
1-Sep-05

Real-world Sensor Networks:
Experiences in Design and Deployment
Jan Beutel
Summer School on Wireless Sensor Networks and Smart Objects
Schloss Dagstuhl

2

Visions 1991 1999 20001996 20032001 2004

Wireless Sensor Networks

Applications 20042000 20032001

Military Surveillance

ZebraNetSensor Webs

Argo

Duck Island

Shooter LocalizationJames Reserve

Ubiquitous
Vision

PicoRadioWireless
Overlay

Paintable
Computing

Scale Free
Networks

Terminodes

Smart Dust
Directed
Diffusion COTS Dust

3

WSN – The Systems Perspective

Wireless sensor networks are not a fundamentally new
area of research

New application domain for wireless
Limited node resources are leveraged by node collaboration and the
amount of nodes
Tight coupling of nodes, application, environment
Broad usage profile (non-expert users)

Drawing best from other established areas/technology
Cross-layer development

Sensor network applications have quite a long tradition.

4

Argo – Global Ocean Observation Strategy
Global array of temperature/salinity profiling floats

Satellite data relay to data centers on shore
Operational since 2000
Developed and maintained mainly by oceanographers

5

Anti-Submarine Surveillance

Distributed acoustic monitoring and surveillance
Advanced signal processing
Mostly wireline and analog
Fixed installations and mobile units
Military development since the cold war

6

Globally Networked Weather Stations

7

Environmental Monitoring

Soil Temperature (°F) at 2 inches
for Aug-26, 10:30 AM

8

Visions 1991 1999 20001996 20032001 2004

Wireless Sensor Network Applications

Applications 20042000 20032001

Military Surveillance

ZebraNetSensor Webs

Argo

Duck Island

Shooter LocalizationJames Reserve

Ubiquitous
Vision

PicoRadioWireless
Overlay

Paintable
Computing

Scale Free
Networks

Terminodes

Smart Dust
Directed
Diffusion COTS Dust

S

Argo

Production
Applications

Military Surveillance

ZebraNetensor Webs Duck Island

Shooter LocalizationJames Reserve

Prototypes, Experiments
and Research Demos

200420032001

PicoRadio Paintable
Computing

Terminodes

WSN Community
Applications 2

Wireless
OverlayOther

People

9

WSN Development Reality

It is hard to deploy anywhere beyond 10-20 nodes today.

Coordinated methods and tools are missing today.

10

The WSN Evolution – Empirical Backup

“I have Motes.”
Aka I write simulation papers.

“I have downloaded the TOS installer.”

“I checked out a demo example.”

“I changed a line of code.”
“I use CVS and contribute.”

Pe
op

le
/P

ap
er

s

11

400 horses
100 microprocessors

Exponential increase in
software complexity
In some areas code size is
doubling every 9 months
[ST Microelectronics, Medea Workshop, Fall 2003]

... > 70% of the
development cost for
complex systems such as
automotive electronics
and communication
systems are due to
software development
[A. Sangiovanni-Vincentelli, 1999]

Slide courtesy of T. Henzinger

12

$4 billion development effort
40% system integration & validation cost

Slide courtesy of T. Henzinger

13

From Proof-of-concept to Real-world WSNs
System Design

Embedded systems design
Case study: Mars pathfinder
Tools: Design space exploration

Design and
Development

Prototype
and Pilot

Launch and
Ramp Production Service and

SupportConcept/Theory

Simulation Tools
Of theory and practice

BTnode platform for fast-prototyping
Tools: Metrics and comparison of existing platforms
Design of hard- and software based on standardized
interfaces and event driven interaction

Development and Deployment
Application experience
Case study: Bluetooth Scatternets
Deployment-support concept

14
Slide courtesy of R. Wattenhofer

15

Problems of Theoretical Work and Simulation

Typical simulation papers use
Flawed assumptions, simplifications, wrong models
[Kotz03/04,Min2003,Heidemann2001,Ganesan2002]

Limited comparability/reproducibility [Cavin2002]

Theoreticians try to understand the fundamentals.
Need to abstract away a few “technicalities”.
This allows nice formulas.

Abstracting away too many “technicalities“ renders
theory useless for practice!

