all located at the
beginning (if the "schedule as early as possible" hint is
given). If not enough proposals can be found, the "make
proposals" strategy tries to reschedule appointments
in the initiator's calendar supported by other heuristics.
Currently, the number of proposals is fixed, but a future
extension might be that the heuristics decide to
increase this value with the number of participants and
with the duration of the appointment. This would coun-
teract the increasing probability of conflicting situations.

The appointment proposals are propagated to the cal-
endar agents of all participants. As part of the assess-
ment strategy (of. Figure 3) every proposal is evaluat-
ed by the participant's calendar agent using the local
knowledge of its calendar content and user profile. If no
appointment in the calendar collides with the proposal,
an assessment value is assigned to the proposal which
is equal to the maximum value in the corresponding
time interval of the user profile. Otherwise, approxi-
mate costs are assigned to the proposal, reflecting the
rescheduling costs of the colliding appointments. These
rescheduling costs are estimations based on the local
information of the participant and cannot be exact,
because dependencies on other appointments are in
most cases unknown to the participant's calendar
agent. The evaluation of costs in complex situations is
supported by specific heuristics. In a future version of
the appointment system the extension to user-defin-
able assessment heuristics will be considered. Howev-
er, the user's influence must be restricted in some way
to fit into the overall scheduling strategies.

The assessment information of all participants is col-
lected by the initiator. If all assessment values of one
proposal are less than a given limit---defined by the ini-
t ia tor -and no colliding appointment exists, the
appointment negotiation can be finished successfully. A
positive notification accompanied by the complete
appointment information is sent to the initiator's dia-
logue manager and to all participants. Often, however,
no satisfying solution can be found directly. Then, a
three stage conflict resolution strategy (cf. Figure 3) is
applied. First, further time period proposals are
made--if possible---, and control is given back to the
"make proposals" strategy.

If this does not succeed, the calendar agent of the ini-
tiator tries to rcschedule less important appointments
in a second stage. For that, "conflict resolution" heuris-
tics look for the most promising time periods making
use of the assessment information previously obtained.
The probability to be a promising candidate increases if
only few appointments with small predicted reschedul-
ing costs collide and the assessment values of the
remaining conflict-free participants are small. An over-
all assessment value of the proposal is not allowed to
exceed a certain threshold. This threshold increases
slowly if no agreement is obtained until a user defined
value is reached. Additional informations such as user

458 F. Mattern, P. Sturm /Automatic Distributed Calendar and Appointment System

User
Profile Calendar

Content

A p p o i n ~ a~i. °~erts
Profii~ / ~ ' \ P P

" ~ - I ~ Appointment
~ - - ~ l Propo~ls

U s e r / '
Profile Constraints

[. prefered time
I periods
I participants

(f . . . schedule appointment . ~ .

Calendar
Display

from other
participants

Conflict
Resolution

User Content
Profile

Proposals
Assessment

Calendar User
Content Profile

Rescheduling

Fig. 3: Scheduling Strategies and Heuristics

F. Mattern, P. Sturm /Automatic Distributed Calendar and Appointment System 459

preferences, scheduling hints, and appointment density
in the initiator's calendar do also affect the heuristics.
For every colliding appointment of a chosen time pro-
posal, a rescheduling command is sent to the partici-
pant. Then, the calendar agent waits for the receipt of
positive or negative acknowledgments. On positive
acknowledgments, the appointment negotiation is com-
pleted. If at least one negative acknowledgment
arrives, the heuristics (driven by user specific direc-
tives) decide how long to continue with stage two
(using less promising candidates) or when to begin
with stage three if no satisfying solution can be found.

In stage three it is wied to remove less important par-
ticipants with colliding appointments or high assess-
ment values. Additional rules are used by the conflict
resolution heuristics if the set of conflicting participants
and the set of less important participants are disjoint.
Then for example, the user may be asked to increase
the time range in order to enable the strategies to find
additional time slots. If none of these measures lead to
success, the calendar agent notifies the user about the
unsuccessful result by sending an appropriate message
to the dialogue manager.

