
Research Group

Distributed Systems
1/75

Universität Stuttgart

IPVS

Middleware Approaches for Sensor
Networks

Summer School on WSNs and Smart Objects
Schloss Dagstuhl, Aug. 29th – Sept. 3rd, 2005

Dr. Pedro José Marrón

pedro.marron@informatik.uni-stuttgart.de

University of Stuttgart

IPVS, Distributed Systems Group

Research Group

Distributed Systems
2/75

Universität Stuttgart

IPVS

Outline

Motivation

Challenges in the development of middleware solutions

Classification of middleware systems
Classic middleware
Data-centric middleware
Virtual Machines
Adaptive middleware

Comparison

Conclusion



Research Group

Distributed Systems
3/75

Universität Stuttgart

IPVS

Sensor Network Applications
Habitat Monitoring Applications

Great Duck Island (GDI) System
Hogthorb – Sow heat period monitoring

Environment Observation and Forecasting Systems
ALERT – National Weather Service
Floodnet – River monitoring in UK

Health Applications
Care in the Community – UK
UbiCare – UK

Military Applications
WINS – Surveillance and exploration
Odyssey – Underwater surveillance

Research Group

Distributed Systems
4/75

Universität Stuttgart

IPVS

Sensor Network Applications

Intelligent Building Monitoring
Structure Health Monitoring System – US, Canada
Sustainable Bridges – EU

Intelligent Traffic Systems
Safe Traffic – Sweden
Vehicular Networks (CarTalk 2000) – EU

Smart Room Environments
Aware Home – Georgia Institute of Technology
Sense-R-Us – University of Stuttgart

. . . and many more



Research Group

Distributed Systems
5/75

Universität Stuttgart

IPVS

Sensor Network Applications

Intelligent Building Monitoring
Structure Health Monitoring System – US, Canada

Sustainable Bridges – EU

Intelligent Traffic Systems/Vehicular Networks
Safe Traffic – Sweden
Vehicular Networks (CarTalk 2000) – EU

Smart Room Environments
Aware Home – Georgia Tech
Sense-R-Us – University of Stuttgart

. . . and many more

Research Group

Distributed Systems
6/75

Universität Stuttgart

IPVS

Sustainable Bridges

Goal: Cost-effective monitoring of bridges to detect
structural defects

Simple and complex data:
temperature, vibration

Noise detection and
localization

Data sampling: 40 KHz!

Time synch.: 60 μs

Sensor lifetime: 3 years!

Hybrid network topologyStatic sensor nodes



Research Group

Distributed Systems
7/75

Universität Stuttgart

IPVS

Vehicular Networks – CarTalk

Goal: Development of a cooperative driver assistance
system

Provide an Ad-Hoc warning
system for:

Traffic jams
Accidents
Lane/highway merging

Standard query interface:
Avg speed/temperature,
road conditions
Location, position

Research Group

Distributed Systems
8/75

Universität Stuttgart

IPVS

Vehicular Networks – Properties

Wide range of sensor data
continuously gathered

Speed, position, tire pressure

Sensor data is highly dynamic

Sensors located within the car
Communication plays a crucial role in the system

Processing of data must be performed in a timely
manner

Energy constraints are not so important

Sensor nodes are mobile

Ad-hoc network topology



Research Group

Distributed Systems
9/75

Universität Stuttgart

IPVS

Application Commonalities

Most sensor network applications:

Are data-centric and/or data-driven
Provide some form of monitoring

Are state-based
Their needs might change depending on the current
state of the application

Must be fault-tolerant with respect to failures and/or
environmental conditions

Require high availability of sensors and nodes

Must be either flexible or reconfigurable

Research Group

Distributed Systems
10/75

Universität Stuttgart

IPVS

Application Differences
Property Sust. Bridges VANETs

Data Model Specific Generic

Query Model Push-based Pull-based

Prog. Paradigm Pub/Sub Query-based

Topology hybrid ad-hoc

Dist. Transparency

Energy

Mobility

Real-time

Time Synch.

