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Overview

• Dependability requirements
• Delivering single packets
• Delivering blocks of packets
• Delivering streams of packets
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Focus of this tutorial

Dependability aspects

• Coverage & deployment
• Is there a sufficient number of nodes such that an event can be 

detected at all? Such that data can accurately measured?
• How do they have to be deployed?

• Information accuracy
• Which of the measured data have to be transported where such 

that a desired accuracy is achieved?
• How to deal with inaccurate measurements in the first place? 

• Dependable data transport 
• Once it is clear which data should arrive where, how to make sure 

that it actually arrives? 
• How to deal with transmission errors and omission 

errors/congestion?

Dependability: Terminology 

• “Dependable” is an umbrella term
• Main numerical metrics 

• (Steady state) availability – probability that a system is 
operational at any given point in time

• Assumption: System can fail and will repair itself
• Reliability at time t – Probability that system works correctly 

during the entire interval [0,t)
• Assumption: It worked correctly at system start t=0

• Responsiveness – Probability of meeting a deadline
• Even in presence of some – to be defined – faults 

• Packet success probability – Probability that a packet (correctly) 
reaches its destination

• Related: packet error rate, packet loss rate 
• Bit error rate – Probability of an incorrect bit

• Channel model determines precise error patterns
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Dependability constraints

• Wireless sensor networks (WSN) have unique constraints 
for dependable data delivery

• Transmission errors over a wireless channel
• Limited computational resources in a WSN node
• Limited memory
• Limited time (deadlines)
• Limited dependability of individual nodes  

• Standard mechanisms: Redundancy
• Redundancy in nodes, transmission
• Forward and backward error recovery
• Combinations are necessary!

Dependable data transport – context 

• Items to be delivered
• Single packet
• Block of packets
• Stream of packets

• Level of guarantee
• Guaranteed delivery
• Stochastic delivery

• Involved entities
• Sensor(s) to sink
• Sink to sensors
• Sensors to sensors

50% delivered
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Constraints

• Energy
• Send as few packets as possible
• Send with low power → high error rates
• Avoid retransmissions
• Short packets → weak FEC 
• Balance energy consumption in network

• Processing power 
• Only simple FEC schemes
• No complicated algorithms (coding)

• Memory
• Store as little data as briefly as possible 

Overview

• Dependability requirements
• Delivering single packets

• Single path
• Multiple paths
• Gossiping-based approaches
• Multiple receivers

• Delivering blocks of packets
• Delivering streams of packets



5

Delivering single packets – main options

• What are the intended receivers?
• A single receiver? 
• Multiple receivers?

• In close vicinity? Spread out?
• Mobile? 

• Which routing structures are available?
• Unicast routing along a single path?
• Routing with multiple paths between source/destination pairs? 
• No routing structure at all – rely on flooding/gossiping? 

Single packet to single receiver over single path

• Single, multi-hop path is giving by some routing protocol

• Issues: Which node
• Detects losses (using which indicators)? 
• Requests retransmissions?
• Carries out retransmissions?
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Detecting & signaling losses in single packet delivery

• Detecting loss of a single packet: 
Only positive acknowledgements (ACK) feasible

• Negative acks (NACK) not an option – receiver usually does not 
know a packet should have arrived, has no incentive to send a 
NACK

• Which node sends ACKs (avoiding retransmissions)?
• At each intermediate node, at MAC/link level

• Usually accompanied by link layer retransmissions
• Usually, only a bounded number of attempts 

• At the destination node
• Transport layer retransmissions
• Problem: Timer selection

Carrying out retransmissions

• For link layer acknowledgements: Neighboring node

• For transport layer acknowledgements:
• Source node → end-to-end retransmissions

Question: Could an 
intermediate node help 

in an end-to-end 
scheme? How to detect 

need for 
retransmissions? How 

to retransmit? 
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Tradeoff: End-to-end vs. link-layer retransmission 

• Scenario: Single packet, 
n hops from source to 
destination, BSC channel

• Transport-layer, end-to-end 
retransmission: Always

• Link-layer retransmissions: 
Vary number of maximum 
attempts

• Drop packet if not successful 
within that limit 

→ For good channels, use 
end-to-end scheme; else 
local retransmit
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Tradeoff: End-to-end vs. link-layer retransmission

