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Asynchronous Distributed Termination--Parallel and 
Symmetric Solutions with Echo Algorithms 1 

F r i e d e m a n n  M a t t e r n  2 

Abstract. The principle of message counting is used to detect termination of distributed computations 
which consist of processes asynchronously communicating over non-FIFO channels. The solution is 
symmetric and not based on a predefined communication structure. An efficient variant of the echo 
algorithm, which dynamically builds a spanning tree, allows a parallel and distributed evaluation of 
the termination predicate in time proportional to the diameter of the communication graph. Concurrent 
and repeated initiation of the detection algorithm by different processes is possible at any time without 
prior synchronization due to a subtle method of collision detection and wave extinction, which can 
be regarded as a distributed election scheme where the average message complexity increases only 
logarithmically with the number of concurrent initiators. Control messages have a small length and 
additional communication links are not required. Only a fixed number of simple variables is needed 
in every process, global knowledge such as the total number of processes or the structure of the 
network is not used, making the scheme useful for dynamic systems. Several variations of the basic 
principle are presented, important issues such as message complexity and fault-tolerance are discussed. 

Key Words. Distributed termination, Echo algorithm, Distributed programming, Decentralized 
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1. In t roduc t ion .  D e t e r m i n i n g  w h e n  the  c o m p u t a t i o n  o f  a c o l l e c t i o n  o f  c o m -  

m u n i c a t i n g  p r o c e s s e s  has  t e r m i n a t e d  is a f u n d a m e n t a l  a n d  n o n t r i v i a l  p r o b l e m  in 

d i s t r i b u t e d  p r o g r a m m i n g ,  a n d  in r ecen t  years  t he  p r o b l e m  o f  distributed termina- 
tion detection has  r e c e i v e d  m u c h  a t t e n t i o n  (see  a m o n g  o the r s  [9], [11],  [ 10], [5],  

a n d  [18]).  A l t h o u g h  the  p r o b l e m  is s i m p l e  to f o r m u l a t e ,  a su rp r i s ing  va r i e ty  o f  

a l g o r i t h m s  wi th  r a t h e r  d i f f e ren t  p r o p e r t i e s  h a v e  b e e n  p u b l i s h e d .  W h e r e a s  m o s t  

s o l u t i o n s  a re  b a s e d  on  a s y n c h r o n o u s  m o d e l  o f  c o m m u n i c a t i o n  ( n o t a b l y  C S P ) ,  

we  p r e s e n t  a n d  d i scuss  s o l u t i o n s  fo r  a m o r e  g e n e r a l  m o d e l ,  w h e r e  m e s s a g e  p a s s i n g  

is asynchronous with  arbitrary but finite communication delays. D u e  to  the  fac t  

t ha t  g l o b a l  t i m e  [17] o r  a cons i s t en t  s n a p s h o t  [4] o f  a d i s t r i b u t e d  sys tem is 

a priori n o t  ava i l ab l e ,  the  m a i n  p r o b l e m  w h i c h  cons i s t s  in d e t e c t i n g  m e s s a g e s  

tha t  a re  in t rans i t ,  is n o n t r i v i a l .  As  in [15],  [16],  a n d  [19],  the  a l g o r i t h m s  we  

p r e s e n t  h e r e  are  b a s e d  on  the  p r i n c i p l e  o f  m e s s a g e  c o u n t i n g .  

In  o r d e r  to vis i t  eve ry  p r o c e s s  a n d  co l l e c t  use fu l  i n f o r m a t i o n  we  m a k e  use  o f  

a v a r i a n t  [22]  o f  the  echo algorithm [8]. A n  initiator s u s p e c t i n g  t e r m i n a t i o n  sends  
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out query messages to all neighboring processes. Upon  receipt of  the first query 
message a node becomes engaged and propagates the "query wave" further on 
to all its neighbors. A node having no other communicat ion link than the one 
from which it has received the query message, immediately returns an echo which 
contains among other things the value of a counter indicating the number  of  sent 
minus the number  of  received messages of  the underlying computat ion by that 
node. Having received queries or echoes along every incident communicat ion 
link, a node becomes disengaged and returns an echo with the accumulated 
values to the node from which it was engaged. Eventually the "echo wave" 
reaches the initiator. 

Two problems emerging from this principle have to be solved: the first one is 
concerned with possible inconsistencies due to the fact that the nodes are visited 
at different times, possibly leading to false termination detection. We will prove 
that the system is actually terminated when the accumulated value of the message 
counters at the initiator is 0 and no process node received a basic message while 
it was engaged. This property can easily be implemented by a flag which is set 
on receipt of  a basic message, reset  by the query wave, and tested and accumulated 
by the echo wave. The second problem is concerned with contemporary invocations 
of the algorithm by different processes: whereas in principle every node can have 
its own set of  control variables at every other node (possibly allocated dynamically 
when required) so that "control  waves" initiated by different nodes would not 
interfere, mainly for reasons of economy we prefer solutions where a node is 
engaged in at most one wave at a time. Because we do not want the nodes to 
synchronize themselves for exclusive invocation of the algorithm, collisions of  
control waves must be detected and handled in an appropriate  way. In particular, 
the possibility of  deadlock or starvation must be avoided by still keeping the 
scheme as "symmetr ic"  as possible. 