Material courtesy of R. Wattenhofer

16

Common Assumptions in Theory and Simulation

Random, uniform node distribution

Circular radio propagation
Unit disk graph model

Simplistic algorithms
Mac layer already in place
Global time synchronization

Material courtesy of R. Wattenhofer

17

Today's WSN Design and Development
S

ca
le

Figure abridged from D. Estrin/J. ElsonReality

Simulation
TOSSIM [Levis2003]

PowerTOSSIM [Shnayder2004]

Avrora [Titzer2005]

Specialized
simulation tools for
WSN applications

18

From Proof-of-concept to Real-world WSNs
System Design

Embedded systems design
Case study: Mars pathfinder
Tools: Design space exploration

Design and
Development

Prototype
and Pilot

Launch and
Ramp Production Service and

SupportConcept/Theory

Simulation Tools
Of theory and practice

BTnode platform for fast-prototyping
Tools: Metrics and comparison of existing platforms
Design of hard- and software based on standardized
interfaces and event driven interaction

Development and Deployment
Application experience
Case study: Bluetooth Scatternets
Deployment-support concept

19

Characteristics of Embedded Systems – (1)

Must be dependable:
Reliability: R(t) = probability of system working correctly provided
that is was working at t=0
Maintainability: M(d) = probability of system working correctly d
time units after error occurred.
Availability: probability of system working at time t
Safety: no harm to be caused
Security: confidential and authentic communication

Even perfectly designed systems can fail if the assumptions about
the workload and possible errors turn out to be wrong.
Making the system dependable must not be an after-thought, it must
be considered from the very beginning.

20

Characteristics of Embedded Systems – (2)

Must be efficient:
Energy efficient
Code-size efficient (especially for systems on a chip)
Run-time efficient
Weight efficient
Cost efficient

Dedicated towards a certain application
Knowledge about behavior at design time can be used to minimize
resources and to maximize robustness.

21

Characteristics of Embedded Systems – (3)

Many ES must meet real-time constraints:
A real-time system must react to stimuli from the controlled object
(or the operator) within the time interval dictated by the environment.
For real-time systems, right answers arriving too late (or even too
early) are wrong.

„A real-time constraint is called hard, if not meeting that
constraint could result in a catastrophe.“ [Kopetz, 1997]

All other time-constraints are called soft.
A guaranteed system response has to be explained without
statistical arguments.

22

Characteristics of Embedded Systems – (4)

Frequently connected to physical environment
Through sensors and actuators
Hybrid systems (analog + digital parts).

Typically, ES are reactive systems:

„A reactive system is one which is in continual
interaction with is environment and executes at a pace

determined by that environment“ [Bergé, 1995]

Behavior depends on input and current state.
automata model are often appropriate.

23

Embedded System Hardware-in-the-loop

Embedded system hardware is frequently used as
Hardware-in-a-loop

24

Simple Embedded Systems Design Flow

25

Classical Embedded Development

Developer
Workstation

Windows XP
GNU GCC
AVR libc
Eclipse

Software/Tools

Datasheets

A Platform
Devel Kit
Nodes
Programmers
Adapter boards
Sensors
Housings
Batteries
Chargers
…
…
Serial cables

26

From Proof-of-concept to Real-world WSNs
System Design

Embedded systems design
Case study: Mars pathfinder
Tools: Design space exploration

Design and
Development

Prototype
and Pilot

Launch and
Ramp Production Service and

SupportConcept/Theory

Simulation Tools
Of theory and practice

BTnode platform for fast-prototyping
Tools: Metrics and comparison of existing platforms
Design of hard- and software based on standardized
interfaces and event driven interaction

Development and Deployment
Application experience
Case study: Bluetooth Scatternets
Deployment-support concept

27

Mars, July 4, 1997
Lost contact due to priority inversion bug

A few days into the mission, not long after

Pathfinder started gathering meteorological

data, the spacecraft began experiencing total

system resets, each resulting in losses of data.

28

The MARS Pathfinder problem – (1)

VxWorks provides preemptive priority scheduling of
threads. Tasks on the Pathfinder spacecraft were executed
as threads with priorities assigned in the usual manner
reflecting the relative urgency of tasks.
Pathfinder contained an “information bus”, which you can
think of as a shared memory area used for passing
information between different components of the
spacecraft.

A bus management task ran frequently with high priority to
move certain kinds of data in and out of the information bus.
Access to the bus was synchronized with mutual exclusion
locks (mutexes).

29

The MARS Pathfinder problem – (2)

The meteorological data gathering task ran as an
infrequent, low priority thread… When publishing its data, it
would acquire a mutex, do writes to the bus, and release
the mutex.
The spacecraft also contained a communications task that
ran with medium priority.

High priority: retrieval of data from shared memory
Medium priority: communications task
Low priority: thread collecting meteorological data

30

The MARS Pathfinder problem – (3)
Most of the time this combination worked fine. However, very
infrequently it was possible for an interrupt to occur that caused the
(medium priority) communications task to be scheduled during the
short interval while the (high priority) information bus thread was
blocked waiting for the (low priority) meteorological data thread. In this
case, the long-running communications task, having higher priority than
the meteorological task, would prevent it from running, consequently
preventing the blocked information bus task from running.

