Quality of service in wireless sensor networks: mechanisms for a new concept?

Holger Karl hkarl@ieee.org

Telecommunication Networks Group Technische Universität Berlin

Services and their quality in WSN?

- How to express?
- How to realize?

Why QoS in WSN?

- Traditional QoS
 - Network level: Delay, throughput, jitter, etc.
 - Known to be largely irrelevant
 - Application level: Perceptual QoS metrics
 - Mean opinion score for voice, for example

Telecommunication

vorks Group

- Much more important and useful
- Clearly, inadequate for WSN
- What are appropriate QoS metrics for WSN?
 - What is the *service* of a WSN?
 - What is its quality?

Service of a WSN

- Provide information
 - Measurements of some physical processes
 - Appropriately aggregated, condensed, put into perspective
 - "People want answers, not numbers" (S. Glaser)
- Make decisions
 - Decide how to control certain actuators
 - Actuators in networks will become increasingly important

Telecommunication

vorks Group

Quality of information / decisions

- Accuracy: Measure of the discrepancy between
 - The real-world values and the provided results
 - The correct/optimal decision and the taken one
 - Time is implicit part of accuracy
- Example: Use WSN to provide an approximate representation of a value field

Telecommunication

works Group

Quality of information / decisions

- Accuracy: Measure of the discrepancy between
 - The real-world values and the provided results
 - The correct/optimal decision and the taken one
 - Time is implicit part of accuracy
- Precision: Probability with which a given accuracy is achieved

Accuracy

lecommunication

- Better understanding of this curve is required!
 - Limited by: errors, time, ...

Quality of operation: energy per operation

- Energy can be the most limiting factor to accuracy/precision
 - With arbitrary energy, force through any amount of data

Quality of operation: lifetime

- Related to, but not equivalent with energy
 - Worry about the critical node, which energy does not
- As operational time of the network progresses, accuracy will suffer
 - Likely: phase transition characteristics "bottom falls out suddenly"

Quality of deployment: Cost

- Deployment will influence overall quality
 - Typical example: almost a 0/1 behavior for connectivity/size of largest component as function of number of neighbors
- Assume a fixed budget available for a WSN solution, how to split it?
 - More nodes? Nodes with bigger batteries? Fewer, but more complex nodes?
 - Consider cost in design decisions e.g., connectivity is not important, look at size of largest component in a graph

Telecommunication

• What are cost-quality-density tradeoffs?

In general: Set of feasible tuples

(accuracy, precision, energy/power, lifetime, cost)

has to be characterized

- Perhaps not in detail, but principal behavior characteristics need to be explored
 - E.g., are there phase transitions or smooth variations for some parameters?

Felecommunication

• What are upper bounds?

How to express QoS requirements?

- Wide open field
- Application programmer needs "knobs" to express
 - How much energy should be spent for a given operation
 - Maximizing the operation's accuracy
 - What is the smallest required accuracy
 - Minimizing the energy requirements
 - Similarly for lifetime
 - Cost is less of a programming but a deployment/planning/management issue
- Currently: "do is somehow, optimize something"
 - Acceptable tradeoffs cannot be clearly expressed
- Even better: higher abstractions? Hiding details behind a middleware?

How to realize QoS requirements?

- Assuming basic tradeoffs can be characterized
- Assuming application programmer has expressed needs
- Open question:
 - How far can upper bounds on tradeoffs be reached?
 - How can protocols adapt to given restrictions?
 - Either minimize energy consumption or accuracy, ...

Telecommunication

Need for transport layer protocols in WSN

- In effect: transport layer protocols are needed!
 - Very little work so far, e.g., RMST or PSFQ
 - Also: congestion control will become important
- One possible idea for making accuracy explicit: k-out-of-m concast
 - Ask for convergecast from k nodes out of m nodes in a convergecast tree
 - Lowers load, can possibly maintain accuracy
 - On-going work

- A broader notion for QoS is required in WSN than in traditional networks
- Explicit tradeoffs are required
 - Have to be characterized and their limit behavior understood

Felecommunication

- Have to be expressed by programmer
- Have to be embraced by adaptive protocol design
- Essentially, we need a system theory