Besides being simple and readily implementable,  the symmetric solution presen- 
ted in this paper  has a number  of  interesting properties. Control messages have 
a small length and additional communicat ion links are not required. Communica-  
tion can be synchronous or asynchronous and messages can be received out of  
order. Every node can repeatedly start the detection algorithm independently of  
other nodes, prior synchronization is not required. The detection algorithm itself 
is distributed, the termination condition is evaluated in parallel. No node needs 
global knowledge such as the structure of  the network or the total number  of  
nodes. Symmetry, independence of topology, and absence of global knowledge 
and centralized control promote robust and fault-tolerant variants. 

The paper  is organized as follows: in Section 2 we present our model of  
distributed computat ion and define the distributed termination problem. In Sec- 
tion 3 we describe the general principle of  the algorithm, assuming that different 
executions are mutually exclusive. Its correctness is proven in Section 4. Section 
5 describes concurrent initiations and the principle of  wave extinction. In Section 
6 we present another, similar algorithm; the two solutions and several variants 
are discussed in Section 7. In Section 8 we compare  our algorithms to related 
solutions. Finally, we summarize the conclusions in Section 9. 
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2. The Model. For the application of the algorithms we consider static dis- 
tributed systems with at least two processes having distinct totally ordered 
identities different from 0. The processes (also called nodes) are connected by 
bidirectional communicat ion links forming a connected communicat ion graph. 
We assume that all messages sent arrive within some finite undetermined time 
(message losses will be discussed in Section 7); however, we do not require the 
FIFO property. The messages of  the underlying application are called basic 
messages, whereas messages of  the superimposed termination detection algorithm 
(i.e., queries and echoes) make up the control communication. 

With respect to the underlying computat ion a process is in one of  two states, 
active or passive. The system behaves according to the following rules: 

(1) Only active processes may send basic messages. 
(2) A process may change from active to passive at any time. 
(3) A process may change from passive to active only on receipt of  a basic 

message. 

The underlying computat ion has terminated when all processes are passive 
and no basic messages are in transit. The problem is to devise an algorithm which 
detects this persistent property of the global state by means of extra control 
communication.  In order to superimpose a termination detection algorithm on 
the underlying computat ion properly, we assume that control messages are only 
accepted when a process is passive and that no other messages are accepted while 
it is processing a control message, i.e., the actions of  the message-driven control 
computat ion are supposed to be atomic. We further assume that a process initiates 
termination detection only when it is passive. 

3. The First AlgorithmmDistributed Time Priority. In order to simplify the 
description we assume for the moment  that different executions of  the algorithm 
are mutually exclusive. The principle of  the method is simple: an initiator which 
is passive with respect to the underlying computat ion may start an execution of 
the echo algorithm. The query wave then spreads "down"  resetting a communica-  
tion flag COM in every node. The echo wave accumulates the local message 
counters S and the communicat ion flag. I f  the initiator detects that the total 
number  of  registered messages sent and received are equal and that the flag was 
not set due to the receipt of  a basic message while a node was engaged, it signals 
termination. 

We first explain the task of  the variables and their initializations (if relevant) 
used in the realization of the algorithm. A process node is unaware of the global 
structure of  the network, it only needs to know the links leading to its neighboring 
nodes. However,  for the sake of  easy readability we assume that the identities 
of  the neighboring nodes are stored in the set NEIGHBORS.  A counter N is 
used to count the incoming control messages (line 17). A variable PRED is used 
to hold the identity of  the preceding node (line 4) from which the first control 
message has been received (PRED = 0 for the initiator) so that when all control 
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messages have been received (line 18) an echo can be sent back (line 19). We 
further assume that a boolean flag COM (reset by the query wave in line 7) is 
set to true on receipt of a basic message (line 24) and that a counter S (initialized 
to 0 prior to the start of  the basic computation) is incremented whenever a basic 
message is sent and decremented if one is received (lines 24 and 25). The variable 
ACCU serves as an accumulator for S-values received by echoes (line 13). The 
CLOCK is initialized to some minimal value, its exact function will be explained 
in Section 5 when we are concerned with concurrent executions of the algorithm. 
Together with the variable T its function is among others to discern primary 
queries from secondary queries which may arrive later on other edges instead of 
an echo (line 10). 