Reconfiguration

Not important Medium Very important



Research Group

Distributed Systems
11/75

Universität Stuttgart

IPVS

Hardware Platforms

Moteiv Telos

Teco Particle Teco Node

BTNode

Smartdust

Crossbow MICAs

Research Group

Distributed Systems
12/75

Universität Stuttgart

IPVS

Problems to Solve

Redundancy and reimplementation of code

Similar abstractions for many kinds of applications

In the presence of:
Highly heterogeneous applications
Highly heterogeneous hardware platforms
Very different algorithmic complexity

Middleware to the rescue!



Research Group

Distributed Systems
13/75

Universität Stuttgart

IPVS

Challenges of Middleware Systems

Abstraction support:
Hide the complexity of each individual node and
provide a holistic view of the network
Data-centric, publish-subscribe, event systems
Support a wide range of applications and hardware
platforms

Efficiency:
Be energy efficient and “resource-friendly”
Have cross-layer capabilities for optimization

Programmability:
Provide support for configuration and reconfiguration
Policy creation and distribution

Research Group

Distributed Systems
14/75

Universität Stuttgart

IPVS

Challenges of Middleware Systems

Adaptability:
Support for algorithms with adaptive performance
characteristics (Adaptive fidelity algorithms)
Reactive adaptation requires system monitoring

Scalability: On the number of nodes, users, etc.

Topology: Optimal type of network configuration
ad-hoc, infrastructure, hierarchical, hybrid

Security: Regarding data processing, data
communication, device tampering, etc.

Non-functional properties (QoS):
Timeliness, availability, fault-tolerance



Research Group

Distributed Systems
15/75

Universität Stuttgart

IPVS

Classification of Middleware Systems

One possible way is to concentrate on the type of
abstraction level

“Classic”: Hide the complexity of network
communication and data transfer

Data-centric: Provide the abstraction of the network as
a database

Virtual Machines: The network is a collection of code
interpreters that take care of running programs/scripts

Adaptive: Main focus is on adaptability

Let us look at current middleware systems

Research Group

Distributed Systems
16/75

Universität Stuttgart

IPVS

Classification of Middleware Systems

“Classic” Data-centric Virtual Machines Adaptive

Impala Cougar Maté MiLAN

TinyLime TinyDB Smart Messages AutoSeC

EnviroTrack DSWare Agilla TinyCubus

Mires SINA SensorWare

Hood

Only the most relevant projects are listed in this table



Research Group

Distributed Systems
17/75

Universität Stuttgart

IPVS

Classification of Middleware Systems

“Classic” Data-centric Virtual Machines Adaptive

Impala Cougar Maté MiLAN

TinyLime TinyDB Smart Messages AutoSeC

EnviroTrack DSWare Agilla TinyCubus

Mires SINA SensorWare

Hood

Research Group

Distributed Systems
18/75

Universität Stuttgart

IPVS

“Classic” Middleware



Research Group

Distributed Systems
19/75

Universität Stuttgart

IPVS

Features of “classic” middleware

Usually provide abstractions regarding:
Communication primitives
Communication paradigms (e.g. publish/subscribe)
Application requirements

Some give more importance to re-programmability and
adaptation

Similar topology consideration, although mobility and
scalability are still hard issues

Most “classic” middleware projects are not concerned
about security and QoS

Research Group

Distributed Systems
20/75

Universität Stuttgart

IPVS

Features in more Detail

Impala TinyLime EnviroTrack

Abstraction communication,
code installation

tuplespace, data
sharing

tracking

Efficiency energy, cross-layer energy energy

Programmability versioning, event-
based

one-time one-time

Adaptability state-machine data loss

Scalability herd-size, iPAQ

Topology ad-hoc, mobile ad-hoc hierarchical

Security

QoS fault-tolerance fault-tolerance



Research Group

Distributed Systems
21/75

Universität Stuttgart

IPVS

Features in more Detail

Mires Hood

Abstraction pub/sub, message-
oriented

neighborhood

Efficiency energy data caching

Programmability one-time, topics one-time

Adaptability parameterization

Scalability maximum number
of neighbors

Topology multi-hop single-hop

Security (planned)

QoS

Research Group

Distributed Systems
22/75

Universität Stuttgart

IPVS

The Impala Middleware

Goal: Ensure reliability and ease of upgrades for
long-running sensor network applications

