
Distributed Computing Group Roger Wattenhofer 113

The Consensus Hierarchy

1 Read/Write Registers, …

2 T&S, F&I, Swap, …

∞ CAS, …

.

.

.

Distributed Computing Group Roger Wattenhofer 114

Consensus #4
Synchronous Systems

• In real systems, one can sometimes
tell if a processor had crashed
– Timeouts
– Broken TCP connections

• Can one solve consensus at least in
synchronous systems?

Distributed Computing Group Roger Wattenhofer 115

Communication Model

• Complete graph
• Synchronous

1p

2p

3p

4p5p

Distributed Computing Group Roger Wattenhofer 116

1p

2p

3p

4p5p

a
a

aa

Send a message to all processors
in one round: Broadcast

Distributed Computing Group Roger Wattenhofer 117

At the end of the round:
everybody receives a

1p

2p

3p

4p5p

a

a

a

a
Distributed Computing Group Roger Wattenhofer 118

1p

2p

3p

4p5p

a

a

aa
b

b

b

b

Broadcast: Two or more processes
can broadcast in the same round

Distributed Computing Group Roger Wattenhofer 119

1p

2p

3p

4p5p

a,b

a

b
a,b

a,b

At end of round...

Distributed Computing Group Roger Wattenhofer 120

Crash Failures

Faulty
processor 1p

2p

3p

4p5p

a
a

aa

Distributed Computing Group Roger Wattenhofer 121

1p

2p

3p

4p5p

a

a

Some of the messages are lost,
they are never received

Faulty
processor

Distributed Computing Group Roger Wattenhofer 122

1p

2p

3p

4p5p

a

a

Effect

Faulty
processor

Distributed Computing Group Roger Wattenhofer 123

Failure

1p

2p

3p

4p

5p

Round
1

1p

2p

3p

4p

5p

1p

2p

3p

4p

5p

Round
2

Round
3

1p

2p

4p

5p

Round
4

1p

2p

4p

5p

Round
5

3p 3p

After a failure, the process disappears
from the network

Distributed Computing Group Roger Wattenhofer 124

Consensus:
Everybody has an initial value

0

1

2 3

4

Start

Distributed Computing Group Roger Wattenhofer 125

3

3

3 3

3

Finish

Everybody must decide on the
same value

Distributed Computing Group Roger Wattenhofer 126

1

1

1 1

1

Start

If everybody starts with the same value
they must decide on that value

Finish
1

1

1 1

1

Validity condition:

Distributed Computing Group Roger Wattenhofer 127

A simple algorithm

1. Broadcasts value to all processors

2. Decides on the minimum

Each processor:

(only one round is needed)

Distributed Computing Group Roger Wattenhofer 128

0

1

2 3

4

Start

Distributed Computing Group Roger Wattenhofer 129

0

1

2 3

4

Broadcast values
0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

Distributed Computing Group Roger Wattenhofer 130

0

0

0 0

0

Decide on minimum

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

Distributed Computing Group Roger Wattenhofer 131

0

0

0 0

0

Finish

Distributed Computing Group Roger Wattenhofer 132

This algorithm satisfies the validity condition

1

1

1 1

1

Start Finish
1

1

1 1

1

If everybody starts with the same initial value,
everybody sticks to that value (minimum)

Distributed Computing Group Roger Wattenhofer 133

Consensus with Crash Failures

1. Broadcasts value to all processors

2. Decides on the minimum

Each processor:

The simple algorithm doesn’t work

Distributed Computing Group Roger Wattenhofer 134

0

1

2 3

4

Start

fail

The failed processor doesn’t
broadcast its value to all processors

0

0

Distributed Computing Group Roger Wattenhofer 135

0

1

2 3

4
0,1,2,3,4

1,2,3,4

fail

0,1,2,3,4

1,2,3,4

Broadcasted values

Distributed Computing Group Roger Wattenhofer 136

0

0

1 0

1
0,1,2,3,4

1,2,3,4

fail

0,1,2,3,4

1,2,3,4

Decide on minimum

Distributed Computing Group Roger Wattenhofer 137

0

0

1 0

1

fail

Finish - No Consensus!

Distributed Computing Group Roger Wattenhofer 138

If an algorithm solves consensus for
f failed processes we say it is

an f-resilient consensus algorithm

Distributed Computing Group Roger Wattenhofer 139

0

1

4 3

2

Start Finish
1

1

Example: The input and output of a
3-resilient consensus algorithm

Distributed Computing Group Roger Wattenhofer 140

New validity condition:
all non-faulty processes decide on a value
that is available initially.