Upon receiving QUERY(T)  from process p: 
1. if T >  CLOCK then /* primary que ry* /  
2. CLOCK~- T; /* remember the new t ime*/  
3. if PRED = 0 and N ~ ]NEIGHBORS] then failed fi; 
4. P R E D , - p ;  
5. if INEIGHBORS] = 1 then send ECHO(T,  S, false) to p; 
6. else N ~- 1; /* initializations */ 
7. START: ACCU ~- 0; COM ~- false; 
8. send QUERY(CLOCK) to N E I G H B O R S -  {PRED}; 

queries */ 
fi; 

elseif T-~ CLOCK then CHECK_COMPLETED;  
fi; 

. 

10. 
11. 

Upon receiving ECHO(T,  SUM, FAILED): 
12. if T =  CLOCK then /* not an old wave */ 
13. A C C U ~ - A C C U + S U M ;  /* accumulate*/  
14. COM ~- COM or FAILED; 
15. CHECK_COMPLETED;  
16. fi; 

procedure CHECK_COMPLETED:  
17. N~- N + I ;  /* count control messages*/ 
18. if N = I N E I G H B O R S I  then /* comple te*/  

/* extinction */ 

/* terminal */ 

/* propagate 

/* secondary queries */ 

19. if PRED ~ 0 then send ECHO(T, ACCU + S, COM) to PRED; 
20. elseif ACCU + S = 0 and not COM then terminated; 
21. else failed; 
22. fi; 
23. fi; 
end CHECK_COMPLETED;  

When receiving a basic message: 
24. S ~ S - 1 ;  C O M ~ t r u e ;  

When sending a basic message: 
25. S,-- S +  1; 
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The initiator starts the algorithm by setting N and PRED to 0, advancing the 
CLOCK, and beginning execution at the label START (line 7). Query messages 
are sent to all neighbors (line 8). The initiating actions can be stated explicitly 
as follows: 

N<-0;  PRED ~- 0; ACCU<- 0; COM ~ false; 
C L O C K . t < - C L O C K . t +  1; /*  see first paragraph*/  
CLOCK.i<- this_process_id; /*  of  Section 5 be low*/  
send Q U E R Y ( C L O C K )  to NEIGHBORS;  

When a query is received for the first time, its parameter T is guaranteed to 
be greater than the local CLOCK-value (line 1). As a consequence, either the 
query is propagated (line 8) or, if it reached a terminal node, an echo is generated 
(line 5). Subsequent receipts of secondary query messages are merely counted 
(lines 10 and 17). Echoes are also counted (lines 15 and 17) after the values sent 
with them have been accumulated (lines 13 and 14). When the echo wave reaches 
the initiator (PRED -- 0) a test is made to check whether the accumulated message 
counter equals 0 and no node recorded the receipt of a basic message while it 
was engaged (line 20). If  that is the case, termination is reported. Otherwise (line 
21) the algorithm can be restarted at some later time, repeated executions of the 
algorithm pose no problems. 

By changing the statement "COM ~ true" to "ACCU <-ACCU+ 1" in line 24 
it is possible to dispense with the boolean flag COM (and the last parameter of 
echo messages). Because this compensates the effect of " S  ~ S - 1 "  in the same 
line, this can be regarded as if basic messages being received while a node is 
engaged are not registered. However, the correctness proof  of the algorithm 
(Section 4) is simplified by keeping the communication flag. 

Lines 3 and 12, the parameter T of echo messages, the second component of 
CLOCK, and proper  initializations of PRED and N prior to the start of  the basic 
computation at all process nodes are only relevant when considering concurrent 
invocations of  the algorithm (Section 5). 

4. Correctness of  the Method. The correctness of  the method is based on the 
following propositions: 

(a) The echo principle is correctly realized by the algorithm (i.e., the initiator receives 
the accumulated values of  all nodes after finite time). 

(b) I f  the system was already terminated at the start of  a detection round, termination 
will be detected at the end of  the round. 

(c) I f  at the end of  the detection algorithm the accumulated communication flag is 
not set and the accumulated message counter equals O, the system is truly 
terminated. 

We dispense with a proof  of (a) since the echo principle as a scheme for 
collecting information from the nodes of a network is discussed in detail in [8] 
and [22]. Note that to guarantee termination of  the echo algorithm we must 
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assume that no process remains in its active state forever. Property (b) is simple 
to realize: since all basic messages that were sent were also received, the accumu- 
lated message counter is 0 and the flag is not set during execution of the detection 
algorithm. Hence, if the application eventually terminates and the algorithm is 
repeatedly executed, termination will finally be detected in line 20. 

Safety property (c) asserts that no false termination is reported by the algorithm. 
This is the most crucial point in the proof  of the algorithm, it guarantees that 
the criterion used in line 20 is correct. In order to motivate the proof, the following 
"colorful"  description of  the echo scheme may be helpful, though it is not essential 
for the proof. 