Since in a fully distributed and symmetric solution all
calendar agents are identical and no one has a com-
plete and consistent view of the global state, the real-
ization of control tasks such as mutual exclusion, dead-
lock avoidance, and concurrency control is a non-trivial
problem that has to be solved by the appointment nego-
tiation strategies. Because message delays cannot be
ignored and any calendar agent can initiate the negotia-
tion protocol at any time--independently of other
agents---possible collisions and conflicts must be
detected or avoided. This necessitates the use of
sophisticated distributed control algorithms and proto-
cols which are part of the already mentioned applica-
tion-independent support layer.

Although most of these strategies and heuristics have
been implemented, they have not yet been fully
assessed. The heuristics can--up to a certain
degree--be dynamically adapted to specific user
requirements by using user and appointment profiles as
well as additional scheduling hints. These mechanisms
allow to largely influence the behavior of the appoint-
ment system. However, further work has to be put into
the development of more sensible and adaptable
heuristics and scheduling strategies in order to get a
more flexible appointment system.

Currently, the overall strategy of the appointment sys-
tem is sometimes unable to find a solution, although in
principle a solution satisfying the constraints defined
by the appointment initiator and the participants would
exist. The reason is that proposals, which have once
been refused based on the incomplete knowledge by
the heuristics, are not taken into consideration again.
Here, the incorporation of back-tracking strategies
which roll-back to earlier abandoned decisions would
provide more possibilities. However, the complexity of

the negotiation strategies would be greatly increased
by such mechanisms.

In the next version of the appointment system the
interactive participation of the user in the distributed
negotiation process will be considered. The user may
evaluate several proposals of the systertt By the inter-
action with users the appointment system should
become aware of user preferences. Users should be
able to end the interaction with the negotiation process
at any time if the strategy of making appointments
seems to be suitable. Participating in the decision pro-
cess should lead to further adaption to specific user
needs and should lead to a more realistic behavior of
the system.

4. The Graphical User Interface

Much effort has also been spent on the design of an
easy to use graphical user interface (cf. Figure 4). In
many respects it resembles a traditional paper based
calendar. The interface has been written in C and uses
multiple window facilities offered by the X Window
System. The user can easily move through the calendar
and switch between different display formats. User pro-
files and appointment profiles are displayed graphically
and can be changed and updated very quickly (of. Fig-
ure 2). Default values and repetition facilities on a dai-
ly, weekly, and monthly basis further simplify the speci-
fication of profiles.

In contrast to paper based calendars, computer based
calendar and appointment systems introduce some
interesting advantages. Besides automatic reschedul-
ing facilities, the notification of events such as positive
or negative acknowledgments, new scheduled appoint-
ments, requested conf'Lrmation, and changes in already
fixed appointment can be animated graphically. In the
fast prototype of the graphical user interface, days with
new and yet unread notification messages are flagged
by an exclamation mark. The mark is removed when
the information is presented on screen. It became
quickly apparent that this mechanism was not suffi-
cient. For example, a deleted appointment cannot be
reconstructed by the user;, the exclamation mark is only
capable to signal that something happened. Currently,
a notification animator as part of the user interface is
being developed. The animator collects every incoming
notification message. After user request, it presents
the collected informations in a menu and enables the
user to replay selected items in a graphical manner.
For example, changes in the beginning time of an
appointment are animated by an arrow moving from the
old to the new beginning time. More sophisticated
mechanisms are imaginable and will possibly be includ-
ed in a future version.

The adequate graphical representation of the interac-
tive negotiation process described in the previous sec-
tion is another interesting subject. New concepts and
mechanisms must be defined to present the large

460 F. Mattern, P. Sturm / Automatic Distributed Calendar and Appointment System

amount of information in a high-level and user-oriented
manner. In our opinion, the employment of graphical
mechanisms and their application to the user interface
of the calendar and appointment system is promising
and may bridge the gap between traditional paper cal-
endars and current computer based calendars.