• Same scenario, varying 
number of hops

• BER=0.001 of BSC channel 
fixed

→ Use link-layer 
retransmissions only for 
longer routes 
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In both figures, difference 
between maximum link-
layer retries schemes is 

small. Why?
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Example schemes: HHR and HHRA 

• Hop-by-hop reliability (HHR)
• Idea: Locally improve probability of packet transmission, but do not 

use packet retransmission
• Instead, simply repeat packet a few times – a repetition code
• Choose number of repetitions per node such that resulting end-to-

end delivery probability matches requirements 

• Hop-by-hop reliability with Acknowledgements (HHRA)
• Node sends a number of packets, but pauses after each packet to 

wait for acknowledgement 
• If received, abort further packet transmissions

What happens in 
bursty channels?

Multiple paths

• Types of : disjoint or braided
• Usage: default and alternative routes
• Usage: simultaneous 

• Send same packet
• Send redundant fragments

• Example: ReInForM
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Multiple paths: Disjoint or braided

Source Sink

Disjoint paths

Primary path

Secondary path

Source Sink

Braided paths

Primary path

Using multiple paths

• Alternating use
• Send packet over the currently “selected” path
• If path breaks, select alternative path 
• Or/and: repair original path locally 

• Simultaneous use
• Send the complete packet over some or all of the multiple paths 

simultaneously 
• Send packet fragments over several paths

• But endow fragments with redundancy 
• Only some fragments suffice to reconstruct original packet 
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Example: ReInForM

• Goal: Send packet over multiple paths to meet a delivery 
probability P

• Assumptions: 
• Independent paths, BSC 
• Nodes know their “local” packet error rate e

• Step 1: Source node decides how many paths to use
• Success probability over a single path with ns hops: 1-(1-e)ns

• Success probability over P paths: 1-(1-(1-e)ns)P

• Should be ≥ rs, solve for P:

Note there is no floor/ceiling in this formula 

ReInForM – Forwarding to neighbors 

• Source node picks a 
forwarder closer to 
destination than itself

• Remaining neighbors: 
P´ = P – (1-es)

• Choose P´ neighbors to 
additionally forward packet

• If possible, only neighbors 
closer to destination

• If not sufficient, use neighbors 
same hop distance

• If not sufficient, use further 
away neighbors

Source Desti-
nation

Forwarder

• Packet contains
• Source & destination
• Forwarder identity
• Source packet error rate
• Number of paths each 

neighbor should construct
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ReInForM – Behavior of neighbors 

• Forwarder behaves 
just like a source 

• Non-primary 
forwarders locally 
compute over how 
many paths they 
are supposed to 
forward the packet

• If number of paths 
< 1, node only 
forwards with 
according 
probability 

ReInForM load-balancing behavior 
for multiple packet transmissions

Gossiping-based approaches

• What to do when not routes are available? 
• Flooding – all nodes rebroadcast a received packet – not efficient
• Gossiping – only some nodes rebroadcast?

• Problem: Which node rebroadcasts?
• Deterministic choice (e.g., backbone construction): Overhead
• Random choice: Forwarding probability?

• Gossiping is greatly helped by direction to destination! 
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Forwarding probability for gossiping

• Goal: On average, a single node should forward packet
• Expected number of packets received: k(1-e)
• Each node receiving a packet forwards with probability 

Pforward = 1/k(1-e)
• Packet needs to contain k, e

• Problem: Gossip might die out

• Assumption: All nodes know
• destination to direction, 
• number of neighbors k, 
• packet error probability e

Flooding based on neighborhood behavior

• Suppose a packet should be distributed to all nodes 
• Suppose a node can observe behavior of its neighbors 
• When to actually forward a new packet?

• Immediately? All nodes will then forward, some needlessly
• Wait and check neighbors? When many neighbors have already 

forwarded the packet, is it worthwhile to do so as well?