Assume that originally all nodes and edges of the communication graph are 
white and the initiator turns red upon the start of the algorithm. Query messages 
are red, echoes green. A message colors edges (along which it travels) in its own 
color. A red message arriving at a white node colors that node red. A (red) node 
having received red or green messages along all its incident edges becomes green 
(before it possibly sends an echo). Clearly, every node changes from white via 
red to green, for terminal nodes the red phase is rather short. It is easy to see 
that after the execution of  the algorithm the green edges (which were first colored 
red by a message moving in one direction and later green by an opposite echo 
message) build a spanning tree of the communication graph. Edges remaining 
red were concurrently colored by two red messages moving in opposite directions. 
Since each edge is used by exactly two messages, this variant of the echo algorithm 
is also useful to construct dynamically a spanning tree with exactly 2e messages, 
where e denotes the number of edges of  the underlying graph. 

A sequence of  technical lemmata will now prepare the proof  of assertion (c). 
In accordance with the above description, the process states are designated by 
colors with the following meaning: 

White: not yet received a control message. 
Red: query message received, but echo message not yet sent ("engaged").  
Green: all control messages received, echo message sent. 

(1) I f  a basic message is received by a red process, its local communication flag is 
set. 
PROOF: Line 24 of the algorithm (which is independent of the color of the 
process). 

(2) I f  a basic message is sent by a red process, the communication flag of  the 
initiator is set. 
PROOF: The process was passive after turning red. In order to become active 
to send a basic message it must have received an activating basic message. 
According to (1) this sets its flag. The flag is not reset in the current execution 
of the algorithm and its setting is conveyed to the initiator by the echo wave 
when the process eventually becomes green. 

(3) A white process cannot receive a basic message sent by a green process. 
PROOF: All neighbors of a green process are colored (i.e., they are red or 
green) because a process becomes green only after having received control 
messages from all neighbors. Only colored processes send control messages 
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and colored processes do not change back to white. Hence, basic messages 
sent by green processes are received by colored processes only. 

(4) I f  at the end of  the detection algorithm the communication flag is not set, all 
basic messages received by a white process have also been sent by a white process. 
PROOF: Follows directly from (2) and (3). 

(5) A basic message sent and received by white processes does not change the 
accumulated message counter. 
PROOF: Its sending a s  well as its receipt is registered. 

(6) I f  at the end of  the detection algorithm the system is not terminated and the 
flag is not set, there exists a basic message sent by a white process which was 
or will be received by a green process. 
PROOF: At the end of the detection algorithm all processes are green. From 
the definition of termination it follows that a basic message is still in transit 
to a green process or a green process is active if the system is not terminated. 
In the latter case the process was activated by a basic message while it was 
already green (processes do not change colors while they are active). Because 
green processes are not activated spontaneously, there must exist a green 
process receiving an activating basic message from a nongreen process. 
Because by hypothesis the flag is not set, the sender is not red (2). Hence, 
it must be white. 

(7) I f  a basic message sent by a white process is received or will be received by a 
green process and the flag is not set, the accumulated counter is greater than O. 
PROOF: The sending of  the message is noticed, but no message receipt is 
registered: no red process receives a message if the flag is not set (1) and 
messages received by white processes do not affect the counter (4), (5). 
Messages received by green processes arrive too late to be registered. 

(8) I f  the system is not terminated at the end of  the algorithm, then the flag is set 
or the accumulated counter is greater than O. 
PROOF: Follows directly from (6) and (7). 

This completes the p roof  of  the algorithm, since (8) is already the proof  of  
assertion (c). 

5. Concurrent and Independent Initiations. In order to allow concurrent activa- 
tions of  the detection algorithm to take place without the necessity of  prior 
synchronization, we make use of  the principle of  wave extinction together with 
a simple virtual time mechanism. A wave is tagged with its starting time and a 
newer wave will extinguish an older wave. Virtual time is considered to be a set 
of  integer pairs (t, i) which are linearly ordered by the definition (t, i ) >  (t', i') <=~ 
t > t' or t = t' and i >  i'. The C L O C K  is initialized to (0, 0). When a new wave 
is started, the initiating node advances the C L O C K  by setting CLOCK. t  to 
CLOCK. t  + 1 and CLOCK. i  to its process identif icationnumber.  This guarantees 
that the starting times of  different waves are different. 

Lines 1, 10, and 12 guarantee that an old wave ( T < C L O C K )  is absorbed 
without any consequences when it meets a newer wave. Because time is linearly 
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ordered it is not possible that two or more waves mutually extinguish themselves. 
Furthermore,  an initiator is guaranteed to be informed of the extinction of its wave: 
whenever a new query message arrives at a node this node is checked (line 3) 
whether it is still engaged ( N  ~ INEIGHBORSI)  in a wave it has started (PRED = 
0). For that purpose, N must be initialized to the number  of  neighbors and PRED 
to some value different from 0 at every node. It is easy to see that whenever two 
different waves are concurrently active, the older initiator wi l l - -sooner  or l a te r - -  
receive a query message with a higher t imestamp. (This is not necessarily the 
t imestamp of the other initiator since an even newer wave could have emerged 
in the meant ime !) 

