
A System for Simulation, Emulation, and Deployment of
Heterogeneous Sensor Networks∗

Lewis Girod, Thanos Stathopoulos, Nithya Ramanathan, Jeremy Elson,
Deborah Estrin, Eric Osterweil, and Tom Schoellhammer.

Center for Embedded Networked Sensing
University of California, Los Angeles

{girod,thanos,nithya,jelson,destrin,eoster,tschoell}@lecs.cs.ucla.edu

ABSTRACT
Recently deployed Wireless Sensor Network systems (WSNs)
are increasingly following heterogeneous designs, incorporat-
ing a mixture of elements with widely varying capabilities.
The development and deployment of WSNs rides heavily on
the availability of simulation, emulation, visualization and
analysis support. In this work, we develop tools specifically
to support heterogeneous systems, as well as to support the
measurement and visualization of operational systems that
is critical to addressing the inevitable problems that crop up
in deployment. Our system differs from related systems in
three key ways: in its ability to simulate and emulate het-
erogeneous systems in their entirety, in its extensive support
for integration and interoperability between motes and mi-
croservers, and in its unified set of tools that capture, view,
and analyze real time debugging information from simula-
tions, emulations, and deployments.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems

General Terms
Design, Experimentation, Measurement

Keywords
Sensor Networks, Real Code Simulation, EmStar, TinyOS

1. THE CASE FOR HETEROGENEOUS
SYSTEMS

∗This work was made possible with support from the NSF
Cooperative Agreement CCR-0120778, and the UC MICRO
program (grant 01-031) with matching funds from Intel.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SenSys’04, November 3–5, 2004, Baltimore, Maryland, USA.
Copyright 2004 ACM 1-58113-879-2/04/0011 ...$5.00.

Recent controversy in the sensor network research com-
munity has questioned the selection of platforms for sensor
network research: should the focus be on motes (8 bit mi-
crocontroller boards such as the Mica2) or microservers (32
bit systems such as the iPAQ and Stargate)?

As proponents of mote-based platforms, we argue that the
hardware cost of a mote class device ten years hence will be
in the $1–$5 range, [6] opening up new application domains
that require small, low cost hardware. We also claim that
these extremely low-cost platforms will have similar con-
straints to those of today’s motes, and thus development
of software for these scales of platforms is an important re-
search direction. Some go on to suggest that new sensor
network protocols will only be needed for relatively homo-
geneous networks of highly constrained devices, and that
larger platforms will either run traditional IP applications,
or run the same operating system as smaller nodes.

On the other hand, as proponents of larger platforms,
we question whether system software for mote class plat-
forms is really going to address all needs of future sensor
networks. We question whether the low cost platform of
ten years hence will necessarily be as constrained as today’s
mote (e.g. 4K of RAM): if a 1mm2 chip costs $1 with 4K
of RAM, what is the marginal cost of adding more RAM?
Since cost is typically dominated more by production vol-
ume than functionality, the needs of high-volume applica-
tions will tend to drive the functionality of the low cost
platforms. While some applications with minimal needs will
push for the absolute lowest cost platform, high volume ap-
plications that need more functionality can just as easily
drive down the price of more capable platforms. In either
case, if production volume is the driving force toward lower
prices, the first high-volume application (the “killer app”)
will need to be useful enough to support the higher initial
engineering costs and risks – it can’t just rely on low prices.

And so, as a community we have been converging on a
model of heterogeneous systems. Given that the shape of
future sensor network platforms is determined by a combi-
nation of future technological advances and future applica-
tions, making an accurate prediction seems particularly diffi-
cult. Gaining experience building systems today is probably
the best path forward toward discovering the applications
of the future. Today, heterogeneity is an important part of
sensor network systems, and if history is a guide, it will be
an important part of future systems as well:

• Motes and their descendants are the most scalable
platform to support long lifetimes on small, single-use

Deployed Motes Deployed
Microservers

NIMS Robotic Node

motenic

link/mote0

Mote RF Channel

hostmote

mote/0

TinyDiffusion

TimerC AM

RadioCRCPacketClockC

EmTOS Wrapper

datafilter_state

EmStatusServer EmPacketServer

TinyDiff Core

gradients

syncd

udpd

link/udp0

802.11 Channel

linkstats

sensor/PAR

ADC Motor Controller

gradients

tasking data

sync/hist

sync/params

AdaptiveSampling

MicroDiffusion

link/ls0 timehist

parsense motorctl

actuator/x-axis

data

TaskAllocation

802.11 NIC

PAR Sensor DC MotorMote

Transciever

Mote
TinyDIff
Sampler

Mote
TinyDIff
Sampler

Mote
TinyDIff
Sampler

Mote
TinyDIff
Sampler

Mote
TinyDIff
Sampler

802.11 NIC

NIMS

802.11 NIC
ESS Gateway

802.11 NIC

NIMS

802.11 NIC
ESS Gateway

802.11 NIC
Internet GW

Internet

Deployed Motes Deployed
Microservers

NIMS Robotic Node

motenic

link/mote0

Mote RF Channel

hostmote

mote/0

TinyDiffusion

TimerC AM

RadioCRCPacketClockC

EmTOS Wrapper

datafilter_state

EmStatusServer EmPacketServer

TinyDiff Core

gradients

syncd

udpd

link/udp0

802.11 Channel

linkstats

sensor/PAR

ADC Motor Controller

gradients

tasking data

sync/hist

sync/params

AdaptiveSampling

MicroDiffusion

link/ls0 timehist

parsense motorctl

actuator/x-axis

data

TaskAllocation

802.11 NIC

PAR Sensor DC MotorMote

Transciever

Mote
TinyDIff
Sampler

Mote
TinyDIff
Sampler

Mote
TinyDIff
Sampler

Mote
TinyDIff
Sampler

Mote
TinyDIff
Sampler

802.11 NIC

NIMS

802.11 NIC
ESS Gateway

802.11 NIC

NIMS

802.11 NIC
ESS Gateway

802.11 NIC
Internet GW

Internet

Figure 1: The NIMS/ESS deployment at the James Reserve is the target architecture in our discussion of
Heterogeneous Systems. This diagram shows a complete picture of the NIMS/ESS system, composed of both
motes and microservers. The box on the left labeled “Deployed Motes” shows a network of individual deployed
microclimate sensor motes, each running a TinyOS stack including the TinyDiffusion routing/transport layer.
The box on the right labeled “Deployed Microservers” shows a multihop network of deployed Stargate-class
devices, a mixture of NIMS robotic nodes and ESS concentrators. The box in the middle details the software
running on one of the NIMS nodes. Inside this box, we see both NesC/TinyOS code and EmStar code running.
Different notation is used for the two frameworks: EmStar device interfaces are shown as a white box above
a module, while NesC interfaces are shown as gray triangles. Arrows indicate client-server relationships.
Note that the box labeled “TinyDiff Core” encapsulates 15 sub-modules that make up TinyDiffusion. The
“EmTOS Wrapper” is a library that enables an entire NesC application to run as a single module in EmStar.

batteries and size-constrained energy harvesting. Be-
cause their memory architecture is designed for small
footprints and there is no MMU, there is a need for
an OS that is more oriented toward compile-time opti-
mization and static verification, because memory pro-
tection between modules can’t be enforced at run time.

• Microservers and their descendants are the most ca-
pable platforms that can be readily deployed. While
they consume energy at a considerably higher rate
than a mote, they are actually more efficient at many
computational tasks, and they can support the larger
memory footprint required for more complex tasks.
Microservers are also more readily interfaced to high-
bandwidth peripherals, such as high-rate ADCs and
network interfaces. To leverage their capacity to tackle
more complex tasks, microservers need an OS that sup-
ports standard features such as memory protection and
dynamic configuration, but is also designed to address
the problems special to sensor networks. While soft-
ware and operating systems designed for motes can be
run on microserver-class hardware, doing so will not
leverage the hardware’s capabilities—missing out on
opportunities for increased robustness, flexibility, and
performance, all of which are critical for deeply embed-
ded systems and for which existing Internet software
and protocols will not suffice.