Philosophy: Mobile (wild) environments require
continuous fine-tuning

Methodology:
Event-based programming model
Implementation as part of the ZebraNet project
Design rationale:

Modularity
Correctness
Ease of Updates
Energy efficiency



Research Group

Distributed Systems
23/75

Universität Stuttgart

IPVS

Impala Architecture

Research Group

Distributed Systems
24/75

Universität Stuttgart

IPVS

Application Adapter

Adaptation is required to:
Increase performance by re-parameterizing the
application
Improve robustness choosing alternative protocols in
case of hardware failures

Adaptation Finite State Machines are used for
parameter-based adaptation

P0 = Avg. num. neighbors
P1 = battery level

Device-based adaptation is performed on the basis of
Application Device Tables



Research Group

Distributed Systems
25/75

Universität Stuttgart

IPVS

Application Updater

Must be able to handle the following issues:
Incomplete updates
On-the-fly update of code while executing
Contemporaneous updates
Inconsistent updates
Propagation protocol
Code memory management

Approach taken by the updater:
Linking performed on the nodes
Use of version numbers
Epidemic software transmission

Research Group

Distributed Systems
26/75

Universität Stuttgart

IPVS

Evaluation of Impala

Advantages
Robust code update mechanism that ensures the
reliability of long-running applications
Provides adaptation capabilities
On-the-fly updates
Fault-tolerance

Limitations
Heterogeneity is not an issue
Adaptation is limited to the capabilities of the state
machine
Application domain is rather simplistic



Research Group

Distributed Systems
27/75

Universität Stuttgart

IPVS

Data-centric Middleware

Research Group

Distributed Systems
28/75

Universität Stuttgart

IPVS

Features

Abstractions revolve around data and not
communication

Database-like abstractions
Specially designed for sensor networks

Focus on efficient evaluation of query plans

Most rely on some form of SQL-like language

Adaptation and reconfiguration is for most projects not
an issue

Injection of queries from outside the network

Mostly no consideration of security or QoS issues



Research Group

Distributed Systems
29/75

Universität Stuttgart

IPVS

Features in more Detail

Cougar TinyDB DSWare SINA

Abstraction database database real-time data
service

distributed
database

Efficiency energy, multi-
query plan

energy, query
plan

energy

Programmability SQL SQL, aggre-
gation

SQL, events SQTL

Adaptability

Scalability multiple
queries

location-
aware

Topology base station base station

Security

QoS real-time, reli-
able storage

Research Group

Distributed Systems
30/75

Universität Stuttgart

IPVS

The TinyDB Middleware

Goal: Development of an acquisitional query processor
layer for sensor networks

Philosophy:
“Efficient data acquisition is our business”
“Only continuous queries are important”

Methodology:
Implementation as a component of TinyOS
Definition of an acquisitional query language (ACQL)
In-network query processing and classification of
query types

Reduce communication overhead
Reduce energy consumption



Research Group

Distributed Systems
31/75

Universität Stuttgart

IPVS

Acquisitional Query Language

Data model:
Entire sensor network is a single table
Columns contain all the attributes in the network
Rows specify the individual sensor data

Query model:
All queries create a continuous data stream
Query language is SQL-based with new language
features

Traditional SQL with aggregation operators
Event processing capabilities
Creation of storage points
Specification of lifetime queries

Research Group

Distributed Systems
32/75

Universität Stuttgart

IPVS

ACQL Examples

Event-based queries:
ON EVENT bird-detector(loc)

SELECT AVG(light), AVG(temp), event.loc

FROM sensors AS s WHERE dist(s.loc, event.loc) < 10m

SAMPLE INTERVAL 2s FOR 30s

Storage-based queries:
CREATE

STORAGE POINT recentlight SIZE 5s

AS (SELECT nodeid, light FROM sensors SAMPLE INTERVAL 2s)

Lifetime-based queries:
SELECT nodeid, accel

FROM sensors

LIFETIME 30 days



Research Group

Distributed Systems
33/75

Universität Stuttgart

IPVS

Query Processing

TinyDB performs power-based optimizations
Metadata sent periodically to the sink for optimization
Ordering of sampling and predicates
Event query batching

For processing, TinyDB uses Semantic Routing Trees
(SRTs)

Choice of parent based on semantic information
Index implemented as a network overlay
Flooding to announce query
Parent selection

Research Group

Distributed Systems
34/75

Universität Stuttgart

IPVS

Query Processing (cont.)