After some time had passed, a watchdog timer would go off,
notice that the data bus task had not been executed for some
time, conclude that something had gone drastically wrong, and
initiate a total system reset.

This scenario is a classic case of priority inversion.

31

Priority inversion on Mars

Priority inheritance solved the Mars Pathfinder problem
The VxWorks operating system used in the pathfinder implements a
flag for the calls to mutex primitives. This flag allows priority
inheritance to be set to “on”.
When the software was shipped, it was set to “off”.

The problem on Mars was corrected by
using the debugging facilities of VxWorks
to change the flag to “on”, while the
Pathfinder was already on the Mars.
[Jones, 1997]

32

From Proof-of-concept to Real-world WSNs
System Design

Embedded systems design
Case study: Mars pathfinder
Tools: Design space exploration

Design and
Development

Prototype
and Pilot

Launch and
Ramp Production Service and

SupportConcept/Theory

Simulation Tools
Of theory and practice

BTnode platform for fast-prototyping
Tools: Metrics and comparison of existing platforms
Design of hard- and software based on standardized
interfaces and event driven interaction

Development and Deployment
Application experience
Case study: Bluetooth Scatternets
Deployment-support concept

33

Wireless Sensor Network Systems Today

34

Selecting the Best Platform?

35

Selecting the Best Platform?

Semi-automatic Design Space Exploration

Finding the best set of resources for a given application.
Can be used

Before building a platform
To select from available platforms
For many multi-criteria systems optimization problems

Results
Set of pareto-optimal design variants that meet the specification

36

Design Space Exploration – Example NP
Scheduling

proportional
shareWFQ

staticdynamic
fixed priority

EDF
TDMA

FCFS

Communication

Architecture # 1 Architecture # 2

Computation

DSPDSP

EEE

CipherpCipherCipher

SDRAMSDRAMSDRAM RISCRISCRISC

FPGAFPGAFPGA

LookUppLookUpLookUp

DSPPDSPDSPDSDSPDSPDSPDSPDSPDDDSPDSDSPDSDSP

TDMA

Priority

EDF

WFQ

RISCRISCRISC

DSPDSPDSP

LookUppLookUpLookUp

CipherpCipherCipher

EEE EEE EEE

EEE EEE EEE

static

M
at

er
ia

lc
ou

rte
sy

 o
f S

. K
ün

zl
i

37

EXPO – Design Evaluation Cycle Example

Allocation
Binding

Scheduling

performance
memory

delay

resource
model

Architecture
Model

flow
model

task structure

Task Model

TDMA
fixed

priority

WFQ

Scheduling
Network

Semi-auto design space exploration
Application to network processors [Künzli2005]

Material courtesy of S. Künzli

38

Design Space Exploration – Results

Power Consumption

Fo
rm

 F
ac

to
r

Example results
From wearable computing
[Anliker2004]

Fast search using
evolutionary algorithms

39

From Proof-of-concept to Real-world WSNs
System Design

Embedded systems design
Case study: Mars pathfinder
Tools: Design space exploration

Design and
Development

Prototype
and Pilot

Launch and
Ramp Production Service and

SupportConcept/Theory

Simulation Tools
Of theory and practice

BTnode platform for fast-prototyping
Tools: Metrics and comparison of existing platforms
Design of hard- and software based on standardized
interfaces and event driven interaction

Development and Deployment
Application experience
Case study: Bluetooth Scatternets
Deployment-support concept

40

Large application domain
No unified one-size-fits-all solution [Römer2004]

Automated tools common in EDA community
E.g. semi-automatic design space exploration [Künzli2005,Anliker2004]

Current WSN community approach
Device characterization, e.g. Mote family [Polastre2005,Shnayder2004]

Tiered architectures [Estrin2003], WSN device classes [Hill2004]

Good platform?
Suitable solution?
Optimum match?

Metrics of WSN Platforms

Applications ?

41

Large application domain
No unified one-size-fits-all solution [Römer2004]

Automated tools common in EDA community
E.g. semi-automatic design space exploration [Künzli2005,Anliker2004]

Current WSN community approach
Device characterization, e.g. Mote family [Polastre2005,Shnayder2004]

Tiered architectures [Estrin2003], WSN device classes [Hill2004]

Good platform?
Suitable solution?
Optimum match?