• Middle ground? While the future remains unclear,
today energy is the most critical parameter in building
deployable embedded systems. Energy requirements
are typically driven by peripherals and memory foot-
print, both of which vastly affect system capability.
As more energy is required to support an application,
the marginal cost of providing additional energy drops
relative to the increase in capability it enables. For ex-
ample, once a system transits from being strictly bat-
tery powered to requiring a solar panel, the benefits of
an increased RAM footprint and a more sophisticated
operating systems often justify the incremental cost
of making the panel larger. Given today’s technology,
this leads to a bi-modal distribution of system capa-
bilities among general purpose, platforms suitable for
development. As the field matures, emerging applica-
tions will drive the development of new devices that are
highly optimized for specific applications. While these
devices will fall into this category, their high degree of
optimization constrains their use as development plat-
forms and leads to different tools.

Thus, there will always be a lowest cost platform and ap-
plications that require that level of functionality. There will
also always be applications that require more functionality,
and can justify the additional costs. [1] Moreover, many ap-
plications will require a combination of both in order to com-

bine densely deployed lower end sensors with more sparsely
deployed higher end nodes. The system designs we pursue
must account for heterogeneity as a first order property, so
that the unique properties of each part of the system can be
exposed and leveraged.

In summary, there is long-term value in developing spe-
cialized system software for both motes and microservers,
that is designed to meet the challenges of Wireless Sensor
Networks: the implementation of complex distributed sys-
tems that robustly accomplish a task in a complex and dy-
namic environment. We can apply this software today in
many heterogeneous systems that are currently deployed or
under development [10] [18] [17] [7] [16] [11] [2]. In these
systems, the mote portion of the implementation is done in
NesC/TinyOS [5], while the microserver portion is done in
EmStar/Linux [3].

1.1 Heterogeneous Target Architecture
Figure 1 shows the type of heterogeneous system architec-

ture we are targeting. The figure diagrams the architecture
of the NIMS/ESS deployment in the James Reserve [7] [17].
NIMS (Networked Info-Mechanical System) is a Stargate-
based robotic node suspended on a cable between two trees.
Using motors, the node can move between the two trees, and
raise and lower a sensor package vertically. This enables the
NIMS node to completely explore a 2-D plane through a
habitat, as well as act as a “data mule” that visits collec-
tions of deployed sensor nodes. ESS is a dynamically task-
able data collection system for the deployed sensor nodes.
In ESS the microservers use TinyDiffusion to act as robust
concentrators for a larger collection of sensor motes.

This architecture illustrates many of the ideas of hetero-
geneous systems. Because the NIMS node must move it-
self using motors, its energy budget is large, supported by
a fixed infrastructure of solar panels and batteries. This
greatly reduces the importance of the energy cost of the
NIMS node’s computational hardware, enabling more capa-
ble systems and qualitatively different sensor types to be
used (e.g., high end imagers). On the other hand, the de-
ployed sensor nodes must be powered independently, and are
tasked to collect slowly time-varying microclimate data. For
these components, motes are the best choice of platform.

In the figure, the large dashed box represents the software
running on the NIMS node Stargate platform. This software
is running within the EmStar [3] framework, over Linux.
The Stargate connects to several hardware peripherals, in-
cluding an 802.11 NIC, a mote, and local sensors and motor
controllers. Via 802.11 the NIMS node can reach a multi-
hop network of other NIMS nodes, other microservers such
as ESS concentrators, and eventually the Internet. Via the
mote network, the NIMS node can participate in a dynam-
ically varying network of motes, tasking them and drawing
out data.

The key point to capture from this target architecture is
that both the motes and the microservers implement com-
plex networks and distributed systems. Furthermore, the
software within both motes and microservers is also com-
plex. To develop these kinds of systems we need tools that
can adequately represent and test these systems in their en-
tirety, in a variety of degrees of “reality”, before moving on
to the costly and time-consuming business of deployment.

2. TOOLS FOR HETEROGENEOUS
SYSTEMS

Following early experiences deploying wireless sensor sys-
tems, several research groups have independently concluded
that deployable sensor network systems can only be devel-
oped with the help of “real code” simulation tools, that run
identical code in simulation and deployment. The primary
reason for this seems to be that sensor network systems often
translate poorly from simulation to deployment, as a result
of the difficulty of modeling the impact of the environment
on the system. “Real code” simulation tools provide the
critical capability to quickly iterate between simulation, de-
ployment, and ideally somewhere in between.

Both the TinyOS/TOSSIM [9] and EmStar/EmSim [3] en-
vironments are “real code” simulators. TOSSIM simulates
a mote application implemented within the NesC/TinyOS
framework, while EmSim simulates a microserver applica-
tion implemented within the EmStar/Linux framework. The
next two sections describe these simulators in more detail.

Note that “real code” simulations are not the only impor-
tant type of simulation tool—for many types of algorithm
development they are neither practical nor necessary. Al-
though this paper does not consider these issues, a useful
extension would integrate a “real code” simulator and chan-
nel model with scalable, high-level simulations.

2.1 Simulating Motes: TOSSIM
TOSSIM is a discrete-event simulator (i.e. based on a

virtual clock) that implements the lowest layer of compo-
nents in the TinyOS API, and runs multiple copies of the
complete TinyOS stack and NesC application above those
components. TOSSIM uses special hooks in the NesC com-
piler to support the ability to run multiple instances of a
TinyOS application in a single process, by reserving multi-
ple instances of each TinyOS component’s state.

TOSSIM provides several RF channel models and sen-
sor models. The original version of TOSSIM simulated a
component interface just above the hardware, so that the
TinyOS MAC layer itself was part of the simulated applica-
tion. This has the advantage that more details of the MAC
layer are preserved in the simulation. To address scaling
problems, TOSSIM also supports “packet mode”, in which
a packet-level interface is simulated. The TinyViz visualizer
can connect to TOSSIM and view debugging information
emitted by the simulated motes.

Because the same NesC application code runs on real
motes and in the TOSSIM environment, it is easy to iter-
ate between a set of real motes and a TOSSIM simulation.
TOSSIM also has the capability to inject traffic into a sim-
ulated mote network, in order to simulate tasking and other
stimuli from external sources. However, it is not always
convenient to feed TOSSIM with a taskload generated by a
complex external system.

While TOSSIM has many desirable features, it was not
designed to simulate our heterogeneous target architecture.
First, TOSSIM requires that an identical code base run on
every mote. While there may be ways around this (e.g.
combining applications and selecting based on node ID),
this can make iteration between “real code” and simulation
more cumbersome. Second, TOSSIM does not readily sim-
ulate systems composed of motes with differing capabilities
or hardware, such as the case in ESS where different motes
are loaded with different sensors.

Third, while TOSSIM can be used to simulate the “De-
ployed Motes” box of our target architecture, there aren’t
any tools that enable that simulation to link up to the rest of
the picture in a unified simulation environment. The closest
tool to that purpose is the “Tython” extension to TOSSIM,
which enables easy scripting of packet injection into the sim-
ulated mote network. While in principle this can be used
to simulate the behavior of external networks and systems,
encoding the complete behavior of the outside world into
Tython may prove difficult.

2.2 Simulating Microservers: EmSim
EmSim provides a “real code” simulation capability for

software written in the EmStar framework. In EmStar, sys-
tems are composed of many Linux processes, generally one
process per separable service or module. EmStar services
can be written in any language, so long as they communi-
cate using the EmStar IPC mechanisms.

Unlike TOSSIM, EmSim can’t assume as much about the
uniformity of the application, because EmStar code can be
written in a variety of languages. Thus, rather than compil-
ing everything into one process, EmSim runs multiple simu-
lated nodes as separate process trees. Each simulated node
communicates with other simulated nodes through standard
EmStar IPC channels that are name-mangled to give each
simulated node its own private namespace. This multi-
process approach entails some scaling limitations that are
characterized in Section 5.2.

The lowest layer of services is provided by “simulation
components” that provide separate device interfaces for each
simulated node. For instance, the RF channel model mod-
ule provides a packet-level “Link Device” interface for each
simulated node, and transfers packets among the simulated
nodes according to a channel model. EmSim currently in-
cludes simulation components to support sensors and the RF
channel. The RF channel simulator can assume one of sev-
eral “personalities”, including the standard TinyOS MAC,
S-MAC [14], and 802.11, and supports a variety of propa-
gation models tuned for different hardware types. EmSim
does not attempt to model the MAC layer in detail, apart
from gross aspects such as CSMA vs. TDMA and collisions.