The solution is symmetric in that every node has a fair chance of completing 
the execution without being extinguished. The priorities based on node iden- 
tifications are only used for arbitration purposes in the case of  a collision of two 
waves with identical " local"  times. To minimize the possibility of  collisions the 
termination test should only be started if the node is not engaged in the computa- 
tion of  another  execution of the algorithm, i.e., if N = INEIGHBORSI.  

Although it is not possible that several concurrently active waves mutually 
extinguish themselves, a dynamic blocking situation could emerge if nodes restart 
the algorithm too early: a node, knowing about the recent extinction of its wave, 
could as soon as it is disengaged by its "opponen t "  (line 19 or line 5) restart the 
algorithm with a higher t imestamp and chase after its opponents wave to take 
"revenge." I f  two or more nodes repeatedly behave in that way, no node would 
succeed in successfully terminating the test. The situation is reminiscent of  the 
collision problem in C S M A / C D  local-area networks, and in fact the solutions 
of  using timeouts to reduce the frequency of initiating the termination test could 
also be applied here. Whether this is a practicable method or whether the 
optimistic approach ("collisions will rarely occur") should be abandoned in favor 
of  a pessimistic approach (synchronization for mutual exclusion or election of 
a starter-process) is a pragmatic  question we will not endeavor to discuss here. 
In any case, the dynamic blocking problem is solved by the variant presented in 
the next section. 

The starvation problem can also be avoided if a node whose wave has been 
extinguished never starts a new wave again. Since the waves are linearly ordered, 
at least one wave will run to completion. The initiator of  that wave can restart 
the detection algorithm at some later time; the node which eventually detects 
termination should then inform the other nodes. Since competing nodes are 
eliminated very quickly, this also reduces the number  of  messages--af ter  a short 
number  of  rounds with competing initiators, only one node remains which may 
repeatedly execute the algorithm. However, a drawback of this scheme is that it 
is no longer fully symmetric because the other processes are prohibited from 
initiating the termination test again. (Instead of that, however, they may ask the 
winner to initiate the test on behalf  of  them.) I f  this is a problem, the behavior 
of  a node could be changed in a way that when it is visited by the (newer) query 
wave of another node it will not start an execution of the detection algorithm 
until it receives a special wake-up signal from the winning node. The winning 
node should initiate a t imestamped wake-up wave if it does not detect global 
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termination (line 21). Each node that wakes up propagates the wake-up signal, 
echoes are not necessary for that purpose. The timestamps are used to absorb 
secondary wake-up signals and to reduce the traffic caused by outdated wake-up 
waves. 

6. The Second Algorithm--Indulgent Process Priority. In order to avoid the 
problem of "mutual revenge" and to keep the scheme symmetric without syn- 
chronizing the nodes by a wake-up wave, we slightly modify the algorithm by 
assigning fixed priorities based on process numbers to the nodes. A parameter 
INIT of a query wave denotes the identity of its initiator and a process variable 
ENGAGER (initialized to 0) is used to hold the identity of the wave the node 
is currently engaged with. When a lower priority wave reaches a node engaged 
in a higher priority wave it immediately retreats (line 9) by generating an echo 
with the communication flag set to indicate that the test failed. If a higher priority 
query message reaches a node currently engaged with a lower priority wave 
(INIT> ENGAGER~ 0), the acceptance of that message is deferred until the 
node is eventually disengaged (ENGAGER=0, line 15). A node which is 
currently not engaged may start the algorithm at the label START (line 5) after 
setting N and PRED to 0 and setting ENGAGER to its own process identification 
number. As before, basic messages are counted by S and registered by the 
COM flag. 

Upon receiving QUERY(INIT) from process p when ENGAGER = 0: 
/* disengaged node--primary query */ 

1. if ]NEIGHBORS] = 1 then /* terminal node*/  
2. send ECHO(S, false) to p; 
3. else 
4. ENGAGER~ INIT; PRED~p;  N ~  1; /* initialize */ 
5. START: ACCU ~ 0; COM +- false; 
6. send QUERY(ENGAGER) to NEIGHBORS-{PRED}; 

/* propagate */ 
7. fi; 

Upon receiving QUERY(INIT) from process p when INIT = ENGAGER: 
8. CHECK_COMPLETED; /* secondary query*/ 

Upon receiving QUERY(INIT) from process p when INIT< ENGAGER: 
9. send ECHO(0, true) to p; /* repell/retreat*/ 