Metrics of WSN Platforms

Applications
Requirement
Platform Metrics
Comparisons

42

State-of-the-Art Platforms – System Core

Mica2

Tmote Sky

Mica2Dot

Imote

43

State-of-the-Art Platforms – System Core

Mica2

Tmote Sky

Mica2Dot

Imote

44

State-of-the-Art Platforms – System Core

Mica2

Tmote Sky

Mica2Dot

Imote

45

State-of-the-Art Platforms – System Core

Mica2

Tmote Sky

Imote

Mica2Dot

46

Lack of Flexibility

State-of-the-Art Platforms – System Core

Mica2

Tmote Sky

Mica2Dot

Imote

47

State-of-the-Art Platforms – Radio Systems

Mica2

Tmote Sky

Mica2Dot

Imote

48

State-of-the-Art Platforms – Radio Systems

Mica2

Tmote Sky

Mica2Dot

Imote

49

State-of-the-Art Platforms – Radio Systems

Mica2

Tmote Sky

Mica2Dot

Imote

50

State-of-the-Art Platforms – Radio Systems

Mica2

Tmote Sky

Imote

Mica2Dot

51

2
st

ra
te

gi
es

Packet oriented

Bitstream oriented

Event-based Interaction

R
ea

l-t
im

e
pr

oc
es

si
ng

State-of-the-Art Platforms – Radio Systems

Mica2

Tmote Sky

Mica2Dot

Imote

52

State-of-the-Art Platform Comparison

ImoteTmote SkyMica2Dot

System Core

Mica2

Radio Systems

53

State-of-the-Art Platform Comparison

ImoteTmote SkyMica2Dot

System Core

Mica2

Radio Systems

Is there room for
another platform?

Multipurpose
radio?

Balanced
computing
resources?

54

From Proof-of-concept to Real-world WSNs
System Design

Embedded systems design
Case study: Mars pathfinder
Tools: Design space exploration

Design and
Development

Prototype
and Pilot

Launch and
Ramp Production Service and

SupportConcept/Theory

Simulation Tools
Of theory and practice

BTnode platform for fast-prototyping
Tools: Metrics and comparison of existing platforms
Design of hard- and software based on standardized
interfaces and event driven interaction

Development and Deployment
Application experience
Case study: Bluetooth Scatternets
Deployment-support concept

55

The BTnode Platform

Prototype

IO/Peripherals

2nd Generation 3rd Generation

Communication Computation

56

58 mm

BTnode rev3 Architecture Details
32

.5
 m

m

System core
Atmel ATmega128
256 kB SRAM
Generic IO/Peripherals
Switchable power supplies

Dual radio system

Bluetooth radio
2.4 GHz Zeevo ZV4002

Low-power radio
433-915 MHz ISM
Chipcon CC1000

57

State-of-the-Art Platforms Comparison

Tmote SkyMica2Dot Imote BTnode rev3

System Core

Mica2

Radio Systems

58

State-of-the-Art Platforms Comparison

Tmote SkyMica2Dot Imote BTnode rev3

System Core

Mica2

Radio Systems

59

BTnut System Software

Versatile and flexible fast-prototyping
Lightweight operating system support in plain C
Linux-to-AVR embedded emulation
Demo applications and tutorial

simulate

emulate upload

compile

Built on top of multi-threaded Nut/OS framework
Non-preemptive, cooperative
multi-threading

Events, timers
Priorities for thread
Dynamic heap allocation
Interrupt driven streaming I/O

60

How Much Does System Software Help?

Pros
Quick jumpstart (design kit, demo examples, tutorial)
Community effort: exchange, collaboration, debugging
Standardized interfaces, (modularity, reuse)
Cleaner specifications, standards

Cons
Overhead, learning curve (TinyOS CVS tree is ~200MB)
Other peoples bugs/features make life hard

Bottom line
Until it finally works you know your system so well, you might as well
have started from scratch on your own…

61

Industrial technology transfer
Commercialization with ETH spin-off “Art of Technology”
Commercial replicas resulting from open source policy

BTnodes in Education
Different labs and demos
Graduate lab in embedded systems (120 participants)
30-40 successfully completed student projects

BTnodes in Research Domains
25+ wearable and ubiquitous computing applications and demos
Wireless (sensor) network research
40+ scientific publications based on or related to BTnodes

BTnode Platform Success

0 100 200 300 400 500 600 700 800 900 1000
10

15

20

25

30

35

40

45

50

Slave sniff

Master sniff

Slave active

Master active

mA

samplesStandby

BTnode dev kit € 500

62

To probe further…

http://www.btnode.ethz.ch

63

From Proof-of-concept to Real-world WSNs
System Design

Embedded systems design
Case study: Mars pathfinder
Tools: Design space exploration

Design and
Development

Prototype
and Pilot

Launch and
Ramp Production Service and

SupportConcept/Theory

Simulation Tools
Of theory and practice

BTnode platform for fast-prototyping
Tools: Metrics and comparison of existing platforms
Design of hard- and software based on standardized
interfaces and event driven interaction

Development and Deployment
Application experience
Case study: Bluetooth Scatternets
Deployment-support concept

