

The real HOGTHROB

The Hogthrob Project (2004 –2007)

Philippe Bonnet DIKU

Hogthrob consortium: DIKU, DTU, KVL,

IO Technologies

Danish Committee for Pig Production

The Project

Developing a Sensor Network Infrastructure for Sow Monitoring

- Sensor Nodes on a chip
- Sensor Network Model
- Monitoring Application

Goals:

- Functionalities
 - Tracking
 - Detecting Heat Period
 - **-** ...
- Low Cost (~1 €)
- Low Energy (2 years lifetime)

Sow Monitoring

Initial application model (state machine):

- Sleep (8h / 2h)
- Awake
- Active
- Heat

Some issues:

- State transitions managed by timer + sensing
 - Different duty cycles (processing / sending)
 - Refined model based on observations of pig behavior
- Trade-offs:
 - Sleeping vs. (Sensing and Networking)
 - In-channel wakeup vs.
 Additional, low power radio
 - Embedded detection model vs.
 Feed to a server-based detection model

The Nodes (V0)

- FPGA (Xilinx Spartan3)
 - Co-design Hardware/Software
 - Hardware accelerators (radio, sensors)
 - Different MCUs
 - Clock-based (open core) vs. Asynchronous
 - Also Spec mote, Picoradio at UC Berkeley, Galore project at UCLA
- AVR Core
 - To ease start-up
 - As timer module (counter of limited size, cannot sleep for hours) and AD converter
- Add-on radio board
 - 2,4 GHz radio (NVLSI)
 - Transmit quickly to avoid interferences
- Add-on sensor board
 - Motion detector, possibly microphones

Some issues:

- Explore the design space for a sensor node on a chip
 - Calibrate energy consumption
 - Analog-digital design
 - Modelling
- 2,4 Ghz single channel is a new point on the design space
 - Trade-off store vs. Send

A First Lesson

Component-based design:

- Commodity electronics
 - Designing a board is not that hard
 - Careful about radio characteristics
 - Layout and production left to the digital design specialists next door
- Component Based Programming (TinyOS)
 - Modified baseband, MAC
 - Signal Processing