Performed in two steps:
Sampling and local operator execution
Data propagation

Sampling step
Allow nodes to sleep for as much of each epoch as
possible
Computation of a partial state record

Data propagation
Prioritized based on three schemes: naive, winavg
and delta
Adaptation of transmission and sampling rate



Research Group

Distributed Systems
35/75

Universität Stuttgart

IPVS

In-network Aggregation Framework

TinyDB supports aggregation functions conforming to:

Aggn = { finit , fmerge, fevaluate}

finit{a0} → < a0 >

fmerge{< a1 >,< a2 >} → < a12 >

fevaluate{< a1 >} → aggregate

Example:
AVGinit{v} → < v,1 >

AVGmerge{< S1,C1 >,< S2,C2 >} → < S1 +S2,C1 +C2 >

AVGevaluate{< S1,C1 >} → S1/C1

Research Group

Distributed Systems
36/75

Universität Stuttgart

IPVS

In-network Aggregation Example

Example with the
COUNT function:
SELECT COUNT(*)

FROM sensors

A

CB

D

F

E



Research Group

Distributed Systems
37/75

Universität Stuttgart

IPVS

In-network Aggregation Example

Example with the
COUNT function:
SELECT COUNT(*)

FROM sensors

A queries its neigh-
bors

A

CB

D

F

E

Q Q

Research Group

Distributed Systems
38/75

Universität Stuttgart

IPVS

In-network Aggregation Example

Example with the
COUNT function:
SELECT COUNT(*)

FROM sensors

A queries its
neighbors

B and C respond
and query their
neighbors

A believes COUNT
is 3

A

CB

D

F

E

Q

QQ
Q

R R



Research Group

Distributed Systems
39/75

Universität Stuttgart

IPVS

In-network Aggregation Example

Example with the
COUNT function:
SELECT COUNT(*)

FROM sensors

B and C query their
neighbors

D and F respond to
just one parent

A believes COUNT
is 5

A

CB

D

F

E

R

R R

Q Q

Q

R

Research Group

Distributed Systems
40/75

Universität Stuttgart

IPVS

In-network Aggregation Example

Example with the
COUNT function:
SELECT COUNT(*)

FROM sensors

E starts responding
to D

Aggregation tree is
fully deployed

A believes COUNT
is 6

A

CB

D

F

E

R

R R

R

R



Research Group

Distributed Systems
41/75

Universität Stuttgart

IPVS

Evaluation of TinyDB

Advantages
Nice database abstraction on top of a generic sensor
network operating system
Powerful programming abstraction
Aggregation functions are extensible
Actuators integrated in the operating system

Limitations
Reconfiguration is not possible
Applications have no control over optimization
parameters
Applications are required to provide most services

Research Group

Distributed Systems
42/75

Universität Stuttgart

IPVS

Virtual Machines



Research Group

Distributed Systems
43/75

Universität Stuttgart

IPVS

Features

Provide the flexibility of a complete computing system in
each sensor node

Flexibility of the virtual machine environment is
important
Smart message, active message, mobile agent
abstractions

Energy considerations play a crucial role

Overhead associated with running the virtual machine

Mostly available for environments with hardware with
more capacity (iPAQs vs. MICA2 motes)

Research Group

Distributed Systems
44/75

Universität Stuttgart

IPVS

Features in more Detail
Maté Smart Messages Agilla SensorWare

Abstraction program cap-
sules

agents (mes-
sages), com-
munication

mobile
agents, tu-
plespaces

TCL-scripts,
active sensor

Efficiency energy energy energy emergent, en-
ergy

Programmability configurable
at compilation

Java-based based on
Maté

TCL (with ex-
tensions)

Adaptability code migra-
tion

message mi-
gration

agent migra-
tion

code migra-
tion

Scalability Java iPAQs

Topology mobile ad-hoc multi-hop

Security (planned) trust, mali-
cious SMs

QoS fault-tolerant



Research Group

Distributed Systems
45/75

Universität Stuttgart

IPVS

The Maté Virtual Machine

Goal: Small, efficient virtual machine implementation
for sensor networks

Philosophy: Efficient sensor reprogramming is best
performed with capsules in a virtual machine

