August 29 -September 3, 2005

Schloss Dagstuhl, Germany

From Sensors to Context

Summer School on Wireless Sensor Networks and Smart Objects

Albrecht Schmidt http://www.hcilab.org/albrecht/

ei

- 1. Motivation and Introduction
- 2. Sensors
- 3. Sensor Output and Connections
- 4. Power and Sensors
- 5. Designing a Sensor System
- 6. Low-level Processing
- 7. Perceptual Components
- 8. Matching and Learning
- 9. Context and Situation

Albrecht Schmidt, 2005 - From Sensors to Context Summer School on Wireless Sensor Networks and Smart Objects

How is a situation characterized using sensor value?

Example: Someone is sleeping in a room in a care home

Sensors

- Motion sensor overseeing the room (ON/OFF)
- Weight sensor in each leg of the bed (0-100)
- Light sensor (0-100)
- Door sensor (OPEN/CLOSE)
- Pressure mat in a rag on the floor (ON/OFF)
- Microphone providing noise level (0-100)

Find a function that takes sensor values as input and that tells if someone in sleeping in the room or not

Albrecht Schmidt, 2005 - From Sensors to Context Summer School on Wireless Sensor Networks and Smart Objects

5

How is a situation characterized using sensor value?

Example: Someone is sleeping in a room in a care home

Issues

- Sensing over time required
- Calibration (at least initially)
- Function is dependent on the sensor setup and the user
- Function is not always correct (exceptions)
- Some sensors don't contribute
- Learning as an option

Even in this simple case it is not trivial to set-up system

Albrecht Schmidt, 2005 - From Sensors to Context Summer School on Wireless Sensor Networks and Smart Objects

What is a Sensor?

- A sensor is a technological device or biological organ that detects, or senses, a signal or physical condition and chemical compounds.
- A electronic, electrical, micro-mechanic or electromechanical device that responds to a stimulus, such as heat, light, or pressure, and generates a signal that can be measured or interpreted.
- A function of time that returns a value (binary, number, vector, array) dependent on a measured parameter.

Albrecht Schmidt, 2005 - From Sensors to Context Summer School on Wireless Sensor Networks and Smart Objects

Some "classical" Sensors

- light sensors: photocells, phototransistors, CCDs,...
- sound sensors: microphones, seismic sensors...
- temperature sensors: thermometers, thermocouples, thermistors, ...
- radiation sensors: Geiger counter, dosimeter
- electrical resistance sensors
- electrical current sensors
- electrical voltage sensors
- electrical power sensors

0

magnetism sensors: magnetic compass, Hall effect device, ...

See http://en.wikipedia.org/wiki/Sensor

pressure sensors: barometer, pressure gauge, ...

- gas and liquid flow sensors
- chemical sensors: pH glass electrodes, lambda sensors, ...
- motion sensors: speedometer, tachometer, ...
- orientation sensors: gyroscope accelerometer, ...
- mechanical sensors: switch, strain gauge, ...
- proximity sensor
- . . .

Albrecht Schmidt, 2005 - From Sensors to Context e Summer School on Wireless Sensor Networks and Smart Objects

```
15
```


 Sensing Observation from the outside (extrinsic) Sensing from within (intrinsic) combined 		 Context used by Entity Observer Anyone 	
 – combin 	eu		
– combin		Context user	
– combin	Entity	Context user Observer	Anyone
– combin Intrinsic	Entity No communication	Context user Observer communication	Anyone communication
 – combin <i>Intrinsic</i> <i>Extrinsic</i> 	Entity Communication	Context user Observer communication No communication	Anyone communication communication

Basic Statistics Motivation - data gathered is not perfect (e.g. outliers, faulty readings) - Features (e.g. change, average) are of interest rather than a single value Basic statistics are in many cases computationally cheap Can help to reduce effort for calibration Typical Features - average, median, range, interguartile range, variance, standard deviation Change of sensor values vs. absolute values Albrecht Schmidt, 2005 - From Sensors to Context 48

Summer School on Wireless Sensor Networks and Smart Objects

Learning and adaptation

Concept of Learning/ adaptation	Usage	Algorithms	examples
No learning, fixed	Contexts are globally valid	Design time data analysis	Static Rule based systems, Preset Supervised NN
Learning phase	Contexts are stable but different depending on the use case	Training and/or data analysis capabilities built in	Dynamic Rule based systems Supervised Neural nets
Fully adaptive, always learning	Contexts are changing over time	Adaptive algorithms	SOM, ISL

