
1

Computer Networks Group
Universität Paderborn

Protocols for dependable data transport
in wireless sensor networks

Holger Karl
holger.karl@uni-paderborn.de

Andreas Willig (@ TU Berlin)
awillig@tkn.tu-berlin.de

Overview

• Dependability requirements
• Delivering single packets
• Delivering blocks of packets
• Delivering streams of packets

2

Focus of this tutorial

Dependability aspects

• Coverage & deployment
• Is there a sufficient number of nodes such that an event can be

detected at all? Such that data can accurately measured?
• How do they have to be deployed?

• Information accuracy
• Which of the measured data have to be transported where such

that a desired accuracy is achieved?
• How to deal with inaccurate measurements in the first place?

• Dependable data transport
• Once it is clear which data should arrive where, how to make sure

that it actually arrives?
• How to deal with transmission errors and omission

errors/congestion?

Dependability: Terminology

• “Dependable” is an umbrella term
• Main numerical metrics

• (Steady state) availability – probability that a system is
operational at any given point in time

• Assumption: System can fail and will repair itself
• Reliability at time t – Probability that system works correctly

during the entire interval [0,t)
• Assumption: It worked correctly at system start t=0

• Responsiveness – Probability of meeting a deadline
• Even in presence of some – to be defined – faults

• Packet success probability – Probability that a packet (correctly)
reaches its destination

• Related: packet error rate, packet loss rate
• Bit error rate – Probability of an incorrect bit

• Channel model determines precise error patterns

3

Dependability constraints

• Wireless sensor networks (WSN) have unique constraints
for dependable data delivery

• Transmission errors over a wireless channel
• Limited computational resources in a WSN node
• Limited memory
• Limited time (deadlines)
• Limited dependability of individual nodes

• Standard mechanisms: Redundancy
• Redundancy in nodes, transmission
• Forward and backward error recovery
• Combinations are necessary!

Dependable data transport – context

• Items to be delivered
• Single packet
• Block of packets
• Stream of packets

• Level of guarantee
• Guaranteed delivery
• Stochastic delivery

• Involved entities
• Sensor(s) to sink
• Sink to sensors
• Sensors to sensors

50% delivered

4

Constraints

• Energy
• Send as few packets as possible
• Send with low power → high error rates
• Avoid retransmissions
• Short packets → weak FEC
• Balance energy consumption in network

• Processing power
• Only simple FEC schemes
• No complicated algorithms (coding)

• Memory
• Store as little data as briefly as possible

Overview

• Dependability requirements
• Delivering single packets

• Single path
• Multiple paths
• Gossiping-based approaches
• Multiple receivers

• Delivering blocks of packets
• Delivering streams of packets

5

Delivering single packets – main options

• What are the intended receivers?
• A single receiver?
• Multiple receivers?

• In close vicinity? Spread out?
• Mobile?

• Which routing structures are available?
• Unicast routing along a single path?
• Routing with multiple paths between source/destination pairs?
• No routing structure at all – rely on flooding/gossiping?

Single packet to single receiver over single path

• Single, multi-hop path is giving by some routing protocol

• Issues: Which node
• Detects losses (using which indicators)?
• Requests retransmissions?
• Carries out retransmissions?

6

Detecting & signaling losses in single packet delivery

• Detecting loss of a single packet:
Only positive acknowledgements (ACK) feasible

• Negative acks (NACK) not an option – receiver usually does not
know a packet should have arrived, has no incentive to send a
NACK

• Which node sends ACKs (avoiding retransmissions)?
• At each intermediate node, at MAC/link level

• Usually accompanied by link layer retransmissions
• Usually, only a bounded number of attempts

• At the destination node
• Transport layer retransmissions
• Problem: Timer selection

Carrying out retransmissions

• For link layer acknowledgements: Neighboring node

• For transport layer acknowledgements:
• Source node → end-to-end retransmissions

Question: Could an
intermediate node help

in an end-to-end
scheme? How to detect

need for
retransmissions? How

to retransmit?