Methodology:
Implemented on top of TinyOS
Based on Active Message technology
Viral solution to propagation of programs, which can
be broken into capsules
Configurable virtual machine engine for the
execution of capsules

Research Group

Distributed Systems
46/75

Universität Stuttgart

IPVS

Virtual Machine Configuration

Virtual machine configuration
Selection of a language
Selection of events
Selection of primitives

Generation of files

Execution of programs and/or scripts

basic 00iiiiii i = instruction

s-class 01iiixxx i = instruction, x = argument

x-class 1ixxxxxx i = instruction, x = argument

8 user-defined instructions



Research Group

Distributed Systems
47/75

Universität Stuttgart

IPVS

Code Execution

Maté is a stack-based architecture

It uses three execution contexts
Clock timers
Message receptions
Message send requests

Each context has two stacks: operand and return
address

Operand types: values, sensor readings and messages

Data sharing among contexts by means of a single
shared variable

Research Group

Distributed Systems
48/75

Universität Stuttgart

IPVS

Code Execution Example

pushc 1 # Push one onto operand stack

add # Add the one to the stored counter

copy # Copy the new counter value

pushc 7

and # Take the bottom 3 bits of copy

putled # Set the LEDs to these three bits

halt

Very simple program that just takes a value from the
stack and sends it to the LEDs for visualization

Series of instructions combined in capsules of up to 24
instructions



Research Group

Distributed Systems
49/75

Universität Stuttgart

IPVS

Code Capsules and Execution

Every code capsule includes type and version
information

Four types of capsules:
Message send capsules
Message receive capsules
Timer capsules
Subroutine capsules

Use of version numbers to implement code infection
throughout the network

Constrained execution environment helps take care of
malicious capsules

Research Group

Distributed Systems
50/75

Universität Stuttgart

IPVS

Evaluation of Maté

Advantages
Increased security by the use of a virtual machine
Code size reduced due to the use of common
opcodes
Configurable virtual machine
Epidemic capsule distribution method

Limitations
Energy consumption for long-running and/or
complex applications is prohibitive
All applications must fit the defined instruction set
Run-time overhead due to virtual machine execution



Research Group

Distributed Systems
51/75

Universität Stuttgart

IPVS

Adaptive Middleware

Research Group

Distributed Systems
52/75

Universität Stuttgart

IPVS

Features

Independently of the specific abstraction, adaptation
plays a crucial role

Proactive adaptation allows the application to specify
under which conditions should be adapted
Reactive adaptation monitors the system and reacts
accordingly

Cross-layer and, in general, optimization is key

Scalability and security is normally not an issue for
adaptive middleware solutions

QoS and the ability to react to the environment are a
common trend



Research Group

Distributed Systems
53/75

Universität Stuttgart

IPVS

Features in more Detail

MiLAN AutoSeC TinyCubus

Abstraction communication (re-
mote invocation)

dynamic service
brokering

component-based
system

Efficiency energy-aware,
cross-layer

cross-layer optim. parameters,
cross-layer

Programmability image component

Adaptability proactive proactive proactive, reactive

Scalability

Topology infrastructure ad-hoc, hybrid

Security key exchange

QoS fault-tolerance, QoS
support

QoS fault-tolerance, QoS

Research Group

Distributed Systems
54/75

Universität Stuttgart

IPVS

The TinyCubus Project

Goal: Development of a generic reconfigurable system
software for sensor networks

Philosophy:
“Flexibility and adaptation are the key issues”

Methodology:
Implementation on top of TinyOS
Definition of generic frameworks to allow for flexibility
and adaptation
Provision of a set of standard components

System components
Data management and querying components



Research Group

Distributed Systems
55/75

Universität Stuttgart

IPVS

TinyCubus Architecture

A0 A1 Am

S0 S1 Sn

O2

O1

S 21S S 3

A 1

A 2

A 3

Ti
ny

 C
on

fig
ur

at
io

n 
E

ng
in

e

S
ta

te
 R

ep
os

ito
ry

To
po

lo
gy

 M
an

ag
er

. . .

Hardware Abstraction Layer

TinyOS

A
pp

. R
eq

.

