

BTnodes

Scaling it up
Networking using the BTnode Platform

Jan Beutel

Outline

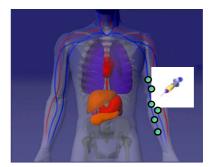
Wireless Sensor Networks – visions and current status

Example: Constructing network topologies using Bluetooth

- BTnode Ad hoc networking prototyping platform
- robust, self-healing tree topology TreeNet Algorithm
- implementation requirements and issues

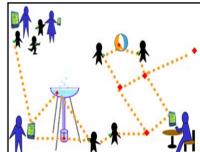
Lessons learned

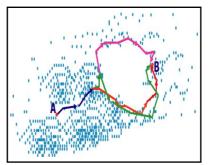
Open issues for large scale deployment



Wireless Sensor Networks visions

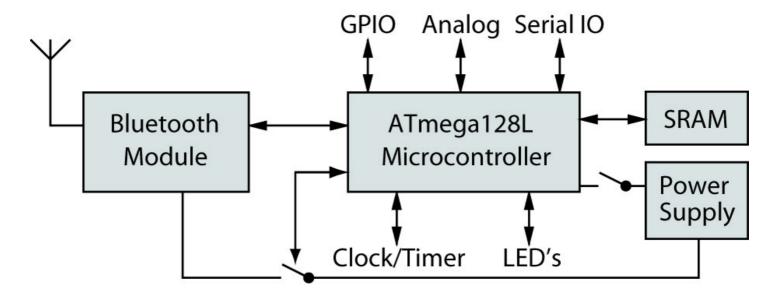
Large scale of proposed systems


- centralized, decentralized, clustered
- very few, many, massive amounts
- functionally rich, constrained
- homo-, heterogeneous
- self-configuring, managed
- failure tolerant, QoS


Smart Dust [Kahn1999]
Paintable Computing [Butera1999]
Picoradio [Rabaey1999]
Terminodes [Hubaux1999]
Amorphous Computing [Abelson2001]
Specnet [Arvind2003]
Diffusion [Estrin2000]
WINS [Pottie2000]

Wireless Sensor Network systems today

Sub mm scale, super high density all the way to layered, semi infrastructure dependant iPAQ/PC architecture nodes.



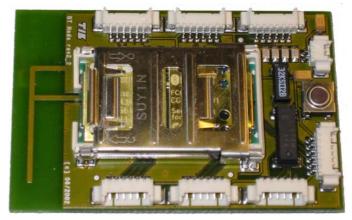
BTnode prototyping platform

Lightweight wireless communication and computing platform based on a Bluetooth radio module and a microcontroller.

Bluetooth has the advantage of

- availability today for experimentation
- compatibility to interface to consumer appliances
- an abstract, standardized high level digital interface

Bluetooth architecture details


Integrated hardware features

- 8-Bit RISC, max. 8 MIPS, 128 kB Flash, 64 kB SRAM, 180 kB data cache
- operating from 3 cell batteries
- generic sensor interfaces

Event-driven lightweight OS

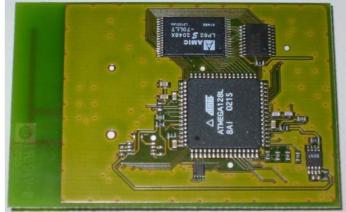
- standard C language
- system software available as library

Current bill of material	50 parts
Parts Assembly Bluetooth	60 USD 5 USD 45 USD
Unit cost @ 200 units	110 USD

Bluetooth architecture details

Integrated hardware features

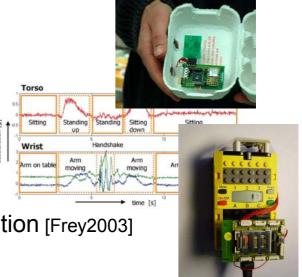
- 8-Bit RISC, max. 8 MIPS, 128 kB Flash, 64 kB SRAM, 180 kB data cache
- operating from 3 cell batteries
- generic sensor interfaces

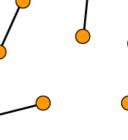

Event-driven lightweight OS

standard C language

stand o language of the second of the second

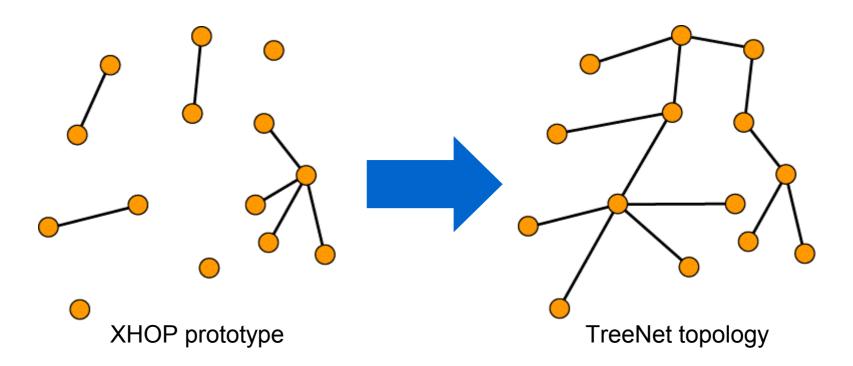
re t but of material	50 parts
Parts Assembly Bluetooth	60 USD 5 USD 45 USD
Unit cost @ 200 units	110 USD




Other BTnode applications

Many successful BTnode applications

- The Lighthouse location system [Roemer2003]
- Smart product monitoring [Siegemund2002]
- Bluetooth enabled appliances [Siegemund2003]
- Smart It's friends [Siegemund2003]
- XHOP/R-DSR multihop prototype [Beutel2002]
- Distributed positioning TERRAIN implementation [Frey2003]
- Physical activity detection network [Junker2003]
- Better avalanche rescue through sensors [Michahelles2002]
- Wearable unit with reconfigurable modules [Plessi2003]
- Undergrad projects with Lego Mindstorms [Blum2003]
- **–** ...