One of the key features of EmSim is its ability to support
“emulation” mode, where centrally simulated nodes interact
using real radio or sensor hardware embedded in a target en-
vironment. Emulation often reveals bugs that don’t appear
in simulation, from aspects of the channel that aren’t well
modeled, to peculiarities of the MAC layer that are not rep-
resented in a packet-level simulator.

Emulation mode is made possible in part by the fact that
EmSim natively runs in “real time” rather than accord-
ing to a virtual clock. The advantage of running in real
time is that it enables interaction with external hardware
or whole systems that also run in real time. The primary
disadvantage is scalability: a large EmSim simulation may
miss timing deadlines if the load is too high. Conversely, a
lightly loaded system can’t easily be sped up. An experimen-
tal addition to EmStar called “TimeWarp” addresses these
problems by using a kernel module to directly scale the im-
pact of POSIX timing calls such as select(), sleep() and
gettimeofday(). As a side effect to time scaling, TimeWarp
also enables simulation “pause”.

While EmSim has many desirable features for simulating
systems of microservers, it suffers from a similar problem to

TOSSIM in terms of the “big picture” from our target archi-
tecture. EmSim only simulates “real code” written within
the EmStar framework, with no convenient way to link up
to mote software written in NesC/TinyOS. Thus, it can sim-
ulate the “Microservers” box of our target architecture, but
no tools exist that can integrate that simulation with a sim-
ulation of motes.

2.3 Simulating Heterogeneous Systems
The previous sections detailed the capabilities of TOSSIM

and EmSim, and showed that both of these projects lacked
the capacity to easily interoperate with the other in order to
address heterogeneous systems. An effective heterogeneous
simulation environment implies several key requirements:

• “Real Code”: The capacity to readily move between
simulation and real deployment. A large part of de-
bugging is tied up in configuration files and other state
describing the high-level structure of the system. In
addition to running real application code, a fully in-
tegrated simulation environment would enable these
configurations to be used unmodified.

• Integrated World Model: An important part of
simulating heterogeneous systems is enabling all parts
of the system to interact through the simulated world.
This requires a single integrated world model, rather
than a loose coupling of independent simulation envi-
ronments and independent channel simulators.

• Integrated Tools: The utility of a simulation envi-
ronment is closely tied to its ease of use. Ease of use
is greatly improved with an integrated set of visualiza-
tion and analysis tools, that works for all of the cases
we have identified in our target architecture.

Although both TOSSIM and EmSim each satisfy these
requirements within their respective domains, neither ade-
quately addresses our heterogeneous target architecture in
which Linux-based microservers share a world with TinyOS
based motes. To bridge this gap, we extended EmSim’s sim-
ulation infrastructure to support different types of platform
within a single integrated environment.

As the first instantiation of this approach, we developed
an extension to EmStar called “EmTOS” that enables mote-
based NesC/TinyOS applications to run alongside EmStar
applications within a single EmSim environment. Section 3
describes EmTOS in more detail. Section 4 describes exten-
sions to EmSim and EmView, the EmStar visualizer. Sec-
tion 5 presents a performance analysis of EmTOS, both with
an example application and with comparative metrics vs.
native TinyOS.

While this paper only discusses how TinyOS applications
can be integrated into EmSim, we believe that the same
approach can be applied to other types of application en-
vironment and hardware platform as they arise. Some of
these efforts are described in Section 7 on future work.

3. EMTOS
EmTOS is an extension to EmStar that enables an entire

NesC/TinyOS application to run as a single module in an
EmStar system. As shown in Figure 2, EmTOS works by
providing a wrapper library and a set of stub components
that enable existing NesC/TinyOS applications to operate

LEDs EEPROM UART

Unmodified NesC Application

ADC

TimerC

SenseToRFM

AM

RadioCRCPacketClockC

Underlying EmStar Services

EmTOS Wrapper Library

EmStatusServer EmPacketServer TOS status

motesens

sensor/adc

motenic

link/mote0

Transciever (Mote)

tos/leds tos/eeprom tos/tasksUser definedUser defined

hostmote

mote/0

LEDs EEPROM UART

Unmodified NesC Application

ADC

TimerC

SenseToRFM

AM

RadioCRCPacketClockC

Underlying EmStar Services

EmTOS Wrapper Library

EmStatusServer EmPacketServer TOS status

motesens

sensor/adc

motesens

sensor/adc

motenic

link/mote0

Transciever (Mote)

tos/leds tos/eeprom tos/tasksUser definedUser defined

hostmote

mote/0

hostmote

mote/0

Figure 2: An unmodified NesC Application encapsu-
lated within the EmTOS wrapper library. EmStar
device interfaces are denoted by white boxes con-
taining the name of the device. TinyOS component
interfaces are denoted by gray triangles. EmPack-
etServer and EmStatusServer are TinyOS compo-
nents that enable a NesC application to export one or
more EmStar device interfaces, enabling other Em-
Star modules to connect to it. The EmTOS wrapper
itself exports several EmStar devices representing
the internal state of EmTOS, including the state of
the task queue, the LEDs, and the EEPROM.

using existing services provided by the EmStar system. Ef-
fectively, this enables NesC/TinyOS applications to compile
and run on microservers running EmStar, and therefore en-
ables EmSim to simulate them.

The EmTOS wrapper library works in a similar way to
TOSSIM itself. Like TOSSIM, EmTOS is used by building a
NesC application for a special platform target. Whereas the
pc platform is used to build TOSSIM, the emstar platform is
used to build an EmTOS module. The emstar platform im-
plements all of the lowest layer component interfaces, that
then link to EmStar services and interfaces. Referring to
Figure 2, the low layer components defined by the EmTOS
platform are shown in the lower tier under the “NesC Ap-
plication” box: ClockC, RadioCRCPacket, ADC, etc. The
NesC application links to these in the normal way, and the
EmTOS library implements the required adaptation layer to
connect to existing EmStar services such as Link Devices.
Note that this adaptation layer is configurable. While Fig-
ure 2 shows RadioCRCPacket connecting to the MoteNIC1

1The MoteNIC is an EmStar interface that proxies pack-
ets over serial to a mote for transmission. The term
MoteNIC generally refers either to the microserver-side soft-
ware, or to the whole system (mote + microserver software).
Transceiver is the name of the packet proxy application that

Link Device, it could just as easily be connected to a Link
Device running over 802.11.

EmTOS has a dual significance: first, as a mechanism en-
abling microservers to readily participate in mote networks,
and second as a mechanism that enables certain forms of
heterogeneous simulation within EmSim.

3.1 Microserver Participation in Mote Nets
There are many examples of systems in which microservers

must participate in a mote network: the NIMS node and
ESS concentrator are two such examples. While in some
cases the interactions are simple, in others they are complex
enough that the interfacing effort incurs a significant cost.
There are several ways to address this problem, and each
may be the ideal choice, depending on the particular details
of the application:

1. Serial Gateway: Devise a serial protocol that en-
codes the message traffic to and from the mote as
needed, and write software on the microserver side to
process that traffic from a microserver-side program
such as SerialForwarder, or using the EmStar Host-
Mote protocol.

2. Re-implement or Port: Port the NesC application
that runs on the mote to run on the microserver, for ex-
ample using SerialForwarder to send and receive radio
packets, and link it up with a proxy mote application
such as GenericBase.

3. Use EmTOS: Compile the NesC application for the
emstar platform, generating a single EmStar module
that implements the NesC application and binds to ex-
isting EmStar services. Then, extend the NesC code
to provide new interfaces for debugging and for inter-
facing to other EmStar components. Then run the
new module, along with existing EmStar components
MoteNIC, HostMote, and others.

If the application requires precise timing or interrupt han-
dling, option (1) may be the only possibility. Because of the
additional latency of the serial port and the I/O latency on
standard Linux kernels, interrupts can only be handled with
precise timing on the mote itself (see Section 5 for a quanti-
tative discussion of timing issues). The drawback of option
(1) is that it can be a more inconvenient implementation, be-
cause it requires exposing specific new functionality through
a serial protocol. EmStar supports this mode of integration
via the HostMote protocol and HostMoteM TinyOS com-
ponent, which provide a robust solution to this problem,
described in more detail in Section 3.3.

