

# Mobile applications and wireless sensor networks

Petteri Alahuhta VTT Electronics, Finland



# **VTT in brief - VTT Electronics**

### 6 Units:

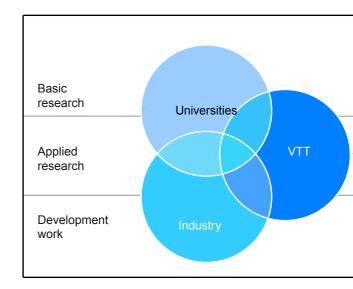
#### **VTT Electronics**

VTT Information Technology

VTT Industrial Systems

**VTT Processes** 

VTT Biotechnology


VTT Building and Transport

Staff: 2982

Turnover 219 M€

### **VTT Electronics**

- Embedded SW
- Telecommunication systems
- Optoelectronics
- Advanced Interactive Systems
- •Staff 300
- Turnover







# Sensor-related R&D activities at VTT Electronics

#### Sensors

- to find out or to develop sensor components for specific applications
- modelling the physical phenomenon concerning especially the following measurements
- electromagnetic measurements , optical measurements, biometric measurements

#### Sensor electronics

- preamplifiers
- · analog signal processing
- A/D-interface
- digital signal processing

### Wireless communication:

 ultra-low power consumption of sensor nodes, autonomous power supply

# **Sensor Signal Analysis**

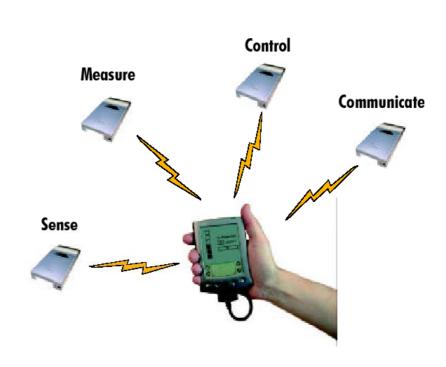
- analysis of sensor signal in order to identify methods for feature extraction from sensor signals
- processing in restricted platforms

# **Sensor-based applications**

 sensor-signal analysis and processing in order to add value for (mobile)applications



# Mobile Applications, wireless sensors and data-processing

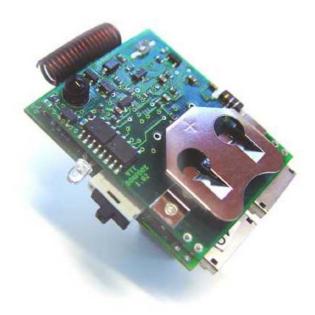

- · Mobile application and mobile user
  - Most of the time people are equipped with a powerful networked computing platform (Mobile Phone)
  - Mobile Application & services is an interesting and growing business. There is a need for easy-to-use technologies in UI
    - Sensing technologies one possible solution
- · Sensor-based activity sensing
  - Health care, fittness and wellbeing apps.
  - Reality Enhanced Gaming Experience
- Data Processing (Context recognition)
  - Processing: Sensor signal => features
  - Mapping: Features => meaningful activities (Context atoms)
  - Adaptation of applications: based on users activities
  - => Sharing users activity data (e.g. games, other apps)



# SoapBox, a generic sensing and communication module developed by VTT Electronics (VTT, 2000 -

- An intelligent module incorporating a microcontroller, short-range wireless communication and a set of sensors
- Ultra low power operating modes
- Multiple powering options
- Embedded basic software (communication protocols, sensor drivers, API)
- Application software programmable by C
- Flexibly configurable and extensible
- Small size:





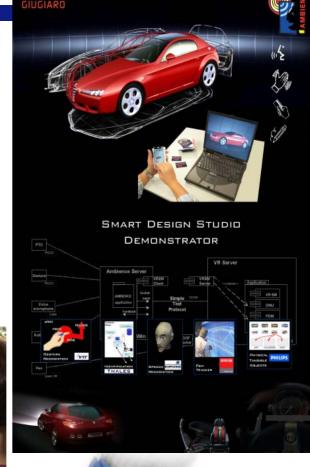

SoapBox is a platform for research projects as well as for rapid demonstrations and prototyping



# SoapBox, hardware

- A single 8-bit flash microcontroller
- A 10 kbps RF proprietary data link operating at 868.3 MHz unlicensed band, range
  ~15 m
- RS-232 serial port
- Sensors (can be easily changed or removed):
  - acceleration (3 axis)
  - compass/magnetic
  - proximity
  - · light intensity
  - temperature
- General purpose analog and digital I/O port
- Real time clock
- Supply voltage regulator with a large input voltage span (1.5 - 28 V)
- Constructed of commercial components on a PCB
- Remote and central nodes of network have identical HW






# Public demonstrators using SoapBox-platform

- Short range wireless data links
- Gesture recognition user interface for TV, DVD player, PC etc.
- Two player maze game with novel user interface
- Indoor location estimation
- Sensor-enhanced UI for handheld device
- Compass for an autonomous robot
- Diverse sensors for outdoor data collections
- Wireless sleep disorder monitoring system
- Wearable sensing
- Physical browsing of objects by pointing
- · etc.