64

Deployment of Network Services

Example: Location Management
Finding position based on radionavigation
Robust network-based trilateration

Robust connectivity
Reliable data link layer

Service deployment functions
Re-programming
Supervision, control and monitoring
Measurements, benchmarking

Requirement

65

Bluetooth Multihop Network Topologies

Constructing ad hoc network topologies
Large networks, many devices
All devices connected
Transparent multihop transport

Scatternet formation algorithms
BlueMesh [Petrioli2002], BlueStars [Petrioli2003], BlueRings [Foo2002],
BlueTrees [Zaruba2001], mesh topologies [Guerin2003]

Single-hop connectivity [Law2003]

Complexity analysis [Law2003,Vergetis2003], comparative study [Basagni2004]

Mostly static, no (large-scale) implementation reports

66

Bluetooth Multihop Network Topologies

Initial experiments
Time-multiplexed,
dumbbell-like
connections

XHOP
Large, connected
topologies
Simple, top-down
tree-building

TreeNet
Distributed tree
topology formation
Random connection
points
Streaming data

DSNtrees

67

Simple Scatternet Tree Construction

Link layer connectivity
Random search and connect

Distributed coordination
Inquiry() and connect() operations can exhibit long delays
No a priori guarantee for success
Serialization of parallel processes

loop {
while (my_slaves < max_degree) do
found_nodes = inquiry();
forall nodes in found_nodes do
connect();

}
}

68

Simple Scatternet Tree Construction

Link layer connectivity
Random search and connect

Distributed coordination
Inquiry() and connect() operations can exhibit long delays
No a priori guarantee for success
Serialization of parallel processes

loop {
while (my_slaves < max_degree) do
found_nodes = inquiry();
forall nodes in found_nodes do
connect();

}
}

69

Simple Scatternet Tree Construction

Link layer connectivity
Random search and connect

Distributed coordination
Inquiry() and connect() operations can exhibit long delays
No a priori guarantee for success
Serialization of parallel processes

loop {
while (my_slaves < max_degree) do
found_nodes = inquiry();
forall nodes in found_nodes do
connect();

}
}

70

Simple Scatternet Tree Construction

Link layer connectivity
Random search and connect

Distributed coordination
Inquiry() and connect() operations can exhibit long delays
No a priori guarantee for success
Serialization of parallel processes

loop {
while (my_slaves < max_degree) do
found_nodes = inquiry();
forall nodes in found_nodes do
connect();

}
}

71

Simple Scatternet Tree Construction

Link layer connectivity
Random search and connect

Distributed coordination
Inquiry() and connect() operations can exhibit long delays
No a priori guarantee for success
Serialization of parallel processes

loop {
while (my_slaves < max_degree) do
found_nodes = inquiry();
forall nodes in found_nodes do
connect();

}
}

72

Simple Scatternet Tree Construction

Link layer connectivity
Random search and connect

Distributed coordination
Inquiry() and connect() operations can exhibit long delays
No a priori guarantee for success
Serialization of parallel processes

loop {
while (my_slaves < max_degree) do
found_nodes = inquiry();
forall nodes in found_nodes do
connect();

}
}

73

Making a Seven Line Algorithm Work

+ Adaptation to devices
Root lockup, cycle elimination

+ Error handling
Deadlocks, timeouts

+ Robustness, performance
Greedy behavior, heuristics

loop {
while (my_slaves < max_degree) do

found_nodes = inquiry();
forall nodes in found_nodes do

connect();
}

}

#define HEX2BYTE(c) ((u_char)(((c)<='9') ? (c)-'0' : tolower(c) - 'a' +
10))
typedef struct _jaws_stack {

FILE *uart_terminal;
HANDLE table_changed_event;
bt_addr_t my_addr;
struct btstack* bt_stack;
bt_l2cap_stack_t *l2cap_stack;

} jaws_stack_t;
jaws_stack_t* _jaws_stack;
//int foo __attribute__ ((section (".noinit")));
//int foo2 __attribute__ ((section (".eeprom")));
void bt_print_bt_addr(bt_addr_t addr)

DEBUGT("%.2x:%.2x:%.2x:%.2x:%.2x:%.2x", addr[5], addr[4], addr[3],
addr[2], addr[1], addr[0]);
const char *bt_addr_to_string(char *buf, bt_addr_t addr)

sprintf_P(buf, PSTR("%.2x:%.2x:%.2x:%.2x:%.2x:%.2x"),
addr[5], addr[4], addr[3], addr[2], addr[1], addr[0]);

return buf;
}
u_char* string_to_bt_addr(u_char* str, u_char* addr)
{

char i;
u_char *strp = str;
// skip whitespace
while(*strp == ' ')

strp++;
for(i = BD_ADDR_LEN-1; i >= 0; i--){

if(isxdigit(strp[0]) && isxdigit(strp[1])){
addr[(u_char) i] = HEX2BYTE(strp[0]) << 4 |