If precise timing and access to specific hardware on the
mote is not a factor, then both options (2) and (3) are pos-
sibilities. Option (2) has the drawback that it requires the
maintenance of independent implementations. While mul-
tiple implementations allows for more flexibility, they can
easily get out of sync. However, for some cases, for instance
if the code must run on Windows, this may be the only
viable alternative.

If EmStar can run on the microserver, then option (3) is
a very convenient way to integrate motes and microservers.
We have already discussed how the EmTOS wrapper enables
a NesC application to run on the microserver. What makes

runs on the mote as part of the MoteNIC.

this integration path particularly smooth is the ability to
extend the NesC application, both to use services provided
by EmStar that don’t exist in TinyOS, and to provide new
EmStar services on the microserver. This means that the
developer can choose exactly where to draw the boundary,
deciding how much of the work should be done in NesC
and how much should be done in new or existing EmStar
components and application code.

The new release of ESS deployed at the James Reserve
uses EmTOS to implement the concentrator in exactly this
way. Rather than try to interface to a mote through a spe-
cial serial protocol, ESS runs the EssSink NesC application
inside EmTOS, sending traffic to the radio via the EmStar
MoteNIC service and its mote side packet proxy, Transceiver
(see Section 3.3 for more details). In addition, EssSink is ex-
tended with numerous helpful debugging outputs describing
the current state of its queues and neighbor link estimators.
EssSink also provides server interfaces that other EmStar
modules can use to task the network and receive data back.

One might ask, given EmTOS, why not write the whole
ESS application in NesC? While in principle much of the
system could be implemented in NesC alone, leveraging the
larger EmStar framework brings many advantages that are
consistent with the less constrained context of microserver
applications:

• Support for Dynamics: Rather than requiring the
dependency graph to be statically determined at build
time, EmStar allows clients to dynamically connect to
servers, and allows services to be dynamically created
at run time.

• Support for Concurrency: EmStar modules can
use threads and multiple processes to simplify imple-
mentations that don’t fit well into an event-based form,
such as long-lived computation tasks.

• Resiliency and Robustness: EmStar leverages the
memory protection features of 32 bit processors by
running each service as a separate process. Resiliency
against cascading failures is also enabled by libraries
that automatically recover from failed connections and
by soft state protocols between modules.

• Diverse Language Support: EmStar fully supports
any language that can link to C libraries, and to a
lesser extent supports any language that can make
POSIX system calls. Currently most modules are writ-
ten in C and C++, and a few are now being developed
in Java. In addition, many EmStar functions can be
accessed from shell scripts and other scripting tools.

3.2 Heterogeneous Simulation using EmTOS
In the previous section we presented ESS as an example

of a system that uses EmTOS in a deployment to enable
mote–microserver integration. Since the concentrator is a
microserver running EmStar, EmSim can naturally be used,
for example enabling simulation of a network of concentra-
tors. However, that simulation would leave out an important
component: the mote networks that sense and feed data to
the ESS concentrators via Tiny Diffusion.

Simulation of “stand-alone” motes can also be achieved
using EmTOS, in the same set of circumstances where Em-
TOS can be used for deployment (i.e. cases in which the

target code does not require access to precise timing or in-
terrupts). This only requires compiling the stand-alone mote
application for the emstar platform, and setting up configu-
ration files that describe each mote’s hardware and software
configuration.

For each node, whether mote or microserver, the simula-
tion config file defines the hardware configuration by spec-
ifying the location and orientation of the node, along with
which radio and sensor channels the node can access. The
radio and sensor channel models use the location informa-
tion to generate the appropriate channel behavior. The sim-
ulation config also defines which software should run on the
node. In the case of a simulated microserver, this is usually
done by specifying a custom EmRun configuration file that
expresses the dependency graph of EmStar services and ap-
plication components. In the case of a simulated mote, a
generic EmRun configuration can often be used, specifying
the name of the EmTOS build as a command line argument.

This mechanism enables heterogeneous simulations, when-
ever precise timing is not required and all peripherals used
by the application are supported by the simulation. In ad-
dition to pure simulation, there are three other modes of op-
eration that can be useful in testing and in cross-validating
the simulation. These modes are described in Section 4.1.
Further discussion of timing issues and possible workarounds
can be found in Section 5.

3.3 The HostMote Protocol
While EmTOS can be used to run NesC code without

having a mote involved at all (e.g. connecting to an 802.11
radio), the common case thus far has been to proxy EmTOS
activations back and forth across the serial port to a mote.
For this we use the HostMote serial protocol, and a set of
applications that run over it.

The HostMote protocol is a simple framed wire protocol
with variable length packets, a type field, and a CRC. On
both the mote and microserver sides, the HostMote proto-
col is demultiplexed to clients according to type field. On
the mote side, the HostMoteM module implements the se-
rial protocol and enables client applications to register for
particular types. On the microserver side, the hostmoted

daemon performs a similar function, enabling independent
client applications to register for specific types.

Currently, HostMote is used to support integration of
motes and microservers in a number of ways:

• Packet Proxy: The MoteNIC service and Transceiver
mote application proxies packets from the microserver
to the RF channel and back over HostMote, similar to
GenericBase. It reports ACKs from the MAC layer,
along with a variety of statistics about the channel.

• Debug: The debug logger enables NesC code running
on a real mote to efficiently report debug messages via
serial to a microserver. The debug facility emits typed
messages of variable length with two bytes of header
overhead per message, and can aggregate multiple de-
bug messages into a single HostMote message. On the
microserver side, an extensible logging facility parses
the messages and either prints them or exposes them
as Status Devices.

• Configuration: The HostMote configuration proto-
col enables an extensible set of attributes to be config-
ured, and enables status information to be returned,

Emulation Array

ESS
Mote

EssDsp

ESS
Conc.

EssSink

ESS
Mote

EssDsp

ESS
Mote

EssDsp

…

Emulation Mode

HostMote Protocol

ESS
Mote

EssDsp

ESS
Conc.

EssSink

ESS
Mote

EssDsp

ESS
Mote

EssDsp

…

Simulated Sensor Channel

Simulation Mode

Simulated RF Channel

T
ra

ns
ce

iv
er

M
ot

e

T
ra

ns
ce

iv
er

M
ot

e

T
ra

ns
ce

iv
er

M
ot

e

T
ra

ns
ce

iv
er

M
ot

e

MN MN MN MN

Emulation Array

ESS
Mote

EssDsp

ESS
Mote

EssDsp

ESS
Conc.

EssSink

ESS
Conc.

EssSink

ESS
Mote

EssDsp

ESS
Mote

EssDsp

ESS
Mote

EssDsp

ESS
Mote

EssDsp

…

Emulation Mode

HostMote Protocol

ESS
Mote

EssDsp

ESS
Conc.

EssSink

ESS
Mote

EssDsp

ESS
Mote

EssDsp

…

Simulated Sensor Channel

Simulation Mode

Simulated RF Channel

ESS
Mote

EssDsp

ESS
Mote

EssDsp

ESS
Conc.

EssSink

ESS
Conc.

EssSink

ESS
Mote

EssDsp

ESS
Mote

EssDsp

ESS
Mote

EssDsp

ESS
Mote

EssDsp

…

Simulated Sensor Channel

Simulation Mode

Simulated RF Channel

T
ra

ns
ce

iv
er

M
ot

e
T

ra
ns

ce
iv

er
M

ot
e

T
ra

ns
ce

iv
er

M
ot

e
T

ra
ns

ce
iv

er
M

ot
e

T
ra

ns
ce

iv
er

M
ot

e
T

ra
ns

ce
iv

er
M

ot
e

T
ra

ns
ce

iv
er

M
ot

e
T

ra
ns

ce
iv

er
M

ot
e

MN MN MN MN

Emulation Array

Stub

ESS
Conc.

EssSink
…

Real Mode

HostMote Protocol

Stub Stub

Emulation Array

Stub

ESS
Conc.