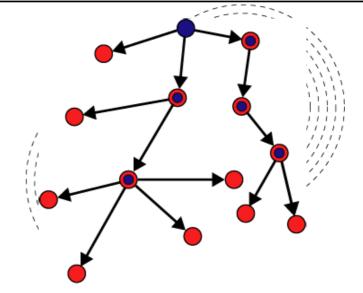
Constructing large network topologies

How to construct an ad hoc network topology with Bluetooth

- large network, many devices
- all devices connected, supporting transparent multihop transport

TreeNet simple tree construction

Every node executes algorithm


until a single tree is reached

Formation of large topologies

- robustness
- simplicity
- redundancy
- distribution
- self-healing

Demonstrated with 40 nodes at NCCR-MICS annual review

```
loop {
  inquiry();
  forall (nodes_found) do {
    while (not_max_degree)
       connect();
  }
}
```


Lessons Learned

A. A 7 line high level algorithm leads to about 2000 lines of code.

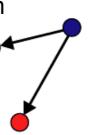
B. It is very difficult to test, debug, deploy and evaluate a large amount of devices.

A. Code size and complexity

Lockup issues

- might not fully connect if multiple max_degree roots form
- distributed inquiry() and connect() problem

Performance issues


- simple greedy algorithm reduces inquiry() and connect()
- highly non-deterministic behavior

Basic underlying infrastructure

- data storage and exchange
- timing and time-stamping
- connection/link management

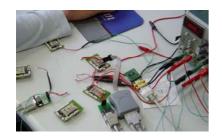
Leads to about 2000 lines of additional code!

B. Large scale distributed deployment

So why do we actually need even more lines of code?

- additional system software + debugging + visualization + monitoring
- stepwise testing and deployment
- result in an ~87 kB program (un-optimized)

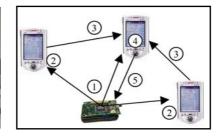
Other problems we had with deployment

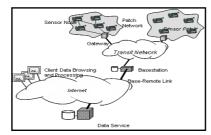

- cables
- batteries
- mounting/casing
- (re-)programming
- debugging of a distributed concurrent system
- developing for stepwise deployment
- visualization/analysis
- online access to nodes

– ...

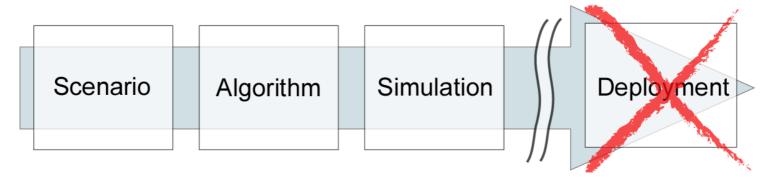
WSN development reality

It is hard to deploy anywhere beyond 10-20 nodes today.





Coordinated methods and tools are missing today.


Motivation for future work

A. Models and methods for the design.

- How do we deal with unreliable links?
- Do we need a model that enables formal verification and optimization of parameters (e.g. time outs)?
- How do we integrate this into OS and deployment concepts?

B. Deployment.

- Is there a methodology for a stepwise refinement?
- How do we debug and quantify?
- Situation today:

Acknowledgements

BTnode/TreeNet collaborators

- Oliver Kasten, Friedemann Mattern, Matthias Ringwald, Kay Römer, Frank Siegemund
- Regina Bischoff, Roger Wattenhofer, Aaron Zollinger
- Jan Beutel, Matthias Dyer, Lennart Meier, Martin Hinz, Lothar Thiele

Related publications

- J. Beutel et al.: Prototyping Wireless Sensor Networks with BTnodes. EWSN 2004.
- R. Bischoff and R. Wattenhofer: Analyzing Connectivity-Based Multi-Hop Ad Hoc Positioning, PerCom 2004.
- J. Beutel, O. Kasten and M. Ringwald: BTnodes A Distributed Platform for Sensor Nodes. ACM SenSys 2003.
- K. Römer: The Lighthouse Location System for Smart Dust. ACM MobiSys 2003.
- O. Kasten, M. Langheinrich: First Experiences with Bluetooth in the Smart-Its Distributed Sensor Network. PACT 2001.

Thanx for material to

- Deborah Estrin, Jeremy Elson, Ivo Locher, Mani Srivastava, UCLA
- David Culler, Rob Szewczyk, Paul Lewis, Jan Rabaey, Brian Boser, UC Berkeley
- Ralph Kling, Intel Research