HEX2BYTE(strp[1]);
strp+=2;

}else{
break;

}
// skip ':'
if(i > 0){

if(*strp == ':')
strp++;

else
break;

}
}

u_char get_uart_errors(FILE* stream){
u_long parameter;
u_char errors;
// check driver status
_ioctl(_fileno(stream), UART_GETSTATUS, ¶meter);

if (parameter & UART_ERRORS) {
errors = (u_char) (parameter & UART_ERRORS);
// set error flags back to normal
parameter = UART_ERRORS;
_ioctl(_fileno(stream), UART_SETSTATUS, ¶meter);

+ Application support
Basic OS functions
Debugging, visualization,
monitoring
Stepwise testing + deployment

74

Making a Seven Line Algorithm Work

+ Adaptation to devices
Root lockup, cycle elimination

+ Error handling
Deadlocks, timeouts

+ Robustness, performance
Greedy behavior, heuristics

loop {
while (my_slaves < max_degree) do

found_nodes = inquiry();
forall nodes in found_nodes do

connect();
}

}

#define HEX2BYTE(c) ((u_char)(((c)<='9') ? (c)-'0' : tolower(c) - 'a' +
10))
typedef struct _jaws_stack {

FILE *uart_terminal;
HANDLE table_changed_event;
bt_addr_t my_addr;
struct btstack* bt_stack;
bt_l2cap_stack_t *l2cap_stack;

} jaws_stack_t;
jaws_stack_t* _jaws_stack;
//int foo __attribute__ ((section (".noinit")));
//int foo2 __attribute__ ((section (".eeprom")));
void bt_print_bt_addr(bt_addr_t addr)

DEBUGT("%.2x:%.2x:%.2x:%.2x:%.2x:%.2x", addr[5], addr[4], addr[3],
addr[2], addr[1], addr[0]);
const char *bt_addr_to_string(char *buf, bt_addr_t addr)

sprintf_P(buf, PSTR("%.2x:%.2x:%.2x:%.2x:%.2x:%.2x"),
addr[5], addr[4], addr[3], addr[2], addr[1], addr[0]);

return buf;
}
u_char* string_to_bt_addr(u_char* str, u_char* addr)
{

char i;
u_char *strp = str;
// skip whitespace
while(*strp == ' ')

strp++;
for(i = BD_ADDR_LEN-1; i >= 0; i--){

if(isxdigit(strp[0]) && isxdigit(strp[1])){
addr[(u_char) i] = HEX2BYTE(strp[0]) << 4 |

HEX2BYTE(strp[1]);
strp+=2;

}else{
break;

}
// skip ':'
if(i > 0){

if(*strp == ':')
strp++;

else
break;

}
}

u_char get_uart_errors(FILE* stream){
u_long parameter;
u_char errors;
// check driver status
_ioctl(_fileno(stream), UART_GETSTATUS, ¶meter);

if (parameter & UART_ERRORS) {
errors = (u_char) (parameter & UART_ERRORS);
// set error flags back to normal
parameter = UART_ERRORS;
_ioctl(_fileno(stream), UART_SETSTATUS, ¶meter);

hile (my_slaves < max_degree) do
found_nodes = inquiry();

forall nodes in found_nodes do
connect();

}

Seven lines

2000 lines
~87 kbyte + Application support

Basic OS functions
Debugging, visualization,
monitoring
Stepwise testing + deployment

75

DSNtrees – Field Experiments

Deployment using 70+ nodes on an office floor

Largest connected Bluetooth Scatternet

76

DSNtrees – Connection Manager Variants

RSSI-limited selectionRandom selection

0

5

10

15

20

25

30

35

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 >30
max. link length [m]

lin

ks

77

XTC – Bluetooth Mesh Networking
Theory paper-grade algorithm to implementation in 6 months

A basic simulation took 2 days to program!

78

XTC – Bluetooth Networking Revisited

Experiments, measurements and
evaluation are ongoing.