EssSink
…

Hybrid Mode

HostMote Protocol

Stub

ESS
Mote

EssDsp

T
ra

ns
ce

iv
er

M
ot

e

E
ss

D
sp

M
ot

e

T
ra

ns
ce

iv
er

M
ot

e

E
ss

D
sp

M
ot

e

T
ra

ns
ce

iv
er

M
ot

e

E
ss

D
sp

M
ot

e

E
ss

D
sp

M
ot

e

E
ss

D
sp

M
ot

e

MN DebugDebugDebugMN DebugDebug MN

Emulation Array

Stub

ESS
Conc.

EssSink

ESS
Conc.

EssSink
…

Real Mode

HostMote Protocol

Stub Stub

Emulation Array

Stub

ESS
Conc.

EssSink

ESS
Conc.

EssSink
…

Hybrid Mode

HostMote Protocol

Stub

ESS
Mote

EssDsp

ESS
Mote

EssDsp

T
ra

ns
ce

iv
er

M
ot

e
T

ra
ns

ce
iv

er
M

ot
e

E
ss

D
sp

M
ot

e
E

ss
D

sp
M

ot
e

T
ra

ns
ce

iv
er

M
ot

e
T

ra
ns

ce
iv

er
M

ot
e

E
ss

D
sp

M
ot

e
E

ss
D

sp
M

ot
e

T
ra

ns
ce

iv
er

M
ot

e
T

ra
ns

ce
iv

er
M

ot
e

E
ss

D
sp

M
ot

e
E

ss
D

sp
M

ot
e

E
ss

D
sp

M
ot

e
E

ss
D

sp
M

ot
e

E
ss

D
sp

M
ot

e
E

ss
D

sp
M

ot
e

MN DebugDebugDebugMN DebugDebug MN

Figure 3: The four modes of operation for our heterogeneous simulation, showing ESS with one concentrator
and N motes as an example. In a deployed system, the concentrator would run on an iPAQ and the motes
would run on Mica2 hardware. The small “MN” boxes represent the microserver side of the MoteNIC, and
the “Debug” boxes represent an service that logs and proxies debugging information collected over serial.

analogous to the UNIX utility ifconfig. The returned
status structure includes packet statistics (RX, TX, er-
rors, serial CRC errors), and the current configuration
(power setting, address, etc.)

Debug mode is used to collect debugging information from
real motes that are participating in networks with emulated
motes (described further in Section 4.1). This enables a
unified set of visualization and analysis tools to operate over
hybrid networks (described further in Section 4.2.2).

The MoteNIC is particularly critical to EmStar mote–
microserver integration, and has been extensively debugged
and hardened. It is immune to a wide variety of failures,
from hot-swapping the mote during operation to many fail-
ure modes that might cause the mote to reset or lose power.
The HostMote software on the microserver side retains the
current desired configuration of the mote (e.g. power level,
address, etc.) and periodically requests a replay of the cur-
rent configuration. In the event that the reported config-
uration does not match the requested configuration, it will
automatically reconfigure the mote.

An interesting an unexpected use of this feature occurred
recently at the ESS deployment, when there seemed to be
a lot of collisions in the middle of the network but there
was no way to measure them. A quick solution was to place
a battery-powered mote running Transceiver in the area in
question. After letting the Transceiver mote collect statis-
tics, we hot-swapped it for the Transceiver mote connected
to the microserver, logged in and retrieved the statistics.
While this was not its intended purpose, this freedom to
hot-swap components of the system was only possible be-
cause most of the disconnection, reconnection, and power
loss cases have been handled.

4. UNIFIED VISUALIZATION AND
ANALYSIS

One of the key design goals for EmTOS and EmStar is
to build a unified set of visualization and analysis tools
that can operate on any mode of operation of the system.
These modes include Pure Simulation, Emulation, and De-
ployment. In the context of EmTOS, there are several new
Emulation modes, shown in Figure 3, that are specific to the
case of motes in an Emulation Array.

4.1 EmTOS Emulation Modes
One of the novel features of EmStar has been its abil-

ity to run in “Emulation Mode”, in which a simulation on
a centralized server uses real deployed motes as radios, in
place of a computed radio channel model [3]. Using Em-
TOS, the same concept applies: just as some nodes in a
simulation can be simulated “stand-alone” motes while oth-
ers are microservers, the exact same configuration can be
run in emulation mode on an “emulation array” by a simple
change on the command line that starts the simulation.

In addition to working in emulation mode, EmTOS ex-
tends this idea to support two new modes of operation:
“Real Mode” and “Hybrid Mode”. Figure 3 diagrams these
new modes, in addition to “Emulation” and pure simulation.

4.1.1 Emulation Mode
In the original “Emulation Mode”, all of the physical

motes in the array are programmed with the Transceiver ap-
plication, enabling packet proxy functionality via the Host-
Mote protocol described in Section 3.3. On the server side,
each node runs an instance of MoteNIC (labeled “MN” in
the diagrams) to provide the EmStar Link Device interfaces.

Then, the different emulated nodes run different software
on the centralized server. The first node in the diagram
represents the microserver in this system, running the “ESS
Concentrator” software. The TinyDiffusion protocol is im-
plemented in NesC by the EssSink application, and run
inside an EmTOS wrapper. EssSink communicates with
other modules in the EmStar world to implement the rest
of the “Concentrator” functionality, such as issuing tasking
requests and processing the results.

The remainder of the nodes are emulating motes in the
ESS system. They run the “ESS Mote” software, which
uses EmTOS to emulate a NesC application called “EssDsp”
that responds to tasking requests and reports data back via
TinyDiffusion.

4.1.2 Real Mode
In “Real Mode”, all of the motes in the ESS system are run

natively rather than emulated, and use the emulation array
as a serial debugging backchannel, while the ESS concentra-
tor software still runs as before on the simulation machine.
Thus, while the mote corresponding to the ESS concentrator

is still programmed with Transceiver, all of the other motes
in the array are programmed directly with the EssDsp ap-
plication.

To support collection of data for debugging, visualization
and analysis, special “Stub” software is run on the simula-
tion machine, corresponding to each natively running mote.
This stub logs information from the Debug type of the Host-
Mote protocol, and proxies that data into Status Devices.
These Status Devices provide an interface that matches the
interface provided by EssDsp when running in emulation
mode, enabling the same visualization and analysis tools to
operate in both cases.

4.1.3 Hybrid Mode
“Hybrid Mode” is a mixture of “Real” and “Emulated”.

In “Hybrid Mode”, selected motes in the system are run
natively rather than emulated. As shown in the diagram,
some of the motes are programmed with EssDsp and corre-
spond to “Stub” software on the simulation machine, while
the rest are programmed with Transceiver and correspond
to an EmTOS emulation of EssDsp.

4.2 Unified Support for Data Gathering
In order to visualize or analyze data, there needs to be

a framework for capturing it. If this mechanism is uniform
across the different modes of operation, then the visualiza-
tion and analysis tools will work uniformly.

There have been similar efforts in the TinyOS community,
notably Message Interface Generator (MIG), which forms
the basis of data interpretation for TinyViz/Tython [9] and
MoteLAB [13]. MIG translates a TOS message into a Java
class that can parse it. The Java class can then be inte-
grated into TinyViz and MoteLAB. EmStar instead relies
on both sides sharing a C structure definition. This has the
advantage of being divorced from TOS messages, which are
very TinyOS specific, and are less useful outside the world
of motes.

EmStar defines two standards through which data may be
gathered. The first is the EmProxy protocol, which is lay-
ered over UDP. The protocol issues requests to one or more
nodes or simulation servers, and receives responses back on a
best-effort basis, but with low latency. The request encodes
a set of EmStar device files to watch, and each response rep-
resents one or more updates from the devices being moni-
tored at a given node. The EmProxy server is an EmStar
module that speaks this protocol. EmProxy runs on both
real and simulated nodes, enabling the same visualization
software to work in both cases. By conforming to the Em-
Proxy protocol, other server implementations can also be
visible to the EmStar analysis tools.