1

1

1 1

1

Start Finish
1

1

Distributed Computing Group Roger Wattenhofer 141

An f-resilient algorithm

Round 1:
Broadcast my value

Round 2 to round f+1:
Broadcast any new received values

End of round f+1:
Decide on the minimum value received

Distributed Computing Group Roger Wattenhofer 142

0

1

2 3

4

Start

Example: f=1 failures, f+1=2 rounds needed

Distributed Computing Group Roger Wattenhofer 143

0

1

2 3

4

Round 1

0

0
fail

Example: f=1 failures, f+1 = 2 rounds needed

Broadcast all values to everybody

0,1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

(new values)

Distributed Computing Group Roger Wattenhofer 144

Example: f=1 failures, f+1 = 2 rounds needed

Round 2 Broadcast all new values to everybody

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4
1

2 3

4

Distributed Computing Group Roger Wattenhofer 145

Example: f=1 failures, f+1 = 2 rounds needed

Finish Decide on minimum value

0

0 0

0
0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

Distributed Computing Group Roger Wattenhofer 146

0

1

2 3

4

Start

Example: f=2 failures, f+1 = 3 rounds needed

Example of execution with 2 failures

Distributed Computing Group Roger Wattenhofer 147

0

1

2 3

4

Round 1

0

Failure 1

Broadcast all values to everybody

1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

Example: f=2 failures, f+1 = 3 rounds needed

Distributed Computing Group Roger Wattenhofer 148

0

1

2 3

4

Round 2

Failure 1

Broadcast new values to everybody

0,1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

Failure 2

Example: f=2 failures, f+1 = 3 rounds needed

Distributed Computing Group Roger Wattenhofer 149

0

1

2 3

4

Round 3

Failure 1

Broadcast new values to everybody

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

O,1,2,3,4

Failure 2

Example: f=2 failures, f+1 = 3 rounds needed

Distributed Computing Group Roger Wattenhofer 150

0

0

0 3

0

Finish

Failure 1

Decide on the minimum value

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

O,1,2,3,4

Failure 2

Example: f=2 failures, f+1 = 3 rounds needed

Distributed Computing Group Roger Wattenhofer 151

Example:
5 failures,
6 rounds

1 2

No failure

3 4 5 6Round

If there are f failures and f+1 rounds then
there is a round with no failed process

Distributed Computing Group Roger Wattenhofer 152

• Every (non faulty) process knows
about all the values of all the other
participating processes

•This knowledge doesn’t change until
the end of the algorithm

At the end of the
round with no failure:

Distributed Computing Group Roger Wattenhofer 153

Everybody would decide on the same value

However, as we don’t know the exact
position of this round,

we have to let the algorithm execute
for f+1 rounds

Therefore, at the end of the
round with no failure:

Distributed Computing Group Roger Wattenhofer 154

when all processes start with the same
input value then the consensus is that value

This holds, since the value decided from
each process is some input value

Validity of algorithm:

Distributed Computing Group Roger Wattenhofer 155

A Lower Bound

Any f-resilient consensus algorithm
requires at least f+1 rounds

Theorem:

Distributed Computing Group Roger Wattenhofer 156

Proof sketch:

Assume for contradiction that f
or less rounds are enough

Worst case scenario:

There is a process that fails in
each round

Distributed Computing Group Roger Wattenhofer 157

Round

a

1
before process
fails, it sends its
value a to only one
process

ip

kp

ip

kp

Worst case scenario

Distributed Computing Group Roger Wattenhofer 158

Round

a

1
before process
fails, it sends
value a to only one
process

mp

kp

kp

mp

Worst case scenario

2

Distributed Computing Group Roger Wattenhofer 159

Round 1

fp

Worst case scenario

2

………

a np

f3
At the end
of round f
only one
process
knows
about
value a

np

Distributed Computing Group Roger Wattenhofer 160

Round 1

Worst case scenario

2

………

f3
Process
may decide
on a, and all
other
processes
may decide
on another
value (b)