79

From Proof-of-concept to Real-world WSNs
System Design

Embedded systems design
Case study: Mars pathfinder
Tools: Design space exploration

Design and
Development

Prototype
and Pilot

Launch and
Ramp Production Service and

SupportConcept/Theory

Simulation Tools
Of theory and practice

BTnode platform for fast-prototyping
Tools: Metrics and comparison of existing platforms
Design of hard- and software based on standardized
interfaces and event driven interaction

Development and Deployment
Application experience
Case study: Bluetooth Scatternets
Deployment-support concept

80

Virtualization and Emulation
EmStar [Ganesan2004]

BEE [Chang2003,Kuusilinna2003]

Today's WSN Design and Development

S
ca

le

Figure abridged from D. Estrin/J. ElsonReality

Simulation
TOSSIM [Levis2003]

PowerTOSSIM [Shnayder2004]

Avrora [Titzer2005]

Fast-prototyping
in a controlled
environment

81

EmStar – Emulation on Backend Servers

LEDs EEPROM UART

Unmodified NesC Application

ADC

TimerC

SenseToRFM

AM

RadioCRCPacketClockC

Underlying
EmStar Services

EmTOS Wrapper Library

EmStatusServer EmPacketServer TOS status

motesens

sensor/adc

motenic

link/mote0

Transceiver (Mote)

tos/leds tos/eeprom tos/tasksUser definedUser defined

hostmote

mote/0

Implements TinyOS API and
low-level components…

Enables NesC applications to
provide new EmStar services

By connecting to existing
EmStar services

This fairly small investment of effort -- the wrapper library
and some TinyOS components that make up a new TinyOS
platform -- simultaneously addresses both goals of
heterogeneous simulation and integration!

Wraps an unmodified NesC
app into an EmStar module

Material courtesy of L. Girod

82

EmStar – Emulation Array

ESS
Mote

EssDse

ESS
Sink

Multihop

ESS
Mote

EssDse

ESS
Mote

EssDse

…ESS
Sink

Multihop

HostMote Serial Protocol

MotesMicroservers

Simulation Server
Serial MUX

Emulation Array
Emulation/Real/Hybrid Mode

Real motes installed in environment

Serial multiplexer connects server to
real motes, replaces channel model

Limits scale – improves reality

Transceiver

Transceiver

Transceiver

Transceiver

Transceiver

Transceiver

Material courtesy of L. Girod

83Slide courtesy of D. Estrin

84Slide courtesy of D. Estrin

85

Virtualization and Emulation
EmStar [Ganesan2004]

BEE [Chang2003,Kuusilinna2003]

Today's WSN Design and Development
S

ca
le

Figure abridged from D. Estrin/J. ElsonReality

Simulation
TOSSIM [Levis2003]

PowerTOSSIM [Shnayder2004]

Avrora [Titzer2005]

Test Grids
moteLab [Werner-Allen2005]

Emstar arrays [Cerpa03/04]

Kansei [Dutta2005]

Closing in on the
“real” experience

86

MoteLab – Test Bed and Compute Server

Material courtesy of G. Werrner-Allen

87

Virtualization and Emulation
EmStar [Ganesan2004]

BEE [Chang2003,Kuusilinna2003]

Today's Design and Development
S

ca
le

Figure abridged from D. Estrin/J. ElsonReality

Simulation
TOSSIM [Levis2003]

PowerTOSSIM [Shnayder2004]

Avrora [Titzer2005]

Test Grids
moteLab [Werner-Allen2005]

Emstar arrays [Cerpa03/04]

Kansei [Dutta2005]

88

Virtualization and Emulation
EmStar [Ganesan2004]

BEE [Chang2003,Kuusilinna2003]

Today's Design and Development

S
ca

le

Figure abridged from D. Estrin/J. ElsonReality

Simulation
TOSSIM [Levis2003]

PowerTOSSIM [Shnayder2004]

Avrora [Titzer2005]

Test Grids
moteLab [Werner-Allen2005]

Emstar arrays [Cerpa03/04]

Kansei [Dutta2005]

Deployment
In-network reprogramming
[Levis2004,Hui2004]

Calibration and Verification
[Szewczyk2004]

Trial-and-error [Mainwaring2004,
Hemingway2004,Cerpa2001]

Dependence on infrastructure
[Szewczyk2004]

89

Next-Generation Deployment-Support

Traditional test grid
Wired
Immobile
Not scalable

In-network tools
Unreliable

Self-organizing
backbone network

with
deployment-support

services

Deployment-Support Network

90

Target Sensor Network

Next-Generation Deployment-Support

91

Target Sensor Network

Next-Generation Deployment-Support

92

Target Sensor Network

Next-Generation Deployment-Support

93

Target Sensor Network

Next-Generation Deployment-Support

94

Target Sensor Network

Next-Generation Deployment-Support

Developer
Workstation

Deployment-Support Network
Temporary, minimal invasive
Virtual connections to nodes
Reliable, wireless, scalable