The second standard is the device file hierarchy itself. If
EmProxy is already running on a node or simulation server,
then by creating the appropriate set of device files, those
devices and the data they expose will become visible to
the EmStar analysis tools. The standard meaning of par-
ticular files in the device file hierarchy is generally deter-
mined by the software that exposes them, and any stan-
dards that are in place. For example, the standard format
for neighbor discovery or link quality outputs is defined by
the neighbor t structure in the link/neighbor.h header
file. Thus, the easiest way to expose state about neighbor
lists or link quality to the visualizer is to expose it as a Sta-
tus Device that exports data in that format. Once exposed,
the Link/Neighbors module of the visualizer can pick it up

bash-2.05b$ cat tinydiff/filter_state
NeighborStore Filter State

Node ID Qual InL OutL Miss Seq Cnt Low EWMA
-------- ---- ---- ---- ---- ---- ---- ---- ----

2 0 0 50 5 33 30 33 10
5 0 0 0* 5 33 23 33 7
3 0 50 0* 3 31 23 31 21
6 0 0 0* 3 77 54 77 12
4 1 67 0* 0 0* 0* 0* 47

Calc Index: 0
Lambda: 20
Low Water Mark: 20
Hi Water Mark: 40

Figure 4: Human readable “Filter State” output
from Tiny Diffusion’s link estimator. The device
can also be “watched” using the echocat program,
and a new report will be generated whenever the
state changes.

and correctly display it.
These two standards provide two different opportunities

to hook into the visualizer. We will now detail several ex-
amples of how elements of our heterogeneous simulation link
up to the analysis tools.

4.2.1 Gathering Data from EmTOS Code
When the EmTOS wrappers are used to integrate a NesC

application into an EmStar system, the most convenient
method of integrating to the EmStar analysis tools is to
expose EmStar Status Devices from the NesC application.
Exposing Status Devices essentially hooks into the device
file hierarchy so that existing analysis tools can access the
new application’s state via EmProxy.

The EmStatusServer and EmPacketServer modules im-
plement NesC interfaces that can create EmStar Status De-
vices. The interface is similar to the interface used in Em-
Star [3]. To create a Status Device, the service first specifies
the name of the device in an initialization call, and then
implements several Events that are triggered in response to
a request from a client.

Each of these Events is responsible for reporting the state
that the module is exposing. The “Printable” Event reports
the state in a human-readable format, for instance a table of
filter values such as the one shown in Figure 4. While this
is usually not critical to supporting analysis tools, it is very
convenient for interactive debugging.

The “Binary” Event typically reports the same state as
a vector of binary structures. As a rule, the visualization
and analysis tools will interpret this binary state, and it
usually must conform to a standard format in order to be
parsed correctly. Existing standard formats are defined as
C structures in header files, e.g. Neighbor and Link Quality
(neighbor t), and Routing (routing entry t).

Note that while the operation of these Events can be
costly in terms of memory and code space, both of these
Events only apply to NesC code running inside EmTOS (i.e.
on a microserver). When this code is compiled for mote
platforms such as mica, the EmStatusServer module turns
into a stub module that won’t call those Events. In ad-
dition, the implementations of the Events call a function
bufprintf() that turns into a NOP when not compiled for
platform emstar.

In addition to the Events that report the state when re-

Figure 5: EmView screenshot of ESS running in Emulation Mode. In this case, Node 1 is the sink, and all
other nodes are EmTOS nodes running the EssDsp application. Links with small boxes represent current link
quality estimates from the Link/Neighbors module. Lighter colored links with larger boxes represent current
gradient state from the Routing/Trees module. The positions of the nodes are approximately correct, with
1 meter grid lines.

quested, the EmStatusServer interface supports a Command
that triggers notification on the Status Device. This means
that a module that exports debugging state can add a Notify
Command that gets called whenever the state has changed
in a significant way, in turn causing the clients to request
the new state.

4.2.2 Gathering Data over Serial from Real Motes
Unlike the case of EmTOS, gathering data from real motes

must be done carefully to avoid consuming too many re-
sources. The standard binary structures used in EmStar
tend to be larger than necessary, in part to cover more cases,
and in part because memory is not a scarce resource. To
address this problem, the interface to EmStatusServer also
includes a “CompressedBinary” Event, that should be im-
plemented to produce a more compact version.

When compiled for platforms other than emstar, the Em-
StatusServer ignores the “Printable” and “Binary” Events,
and instead issues the “CompressedBinary” Event. The
CompressedBinary Event provides a buffer to fill, and the
client should fill it with a compact binary output, if the
buffer has enough space. The EmStatusServer component
integrates with the HostMote component to forward the
data back over the serial port, as Debug type data.

On the microserver side, the hm logger module receives
the Debug data from HostMote and proxies it into EmStar
Status Devices according to the type of each Debug mes-
sage. This logger is modular, making it is easy to add a new
handler for a new Debug type. Since hm logger understands
how to convert data from the compressed Debug formats to
the standard EmStar formats, the Status Devices it exposes
can be picked up directly by the analysis tools via EmProxy.
This hm logger infrastructure is part of the “Stub” shown
in the diagrams of Hybrid Mode and Real Mode.

4.2.3 Gathering Data from Deployed Nodes
When systems are deployed in the wild, there is usually

no debugging backchannel. Without a backchannel, all de-
bugging data must be forwarded back multiple hops over the
wireless network, and collected for analysis or visualization.
In these cases, it is critical to ensure that the data being
collected does not interfere with the operation of the system
itself.

Rather than try to invent a generalized way to retrieve
this kind of data, we take the approach of providing a way
to gateway the information retrieved from the network to

a visualization and analysis infrastructure. For example, a
program very similar to the hm logger program could pro-
cess messages in some compressed form and translate them
into the standard EmStar formats, sending them back via
the EmProxy protocol.

Our initial approach to this has been to link up to Em-
Proxy the same way that hm logger does, that is, by cre-
ating Status Devices that EmProxy itself can see. A better
long-term approach, for future work, might be to implement
a gateway that speaks the EmProxy protocol directly.

4.3 Visualization and Analysis Tools
Layered above our unified data gathering mechanisms, we

use EmStar’s visualization and analysis tool, EmView. To
support ESS, we added a number of extensions, including
support for display and analysis of routing trees, and sup-
port for heterogeneous networks. Figure 5 is a screenshot of
EmView, showing an emulated run of ESS.

EmView is an extensible visualization engine, written in
C using the GTK toolkit. EmView presents a plugin in-
terface that enables new modules to be written to visualize
new kinds of state. For every new application or service, an
associated visualization plugin can be written to represent
that application’s state. The details of acquiring the data
and drawing the nodes and decorations are handled by the
EmView core, leaving it up to the plugin to parse the C
structures that arrive from the deployed systems or simu-
lations, and to represent that data back to the core in an
abstract form as links or data values.

The original version of EmView was configured from the
GUI to show or hide various decorations and attributes of
the nodes in the viewer. We extended EmView to instead
retrieve the configuration for each node from the node it-
self, along with all the other data about that node. This
approach has numerous advantages:

• The user operating the GUI does not need to under-
stand the details of the software running on the nodes.

• Complex per-node configuration can be represented
more readily, by encoding it into the config files that
“run” the node.

• The GUI can more readily adapt to different node
configurations. For instance, and EmTOS node has
attributes such as the state of the LEDs and the EEP-
ROM, that a non-EmTOS node does not.

0

2

4

6

8

10

12

-1 -0.5 0 0.5 1

P
er

ce
nt

ag
e

Jitter (microseconds)

Mica2 mote with 1 timer

0

10

20

30

40

50

60

-15 -10 -5 0 5 10 15

P
er

ce
nt

ag
e

Jitter (microseconds)

Mica2 mote with 3 timers

0

10

20

30

40

50

60

70

-10000 -5000 0 5000 10000

P
er

ce
nt

ag
e

Jitter (microseconds)

Mica 2 mote with 2 timers and a compuatational task

0

1

2

3

4

5

6

7

8

9

10

-10000 -5000 0 5000 10000

P
er

ce
nt

ag
e

Jitter (microseconds)

EmTOS with a single timer

0

2

4

6

8

10

12

-10000 -5000 0 5000 10000

P
er

ce
nt

ag
e

Jitter (microseconds)

EmTOS with 3 timers

0

2

4

6

8

10

12

-10000 -5000 0 5000 10000

P
er

ce
nt

ag
e

Jitter (microseconds)

EmTOS with 2 timers and a computational task

Figure 6: Comparative analysis of timer jitter, between EmTOS and a Mica2. Each graph shows the distri-
bution of timer values, centered at the median value. The top row are results from a Mica2, and the bottom
row are the results from EmTOS.