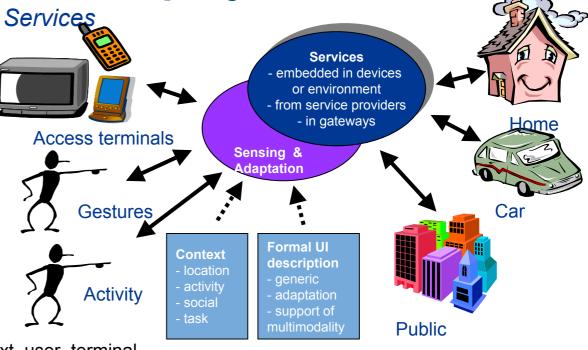
# **Smart-its-project**

# Smart-its (2001 - 2003)

- "Interconnected embedded technology for digital augmentation of everyday objects + collective awareness"
- VTT in the project
  - context determination based on sensor-information (e.g. physical proximity, acceleration, etc.)
  - artefact-centric context management approach; contexts (permanent characteristics, static and dynamic) which are relevant for objects
  - light-weight software architecture for collective context recognition by objects
- Use Scenario: Smart-objects determines their context cooperatively. One of the objects sends the conclusion to the server.
  - Mobile phones / sensors + networking (GPRS/BT) as a wireless sensor network.
  - existing infrastructure, easy programming platform, big number of nodes








**Nomadic Media-project** 

Adaptive Interaction with Ubiquitous Services

## The focus of VTT in Nomadic Media:

- Context capture using e.g. wireless body area sensing network
- Context description format and ontology
- XML-based description language for user interfaces
  - Special emphasis on adaptability (context, user, terminal, modality),
  - Support for alternative modalities like speech, gestures & pointing
- An open architecture for:
  - context information sharing,
  - adaptive service development

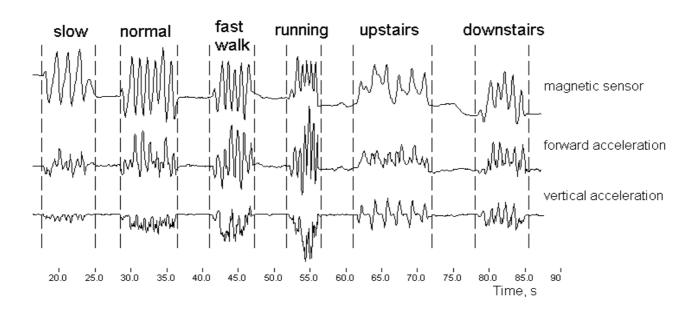


Partners: Philips, Euskaltel, Atos-Origin, Vodafone, CiaoLab, Cefriel, Nokia, Cybelius, VTT, Sysopen, Oulu univ.

# **Future work at VTT**

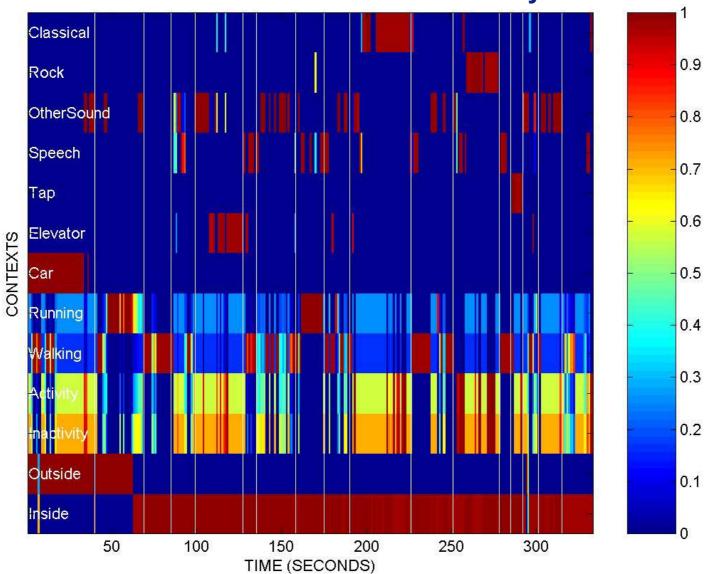
# **Applications**

- Domains
  - Everyday use of mobile technology
  - Fitness
  - Support for elderly people
  - Digital augmentation of real world objects
- Environmental sensing
  - Single sensors =>network of sensors
    - reliability, flexibility
  - Use of diverse inexpensive sensors
  - Light-weight data processing in nodes


## **Technologies**

- Sensors
  - Optical measurements
  - Biometric measurements
  - Electromagnetic measurements
  - Sensor electronics, sensor signal processing, noise analysis
  - =>Further development of SoapBoxplatform
- Data processing
  - Context fusion (which contexts are relevant for application, high-level context detection)
  - Application adaptation to contexts (taking action on behalf of the user automatically is tricky)




# **Features**

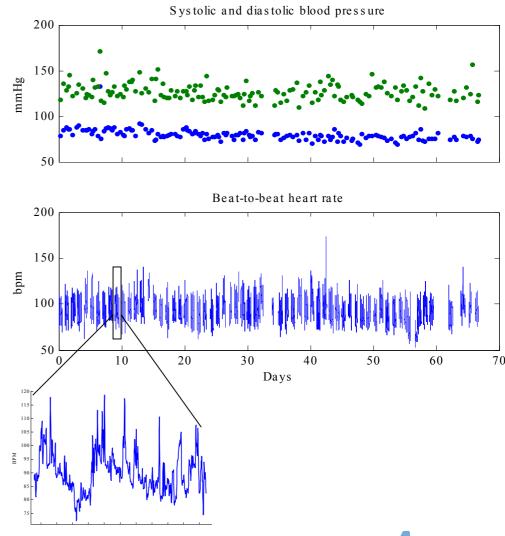
- low sampling rate : 12 Hz
- simplicity of step detection : peak count of magnetic sensor data
- independent analysis of each step
- all data processing in time domain
- simplicity of step classification : small look-up tables
- small need in computing resources












T.T.LVVT

# Process of the second of the s

Sensors and devices do not solve the problem: need for processing and infrastructure to draw any advantages!

# **Health monitoring**