np

npa

b

decide

Distributed Computing Group Roger Wattenhofer 161

Round 1

Worst case scenario

2

………

f3

npa

b

decide
Therefore f
rounds are
not enough
At least f+1
rounds are
needed

Distributed Computing Group Roger Wattenhofer 162

Consensus #5
Byzantine Failures

Faulty
processor 1p

2p

3p

4p5p

a
b

ac

Different processes receive different values

Distributed Computing Group Roger Wattenhofer 163

1p

2p

3p

4p5p

a

a

A Byzantine process can behave like a
Crashed-failed process

Some messages may be lost

Faulty
processor

Distributed Computing Group Roger Wattenhofer 164

Failure

1p

2p

3p

4p

5p

Round
1

1p

2p

3p

4p

5p

1p

2p

3p

4p

5p

Round
2

Round
3

1p

2p

4p

5p

Round
4

1p

2p

4p

5p

Round
5

After failure the process continues
functioning in the network

3p 3p

Failure

1p

2p

4p

5p

Round
6

3p

Distributed Computing Group Roger Wattenhofer 165

Consensus with Byzantine
Failures

solves consensus for f failed processes

f-resilient consensus algorithm:

Distributed Computing Group Roger Wattenhofer 166

The input and output of
a 1-resilient consensus algorithm

0

1

4 3

2

Start Finish
3

3

Example:

3 3

Distributed Computing Group Roger Wattenhofer 167

Validity condition:
if all non-faulty processes start with
the same value then all non-faulty processes
decide on that value

1

1

1 1

1

Start Finish
1

1

1 1

Distributed Computing Group Roger Wattenhofer 168

Any f-resilient consensus
algorithm requires at least
f+1 rounds

Theorem:

follows from the crash failure
lower bound

Proof:

Lower bound on number of
rounds

Distributed Computing Group Roger Wattenhofer 169

There is no f-resilient algorithm

for n processes, where f ≥ n/3

Theorem:

Plan: First we prove the 3 process case,
and then the general case

Upper bound on failed
processes

Distributed Computing Group Roger Wattenhofer 170

There is no 1-resilient algorithm
for 3 processes

Lemma:

Proof: Assume for contradiction that
there is a 1-resilient algorithm
for 3 processes

The 3 processes case

Distributed Computing Group Roger Wattenhofer 171

0p

1p 2p

A(0)

B(1) C(0)

Initial value

Local
algorithm

Distributed Computing Group Roger Wattenhofer 172

0p

1p 2p

1

1 1

Decision value

Distributed Computing Group Roger Wattenhofer 173

3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

Assume 6 processes are in a ring

(just for fun)

Distributed Computing Group Roger Wattenhofer 174

3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

B(1)
1p

0p
A(1)

2p
faulty

C(1)

C(0)Processes think they are in
a triangle

Distributed Computing Group Roger Wattenhofer 175

3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

1
1p

0p
1

2p
faulty

(validity condition)
Distributed Computing Group Roger Wattenhofer 176

3p

4p

2p
A(0) C(1)

1p

5p 0p
A(1)C(0)

B(0)

0p
1

1p

2p
C(0)

B(0)

0p
A(0)

A(1)

faulty

B(1)

Distributed Computing Group Roger Wattenhofer 177

3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

0p
1

1p

2p
0

0

0p
faulty

(validity condition)
Distributed Computing Group Roger Wattenhofer 178

3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

0p
1

2p
0

2p 0p
A(1)C(0)

1p
B(1)B(0)

faulty

Distributed Computing Group Roger Wattenhofer 179

3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

0p
1

2p
0

2p 0p
10

1p faulty
Distributed Computing Group Roger Wattenhofer 180

2p 0p
10

1p faulty

Impossibility

Distributed Computing Group Roger Wattenhofer 181

There is no algorithm that solves
consensus for 3 processes
in which 1 is a byzantine process

Conclusion

Distributed Computing Group Roger Wattenhofer 182

Assume for contradiction that
there is an f -resilient algorithm A
for n processes, where f ≥ n/3

We will use algorithm A to solve consensus
for 3 processes and 1 failure (which is
impossible, thus we have a contradiction)

The n processes case

Distributed Computing Group Roger Wattenhofer 183

1p

0 1

2p np

1

… …

2 21 0 00 1 1start

failures

1p

1 1

2p np… …

1 1 11 1finish

Algorithm A

Distributed Computing Group Roger Wattenhofer 184

3
1 npp K

1q

2q3q
3
21

3
nn pp K

+nn pp K
1

3
2 +

Each process q simulates algorithm A

on n/3 of “p” processes

Distributed Computing Group Roger Wattenhofer 185

3
1 npp K1q

2q3q
3
21

3
nn pp K

+nn pp K
1

3
2 +

fails

When a single q is byzantine, then n/3 of

the “p” processes are byzantine too.