EmView is also a logical place to put analysis tools, since
EmView is already gathering all the necessary data in one
place. We extended our new “Routing/Tree” EmView mod-
ule to include some tree analysis code that can output data
to a log file for later analysis. Other features, such as dis-
abling the EmView GUI and increased logging / replay ca-
pabilities, are left to future work.

5. PERFORMANCE ANALYSIS OF
EMTOS

In this Section, we will analyze the performance of Em-
TOS. Previously, we have discussed the ways in which the
performance of EmTOS emulation differs from the perfor-
mance of real motes running the same software. Determin-
ing whether these differences matter is a prerequisite for
drawing conclusions about the results of tests in emulation,
and for deciding whether or not to use EmTOS at all.

To measure the effect of EmTOS on performance, we per-
form two experiments. The first experiment measures timer
jitter for three different NesC programs, taking measure-
ments on both a Mica2 and on EmTOS. Then, the same
tests are run in an EmTOS simulation to measure the effect
of scaling on timing jitter. The second experiment mea-
sures jitter and latency in packet transmission through the
MoteNIC, and compares those results to packet transmis-
sions for native code on a Mica2.

After showing these basic performance metrics, we present
some measurements from a case study of ESS that compare
results from different emulation modes.

5.1 Comparative Timer Jitter in EmTOS
For our jitter measurements, we wrote three NesC appli-

cations, that are summarized in the table below. In each
case, the 200ms timer records a timestamp using SysTime
and schedules it to be sent back over the serial port.

Case 1 One timer, set for 200ms
Case 2 Three timers: 100ms, 200ms, 500ms
Case 3 One 200ms timer, and a 120ms timer that

runs a 20ms compute task

We selected these tasks partly to demonstrate that, while
TinyOS timers on the Mica2 can be quite accurate, they can
also have orders of magnitude variation, depending on what
else is going on in the system. This means that in a truly
modular design (i.e. one in which modules can be developed
independently), making assumptions about low timer jitter
may not be possible.

The results of these tests are shown in Figure 6. The first
thing to observe is that the EmTOS graphs (the bottom
row) are all uniformly distributed with 10ms of jitter. This
is caused by the Linux 10ms jiffy clock, which defines the
minimum granularity with which a process can wake for a
timer. Newer kernels support faster jiffy timers, and this
data suggests that a faster timer might improve EmTOS
timer performance.

The Mica2 experiments show a much wider range of per-
formance characteristics. In the single timer case, the timer
is extremely precise, hitting the target time as precisely as
we could measure. However, few applications other than
“Blink” run only one timer. In the three timer case, we see
more variation, with occasional fires late by 10µs. Based
on proportion, these late fires are most likely the result of
the 500ms timer being posted ahead of the 200ms timer, in-
curring the latency of posting and running an empty task.
In the compute task case, when the timer is posted behind
the lengthy compute task, it fires a full 10ms late, giving it
similar jitter bounds to EmTOS. While posting long tasks
might cause many other problems, the data demonstrates
the possibility that real applications that post numerous
tasks might see timer performance approaching EmTOS’s
jitter bounds.

5000

10000

15000

20000

25000

30000

35000

100 200

Ji
tte

r
(m

ic
ro

se
co

nd
s)

Number of nodes

Timer jitter vs node count for the three test cases

Max jitter
95th percentile jitter

Figure 7: Timer jitter for simulations of 100 and
200 EmTOS nodes. The three bars correspond to
our three applications, i.e. starting from the left:
one timer, three timers, and compute task.

Transceiver

PING sender
in EmTOS

RF channel Transceiver

PING receiver
in EmTOS

S
tack traversal tim

e

End-to-end (application) RTTEnd-to-end (application) RTT

Mote-only RTT

Ping sender RF channel Ping receiver

Transceiver

PING sender
in EmTOS

RF channel Transceiver

PING receiver
in EmTOS

S
tack traversal tim

e

End-to-end (application) RTTEnd-to-end (application) RTT

Mote-only RTT

Ping sender RF channel Ping receiver

Figure 8: Diagram of two “Ping” experiments, one
running a “Ping” application in an EmTOS emula-
tion, the other running “Ping” natively on Mica2.

5.2 Timer Jitter Scaling in EmSim
Given our performance results on jitter, the next question

to address is how that jitter is affected by scaling in a sim-
ulation. Figure 7 shows the maximum and 95th percentile
jitter values for 100 and 200 node simulations running our
three test applications. The choice of the 95th percentile
was based on our determination that the jitter is uniformly
distributed with outliers; thus 95% of the time the jitter is
uniformly distributed within the smaller range.

The experiments were run on a 2.7GHz dual Xeon with
512MB RAM. The results show that for lightly-loaded simu-
lations of up to 200 nodes, there is not a noticeable decrease
in performance. Both the one and three timer cases showed
a slight increase in the maximum jitter but the 95th per-
centile was not significantly changed. However, for the com-
pute task case the performance clearly starts to get worse
in the 200 nodes case.

Currently, there are some hard-coded limits in EmSim

0

2

4

6

8

10

12

60 80 100 120 140 160 180

P
er

ce
nt

ag
e

RTT (milliseconds)

Distribution of Round Trip Time for EmTOS vs Real Motes

EmTOS RTT
Real Mote RTT

Min Avg Max Stddev

EmTOS RTT 122.16 136.79 169.8 9.2178

Real Mote RTT 65.75 80.349 110.57 7.995

Stack Traversal 27.35 27.85 31.93 0.569

Figure 9: Distribution and statistics of latency (in
ms) for the EmTOS RTT and Real Mote RTT.
Statistics are also provided for the EmTOS stack
traversal time, i.e. the time required for a packet to
be sent from Transceiver to EmTOS and back.

that prevent simulations larger than 200 nodes. These limits
are not fundamentally difficult to fix, but there has been
little motivation to address them because most of the prior
use of EmSim has involved smaller numbers of nodes. While
extending the limit is not difficult, we anticipate that other
scaling issues may arise, such as increased scheduler latency
due to large numbers of processes. Most likely, scaling to
more complex simulations, and to more than 500 nodes, will
require splitting the load onto several machines and linking
their simulated channel models via a fast network.

5.3 Comparative Packet Latency in EmTOS
Along with timer performance, the other critical element

of a typical EmTOS application is the performance charac-
teristics of radio packet events. Relative to real motes, what
kind of latency and jitter can be expected using EmTOS?

To answer this question, we performed an experiment
in which we timestamped two independent “Ping” experi-
ments, one running between two real motes, and one running
between two EmTOS-based emulated motes. We then took
timestamps at different points in the path of the packet. The
experimental setup is shown in Figure 8. For these experi-
ments, the RF packets were 47 bytes, and the serial port was
running at 57,600 baud. The HostMote protocol added an
overhead of 8 bytes per packet to the serial transfer. In the
case of Ping running natively on motes, SysTime is used to
capture timestamps at the sender and receiver. In the case
of EmTOS, SysTime maps to gettimeofday(), and times-
tamps are captured at the EmTOS sender and receiver, as
well as within Transceiver.

The results of the experiment are shown in Figure 9. The
two distributions in the top graph are the distribution of
RTT for real motes and for EmTOS. As might be expected,
EmTOS shows and additional 60ms of latency. Interest-
ingly, the two distributions look almost identical, suggest-
ing that very little additional jitter is added to the timing

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 T

im
e

Hop-Count

Path-Length for One Sink In a 14-Node Network; All modes

Simulation-Sink1
Emulation-Sink1

Hybrid-Sink1
Real-Sink1

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 1 1.5 2 2.5 3 3.5 4 4.5 5

%
 T

im
e

Hop-Count

Path-Length for Two Sinks Far Away In a 14-Node Network; All modes

Simulation
Emulation

Hybrid
Real

Figure 10: Distributions of path length over 14 nodes and 90 minute runs. The graph on the left shows the
distribution of hopcounts for runs with one sink at node 1 (refer to Figure 5 for the topology). The graph on
the right shows the distribution for runs with one sink at node 1 and a second sink at node 14. In each case,
the system was run for 90 minutes in each of the four modes: Simulation, Emulation, Hybrid, and Real.

of the packet. This makes sense considering the scale of
the distribution, and considering our previous results that
showed that even in simulation environments with hundreds
of nodes the jitter was still dominated by the jiffy clock.

