Intrabody Communication: Applications and Practical Issues

Kurt Partridge University of Washington

Dagstuhl Workshop on Ubiquitous Computing September 10--14, 2001

What is Intrabody Communication?

- Low power electrical signals sent through the human body
- Allows ubiquitous and wearable devices to communicate
- The big benefit: signal stays very close to the body

Motivating Ubicomp Scenario: User Association

Motivating Ubicomp Scenario: User Association

Basic Principles

Principles Applied

Our Implementation

- Size: 8cm x 13cm
- Power: 4 9V batteries
- Data rate: 56 kbps
- Data encoding: FSK
- Frequencies: 140 kHz and 180 kHz
- TX voltage swing:
 20V peak-to-peak

Basic Experiment Setup

Coupling to the Body

Wrist Strap

Shoe

Findings

Minimum signal amplitude for communication: 20 mV

Other Situations

Communication without Touch

- Non-touch communication is undesirable, but it happens
- One trick: reducing transmit voltage
 - Works with the shoe
 - Doesn't work with wrist and belt because of ground plate impedance variations

Other Experiments

Experiment	Result
 Raising shoe 	2-5 times weaker signal
 Changing grounding plate size 	large plates roughly similar
 Gloves 	1-2 times weaker
 Barefoot 	little difference
 Multiple transmitters 	distinguished well

Theoretical Maximum BW

Hartley-Shannon Law: max. error-free capacity:

capacity = bandwidth $* \log_2(1 + SNR)$

Application Taxonomy

- 1. Personal Area Networks
- 2. Collect Data from Environment
- 3. Customize Environment on per user basis
- 4. Customize Environment on per user task basis

Competing Technologies

Method	Examples	Features
short-range RF	Bluetooth, RF Monolithics	Ok for PAN, prob w/multiple people, eavesdropping
infrared	IR badges, Eye-R	Problems outdoors, greater power, less intentional
ID at physical user-interface	password, iButtons, RFID, fingerprint, barcode	Passive, customization stored with device, privacy issues, administrative and operational overhead, less inconspicuous

Health Concerns

- Short term:
 - Shock unlikely
 - Pacemakers may be affected
- Long term:
 - Cancer difficult to predict, similar to power-line studies
 - Other effects -- unknown

Future Goals

- Achieve touch-only communication
- Increase speed
- Build a deployable board
- Evaluate in practical environment

Conclusions

- Intrabody communication may provide ubicomp with touch-selective communication
- Watch for new results over the next several months
- Visit us on the web at: http://portolano.cs.washington.edu/projects/contact

Other Findings

- Using the other hand with the wrist coupler reduced signal strength by 0.5
- A portable PDA has a weaker signal, but was position-dependent
- Grounding or putting a conductive plate down helps a lot
- Touching both xmit plates generates a strong signal w/wrist and belt only

Motivating Ubicomp Scenario: User Association

Motivating Ubicomp Scenario: User Association

Basic Principles

23