Distributed Computing Group Roger Wattenhofer 186

3
1 npp K

1q

2q3q
3
21

3
nn pp K

+nn pp K
1

3
2 +

fails

algorithm A tolerates n/3 failures

Finish of
algorithm A

k
kk

k kk

k

k

kk
kk

k

all decide k

Distributed Computing Group Roger Wattenhofer 187

1q

2q3q

fails

Final decision
k

k

We reached consensus with 1 failure
Impossible!!!

Distributed Computing Group Roger Wattenhofer 188

There is no f-resilient algorithm

for n processes with f ≥ n/3

Conclusion

Distributed Computing Group Roger Wattenhofer 189

The King Algorithm

solves consensus with n processes and
f failures where f < n/4 in f +1 “phases”

There are f+1 phases
Each phase has two rounds
In each phase there is a different king

Distributed Computing Group Roger Wattenhofer 190

Example: 12 processes, 2 faults, 3 kings

0 1 1 2 21 0 00 1 1 0

initial values

Faulty

Distributed Computing Group Roger Wattenhofer 191

Example: 12 processes, 2 faults, 3 kings

Remark: There is a king that is not faulty

0 1 1 2 21 0 00 1 1 0

initial values

King 1 King 2 King 3

Distributed Computing Group Roger Wattenhofer 192

Each processor has a preferred valueip iv

In the beginning, the preferred value

is set to the initial value

The King algorithm

Distributed Computing Group Roger Wattenhofer 193

Round 1, processor :ip

• Broadcast preferred value

• Set to the majority of
values received

iv
iv

The King algorithm: Phase k

Distributed Computing Group Roger Wattenhofer 194

•If had majority of less than

Round 2, king :kp

•Broadcast new preferred value

Round 2, process :ip
kv

iv fn +
2

then set to iv kv

The King algorithm: Phase k

Distributed Computing Group Roger Wattenhofer 195

End of Phase f+1:

Each process decides on preferred value

The King algorithm

Distributed Computing Group Roger Wattenhofer 196

Example: 6 processes, 1 fault

Faulty

0 1

king 1

king 20

11

2

Distributed Computing Group Roger Wattenhofer 197

0 1

king 1

0

11

2

Phase 1, Round 1

2,1,1,0,0,0

2,1,1,1,0,0

2,1,1,1,0,0 2,1,1,0,0,0

2,1,1,0,0,0

0

1

1 0

0

Everybody broadcasts

Distributed Computing Group Roger Wattenhofer 198

1 0

king 1

0

11

0

Phase 1, Round 1 Choose the majority

Each majority population was 4
2

3 =+≤ fn

On round 2, everybody will choose the king’s value

Distributed Computing Group Roger Wattenhofer 199

Phase 1, Round 2

1 0

0

11

0
0

1

0 1

2

king 1

The king broadcasts

Distributed Computing Group Roger Wattenhofer 200

Phase 1, Round 2

0 1

0

11

2

king 1

Everybody chooses the king’s value

Distributed Computing Group Roger Wattenhofer 201

0 1

king 2
0

11

2

Phase 2, Round 1

2,1,1,0,0,0

2,1,1,1,0,0

2,1,1,1,0,0 2,1,1,0,0,0

2,1,1,0,0,0

0

1

1 0

0

Everybody broadcasts

Distributed Computing Group Roger Wattenhofer 202

1 0

0

11

0

Phase 2, Round 1 Choose the majority

Each majority population is 4
2

3 =+≤ fn

On round 2, everybody will choose the king’s value

king 2

2,1,1,1,0,0

Distributed Computing Group Roger Wattenhofer 203

Phase 2, Round 2

1 0

0

11

0

The king broadcasts

king 2

00
0

0 0

Distributed Computing Group Roger Wattenhofer 204

Phase 2, Round 2

0 0

0

10

0
king 2

Everybody chooses the king’s value
Final decision

Distributed Computing Group Roger Wattenhofer 205

In the round where the king is non-faulty,
everybody will choose the king’s value v

After that round, the majority will

remain value v with a majority population
which is at least fnfn +>−

2

Invariant / Conclusion

Distributed Computing Group Roger Wattenhofer 206

Exponential Algorithm

solves consensus with n processes and
f failures where f < n/3 in f +1 “phases”

But: uses messages with exponential size

Distributed Computing Group Roger Wattenhofer 207

Consensus #6
Randomization

• So far we looked at deterministic
algorithms only. We have seen that
there is no asynchronous algorithm.

• Can one solve consensus if we allow
our algorithms to use randomization?

