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The Consensus Hierarchy

1 Read/Write Registers, …

2 T&S, F&I, Swap, …

∞ CAS, …

.

.

.
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Consensus #4
Synchronous Systems

• In real systems, one can sometimes 
tell if a processor had crashed
– Timeouts
– Broken TCP connections

• Can one solve consensus at least in 
synchronous systems?
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Communication Model

• Complete graph
• Synchronous

1p

2p

3p

4p5p

Distributed Computing Group                   Roger Wattenhofer 116

1p

2p

3p

4p5p

a
a

aa

Send a message to all processors 
in one round: Broadcast
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At the end of the round:
everybody receives a

1p

2p

3p

4p5p

a

a

a

a
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1p

2p

3p

4p5p

a

a

aa
b

b

b

b

Broadcast: Two or more processes 
can broadcast in the same round
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1p

2p

3p

4p5p

a,b

a

b
a,b

a,b

At end of round...
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Crash Failures

Faulty 
processor 1p

2p

3p

4p5p

a
a

aa
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1p

2p

3p

4p5p

a

a

Some of the messages are lost,
they are never received

Faulty 
processor
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1p

2p

3p

4p5p

a

a

Effect

Faulty 
processor
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Failure

1p

2p

3p

4p

5p

Round
1

1p

2p

3p

4p

5p

1p

2p

3p

4p

5p

Round
2

Round
3

1p

2p

4p

5p

Round
4

1p

2p

4p

5p

Round
5

3p 3p

After a failure, the process disappears 
from the network
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Consensus: 
Everybody has an initial value

0

1

2 3

4

Start
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3

3

3 3

3

Finish

Everybody must decide on the 
same value
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1

1

1 1

1

Start

If everybody starts with the same value
they must decide on that value

Finish
1

1

1 1

1

Validity condition:
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A simple algorithm

1. Broadcasts value to all processors

2. Decides on the minimum

Each processor:

(only one round is needed)
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0

1

2 3

4

Start
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0

1

2 3

4

Broadcast values
0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4
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0

0

0 0

0

Decide on minimum

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4

0,1,2,3,4
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0

0

0 0

0

Finish
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This algorithm satisfies the validity condition

1

1

1 1

1

Start Finish
1

1

1 1

1

If everybody starts with the same initial value,
everybody sticks to that value (minimum)
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Consensus with Crash Failures

1. Broadcasts value to all processors

2. Decides on the minimum

Each processor:

The simple algorithm doesn’t work
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0

1

2 3

4

Start

fail

The failed processor doesn’t 
broadcast its value to all processors

0

0
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0

1

2 3

4
0,1,2,3,4

1,2,3,4

fail

0,1,2,3,4

1,2,3,4

Broadcasted values
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0

0

1 0

1
0,1,2,3,4

1,2,3,4

fail

0,1,2,3,4

1,2,3,4

Decide on minimum
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0

0

1 0

1

fail

Finish - No Consensus!
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If an algorithm solves consensus for 
f failed processes we say it is 

an f-resilient consensus algorithm
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0

1

4 3

2

Start Finish
1

1

Example: The input and output of a 
3-resilient consensus algorithm
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New validity condition:
all non-faulty processes decide on a value 
that is available initially.

1

1

1 1

1

Start Finish
1

1
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An f-resilient algorithm

Round 1:
Broadcast my value

Round 2 to round f+1:
Broadcast any new received values

End of round f+1:
Decide on the minimum value received
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0

1

2 3

4

Start

Example: f=1 failures, f+1=2 rounds needed
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0

1

2 3

4

Round 1

0

0
fail

Example: f=1 failures, f+1 = 2 rounds needed

Broadcast all values to everybody

0,1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

(new values)
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Example: f=1 failures, f+1 = 2 rounds needed

Round 2 Broadcast all new values to everybody

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4
1

2 3

4
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Example: f=1 failures, f+1 = 2 rounds needed

Finish Decide on minimum value

0

0 0

0
0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

0,1,2,3,4

Distributed Computing Group                   Roger Wattenhofer 146

0

1

2 3

4

Start

Example: f=2 failures, f+1 = 3 rounds needed

Example of execution with 2 failures

Distributed Computing Group                   Roger Wattenhofer 147

0

1

2 3

4

Round 1

0

Failure 1

Broadcast all values to everybody

1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

Example: f=2 failures, f+1 = 3 rounds needed
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0