7

Tradeoff: End-to-end vs. link-layer retransmission

• Scenario: Single packet,
n hops from source to
destination, BSC channel

• Transport-layer, end-to-end
retransmission: Always

• Link-layer retransmissions:
Vary number of maximum
attempts

• Drop packet if not successful
within that limit

→ For good channels, use
end-to-end scheme; else
local retransmit

 1000

 10000

 100000

 1e+06

 1e+07

 1e-06 1e-05 0.0001 0.001 0.01

Bit error probability

pure end-to-end
MAC[2]
MAC[5]

MAC[10]

E
xp

ec
te

d
en

er
gy

 c
os

t

Tradeoff: End-to-end vs. link-layer retransmission

• Same scenario, varying
number of hops

• BER=0.001 of BSC channel
fixed

→ Use link-layer
retransmissions only for
longer routes

 1000

 10000

 100000

 1e+06

 1e+07

 0 5 10 15 20 25

Number of hops

pure end-to-end
MAC[2]
MAC[5]

MAC[10]

E
xp

ec
te

d
en

er
gy

 c
os

t

In both figures, difference
between maximum link-
layer retries schemes is

small. Why?

8

Example schemes: HHR and HHRA

• Hop-by-hop reliability (HHR)
• Idea: Locally improve probability of packet transmission, but do not

use packet retransmission
• Instead, simply repeat packet a few times – a repetition code
• Choose number of repetitions per node such that resulting end-to-

end delivery probability matches requirements

• Hop-by-hop reliability with Acknowledgements (HHRA)
• Node sends a number of packets, but pauses after each packet to

wait for acknowledgement
• If received, abort further packet transmissions

What happens in
bursty channels?

Multiple paths

• Types of : disjoint or braided
• Usage: default and alternative routes
• Usage: simultaneous

• Send same packet
• Send redundant fragments

• Example: ReInForM

9

Multiple paths: Disjoint or braided

Source Sink

Disjoint paths

Primary path

Secondary path

Source Sink

Braided paths

Primary path

Using multiple paths

• Alternating use
• Send packet over the currently “selected” path
• If path breaks, select alternative path
• Or/and: repair original path locally

• Simultaneous use
• Send the complete packet over some or all of the multiple paths

simultaneously
• Send packet fragments over several paths

• But endow fragments with redundancy
• Only some fragments suffice to reconstruct original packet

10

Example: ReInForM

• Goal: Send packet over multiple paths to meet a delivery
probability P

• Assumptions:
• Independent paths, BSC
• Nodes know their “local” packet error rate e

• Step 1: Source node decides how many paths to use
• Success probability over a single path with ns hops: 1-(1-e)ns

• Success probability over P paths: 1-(1-(1-e)ns)P

• Should be ≥ rs, solve for P:

Note there is no floor/ceiling in this formula

ReInForM – Forwarding to neighbors

• Source node picks a
forwarder closer to
destination than itself

• Remaining neighbors:
P´ = P – (1-es)

• Choose P´ neighbors to
additionally forward packet

• If possible, only neighbors
closer to destination

• If not sufficient, use neighbors
same hop distance

• If not sufficient, use further
away neighbors

Source Desti-
nation

Forwarder

• Packet contains
• Source & destination
• Forwarder identity
• Source packet error rate
• Number of paths each

neighbor should construct

11

ReInForM – Behavior of neighbors

• Forwarder behaves
just like a source

• Non-primary
forwarders locally
compute over how
many paths they
are supposed to
forward the packet

• If number of paths
< 1, node only
forwards with
according
probability

ReInForM load-balancing behavior
for multiple packet transmissions

Gossiping-based approaches

• What to do when not routes are available?
• Flooding – all nodes rebroadcast a received packet – not efficient
• Gossiping – only some nodes rebroadcast?

• Problem: Which node rebroadcasts?
• Deterministic choice (e.g., backbone construction): Overhead
• Random choice: Forwarding probability?

• Gossiping is greatly helped by direction to destination!

12

Forwarding probability for gossiping

• Goal: On average, a single node should forward packet
• Expected number of packets received: k(1-e)
• Each node receiving a packet forwards with probability

Pforward = 1/k(1-e)
• Packet needs to contain k, e

• Problem: Gossip might die out

• Assumption: All nodes know
• destination to direction,
• number of neighbors k,
• packet error probability e

Flooding based on neighborhood behavior

• Suppose a packet should be distributed to all nodes
• Suppose a node can observe behavior of its neighbors
• When to actually forward a new packet?