95

Vision: Full Life-Cycle Support for WSNs

Stepwise refinement

Feedback to
Design
Development

Monitoring of
Functionality
Quality

Validation and Verification

96

Further Reading

Suggested Papers (in this order)
R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler. An analysis of a large scale habitat monitoring
application. In Proc. 2nd ACM Conf. Embedded Networked Sensor Systems (SenSys 2004), pages 214–226. ACM
Press, New York, November 2004.
J. Gray. Why do computers stop and what can be done about it? In Proc. 5th Symp. Reliability in Distributed Software
and Database Systems (SRDS 86), pages 3–12, January 1986.
D. Kotz, C. Newport, and C. Elliott. The mistaken axioms of wireless-network research. Technical Report TR2003-467,
Dartmouth College Computer Science, July 2003.
G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: A wireless sensor network testbed. In Proc. 4th Int'l Conf.
Information Processing in Sensor Networks (IPSN '05), pages 483–488. IEEE, Piscataway, NJ, April 2005.
L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Osterweil, and T. Schoellhammer, "A System for
Simulation, Emulation, and Deployment of Heterogeneous Sensor Networks", In Proc. of SenSys 2004.
J. Beutel, M. Dyer, M. Hinz, L. Meier, and M. Ringwald. Next-generation prototyping of sensor networks. In Proc. 2nd
ACM Conf. Embedded Networked Sensor Systems (SenSys 2004), pages 291–292. ACM Press, New York, November
2004.

97

Further Reading

Further Papers and Reports
L. Girod, J. Elson, A. Cerpa, T. Stathapopoulos, N. Ramananthan, and D. Estrin. EmStar: A software environment for
developing and deploying wireless sensor networks. In Proc. USENIX 2004 Annual Tech. Conf., pages 283–296, June
2004.
R. Szewczyk, J. Polastre, A. Mainwaring, and D. Culler. Lessons from a sensor network expedition. In Proc. 1st
European Workshop on Sensor Networks (EWSN 2004), volume 2920 of Lecture Notes in Computer Science, pages
307–322. Springer, Berlin, January 2004.
J. Heidemann, N. Bulusu, J. Elson, C. Intanagonwiwat, K.C. Lan, Y. Xu, W. Ye, D. Estrin, and R. Govindan. Effects of
Detail in Wireless Network Simulation. In Proc. SCS Multiconference Distributed Simulation 2001, pages 3–11.
USC/Information Sciences Institute, Society for Computer Simulation, Los Angeles, CA, January 2001.
D. Kotz, C. Newport, R.S. Gray, J. Liu, Y. Yuan, and C. Elliott. Experimental evaluation of wireless simulation
assumptions. In Int'l Workshop Modeling Analysis and Simulation of Wireless and Mobile Systems (MSWiM 04), pages
78–82. ACM Press, New York, October 2004.
D. Cavin and Y. Sasson. On the accuracy of MANET simulators. In ACM Workshop Principles Of Mobile Computing
(POMC 02), pages 38–43. ACM Press, New York, October 2002.
J. Beutel, O. Kasten, F. Mattern, K. Römer, F. Siegemund, and L. Thiele. Prototyping wireless sensor network
applications with BTnodes. In Proc. 1st European Workshop on Sensor Networks (EWSN 2004), volume 2920 of
Lecture Notes in Computer Science, pages 323–338. Springer, Berlin, January 2004.
J. Beutel, M. Dyer, L. Meier, and L. Thiele. Scalable topology control for deployment-sensor networks. In Proc. 4th Int'l
Conf. Information Processing in Sensor Networks (IPSN '05), pages 359–363. IEEE, Piscataway, NJ, April 2005.
ESA, Ariane 501 - Presentation of Inquiry Board report, press release N° 33-1996.
Yeh, Y.C.; Design considerations in Boeing 777 fly-by-wire computers, HASE 1998.
Richard Feynman, PRESIDENTIAL COMMISSION ON THE SPACE SHUTTLE CHALLENGER ACCIDENT, Appendix
F.

98

Further Reading

Books
What Do You Care What Other People Think?, Richard P. Feynman, W. W. Norton & Company, 2001, ISBN 0-393-
32092-8
Ambient Intelligence, Editors: W. Weber, E. Aarts and J.M. Rabaey, Springer, Berlin, 2004, ISBN 3-540-23867-0
Embedded System Design, Peter Marwedel. Kluwer Academic Publishers, Nov. 2003, ISBN 1-4020-7690-8, 258 pp.

Part of the material used in this tutorial originates from other authors.
L. Thiele, S. Künzli, R. Wattenhofer, ETH Zurich

P. Marwedel, U. Dortmund

R. Szewczyk, UC Berkeley

T. Henzinger, EPF Lausanne

D. Estrin, L. Girod, UCLA

G. Werner-Allen, Harvard

99

Think,
Try hard,
Talk to the community,
Use simple solutions,
Share your work.

You are not alone.

Have fun…