1

2 3

4

Round 2

Failure 1

Broadcast new values to everybody

0,1,2,3,4

1,2,3,4 0,1,2,3,4

1,2,3,4

Failure 2

Example: f=2 failures, f+1 = 3 rounds needed
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0

1

2 3

4

Round 3

Failure 1

Broadcast new values to everybody

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

O,1,2,3,4

Failure 2

Example: f=2 failures, f+1 = 3 rounds needed
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0

0

0 3

0

Finish

Failure 1

Decide on the minimum value

0,1,2,3,4

0,1,2,3,4 0,1,2,3,4

O,1,2,3,4

Failure 2

Example: f=2 failures, f+1 = 3 rounds needed
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Example:
5 failures,
6 rounds

1 2

No failure

3 4 5 6Round

If there are f failures and f+1 rounds then 
there is a round with no failed process
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• Every (non faulty) process knows 
about all the values of all the other 
participating processes

•This knowledge doesn’t change until
the end of the algorithm

At the end of the
round with no failure:
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Everybody would decide on the same value

However, as we don’t know the exact 
position of this round, 

we have to let the algorithm execute 
for f+1 rounds 

Therefore, at the end of the
round with no failure:
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when all processes start with the same
input value then the consensus is that value

This holds, since the value decided from
each process is some input value

Validity of algorithm:
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A Lower Bound

Any f-resilient consensus algorithm
requires at least f+1 rounds

Theorem:
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Proof sketch:

Assume for contradiction that f 
or less rounds are enough

Worst case scenario:

There is a process that fails in 
each round



Distributed Computing Group                   Roger Wattenhofer 157

Round

a

1
before process       
fails, it sends its 
value a to only one 
process 

ip

kp

ip

kp

Worst case scenario
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Round

a

1
before process       
fails, it sends 
value a to only one 
process 

mp

kp

kp

mp

Worst case scenario

2
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Round 1

fp

Worst case scenario

2

………

a np

f3
At the end 
of round f
only one 
process
knows 
about 
value a

np
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Round 1

Worst case scenario

2

………

f3
Process         
may decide 
on a, and all 
other 
processes 
may decide 
on another 
value (b)

np

npa

b

decide
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Round 1

Worst case scenario

2

………

f3

npa

b

decide
Therefore f 
rounds are 
not enough
At least f+1 
rounds are 
needed
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Consensus #5
Byzantine Failures

Faulty 
processor 1p

2p

3p

4p5p

a
b

ac

Different processes receive different values

Distributed Computing Group                   Roger Wattenhofer 163

1p

2p

3p

4p5p

a

a

A Byzantine process can behave like a 
Crashed-failed process 

Some messages may be lost

Faulty 
processor
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Failure

1p

2p

3p

4p

5p

Round
1

1p

2p

3p

4p

5p

1p

2p

3p

4p

5p

Round
2

Round
3

1p

2p

4p

5p

Round
4

1p

2p

4p

5p

Round
5

After failure the process continues
functioning in the network

3p 3p

Failure

1p

2p

4p

5p

Round
6

3p
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Consensus with Byzantine 
Failures

solves consensus for f failed processes 

f-resilient consensus algorithm:
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The input and output of 
a 1-resilient consensus algorithm

0

1

4 3

2

Start Finish
3

3

Example:

3 3
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Validity condition:
if all non-faulty processes start with
the same value then all non-faulty processes
decide on that value

1

1

1 1

1

Start Finish
1

1

1 1
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Any f-resilient consensus 
algorithm requires at least
f+1 rounds

Theorem:

follows from the crash failure 
lower bound 

Proof:

Lower bound on number of 
rounds
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There is no f-resilient algorithm 

for n processes, where f ≥ n/3

Theorem:

Plan: First we prove the 3 process case,
and then the general case

Upper bound on failed 
processes
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There is no 1-resilient algorithm
for 3 processes 

Lemma:

Proof: Assume for contradiction that 
there is a 1-resilient algorithm 
for 3 processes

The 3 processes case
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0p

1p 2p

A(0)

B(1) C(0)

Initial value

Local
algorithm
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0p

1p 2p

1

1 1

Decision value
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3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

Assume 6 processes are in a ring

(just for fun)
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3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

B(1)
1p

0p
A(1)