Sys. Param.

Opt. P
ar

am
.

Ti
ny

 C
ro

ss
 L

ay
er

 F
ra

m
ew

or
k

Tiny Data Mgmt. Framework Data Mgmt. Components
System Components

User Defined Components

TinyCubus

Application Components

Operating System/Hardware

Research Group

Distributed Systems
56/75

Universität Stuttgart

IPVS

Tiny Data Mgmt. Framework
Goal: Provide a set of standard and adaptive data
management components

Tasks:
Choose the best set of components based on three
dimensions:

System parameters: node density
Application requirements: consistency
Optimization parameters: energy, communication

Provide a set of system components such as time
synchronization, broadcast strategies, etc.
Provide a set of data management components:
replication, aggregation, consistency, etc.

Adaptation and optimization strategies



Research Group

Distributed Systems
57/75

Universität Stuttgart

IPVS

Tiny Data Mgmt. Framework

O2

O1

S 21S S 3

A 1

A 2

A 3

S 2

O1

A
pp

. R
eq

.

Opt. P
ar

am
.

Sys. Param.

Policies:

size:1804
symbols:f1,f2,v3,...
relocations:f1-1BF,... optional: bwidth

(S2,A1,O2)
(S2-S3,A3,O1)

required: roles,temp

P6

importantnot import.

P5

Meta

TinyCubus

Code
Dependencies

Data Data

low medium high

P3

P2 P4

P1

Dependencies

Research Group

Distributed Systems
58/75

Universität Stuttgart

IPVS

Tiny Cross-Layer Framework

Goal: Generic support for parameterization of
components and applications

Tasks:
Support for callbacks and/or user-level functions
State repository manages cross-layer data available
from system and application components
Runtime support for cross-layer interactions
Distributed state management



Research Group

Distributed Systems
59/75

Universität Stuttgart

IPVS

Tiny Cross-Layer Framework

Sample state repository

Name Type Publishers

roles

comp

pol

temp

bwidth

I

I

I

float

int

roles

comp

pol

Subscribers Data

(system)

(system)

(system)

C1,C5

C2 req:C5,opt:C3

req:C4,C5

(system)

(system)

req:C3 n1={r1}

n1={C1,C2,C7}

n3=24.01

(n1,n3)=42

n1=(S1,(10,27,35))

Research Group

Distributed Systems
60/75

Universität Stuttgart

IPVS

Tiny Configuration Engine

Goal: Support for (re)configuration of system and
application components

Tasks:
Allows for the configuration/initialization of nodes
using wireless technology
Determination of roles based on user specifications
Topology management
Encapsulation of access control policies for dynamic
reconfiguration
Management of the current set of system and
application components available at the sensor node



Research Group

Distributed Systems
61/75

Universität Stuttgart

IPVS

Tiny Configuration Engine

(Re-)Configuration process

Radio

External Flash

Program Memory

0000 0000 0000 0000

Program

Component
B’

Free

1

3

2

4

5FA1 0104 0A64 32F8

Free

Program

Boot loader

Internal EEPROM
Sym. table diffs.

Free

5FA1

0104

5

Component A

Component B

Component C

Research Group

Distributed Systems
62/75

Universität Stuttgart

IPVS

TinyCubus Integration

O2

O1

S 2 S 3

A 1

A 2

A 3

1S
1n

2n

3n

6n

5n

4n A
pp

. R
eq

.

Opt. P
ar

am
.

Sys. Param.

Meta

TinyCubus

Code
Dependencies

Data Data
Dependencies

Name Type Publishers

roles

comp

pol

temp

bwidth

I

I

I

float

int

roles

comp

pol

Subscribers Data

(system)

(system)

(system)

C1,C5

C2 req:C5,opt:C3

req:C4,C5

(system)

(system)

req:C3 n1={r1}

n1={C1,C2,C7}

n3=24.01

(n1,n3)=42

n1=(S1,(10,27,35))



Research Group

Distributed Systems
63/75

Universität Stuttgart

IPVS

Evaluation of TinyCubus

Advantages
Flexibility allows it to be used in very different
environments
Classification of components allows for efficient code
selected both at compile-time and at runtime
Cross-layer support allows for application
optimizations to take place