• Immediately? All nodes will then forward, some needlessly
• Wait and check neighbors? When many neighbors have already

forwarded the packet, is it worthwhile to do so as well?

• Observation (for uniformly distributed networks):
• When k ≥ 4 neighbors have already forwarded a packet,

the additional coverage gained by forwarding it
one more time is y 0.05%

→ Wait random time, count neighbors’ forwards, only forward when
not already done so in neighborhood

13

Multiple receivers

• Deliver a single packet to multiple receivers: Multicast
• Formally: Steiner tree problem, NP complete
• Constructing Steiner tree for a single packet probably excessive;

might pay off for multiple packets

• Problem: ACK implosion
• Many receivers send ACKs to a single source
• Source/nodes near source are overloaded

• Combination with ACK aggregation

Overview

• Dependability requirements
• Delivering single packets
• Delivering blocks of packets

• Opportunity: Caching in intermediate nodes
• Example: Pump Slowly, Fetch Quickly (PSFQ)
• Example: Reliable Multisegment Transport (RMST)

• Delivering streams of packets

14

Delivering blocks of packets

• Goal: Deliver large amounts of data
• E.g., code update, large observations
• Split data into several packets (reduce packet error rate)
• Transfer this block of packets

• Main difference to single packet delivery: Gaps in
sequence number can be detected and exploited

• For example, by intermediate nodes sending NACKs

132

Where
is

packet 2?

2? • To answer NACK locally,
intermediate nodes must
cache packets

• Which packets? For how
long?

Example: Pump Slowly Fetch Quickly (PSFQ)

• Goal: Distribute block of packets to from one sender to
multiple receivers (sink to sensors)

• E.g., code update → losses are not tolerable, delay not critical
• Routing structure is assumed to be known

• Basic operation
• Source pumps data into network

• Using broadcast, large inter-packet gap time
• Intermediate nodes store packets, forward if in-sequence
• Out-of-sequence: buffer, request missing packet(s) – fetch

operation (a NACK)
• Previous node resends missing packet → local recovery
• Assumption: packet is available ← no congestion, only channel errors

→ Pumping is slow, fetching is quick

15

PSFQ protocol details

• How big an inter-packet gap?
• Big enough to accommodate at least one, better several fetch

operations
• Probability that next packet arrives when the previous one has not

yet been repaired should be small

• When to forward an in-sequence packet?
• Wait random time, only forward when y 3 neighbors have

forwarded

• Handle out-of-order packet?
• Do not forward, fill the gap first by fetching → avoid loss

propagation

3,6,7,9?3,6,7,9?

PSFQ protocol details (2)

• How to handle fetch requests (NACKs)?
• Fetch request are broadcast, might arrive at multiple nodes
• Nodes receiving NACK might themselves not have all requested

packets
• Use a slotted resend mechanism for requested packets – each one

corresponds to a time slot, filled by node if requested packet
available

• Example: Node C requests 3,6,7,9 in NACK

Has
1-6

Has
1-10

A

B

C

Time slot
for packet 3

A

B

C

Time slot
for packet 6

B

C

A

Time slot
for packet 7

B

C

A

33

6

7

16

PSFQ performance: Comparison with multicast

• Comparison case: Scalable Reliable Mutlicast (SRM)
• Provides similar service
• Main difference: in-sequence not enforced, end-of-block treatment

differs

• PSFQ
works
up to
higher
error
rates

Reliable Multisegment Transport (RMST)

• Goal: Dependable delivery of large data blocks from
multiple sensors to a single sink

• Data block is fragmented – collect all fragments, deliver to sink
• Tightly coupled with directed diffusion
• Does not include congestion control, time bounds

• Basic RMST mechanisms
• MAC-layer retransmissions (802.11, full procedure: RTS/CTS, …)
• RMST caches fragments, checks for missing fragments
• When gap is detected NACKs are sent back towards the sources
• NACKs are served by intermediate node if fragment is present
• Else: NACK forwarded, but only rarely – e.g., when path has not

changed
• To catch remaining errors, sources occasionally retransmit all

17

Overview

• Dependability requirements
• Delivering single packets
• Delivering blocks of packets
• Delivering streams of packets

• Additional opportunity: Control rate
• Control rate of individual nodes: ESRT
• Control number of active nodes: Gur game