Distributed Computing Group Roger Wattenhofer 208

Yes, we can!

• We tolerate some processes to be
faulty (at most f stop failures)

• General idea: Try to push your initial
value; if other processes do not
follow, try to push one of the
suggested values randomly.

Distributed Computing Group Roger Wattenhofer 209

Randomized Algorithm

• At most f stop-failures (assume n > 9f)
• For process pi with initial input x ∈ {0,1}:

1. Broadcast Proposal(x, round)
2. Wait for n-f Proposal messages.
3. If at least n-2f messages have value v,

then x := v, else x := undecided.

Distributed Computing Group Roger Wattenhofer 210

Randomized Algorithm

4. Broadcast Bid(x, round).
5. Wait for n-f Bid messages.
6. If at least n-2f messages have value v,

then decide on v.
If at least n-4f messages have value v,

then x := v.
Else choose x randomly (p(0) = p(1) = ½)

7. Go back to step 1 (next round).

Distributed Computing Group Roger Wattenhofer 211

What do we want?

• Agreement: Non-faulty processes
decide non-conflicting values.

• Validity: If all have the same input,
that input should be decided.

• Termination: All non-faulty processes
eventually decide.

Distributed Computing Group Roger Wattenhofer 212

All processes have same input

• Then everybody will agree on that
input in the very first round already.

• Validity follows immediately

• If not, then any decision is fine!
• Validity follows too (in any case).

Distributed Computing Group Roger Wattenhofer 213

What if process i decides in
step 6a (Agreement)…?

• Then process i has received at least
n-2f Bid messages with value v.

vvv vvvvvvvvvvvvvvvvv www www

• Then everybody else has received at least n-
3f messages will value v, and thus everybody
will propose v next round, and thus decide v.

Distributed Computing Group Roger Wattenhofer 214

What about termination?

• We have seen that if a process
decides in step 6a, all others will
follow in the next round at latest.

• If in step 6b/c, all processes choose
the same value (with probability 2-n),
all give the same bid, and terminate in
the next round.

Distributed Computing Group Roger Wattenhofer 215

Byzantine & Asynchronous?

• The presented protocol is in fact
already working in the Byzantine case!

• (That’s why we have “n-4f” in the
protocol and “n-3f” in the proof.)

Distributed Computing Group Roger Wattenhofer 216

But termination is awfully slow…

• In expectation, about the same
number of processes will choose 1 or
0 in step 6c.

• The probability that a strong
majority of processes will propose
the same value in the next round is
exponentially small.

Distributed Computing Group Roger Wattenhofer 217

Naïve Approach

• In step 6c, all processes should
choose the same value! (Reason:
validity is not a problem anymore
since for sure there exist 0’s and 1’s
and therefore we can savely always
propose the same…)

• Replace 6c by: “choose x := 1”!

Distributed Computing Group Roger Wattenhofer 218

Problem of Naïve Approach

• What if a majority of processes bid 0
in round 4? Then some of the
processes might go into 6b (setting
x=0), others into 6c (setting x=1).
Then the picture is again not clear in
the next round

• Anyway: Approach 1 is deterministic!
We know (#2) that this doesn’t work!

Distributed Computing Group Roger Wattenhofer 219

Shared/Common Coin

• The idea is to replace 6c with a
subroutine where all the processes
compute a so-called shared (a.k.a.
common, “global”) coin.

• A shared coin is a random binary
variable that is 0 with constant
probability, and 1 with constant
probability.

Distributed Computing Group Roger Wattenhofer 220

Shared Coin Algorithm

Code for process i:
1. Set local coin ci := 0 with

probability 1/n, else (w.h.p.) ci := 1.
2. Use reliable broadcast* to tell all

processes about your local coin ci.
3. If you receive a local coin cj of

another process j, add j to the set
coinsi, and memorize cj.

Distributed Computing Group Roger Wattenhofer 221

Shared Coin Algorithm

4. If you have seen exactly n-f local
coins then copy the set coinsi into
the set seeni (but do not stop
extending coinsi if you see new
coins)

5. Use reliable broadcast to tell all
processes about your set seeni.

Distributed Computing Group Roger Wattenhofer 222

Shared Coin Algorithm

6. If you have seen at least n-f seenj
which satisfy seenj ⊆ coinsi, then
terminate with:

7. If you have seen at least a single
local coin with cj = 0 then return 0,
else (if you have seen 1-coins only)
then return 1.

Distributed Computing Group Roger Wattenhofer 223

Why does the shared coin
algorithm terminate?