Upon receiving ECHO(SUM, FAILED): 
10. ACCU~ ACCU+ SUM; /* accumulate */ 
11. COM~COM or FAILED; 
12. CHECK_COMPLETED; 

procedure CHECK_COMPLETED: 
13. N ~  N +  1; /* count control messages*/ 
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14. if N =  [NEIGHBORS I then /* complete.*/ 
15. ENGAGER<-0;  /* disengage*/ 
16. if PRED r 0 then send ECHO(ACCU + S, COM) to PRED; 
17. elseif A C C U +  S = 0 and not COM then terminated; 
18. else failed; 
19. fi; 
20. fi; 
end CHECK_COMPLETED;  

The main difference between this algorithm and the previous version is that a 
higher priority wave does not extinguish a lower priority wave-- the lower priority 
wave is repelled and the echoes are allowed to run till completion instead, thus 
informing the initiator and avoiding the danger of an endless waiting. A drawback 
of this indulgent wave propagation scheme is its increased delay, but the assign- 
ment of fixed priorities is a simple principle to avoid the starvation and "after 
you after you"  blocking problems. 

It should be noted that our priority-based wave propagation scheme (and also 
the variant described at the end of the previous section) is basically a distributed 
election algorithm: several nodes may asynchronously start the algorithm, even- 
tually the wave initiated by the highest qualifying node succeeds in traversing 
the whole graph. The links traveled by the respective echo messages constitute 
a (rooted) spanning tree. 

7. Variations, Optimizations, and Discussion. If an execution of the algorithm 
presented in Section 6 failed because the flag is set, it is not possible to decide 
whether the wave had a collision with a higher priority wave or whether some 
nodes received basic messages while they were engaged (i.e., the underlying 
computation was not terminated). To overcome this problem, two different flags 
could be used instead. In order to minimize the number of collisions, a process 
which was engaged with a defeated wave and later disengaged by its own retreating 
echo wave should not accept any lower priority messages or start a new wave 
while it is waiting for a higher priority wave (which will eventually arrive). 
Instead, it should repell all lower priority query messages as if it was already 
engaged with the higher priority wave. The realization of this scheme is straightfor- 
ward: the echo wave carries with it the value of the highest priority wave 
encountered so far. The echo wave of the winning node will then reset that 
value. 

Compared with the original version of our first algorithm where starvation is 
possible (Section 3), the second variant (Section 6) is "less symmetric" since not 
every node has the same fair chance of winning the election. The notion of 
symmetry in distributed programs has recently received some attention [1], [13] 
and it is generally agreed that symmetry is a very useful concept enabling general 
and robust solutions. But it has also been observed that symmetry is a potential 
source of  deadlocks, since in a fully symmetric system nothing prevents all 
processes from doing the same thing at the same time. Solutions which use the 
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static ordering of process numbers as a means for breaking symmetry are no 
longer symmetric in the general sense that "all processes have the same rights 
and duties" [2]. Since fairness ("any process may be elected") is not an important  
issue here, we confine ourselves to the still very useful principle of  syntactic 
symmetry. 

In principle, the problem of  collisions due to concurrent and independent  
activations can be overcome by any (inherently symmetric) election algorithm 
which is run prior to the start of  the actual detection algorithm and which 
determines a unique node as the single initiator for termination detection. Elec- 
tions in general asynchronous networks are known to be of  O(e + n log n) message 
complexity [ 12] where e denotes the number  of  edges and n the number  of  nodes. 
In [14] an election algorithm is proposed which can be initiated at any subset 
of  k nodes and requires at most 2 e + 3 n  log2 k+O(n)  messages. Because our 
built-in election scheme uses up to 2ke messages, it seems only practicable for a 
small number  of  concurrent initiators. However,  we can estimate that when using 
the optimizations described at the beginning of this section the average message 
complexity of  one round with k concurrent initiators is bounded by O(e log k) 
which is favorable for sparse graphs where e - O(n). The argument is as follows: 
any node is reached by (at most) k different waves w~, . . . ,  Wk (Wi denotes the 
identity I N I T  of  the wave generated by the ith initiator). The arrival sequence 
is a random permutat ion war, l ) , . . . ,  War(k). At any node, wave w~(j) is only 
propagated once if it is larger than all previous waves that reached the node, i.e., 
if w~tj) = max{w~(~), . . . ,  w~(j)}. The probabili ty for that is 1/j; summing up over 
all j - - 1 , . . . ,  k results in Ilk ~0.58+1og  k, the kth harmonic number. When 
propagat ing the wave, the node sends a query message to all of  its (other) 
neighbors, their number  is 2e/n - 1  on the average. For all n nodes the average 
number  of  query messages is therefore bounded by about 2e log k. The number  
of  echoes is bounded by the number  of  query messages. 