"M" ,oo I T~,

~'- 27 28

"" 3 4

='- 10

~" 17

le. 2 4 ~

~,,~ []

[] L_____t~1989

r wed [Thu

29 30

5 6

11 12 13

18 19 20
::::::::::::::::::

=s,i!N.:, 27

31 1 2

7 8 9

14 15 16

21 2 2 2 3

2 8 2 9 3 0
Tuesd~, ~ 2, 19S9

Appoinr~aen~ no.: 6 (8)
P~oF i le : ~4:45h - 15:30h H V B : Z ~

MC:
[Xmtll'hltlOn
Place: Bau 56 Uni

I n l t i a t o r :
Helmut Hoenlg

P a r t i c i p a n t s :
Frank S c h i l l e r

Fig. 4: The Graphical User Interface

5. The Implementation Language CSSA

The calendar agents, the message handling system,
and the support layer have been implemented in the
distributed programming language CSSA. CSSA
(Computing System for Societies of Agents) is an
experimental high-level programming language for
expressing message-driven distributed algorithms
which involve many loosely coupled cooperating tasks.
The underlying model of distributed computations is
based on the notion of actors originally developed by
Hewitt [HEW77]. Its object-oriented philosophy pro-
vides clean mechanisms for exploiting parallelism and
is especially well-suited for distributed programming.

The sequential structures and data types of CSSA are
similar to those of Pascal, but concepts of modulariza-
tion and data abstraction have been combined in a
homogeneous way to allow a structured implementa-
tion of distributed applications. Data values of any
type, including those of recursively defined complex

types (i.e. arrays, records, sets) and structures built up
by dynamic records and pointers, can be transmitted by
messages.

Computations are performed by agents, which can be
created dynamically and which are active objects that
communicate with other agents solely by message
passing. An agent is an autonomous entity consisting
of several clusters of operations. An operation can be
activated by sending a message to the agent. The basic
communication construct is the asynchronous send
statement

send <operation-name> (<message>)

to <target-agent>

which does not cause the sender to wait. Each agent
processes only one message at a time without interrup-
tion; messages arriving at an agent while it is execut-
ing an operation are collected in a private mailbox. Exe-
cution of an operation may resuk in any number of mes-
sages being concurrently transmitted to other agents
and many agents may be sending or receiving mes-
sages at the same time. Acquaintances with other
agents may be transmitted in messages. Therefore, the
agent net, which illustrates the potential flow of infor-
mation, may dynamically change during a computation.

receive

Y Y V
Fig. 5: A CSSA Agent

A cluster of operations comprising local variable docla-

F. Mattern, P. Sturm /Automatic Distributed Calendar and Appointment System 461

rations is called a facet. At any given time, in every
agent only one facet--the current facet--is active.
Dynamic replacement of the current facet by another
facet may change the behavior of an agent. Facets can
also be set up recursively, the return to a previous
facet then restores the old state

An agent is passive whenever it is not executing an
operation. Then the mailbox is scanned implicitly for a
message which names an operation of the current facet.
An operation describes the message it is ready to
accept by a pattern and an assertion. Among other
things, the pattern is used to break up composite data
structures to extract pieces of the message and bind
them to local variables, while the assertion allows the
use of an arbitrary predicate on the values of the rnes-
sage and the variables of the agent. If the pattern-
match succeeds and the assertion evaluates to true,
the operation is executed with the actual variable-bin-
dings, similar to the execution of a procedure. Other-
wise, the message remains in the mailbox without any
side effects and its match is retried at a later time. This
implicit message receipt is the normal case for agents
acting as servers. Explicit message receipt within an
operation can be programmed using a blocking or non-
blocking receive statement.

The user is fully integrated into the CSSA system. By
means of a specific agent connected to a bit-map termi-
nal, the so-called interface agent, the user takes part
in the distributed computation. The interface agent con-
sists of a CSSA interpreter which can be programmed
dynamically during execution. Similiar to all other
agents, the interface agent can send and receive mes-
sages and create new agents. In addition, it comprises
various features for mointoring distributed programs.