Limitations
Overhead might be prohibitive in some environments
Adaptation policies are currently static
Scalability needs to be studied more closely

Research Group

Distributed Systems
64/75

Universität Stuttgart

IPVS

Comparison and Conclusions

As usual, there are quite a few ways to solve the same
problem

Which type of middleware is optimal depends on:
Characteristics of the specific application at hand
Characteristics of the environment
Optimization criteria

Adaptive middleware solutions offer some of the
needed flexibility

Sometimes the overhead is just not worth it

Without adaptation, “if all you have is a hammer,
everything looks like a nail”



Research Group

Distributed Systems
65/75

Universität Stuttgart

IPVS

Comparison and Conclusions

There is still a lot of work to do:
Complex data processing

Multi-query optimizations
Operator placement

System architectures for data processing
Adaptation/optimization strategies
Streaming
Support for mobility
Hybrid network topologies
Miniaturization of sensors

This poses many interesting challenges!

Research Group

Distributed Systems
66/75

Universität Stuttgart

IPVS

Thank You for Your Attention

Dr. Pedro José Marrón

University of Stuttgart
IPVS, Distributed Systems Group

Universitätsstr. 38
D-70569 Stuttgart

Germany

Phone: +49-711-7816-223
Fax: +49-711-7816-424

pedro.marron@informatik.uni-stuttgart.de



Research Group

Distributed Systems
67/75

Universität Stuttgart

IPVS

References

Introduction:

Deborah Estrin, Ramesh Govindan, John Heidemann and Satish
Kumar. Next Century Challenges: Scalable Coordination in
Sensor Networks. Proc. of MobiCom ’99, 1999

Ian F. Akyildiz, W. Su, Yogesh Sankarasubramaniam and Erdal
Cayirci. Wireless Sensor Networks: A Survey. Computer
Networks, Vol. 38, No. 4, 2002

Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler
and Kristofer Pister. System Architecture Directions for
Networked Sensors. Proc. of ASPLOS ’00, 2000

MICA2 Platform. http://www.xbow.com

Telos Platform. http://www.moteiv.com

BTNodes Platform. http://www.btnode.ethz.ch

Research Group

Distributed Systems
68/75

Universität Stuttgart

IPVS

References

Middleware Challenges:

Kay Römer, Oliver Kasten and Friedemann Mattern. Middleware
Challenges for Wireless Sensor Networks. Mobile Computing
and Communications Review, Vol. 6, Nr. 2, 2002

Kirsten Terfloth and Jochen Shiller. Driving Forces behind
Middleware Concepts for Wireless Sensor Networks. Proc. of the
REALWSN Workshop, 2005

“Classic” Middleware:

Ting Liu and Margaret Martonosi. Impala: A Middleware System
for Managing Autonomic, Parallel Sensor Systems. ACM
SIGPLAN, 2003



Research Group

Distributed Systems
69/75

Universität Stuttgart

IPVS

References

“Classic” Middleware:

Ting Liu, Christopher M. Sadler, Pei Zhang and Margaret
Martonosi. Implementing Software on Resource-Constrained
Mobile Sensors: Experiences with Impala and ZebraNet. ACM
MobiSys, 2004

Carlo Curino, Matteo Giani, Marco Giorgetta and Alessandro
Giusti. Tiny Lime: Bridging Mobile and Sensor Networks through
Middleware. Proc. PerCom 2005, 2005

T. Abdelzaher, B. Blum et al. EnviroTrack: Towards an
Environmental Computing Paradigm for Distributed Sensor
Networks. Proc. ICDCS 2004, 2004

Research Group

Distributed Systems
70/75

Universität Stuttgart

IPVS

References

“Classic” Middleware:

Eduardo Souto, Germano Guimarães, Glauco Vasconcelos,
Mardoqueu Vieira, Nelson Rosa and Carlos Ferraz. A
Message-Oriented Middleware for Sensor Networks. Proc.
Workshop on Middleware for Pervasive and Ad-Hoc Computing,
2004

Kamin Whitehouse, Cory Sharp, Eric Brewer and David Culler.
Hood: A Neighborhood Abstraction for Sensor Networks. Proc.
MobiSys 2004, 2004