• Observation (for uniformly distributed networks):
• When k ≥ 4 neighbors have already forwarded a packet, 

the additional coverage gained by forwarding it 
one more time is y 0.05%

→ Wait random time, count neighbors’ forwards, only forward when 
not already done so in neighborhood 
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Multiple receivers

• Deliver a single packet to multiple receivers: Multicast
• Formally: Steiner tree problem, NP complete 
• Constructing Steiner tree for a single packet probably excessive; 

might pay off for multiple packets

• Problem: ACK implosion
• Many receivers send ACKs to a single source 
• Source/nodes near source are overloaded 

• Combination with ACK aggregation

Overview

• Dependability requirements
• Delivering single packets
• Delivering blocks of packets

• Opportunity: Caching in intermediate nodes
• Example: Pump Slowly, Fetch Quickly (PSFQ)
• Example: Reliable Multisegment Transport (RMST) 

• Delivering streams of packets
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Delivering blocks of packets 

• Goal: Deliver large amounts of data
• E.g., code update, large observations
• Split data into several packets (reduce packet error rate)
• Transfer this block of packets 

• Main difference to single packet delivery: Gaps in 
sequence number can be detected and exploited

• For example, by intermediate nodes sending NACKs

132

Where
is 

packet 2?

2? • To answer NACK locally, 
intermediate nodes must 
cache packets

• Which packets? For how 
long?

Example: Pump Slowly Fetch Quickly (PSFQ)

• Goal: Distribute block of packets to from one sender to 
multiple receivers (sink to sensors)

• E.g., code update → losses are not tolerable, delay not critical  
• Routing structure is assumed to be known 

• Basic operation
• Source pumps data into network

• Using broadcast, large inter-packet gap time
• Intermediate nodes store packets, forward if in-sequence
• Out-of-sequence: buffer, request missing packet(s) – fetch 

operation (a NACK)
• Previous node resends missing packet → local recovery 
• Assumption: packet is available ← no congestion, only channel errors

→ Pumping is slow, fetching is quick
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PSFQ protocol details

• How big an inter-packet gap?
• Big enough to accommodate at least one, better several fetch 

operations
• Probability that next packet arrives when the previous one has not 

yet been repaired should be small

• When to forward an in-sequence packet?
• Wait random time, only forward when y 3 neighbors have 

forwarded

• Handle out-of-order packet?
• Do not forward, fill the gap first by fetching → avoid loss 

propagation 

3,6,7,9?3,6,7,9?

PSFQ protocol details (2)

• How to handle fetch requests (NACKs)?
• Fetch request are broadcast, might arrive at multiple nodes
• Nodes receiving NACK might themselves not have all requested 

packets 
• Use a slotted resend mechanism for requested packets – each one 

corresponds to a time slot, filled by node if requested packet 
available 

• Example: Node C requests 3,6,7,9 in NACK

Has 
1-6

Has 
1-10

A

B

C

Time slot
for packet 3

A

B

C

Time slot
for packet 6

B

C

A

Time slot
for packet 7

B

C

A

33

6

7
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PSFQ performance: Comparison with multicast

• Comparison case: Scalable Reliable Mutlicast (SRM)
• Provides similar service
• Main difference: in-sequence not enforced, end-of-block treatment 

differs

• PSFQ 
works
up to 
higher 
error
rates

Reliable Multisegment Transport (RMST)

• Goal: Dependable delivery of large data blocks from 
multiple sensors to a single sink 

• Data block is fragmented – collect all fragments, deliver to sink 
• Tightly coupled with directed diffusion
• Does not include congestion control, time bounds

• Basic RMST mechanisms
• MAC-layer retransmissions (802.11, full procedure: RTS/CTS, …)
• RMST caches fragments, checks for missing fragments
• When gap is detected NACKs are sent back towards the sources
• NACKs are served by intermediate node if fragment is present
• Else: NACK forwarded, but only rarely – e.g., when path has not 

changed 
• To catch remaining errors, sources occasionally retransmit all
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Overview

• Dependability requirements
• Delivering single packets
• Delivering blocks of packets
• Delivering streams of packets

• Additional opportunity: Control rate
• Control rate of individual nodes: ESRT
• Control number of active nodes: Gur game

Streams of packets may lead to congestion

• When several 
sensors observe 
an event and try to 
periodically report 
it, congestion 
around event may 
set it