• For simplicity we look at f crash failures
only, assuming that 3f < n.

• Since at most f processes crash you will
see at least n-f local coins in step 4.

• For the same reason you will see at least
n-f seen sets in step 6.

• Since we used reliable broadcast, you will
eventually see all the coins that are in the
other’s sets.

Distributed Computing Group Roger Wattenhofer 224

Why does the algorithm work?

• Looks like magic at first…
• General idea: a third of the local

coins will be seen by all the
processes! If there is a “0” among
them we’re done. If not, chances are
high that there is no “0” at all.

• Proof details: next few slides…

Distributed Computing Group Roger Wattenhofer 225

Proof: Matrix

• Let i be the first process to
terminate (reach step 7)

• For process i we draw a matrix of all
the sets seenj (columns) and local
coins ck (rows) process i has seen.

• We draw an “X” in the matrix if and
only if set seeni includes coin ck.

Distributed Computing Group Roger Wattenhofer 226

Proof: Matrix (f=2, n=7, n-f=5)

XXXXcoin7

XXXXcoin6

XXXXcoin5

XXXXXcoin3

XXXcoin2

XXXXXcoin1

seen7seen6seen5seen3seen1

• Note that there are at least (n-f)2 X’s in
this matrix (≥n-f rows, n-f X’s in each row).

Distributed Computing Group Roger Wattenhofer 227

Proof: Matrix

• Lemma 1: There are at least f+1 rows
where at least f+1 cells have an “X”.

• Proof: Suppose by contradiction that
this is not the case. Then the
number of X is bounded from above
by f·(n-f) + (n-f)·f, …

Few rows have many X All other rows have at most f X

Distributed Computing Group Roger Wattenhofer 228

Proof: Matrix

|X| · 2f(n-f)
we use 3f < n 2f < n-f

< (n-f)2

but we know that |X| ≥ (n-f)2

· |X|.
A contradiction!

Distributed Computing Group Roger Wattenhofer 229

Proof: The set W
• Let W be the set of local coins where the

rows in the matrix have more than f X’s.
• Lemma 2: All local coins in the set W are

seen by all processes (that terminate).
• Proof: Let w ∈ W be such a local coin.

With Lemma 1 we know that w is at least
in f+1 seen sets. Since each process must
see at least n-f seen sets (before
terminating), these sets overlap, and w
will be seen.

Distributed Computing Group Roger Wattenhofer 230

Proof: End game
• Theorem: With constant probability all

processes decide 0, with constant
probability all processes decide 1.

• Proof: With probability (1-1/n)n ≈ 1/e all
processes choose ci = 1, and therefore all
will decide 1.

• With probability 1-((1-1/n)|W|) there is at
least one 0 in the set W. Since |W| ≈ n/3
this probability is constant. Using Lemma
2 we know that in this case all processes
will decide 0.

Distributed Computing Group Roger Wattenhofer 231

Back to Randomized Consensus

• Plugging the shared coin back into the
randomized consensus algorithm is all we
needed.

• If some of the processes go into 6b and,
the others still have a constant chance
that they will agree on the same shared
coin.

• The randomized consensus protocol
finishes in a constant number of rounds!

Distributed Computing Group Roger Wattenhofer 232

Improvements

• For crash-failures, there is a constant
expected time algorithm which tolerates f
failures with 2f < n.

• For Byzantine failures, there is a constant
expected time algorithm which tolerates f
failures with 3f < n.

• Similar algorithms have been proposed for
the shared memory model.

Distributed Computing Group Roger Wattenhofer 233

Databases et al.

• Consensus plays a vital role in many
distributed systems, most notably in
distributed databases:
– Two-Phase-Commit (2PC)
– Three-Phase-Commit (3PC)

Distributed Computing Group Roger Wattenhofer 234

Summary

• We have solved consensus in a variety
of models; particularly we have seen
– algorithms
– wrong algorithms
– lower bounds
– impossibility results
– reductions
– etc.

Distributed Computing Group Roger Wattenhofer 235

Credits
• The impossibility result (#2) is from

Fischer, Lynch, Patterson, 1985.
• The hierarchy (#3) is from Herlihy, 1991.
• The synchronous studies (#4) are from

Dolev and Strong, 1983, and others.
• The Byzantine studies (#5) are from

Lamport, Shostak, Pease, 1980ff., and
others.

• The first randomized algorithm (#6) is
from Ben-Or, 1983.

Distributed
Computing

Group
Roger Wattenhofer

Questions?

