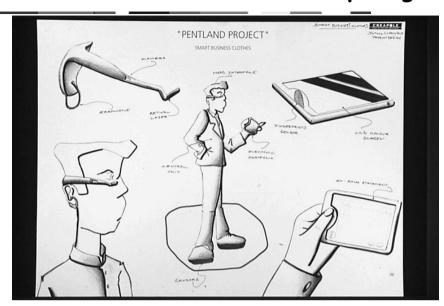
Perceptual Context Awareness through Wearable Sensors

Bernt Schiele


ETH Zurich, Switzerland (M.I.T. Media Laboratory, USA)

A Vision of Wearable Computing

- · Electronic Assistant always with you
 - > any information anywhere, anytime
 - > help for your daily work
 - > metaphor: a human secretary
 - > a good secretary:
 - should be very supportive for work
 - we are willing to "train" a secretary
 - cost-benefit-relation has to be right: how much support we get vs. how much we have to invest (in training)

A Vision of Wearable Computing

Driving Market Forces

- · Professional services
 - > transportation, defense, technical staff, sales, doctors, emergency
- · Health
 - health monitoring, stress, heart, glucose, ...

- Entertainment & Fashion
 - > the "ultimate walkman"
 - > MP3, games, personal video

A Vision of Wearable Computing

- important properties of an electronic assistant:
 - form-factor: small, light, ...
 - power: 24h / 7 days a week
 - > communication: should be always possible
 - > interaction & control: as simple and easy as possible

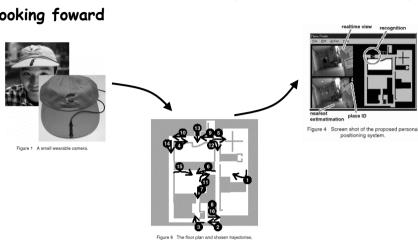
Potential of Wearable Computing

- · Vision of Wearable Computer + Sensors
 - computer has first person perspective on surrounding world:
 - sees what the user sees (alass-mounted camera)
 - hears what the user hears (wireless microphone)
 - > computer and user are always together
- Sensory Augmented Wearable Computing
 - > may be basis for more "intelligent" human-computer interaction

Potential of Wearable Computing

- Today's Personal Computer
 - > human goes to the computer
 - > short term interactions
 - > human-computer interactions: keyboard & mouse
 - > computer knows little about the rest of the world
 - > "intelligent" human-computer interaction possible ??

Sensory Augmented Wearable Computing

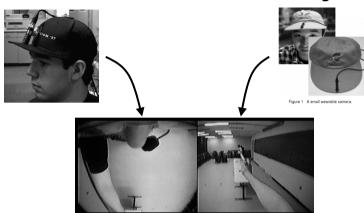

- · wearable sensors allow to determine
 - > where the user is
 - what the user is doing (activity)
 - > what the user is looking at
 - > ...
- · wearable sensors in the following
 - > multiple cameras

Visual Localization of the User

• 1 camera:

[Aoki, Schiele, Pentland 99]

> looking foward



Visual Localization of the User

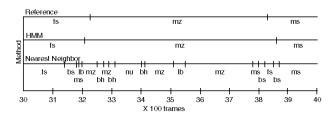
· 2 cameras:

[Starner, Schiele, Pentland 98]

- > one looking forward, one looking downward
- > feature extraction from three differnt regions

Visual Localization of the User

· 2 cameras:

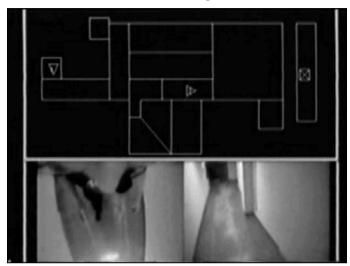

[Starner, Schiele, Pentland 98]

- > each room is modeled with a Hidden Markov Model
- > modelisation of room topology (statistical grammar)

Table 1: Patrol area recognition accuracy

> results:

method	training set	test set
2-state HMM	51.72%	21.82%
3-state HMM	68.97%	81.82%
4-state HMM	65.52%	76.36%
5-state HMM	79.31%	40.00%
Nearest Neighbor	-400%	-485.18%


Visual Recognition of User Activity

- · Recognition of American Sign Language
 - > [Starner et al. PAMI 98]

Visual Recognition of User Activity

[Starner, Schiele, Pentland 98]

Recognition of Objects in the Visual Field of View of the User

- · Remembrance Agent
 - > Recording of Audio-Visual Environment of the User (Video Clips)
 - > Association of the video clip with a physical object (snapshot of the object)
 - > Playback of the video-clip, whenever the object is recognized by the system
- · Scenario: museum's quide

Robust Recognition of Objects

- Robust Recognition of 100+ Objects
 - > [Schiele, Crowley 1996-2000]
 - > statistical approach for recognition
 - > local characteristics such as Gaussian derivatives
 - > Bayesian approach: recognition of multiple objects in cluttered scenes

Recognition of Objects in the Visual Field of View of the User

- public presentations:
 - > Nicograph 98, Siggraph 99, Orbit 2000, ...
- several hundred users
 - real-time recognition (10Hz)

Museum's Guide

- · use of recognition results
 - > system recognizes "what is the user looking at"
 - > system knows how long is the user looking at an object
 - indicates user's interest
 - deliver more information on specific paintings (i.e. access of museum's database)
 - user profile: suggestions based on other user's interest
 - idea of "user community": find visitors with similar interest complementary interests

- ...

- (museum: evaluate effectiveness of museum's organization)

The END

Thank you

Bernt Schiele

ETH Zurich, Switzerland

http://www.vision.ethz.ch/schiele schiele@inf.ethz.ch