Data-centric Middleware:

Yong Yao and Johannes E. Gehrke. Query Processing in Sensor
Networks. Proc. of the First Biennial Conference on Innovative
Data Systems Research (CIDR 2003), 2003



Research Group

Distributed Systems
71/75

Universität Stuttgart

IPVS

References
Data-centric Middleware:

Philippe Bonnet, Johannes E. Gehrke and Praveen Seshadri.
Querying the Physical World. IEEE Personal Communications,
Vol. 7, No. 5, October 2000

Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein and
Wei Hong. TAG: A Tiny AGgregation Service for Ad-Hoc Sensor
Networks. SIGOPS Operating Systems Review, Vol. 36, Nr. SI,
2002

Samuel Madden, Michael J. Franklin, Joseph M. Hellerstein and
Wei Hong. The Design of an Acquisitional Query Processor for
Sensor Networks. Proc. of SIGMOD ’03, 2003

Shuoqi Li, Ying Lin, Sang Son, John Stankovic and Yuan Wei.
Event Detection Services Using Data Service Middleware in
Distributed Sensor Networks. Proc. IPSN 2003, 2003

Research Group

Distributed Systems
72/75

Universität Stuttgart

IPVS

References

Data-centric Middleware:

Shuoqi Li, Ying Lin, Sang Son, John Stankovic and Yuan Wei.
Event Detection Services Using Data Service Middleware in
Distributed Sensor Networks. Proc. IPSN 2003, 2003

Chien-Chung Shen, Chavalit Srisathapornphat and Chaiporn
Jaikaeo. Sensor information networking architecture and
applications. IEEE Personal Communications, Vol. 8, Nr. 4, 2001

Virtual Machines:

Philip Levis and David Culler. Maté: A Tiny Virtual Machine for
Sensor Networks. Proc. ASPLOS, 2002



Research Group

Distributed Systems
73/75

Universität Stuttgart

IPVS

References

Virtual Machines:

Porlin Kang, Cristian Borcea, Gang Xu, Akhilesh Saxena, Ulrich
Kremer and Liviu Iftode. Smart Messages: A Distributed
Computing Platform for Networks of Embedded Systems. Special
Issue on Mobile and Pervasive Computing, the Computer
Journal, 2004

Chien-Liang Fok, Gruia-Catalin Roman and Chenyang Lu. Mobile
Agent Middleware for Sensor Networks: An Application Case
Study. Proc IPSN’05, 2005

Athanassios Boulis, Chih-Chieh Han and Mani B. Srivastava.
Design and implementation of a framework for efficient and
programmable sensor networks. Proc. MobiSys 2003, 2003

Research Group

Distributed Systems
74/75

Universität Stuttgart

IPVS

References
Adaptive Middleware:

A. Murphy and W. Heinzelman. MiLAN: Middleware Linking
Applications and Networks. TR-795, University of Rochester,
Computer Science, Nov. 2002

W. Heinzelman, A. Murphy, H. Carvalho and M. Perillo.
Middleware to Support Sensor Network Applications. IEEE
Network Magazine Special Issue, January 2004

Q. Han and N. Venkatasubramanian. AutoSeC: An Integrated
Middleware Framework for Dynamic Service Brokering. IEEE
Distributed Systems Online, Vol. 2, Nr. 7, 2001

Pedro José Marrón, Andreas Lachenmann, Daniel Minder, Jörg
Hähner, Robert Sauter and Kurt Rothermel. TinyCubus: A
Flexible and Adaptive Framework for Sensor Networks. Proc.
EWSN 2005, 2005



Research Group

Distributed Systems
75/75

Universität Stuttgart

IPVS

References

Adaptive Middleware:

Pedro José Marrón, Andreas Lachenmann, Daniel Minder,
Matthias Gauger, Olga Saukh and Kurt Rothermel. Management
and Configuration Issues for Sensor Networks.International
Journal of Network Management, Special Issue: Wireless Sensor
Networks, Vol. 15, Nr. 4, 2005

Pedro José Marrón, Daniel Minder, Andreas Lachenmann, Olga
Saukh and Kurt Rothermel. Generic Model and Architecture for
Cooperating Objects in Sensor Network Environments. Proc. ICT
2005, 2005