As a sanity check, the table also shows that the difference
between the EmTOS RTT minus twice the stack traversal
time is almost exactly equal to the real motes RTT.

While these tests address a single node, they do not tell
us for certain how a whole Emulation Array might behave.
If most of the additional jitter seen by an emulation server
is still under 10ms, then it shouldn’t be a problem, given
that the distribution of packet latencies on native motes is
about 30ms. However, we will need to conduct additional
experiments to verify this for certain.

5.4 Case Study: ESS
Our final results are culled from some experiments we con-

ducted in our recent work developing ESS. The purpose of
these experiments is to show some results drawn from a
real application that is currently under development. We
ran several experiments using our ceiling-mounted testbed
of 14 Mica2’s with sensor boards. The testbed spans an area
about 50m by 10m, with a topology as shown in Figure 5.

In these tests, we test two sink configurations. The single
sink case is run with a sink at node 1, in the upper-left corner
of the grid. The two-sink case places one sink at node 1, and
another at node 14, on the other side of the network.

For each configuration, we run ESS for 90 minutes, in
one of our four modes (Simulation, Emulation, Hybrid, and
Real). Using our visualization and analysis framework, we
collect data about each node once per second. For each node,
we record which sink it has currently selected as “best”,
and the current number of hops to that sink, as computed
according to the currently reported gradient state.

The graphs of the results are shown in Figure 10. There
are a few notable points about the graphs. First, it appears
that the overall path length performance is better for sim-
ulation and emulation, in that there are fewer paths with
many hops. We suspect that this is caused by the increased
latency seen in simulation and emulation modes, that slows
down the diffusion interest flood.

This version of TinyDiffusion schedules packets with a

100ms minimum delay, and adds an additional 200ms of
jitter. It also defines its gradient based on the first interest
packet it receives, subject to a minimum link quality, but
without regard to hop count or variations in link quality. It
is possible that these parameters rely on separation between
each round of flooding, but don’t provide enough separation
to work effectively.

The second point to observe is that two sinks has less of an
impact on hopcount than one might have imagined. While
there is a marginal improvement, it is not the 50% gain that
we had hoped for. Using our tools, we observed several phe-
nomena that might cause this problem. First, we observed
that limited neighbor table space often causes paths that are
much longer than what appears to be needed. This affects
both the single sink case and the dual sink case, because a
node can be close to a sink but still have a long path to it,
and thus have no short path to either sink. Second, we ob-
served some glitches in the hop count estimator implemented
by ESS that may be introducing additional problems.

While we may have identified several problems, fixing ESS
is not the subject of this paper. Rather, we use ESS as an
example to show how the tools help in the identification,
diagnosis and analysis of these kinds of problems.

6. RELATED WORK
Throughout the text, we have referred to the work most

related to this paper. In this section we will discuss a few
additional references that we didn’t mention in the text.

The ns-2 network simulator [19] has been used for many
years for simulations of networks, mainly in the context of
the Internet. While it has elements of the “real code” ap-
proach, maintaining real code in ns-2 is not as transparent
as it is in TOSSIM or EmSim. Many implementations of
network protocols use hard-to-maintain #ifdef’s to support
NS and link to its event model.

SensorSim [12] is a simulation framework for sensor net-
works that has many features in common with EmSim, in-
cluding the capability to run Hybrid simulations with real
nodes alongside simulated nodes. SensorSim has more well
developed sensor models and power modeling capabilities.
However, it is heavily integrated with the SensorWare mid-
dleware layer, and does not integrate easily to simulate sys-

tems running TinyOS or EmStar.
atemu [15] is a hardware-level simulator for motes. While

this would be helpful for debugging problems that required
very precise timing, it does not address the problem of het-
erogeneous systems.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we demonstrated a new capability to sim-

ulate a system of motes and microservers in its entirety, in
a variety of emulation modes. We showed how EmTOS al-
lows a microserver to participate in a mote network, and we
quantified some limits of its application. We also identified
areas of future work:

• Generality: We plan to provide support for Click [8]
and SNACK [4], as well as a modified version of Em-
TOS to support SOS-based2 mote applications.

• Scalability: We plan to use the EmSim TimeWarp
facility to implement a slower clock that can improve
timing accuracy as well as increase the scalability of
our simulations. Further improvements in scalability
may also result from improvements in the 2.6 Linux
kernel, including the constant time scheduler and the
faster jiffy timer. Supporting parallel simulations, as
suggested in Section 5.2, is more difficult but could
significantly increase scalability.

• Visibility: Support for funneling live data from a de-
ployment without requiring a backchannel to our anal-
ysis and visualization tools.

8. REFERENCES
[1] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton,

and J. Zhao. Habitat monitoring: Application driver
for wireless communications technology. In
Proceedings of the SIGCOMM Workshop on
Communications in Latin America and the Carribean,
Costa Rica, Apr. 2001.

[2] L. Girod, V. Bychkovskiy, J. Elson, and D. Estrin.
Locating tiny sensors in time and space: A case study.
In in Proceedings of ICCD 2002 (invited paper),
Freiburg, Germany, September 2002.
http://lecs.cs.ucla.edu/Publications.

[3] L. Girod, J. Elson, A. Cerpa, T. Stathopoulos,
N. Ramanathan, and D. Estrin. Emstar: a software
environment for developing and deploying wireless
sensor networks. In Proc. of the 2004 USENIX Tech.
Conf., Boston, MA, 2004. USENIX Association.

[4] B. Greenstein, E. Kohler, and D. Estrin. A sensor
network application construction kit (snack). In Proc.
of the 2nd Intl. Conf. on Embedded Networked Sensor
Systems. ACM Press, 2004.

[5] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for
networked sensors. In Proc. of the 9th Intl. Conf. on
Arch. Support for Prog. Lang. and Oper. Sys.
(ASPLOS-IX), pages 93–104, Cambridge, MA, USA,
November 2000. ACM.

[6] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next
century challenges: Mobile networking for smart dust.

2SOS is a new mote OS in development at NESL/UCLA.

In Proc. of the 5th ACM/IEEE Intl. Conf. on Mobile
Computing and Networking (MobiCom 99), N.Y.,
August ” 15–20” 1999. ACM.

[7] W. J. Kaiser, G. J. Pottie, M. Srivastava, G. S.
Sukhatme, J. Villasenor, and D. Estrin. Networked
infomechanical systems (nims) for ambient
intelligence. Technical Report CENS Technical Report
0031, CENS/UCLA, Dec. 2003.

[8] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The click modular router. ACM Trans. on
Comp. Sys., 18(3):263–297, August 2000.

[9] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM:
Accurate and Scalable Simulations of Entire TinyOS
Applications. In Sensys, Los Angeles, 2003.

[10] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler,
and J. Anderson. Wireless Sensor Networks for
Habitat Monitoring. In WSNA, 2002.

[11] W. Merrill, L. Girod, J. Elson, K. Sohrabi,
F. Newberg, and W. Kaiser. Autonomous position
location in distributed, embedded, wireless systems. In
the IEEE CAS Workshop on Wireless Comm. and
Networking, Pasadena, CA, 2002.

[12] A. S. S. Park and M. B. Srivastava. Sensorsim: a
simulation framework for sensor networks. In Proc. of
the 3rd ACM Intl. Workshop on Modeling, Analysis
and Sim. of Wireless and Mobile Sys., pages 104–111,
Boston, MA USA, 2000.

[13] G. Werner-Allen and M. Welsh. Motelab: A
web-enabled sensor network testbed.
http://motelab.eecs.harvard.edu.

[14] W. Ye, J. Heidemann, and D. Estrin. An
energy-efficient MAC protocol for wireless sensor
networks. In Proceedings of IEEE INFOCOM, 2002.

[15] atemu - sensor network emulator / simulator /
debugger.
http://www.cshcn.umd.edu/research/atemu/.

[16] Cens seismic array. http://www.cens.ucla.edu/
Project-Descriptions/Seismology/index.html.

[17] Extensible sensing system: An advanced network
design for microclimate sensing.
http://www.cens.ucla.edu/.

[18] James reserve.
http://cens.ucla.edu/Research/Applications.

[19] The network simulator ns-2. http:
//www.isi.edu/nsnam/ns/ns-documentation.html.