One definitive advantage of  our built-in election scheme is that it runs in 
combination with the termination detection algorithm. No separate passes for 
election, termination detection, and possibly opening of the next election round 
are necessary. However, if  the number  of  concurrent initiators is expected to be 
high and competing nodes are not eliminated as described in Section 5, it might 
be favorable to determine a spanning tree once and use it subsequently for the 
election of a leader. Also we should be aware that the echo principle probably 
becomes impractical if  the number  of  neighbors of  a node is generally large or 
if every node can communicate  directly with every other node. Since it is essential 
that control messages travel along every edge, the number  of  messages would 
then be of the order of  O(n 2) for each round. In that case a variant of  the method 
operating on a predetermined spanning tree (or a Hamiltonian circle) and 
requiring two complete traversals can be used. The principles of  this variant are 
described in [15] and [18]. 

A drawback of the termination detection method is its unbounded message 
complexity. The problem is to decide when to start a next trial if termination 
could not be established because of the counter being greater than 0 although 
the communicat ion flag was not set. In that case some slow basic messages were 
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still in transit, but it is not known at which node to expect them and it cannot 
be guaranteed that they will have arrived before the next round. However, by 
equipping each node with incoming and outgoing message counters for each 
communicat ion link it is possible to guarantee that during each detection round 
(except the last one) at least one basic message is received. This leads to an upper  
bound of  2 e ( m + l )  control messages for one initiator where m denotes the 
number  of  basic messages. To achieve that, a control message carries with it the 
number  of  basic messages which have previously been sent over the communica- 
tion link. The control message will only be accepted at the other end if at least 
that number  of  basic messages have been received. It should be noted, however, 
that it is extremely unlikely that only one basic message is in transit during each 
control round. On the other hand, the best case is independent of  m; in fact, it 
is possible that termination is detected in one single round using 2e control 
messages. The average or typical case is difficult to estimate, but only few control 
messages should be generated if a process propagates the control messages only 
when it is passive (and, possibly, if its local state is consistent with a global 
termination state) and if the next round is only started when the initiator has 
reasons to suspect that global termination has occurred. 

Since global knowledge such as the structure of  the network or the total number  
of  processes is not used, the algorithms are easily adaptable to dynamic systems. 
I f  new communicat ion links (or links to new process nodes) are established, the 
identities of  the new links or nodes are merely inserted into the N E I G H B O R S  
set. I f  this happens while the process is engaged with a termination detection 
phase it has to send a query message along the new link. Of  course, some care 
has to be taken when removing processes or links in order not to wait for messages 
from processes which no longer exist or to send messages to already dead 
processes. 

When communicat ion is synchronous, the number  of  messages in transit on a 
communicat ion link is always 0 which simplifies the general principle of  termina- 
tion detection. The message counters can then be removed from our algorithms 
since whenever the accumulated counter is different from 0, the communicat ion 
flag is set: the arguments of  Section 4 show that if the flag is not set, only messages 
sent by a white process and received by a green process can disturb the balance 
of the counter; but since a white process never has a green neighboring process, 
synchronous communicat ion cannot take place between a white and a green 
process. Therefore, it suffices to keep the flag. 

Finally, the issue of fault-tolerance should be briefly addressed. We will see 
that apart from extreme cases (network partitioning) the algorithm can cope well 
with network failures. We may assume that transient network failures are handled 
by the underlying communicat ion system using techniques such as checksums, 
acknowledgments,  and a t imeout and retransmit protocol. Because lost basic 
messages are considered to be in permanent  transit by the termination detection 
protocol, we must also assume that the sender (or some other process) is eventually 
notified if a basic message could not be del ivered--otherwise termination can 
never be determined. The loss of  basic messages may also be determined by the 
underlying application using timeouts. Independent  of  the recovery action the 
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underlying application may then take, the message counter S must be corrected 
accordingly in some process (typically the sender or the receiver). 

On the other hand, if a control message is lost the termination detection 
algorithm blocks, since each single control message is essential for the progress 
of the (single initiator) echo scheme. Again, this might be detected by timeouts 
or by notification by the underlying communication system. Because of the 
symmetry of  the scheme, any process which becomes aware of such a problem 
may simply restart the detection algorithm, possibly after the communication 
system has closed (i.e., removed) the faulty communication link. In order not to 
intermingle the control messages, sequence numbers should be used to invalidate 
the messages of  the previous control rounds. Therefore, as long as the network 
remains connected, a communication link may fail at any time; the algorithm 
will adapt itself to the new topology. However, if the network is partitioned or 
a process fails (i.e., becomes permanently unreachable), important information 
is lost and detection of termination (on the basis of  the processes which are still 
reachable) is not possible by our scheme. Because the echo wave can easily count 
the number of reachable nodes, however, the initiator can detect these events, if 
it knows the total number of  nodes. 