Streams of packets may lead to congestion

• When several
sensors observe
an event and try to
periodically report
it, congestion
around event may
set it

• When many
sensors stream
data to a sink,
congestion around
the sink may occur

18

Consequences of congestion

• Congestion can have
surprising consequences

• More frequently reporting
readings can reduce goodput
and accuracy

• Owing to increased packet
loss

• Using more nodes can
reduce network lifetime

Detecting congestion

• TCP: Detect congestion by missing acknowledgements
• Here not applicable if no ACKs are used

• Locally detect congestion
• Intuition: Node is congested if its buffer fills up
• Rule: “Congested = buffer level above threshold” is overly simplistic
• Need to take growth rate into account as well

• Occupancy not a good indicator when packets can be lost in the
channel

• Problematic: Interaction with MAC
• CSMA-type MACs: high channel utilization = congestion; easy to

detect
• TDMA-type MACs: high channel utilization not problematic for

throughput; congestion more difficult to detect

19

Congestion handling

• Once congestion is (locally) detected, how to handle it?

• Option 1: Drop packets
• No alternative anyways when buffers overflow
• Drop tail, random (early) drop (for TCP), …
• Better: drop semantically less important packet

• Option 2: Control sending rate of individual node
• Rate of locally generated packets
• Rate of remote packets to be forwarded → backpressure

• Option 3: Control how many nodes are sending

• Option 4: Aggregation, in-network processing

Rate control: Event-to-Sink Reliable Transport (ESRT)

• Situation: Multiple sensors periodically report to sink
• Sink needs sufficient number of packets, from any source

• Control knob: control sensors’ reporting rate fi
• Ensure: per decision period τ, +/- R packets are delivered
• Formally: ri packets actually received in period i,
• Target: ηi = ri/R ∈ [1-ε, 1+ε]

• Sink computes fi+1 based on fi, ηi
• Broadcasts to all sources directly (high power)

20

No congestion,
low reliability

(NC, LR)

ESRT rate control tradeoff Optimal operating region

Congestion, and not even
high reliability

Congestion, but still high
reliability – more data
injected than delivered

No congestion, high
reliability – more data than

necessary

ESRT’s adaptation of source frequencies

• No congestion, low reliability: Increase data rate
• fi+1 = fi / ηi

• Note: ηi < 1 here (less data arrives than necessary)
• Optimal operating region: do nothing
• No congestion, high reliability: moderate reduction of

sending rate useful
• fi+1 = fi/2 (1 + 1/ηi)

• Congestion, high reliability: quicker reduction of rate
• fi+1 = fi / ηI

• Note: ηi > 1 here (more data arrives than necessary)
• Congestion, low reliability: even quicker reduction of rate

• fi+1 = fi ηi/k

• k: number of consecutive rounds in this state

21

Control how many nodes are sending

• Scenario: Nodes send at a given rate, cannot be controlled
• Option: Turn on or off nodes to avoid congestion, achieve

desired target number of packets k* per round
• If total number of nodes N known, easy: Simply send probability

k*/N to all nodes; each node sends with this probability

• What to do if number of nodes N not known?
→ Gur game

Gur game

• N nodes, unaware of each other; 1 referee
• Referee, in each round:

• Counts number k of packets (assumption: no packet loss)
• Determines reward probability r(k), sends r(k) to all nodes

• Each player: rewards itself with probability r(k), penalizes with
probability 1-r(k)

• Rewards/penalties: Moves in finite state machine

Reward: r(k) Reward: r(k)

Penalty: 1-r(k) Penalty: 1-r(k)

-1 1-2-3-M 2 3 M……

r(k) r(k)

Send in the next roundDo not send in the next round

22

Gur game: How to choose r(k)?

• Intuition
• When received number of packets k is close to k*, the right number

of nodes are sending
• Thus, the right mixture of send/not send states is present
→ Nodes should stay on the side where they are
→ Rewards should be high

• Formally
• Reward function

is maximal at k*
• Example: See figure

Conclusion

• Transport protocols have considerable impact on the
service rendered by a wireless sensor networks

• Various facets – no “one size fits all” solution in sight
• Still a relatively unexplored areas

• Items not covered
• Relation to coverage issues
• TCP in WSN? Gateways?
• Aggregation? In-network processing?