2p
faulty

C(1)

C(0)Processes think they are in 
a triangle
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3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

1
1p

0p
1

2p
faulty

(validity condition)
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3p

4p

2p
A(0) C(1)

1p

5p 0p
A(1)C(0)

B(0)

0p
1

1p

2p
C(0)

B(0)

0p
A(0)

A(1)

faulty

B(1)
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3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

0p
1

1p

2p
0

0

0p
faulty

(validity condition)
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3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

0p
1

2p
0

2p 0p
A(1)C(0)

1p
B(1)B(0)

faulty
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3p

4p

2p
A(0)

B(1)

C(1)

1p

5p 0p
A(1)C(0)

B(0)

0p
1

2p
0

2p 0p
10

1p faulty
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2p 0p
10

1p faulty

Impossibility
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There is no algorithm that solves
consensus for 3 processes
in which 1 is a byzantine process

Conclusion
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Assume for contradiction that
there is an f -resilient algorithm A
for n processes, where f ≥ n/3

We will use algorithm A to solve consensus
for 3 processes and 1 failure (which is 
impossible, thus we have a contradiction) 

The n processes case
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1p

0 1

2p np

1

… …

2 21 0 00 1 1start

failures

1p

1 1

2p np… …

1 1 11 1finish

Algorithm A
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3
1 npp K

1q

2q3q
3
21

3
nn pp K

+nn pp K
1

3
2 +

Each process q simulates algorithm A

on n/3 of “p” processes
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3
1 npp K1q

2q3q
3
21

3
nn pp K

+nn pp K
1

3
2 +

fails

When a single q is byzantine, then n/3 of 

the “p” processes are byzantine too.
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3
1 npp K

1q

2q3q
3
21

3
nn pp K

+nn pp K
1

3
2 +

fails

algorithm A tolerates n/3 failures 

Finish of 
algorithm A

k
kk

k kk

k

k

kk
kk

k

all decide k
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1q

2q3q

fails

Final decision 
k

k

We reached consensus with 1 failure
Impossible!!!
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There is no f-resilient algorithm

for n processes with f ≥ n/3

Conclusion
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The King Algorithm

solves consensus with n processes and
f failures where f < n/4 in f +1 “phases”

There are f+1 phases
Each phase has two rounds
In each phase there is a different king
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Example: 12 processes, 2 faults, 3 kings

0 1 1 2 21 0 00 1 1 0

initial values

Faulty
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Example: 12 processes, 2 faults, 3 kings

Remark: There is a king that is not faulty

0 1 1 2 21 0 00 1 1 0

initial values

King 1 King 2 King 3
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Each processor      has a preferred valueip iv

In the beginning, the preferred value 

is set to the initial value

The King algorithm
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Round 1, processor      :ip

• Broadcast preferred value

• Set        to the majority of 
values received

iv
iv

The King algorithm: Phase k
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•If       had majority of less than           

Round 2, king        :kp

•Broadcast new preferred value  

Round 2, process        :ip
kv

iv fn +
2

then set         to iv kv

The King algorithm: Phase k
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End of Phase f+1:

Each process decides on preferred value

The King algorithm
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Example: 6 processes, 1 fault

Faulty

0 1

king 1

king 20

11

2
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0 1

king 1

0

11

2

Phase 1, Round 1

2,1,1,0,0,0 

2,1,1,1,0,0 

2,1,1,1,0,0 2,1,1,0,0,0 

2,1,1,0,0,0 

0

1

1 0

0

Everybody broadcasts
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1 0

king 1

0

11

0

Phase 1, Round 1 Choose the majority

Each majority population was 4
2

3 =+≤ fn

On round 2, everybody will choose the king’s value
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Phase 1, Round 2

1 0

0

11

0
0

1

0 1

2

king 1

The king broadcasts
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Phase 1, Round 2

0 1

0

11

2

king 1

Everybody chooses the king’s value
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0 1

king 2
0

11

2

Phase 2, Round 1

2,1,1,0,0,0 

2,1,1,1,0,0 

2,1,1,1,0,0 2,1,1,0,0,0 

2,1,1,0,0,0 

0

1

1 0

0

Everybody broadcasts
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1 0

0

11

0

Phase 2, Round 1 Choose the majority

Each majority population is 4
2

3 =+≤ fn

On round 2, everybody will choose the king’s value

king 2

2,1,1,1,0,0 
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Phase 2, Round 2