8. Related Work. In recent years over 50 papers on the distributed termination 
problem have been published [18]. Some of the solutions of these papers are 
based on similar principles or have partially comparable properties. As already 
mentioned before, Kumar [15] and Lai [16] have also used the principle of message 
counting to detect termination of asynchronously communicating processes. 
However, their schemes are not symmetric. Lai makes use of  timestamped basic 
messages; control messages are generated by a fixed initiator and travel along 
the edges of a predetermined tree. Concurrent activations are also not possible 
in [15] where fixed cycles are used for the control messages and generally two 
rounds are necessary, one for collecting the values, and another for testing the 
flag. More algorithms based on the message-counting principle are presented in 
[18]. 

Shavit and Francez [23] describe a generalized and symmetric version of the 
Dijkstra-Scholten principle [9] which views a distributed execution as a collection 
of  diffusing computations which is tracked by a scheme reminiscent of  the echo 
principle. The worst-case message complexity is O(m+ne). However, their 
scheme uses at least m control messages, whereas our best case is independent 
of the number of basic messages and can be much smaller than m. 

All other known solutions to the distributed termination problem require the 
FIFO property or are based on synchronous communication. In [25], Tan and 
van Leeuwen present symmetric solutions to the termination problem which are 
directly based on distributed election protocols and also make use of  the principle 
of wave extinction. Although the general principle for symmetry breaking is 
similar to our scheme, the two approaches are rather different in detail; in 
particular, the termination-detection criteria are different (while our method is 
based on distributed message counting and consistency checking, their scheme 
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is based on the "black-white paradigm" as found in [10] and [27]). The underlying 
computation is assumed to be synchronous and control communication must 
observe the FIFO discipline. Other symmetric solutions based on synchronous 
communication are even more restrictive; Richier [21] assumes the existence of 
a Hamiltonian circuit for the propagation of control messages, Skyum and Eriksen 
[24] assume that an upper bound for the diameter of the communication graph 
is known to all processes. 

For synchronous communication our principle is also reminiscent of the method 
described by Topor [27] and Francez and Rodeh [11]. However, these solutions 
are not symmetric. A fixed spanning tree is used and only the root process of 
that tree can initiate the algorithm. 

Finally, it should be mentioned that some basic principles of  our algorithms 
were already used in applications other than termination detection. The principle 
of wave extinction was used by Chang and Roberts in their election algorithm 
for rings of processes [7] and in the deadlock-detection algorithm by Chandy 
et al. [6]. Another distributed deadlock-detection algorithm [3] based on FIFO 
communication makes use of the echo principle where any node may initiate a 
wave tagged with the initiator identity and a sequence number. However, since 
the principle of wave extinction is not used, the message-load is not reduced in 
the case of contemporary initiations. Conflict resolution mechanisms for dis- 
tributed systems employing timestamp-based priority schemes are a well-known 
principle [17], among others they are used in mutual-exclusion algorithms [20] 
and in concurrency control schemes [26]. 

9. Conclusions. We presented two variants of the general principle, both having 
a minor but specific drawback compared with the other. For the first variant the 
absence of starvation caused by repeated mutual extinction cannot be guaranteed 
if competing nodes are not eliminated or if wake-up synchronization signals are 
not used; timeouts should then be used to reduce the frequency of initiations. 
The second variant suffers from increased delay of the prevailing detection wave 
if several executions of  the algorithm are concurrently active. 

The general method has a number of interesting properties. Its main advantages 
a r e  

It is suited for asynchronous communication without FIFO property. 
It is not based on a predefined communication structure (ring, t r ee , . . . ) ,  

additional communication channels solely for control communication are 
not required. 

Global knowledge (e.g., the total number of processes) is not used. 
It is easily adaptable to dynamic systems. 
It copes well with network failures. 
The scheme is symmetric--every process executes an identical algorithm and 

repeated initiation by any node is possible. 
Mutual exclusion or synchronization prior to the initiation of the algorithm is 

not required. 
It allows parallel and distributed evaluation of the termination condition. 
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The total number of necessarily sequential control message transfers of one 
run (i.e., the time complexity) is proportional (with a factor less or equal to 
2) to the diameter of the communication graph. 

The total number of control messages for one round initiated by a single node 
(no collisions and wave extinctions) is 2e, the expected number of messages 
increases only logarithmically with the number of concurrent initiators. 

Control messages are small, their length is not dependent on the total number 
of processes. 

Local computations for the processing of control messages are short and 
performed essentially when the process is passive with respect to the under- 
lying computation, causing only negligible overhead. 

The scheme is simple and readily implementable, nearly without any influence 
on the underlying computation. 

The purpose of this paper was not only to present a new and efficient method 
of termination detection based on message counting in combination with the 
echo technique of parallel graph traversal, but also to generalize the principle of 
wave extinction in order to allow concurrent initiations of echo algorithms without 
prior synchronization or mutual exclusion leading to symmetric solutions. Since 
the only requirements are bidirectional communication links, the general principle 
of our algorithms should also be applicable to other areas of interest in distributed 
computing such as distributed deadlock detection and global snapshot evaluation. 
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