• When many 
sensors stream 
data to a sink, 
congestion around 
the sink may occur
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Consequences of congestion

• Congestion can have 
surprising consequences 

• More frequently reporting 
readings can reduce goodput
and accuracy

• Owing to increased packet 
loss

• Using more nodes can 
reduce network lifetime

Detecting congestion

• TCP: Detect congestion by missing acknowledgements
• Here not applicable if no ACKs are used

• Locally detect congestion
• Intuition: Node is congested if its buffer fills up
• Rule: “Congested = buffer level above threshold” is overly simplistic
• Need to take growth rate into account as well 

• Occupancy not a good indicator when packets can be lost in the 
channel

• Problematic: Interaction with MAC 
• CSMA-type MACs: high channel utilization = congestion; easy to 

detect
• TDMA-type MACs: high channel utilization not problematic for 

throughput; congestion more difficult to detect
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Congestion handling

• Once congestion is (locally) detected, how to handle it? 

• Option 1: Drop packets
• No alternative anyways when buffers overflow 
• Drop tail, random (early) drop (for TCP), …
• Better: drop semantically less important packet

• Option 2: Control sending rate of individual node
• Rate of locally generated packets
• Rate of remote packets to be forwarded → backpressure 

• Option 3: Control how many nodes are sending

• Option 4: Aggregation, in-network processing 

Rate control: Event-to-Sink Reliable Transport (ESRT)

• Situation: Multiple sensors periodically report to sink
• Sink needs sufficient number of packets, from any source

• Control knob: control sensors’ reporting rate fi
• Ensure: per decision period τ, +/- R packets are delivered
• Formally: ri packets actually received in period i,
• Target: ηi = ri/R ∈ [1-ε, 1+ε]

• Sink computes fi+1 based on fi, ηi
• Broadcasts to all sources directly (high power) 
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No congestion, 
low reliability

(NC, LR)

ESRT rate control tradeoff Optimal operating region

Congestion, and not even 
high reliability

Congestion, but still high 
reliability – more data 
injected than delivered

No congestion, high 
reliability – more data than 

necessary

ESRT’s adaptation of source frequencies

• No congestion, low reliability: Increase data rate
• fi+1 = fi / ηi

• Note: ηi < 1 here (less data arrives than necessary)
• Optimal operating region: do nothing
• No congestion, high reliability: moderate reduction of 

sending rate useful
• fi+1 = fi/2 (1 + 1/ηi)

• Congestion, high reliability: quicker reduction of rate
• fi+1 = fi / ηI

• Note: ηi > 1 here (more data arrives than necessary)
• Congestion, low reliability: even quicker reduction of rate

• fi+1 = fi ηi/k

• k: number of consecutive rounds in this state 
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Control how many nodes are sending

• Scenario: Nodes send at a given rate, cannot be controlled
• Option: Turn on or off nodes to avoid congestion, achieve 

desired target number of packets k* per round
• If total number of nodes N known, easy: Simply send probability 

k*/N to all nodes; each node sends with this probability 

• What to do if number of nodes N not known?
→ Gur game

Gur game

• N nodes, unaware of each other; 1 referee 
• Referee, in each round:  

• Counts number k of packets (assumption: no packet loss)
• Determines reward probability r(k), sends r(k) to all nodes

• Each player: rewards itself with probability r(k), penalizes with 
probability 1-r(k)

• Rewards/penalties: Moves in finite state machine  

Reward: r(k) Reward: r(k)

Penalty: 1-r(k) Penalty: 1-r(k)

-1 1-2-3-M 2 3 M……

r(k) r(k)

Send in the next roundDo not send in the next round
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Gur game: How to choose r(k)?

• Intuition
• When received number of packets k is close to k*, the right number 

of nodes are sending
• Thus, the right mixture of send/not send states is present
→ Nodes should stay on the side where they are
→ Rewards should be high

• Formally
• Reward function

is maximal at k*
• Example: See figure 

Conclusion

• Transport protocols have considerable impact on the 
service rendered by a wireless sensor networks

• Various facets – no “one size fits all” solution in sight
• Still a relatively unexplored areas

• Items not covered
• Relation to coverage issues
• TCP in WSN? Gateways? 
• Aggregation? In-network processing?