1 0

0

11

0

The king broadcasts

king 2

00
0

0 0
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Phase 2, Round 2

0 0

0

10

0
king 2

Everybody chooses the king’s value
Final decision
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In the round where the king is non-faulty, 
everybody will choose the king’s value v

After that round, the majority will 

remain value v with a majority population
which is at least fnfn +>−

2

Invariant / Conclusion
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Exponential Algorithm

solves consensus with n processes and
f failures where f < n/3 in f +1 “phases”

But: uses messages with exponential size
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Consensus #6
Randomization

• So far we looked at deterministic 
algorithms only. We have seen that 
there is no asynchronous algorithm.

• Can one solve consensus if we allow 
our algorithms to use randomization?
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Yes, we can!

• We tolerate some processes to be 
faulty (at most f stop failures)

• General idea: Try to push your initial 
value; if other processes do not 
follow, try to push one of the 
suggested values randomly.
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Randomized Algorithm

• At most f stop-failures (assume n > 9f)
• For process pi with initial input x ∈ {0,1}:

1. Broadcast Proposal(x, round)
2. Wait for n-f Proposal messages. 
3. If at least n-2f messages have value v, 

then x := v, else x := undecided.
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Randomized Algorithm

4. Broadcast Bid(x, round).
5. Wait for n-f Bid messages.
6. If at least n-2f messages have value v, 

then decide on v.
If at least n-4f messages have value v, 

then x := v.
Else choose x randomly (p(0) = p(1) = ½)

7. Go back to step 1 (next round).
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What do we want?

• Agreement: Non-faulty processes 
decide non-conflicting values.

• Validity: If all have the same input, 
that input should be decided.

• Termination: All non-faulty processes 
eventually decide.
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All processes have same input

• Then everybody will agree on that 
input in the very first round already.

• Validity follows immediately

• If not, then any decision is fine! 
• Validity follows too (in any case).
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What if process i decides in 
step 6a (Agreement)…?

• Then process i has received at least 
n-2f Bid messages with value v.

vvv vvvvvvvvvvvvvvvvv www  www

• Then everybody else has received at least n-
3f messages will value v, and thus everybody 
will propose v next round, and thus decide v.
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What about termination?

• We have seen that if a process 
decides in step 6a, all others will 
follow in the next round at latest.

• If in step 6b/c, all processes choose 
the same value (with probability 2-n), 
all give the same bid, and terminate in 
the next round.
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Byzantine & Asynchronous?

• The presented protocol is in fact 
already working in the Byzantine case!

• (That’s why we have “n-4f” in the 
protocol and “n-3f” in the proof.)
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But termination is awfully slow…

• In expectation, about the same 
number of processes will choose 1 or 
0 in step 6c.

• The probability that a strong 
majority of processes will propose 
the same value in the next round is 
exponentially small.
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Naïve Approach

• In step 6c, all processes should 
choose the same value! (Reason: 
validity is not a problem anymore 
since for sure there exist 0’s and 1’s 
and therefore we can savely always 
propose the same…)

• Replace 6c by: “choose x := 1”!
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Problem of Naïve Approach

• What if a majority of processes bid 0 
in round 4? Then some of the 
processes might go into 6b (setting 
x=0), others into 6c (setting x=1). 
Then the picture is again not clear in 
the next round

• Anyway: Approach 1 is deterministic! 
We know (#2) that this doesn’t work!
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Shared/Common Coin

• The idea is to replace 6c with a 
subroutine where all the processes 
compute a so-called shared (a.k.a. 
common, “global”) coin.

• A shared coin is a random binary 
variable that is 0 with constant 
probability,  and 1 with constant 
probability.
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Shared Coin Algorithm

Code for process i:
1. Set local coin ci := 0 with 

probability 1/n, else (w.h.p.) ci := 1.
2. Use reliable broadcast* to tell all 

processes about your local coin ci.
3. If you receive a local coin cj of 

another process j, add j to the set 
coinsi, and memorize cj.