A first implementation of the CSSA-system for an
experimental system of five MC68000 microcomputers
was started at the beginning of the INCAS Project in
1983. In 1986, a new version of the compiler running
under UNIX and generating code for a virtual stack
machine was realized. CSSA is now available on a net-
work of UNIX machines and Sun workstations connect-
ed by Ethernet using a TCP/IP-based protocol.

6. Conclusions

The realization of a f'wst prototype version of the dis-
tributed calendar and appointment system was an
interesting project and many experiences have been
gained concerning specification, implementation, debug-
ging, and testing large distributed programs. The lack
of adequate tools in these areas was particularly
noticeable. The mastery of the additional complexity of
distributed programs caused by parallelism, non-deter-
minism, decentralization of data and control, and tem-
porary inconsistencies is still a major challenge for the
designer and software engineer. Despite these difficul-
ties, a working and stable prototype is now operational
and will be used on a trial basis within our research

group which consists of about ten persons. Besides
small optimizations and fine tuning of the interface, we
expect that the use of the system will yield a list of
requirements for a next version.

Future work will concentrate on improved scheduling
heuristics, the use of persistent objects for the storage
of the calendar contents, and possibly also the use of
electronic mail and directory standards for the underly-
ing message handling system.

Acknowledgments

We would like to thank Helmut Htnig, Dagmar
MSrscher-Kr~mer, Axel Schindler, Elke Schrnidt, and
Kai Wolf who assisted us in the design and implemen-
tation of the distributed calendar and appointment sys-
tem.

References

[BUH891

[HEW77]

[HOL85]

[JOH88]

[KIN851

[MAT87]

[NEH87]

[STU891

[STU89b]

Buhler, P. and Wybranietz, D., Tools for
Distributed Programming in the INCAS Pro-
ject, this volume

Hewitt, C., Viewing Control Structures as
Patterns of Passing Messages, Artificial
Intelligence, Vol. 8, pp. 323-364, 1977

Holman, C. and Alines G., The Eden
Shared Calendar System, Technical Report
TR 85-05-02, University of Washington,
Seattle, Washington.

Johansen, D. and Anshus, O.J., A Dis-
tributed Diary Application, in: Cerveira,
A.G. (ed.), Computer Communication Sys-
tems (Elsevier Science Publishers, Amster-
dam, 1988), pp. 73-82.

Kincaid, C.M., Dupont, P.B., and Kaye,
A.R., Electronic Calendars in the Office,
ACM Trans. on Office Information Systems,
Vol. 3, No. 1, 1985.

Mattern, F., Algorithms for Distributed
Termination Detection, Distributed Comput-
ing, Vol. 2, No. 3, pp. 161-175, 1987

Nehmer, J., Haban, D., Mattern, F.,
Wybranietz, D., and Rombach, H.D., Key
Concepts of the INCAS Multicomputer Pro-
ject, IEEE Trans. Software Eng., Vol. SE-
13, No. 8, pp. 913-923, 1987

Sturm, P., Wybranietz, D., and Mattern,
F., The 1NCAS Distributed Systems Pro-
j ec t - - Experiences and Current Topics,
Proc. Workshop "Distribution and Objects",
DEC Karlsruhe, pp. 97-114, 1989

Sturm, P., Buhler, P., Mattern, F., and
Wybranietz, D. An Integrated Environ-

462 F. Mattern, P. Sturm /Automatic Distributed Calendar and Appointment System

ment for Programming, Evaluating, and
Visualizing Large Distributed Systems,
Workshop on Parallel Computing in Prac-
tice, Jerusalem, Israel, 1989

[WYBSS] Wybranielz, D. and Haban, D., Monitor-
ing and Performance Measuring Distributed
Systems During Operation, Performance
Evaluation Review, Vol. 16, No. 1, pp. 197-
206,1988

[WYB89] Wybrauietz, D. and Buhler, P., The
LADY Programming Environment for Dis-
tributed Operating Systems, to appear in
Proc. of the PARLE Conference, Springer-
Verlag LNCS, 1989