Distributed Computing Group                   Roger Wattenhofer 221

Shared Coin Algorithm

4. If you have seen exactly n-f local 
coins then copy the set coinsi into 
the set seeni (but do not stop 
extending coinsi if you see new 
coins)

5. Use reliable broadcast to tell all 
processes about your set seeni.
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Shared Coin Algorithm

6. If you have seen at least n-f seenj
which satisfy seenj ⊆ coinsi, then 
terminate with:

7. If you have seen at least a single 
local coin with cj = 0 then return 0, 
else (if you have seen 1-coins only) 
then return 1.
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Why does the shared coin 
algorithm terminate?

• For simplicity we look at f crash failures 
only, assuming that 3f < n.

• Since at most f processes crash you will 
see at least n-f local coins in step 4.

• For the same reason you will see at least 
n-f seen sets in step 6.

• Since we used reliable broadcast, you will 
eventually see all the coins that are in the 
other’s sets.
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Why does the algorithm work?

• Looks like magic at first… 
• General idea: a third of the local 

coins will be seen by all the 
processes! If there is a “0” among 
them we’re done. If not, chances are 
high that there is no “0” at all.

• Proof details: next few slides…
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Proof: Matrix

• Let i be the first process to 
terminate (reach step 7)

• For process i we draw a matrix of all 
the sets seenj (columns) and local 
coins ck (rows) process i has seen.

• We draw an “X” in the matrix if and 
only if set seeni includes coin ck. 
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Proof: Matrix (f=2, n=7, n-f=5)

XXXXcoin7

XXXXcoin6

XXXXcoin5

XXXXXcoin3

XXXcoin2

XXXXXcoin1

seen7seen6seen5seen3seen1

• Note that there are at least (n-f)2 X’s in 
this matrix (≥n-f rows, n-f X’s in each row).
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Proof: Matrix

• Lemma 1: There are at least f+1 rows 
where at least f+1 cells have an “X”.

• Proof: Suppose by contradiction that 
this is not the case. Then the 
number of X is bounded from above 
by f·(n-f) + (n-f)·f, …

Few rows have many X All other rows have at most f X
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Proof: Matrix

|X| · 2f(n-f)
we use 3f < n 2f < n-f

<  (n-f)2

but we know that |X| ≥ (n-f)2

· |X|. 
A contradiction!
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Proof: The set W
• Let W be the set of local coins where the 

rows in the matrix have more than f X’s.
• Lemma 2: All local coins in the set W are 

seen by all processes (that terminate).
• Proof: Let w ∈ W be such a local coin. 

With Lemma 1 we know that w is at least 
in f+1 seen sets. Since each process must 
see at least n-f seen sets (before 
terminating), these sets overlap, and w 
will be seen.
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Proof: End game
• Theorem: With constant probability all 

processes decide 0, with constant 
probability all processes decide 1.

• Proof: With probability (1-1/n)n ≈ 1/e all 
processes choose ci = 1, and therefore all 
will decide 1.

• With probability 1-((1-1/n)|W|) there is at 
least one 0 in the set W. Since |W| ≈ n/3 
this probability is constant. Using Lemma 
2 we know that in this case all processes 
will decide 0. 
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Back to Randomized Consensus

• Plugging the shared coin back into the
randomized consensus algorithm is all we
needed.

• If some of the processes go into 6b and, 
the others still have a constant chance 
that they will agree on the same shared 
coin. 

• The randomized consensus protocol 
finishes in a constant number of rounds!
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Improvements

• For crash-failures, there is a constant 
expected time algorithm which tolerates f 
failures with 2f < n.

• For Byzantine failures, there is a constant 
expected time algorithm which tolerates f 
failures with 3f < n.

• Similar algorithms have been proposed for 
the shared memory model. 
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Databases et al.

• Consensus plays a vital role in many 
distributed systems, most notably in 
distributed databases:
– Two-Phase-Commit (2PC)
– Three-Phase-Commit (3PC)
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Summary

• We have solved consensus in a variety 
of models; particularly we have seen 
– algorithms
– wrong algorithms
– lower bounds
– impossibility results
– reductions
– etc.
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Credits
• The impossibility result (#2) is from 

Fischer, Lynch, Patterson, 1985.
• The hierarchy (#3) is from Herlihy, 1991.
• The synchronous studies (#4) are from 

Dolev and Strong, 1983, and others.
• The Byzantine studies (#5) are from 

Lamport, Shostak, Pease, 1980ff., and 
others.

• The first randomized algorithm (#6) is 
from Ben-Or, 1983.

Distributed
Computing 

Group
Roger Wattenhofer

Questions?


