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Asynchrony

• Sudden unpredictable delays
– Cache misses (short)
– Page faults (long)
– Scheduling quantum used up (really long)
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Model Summary

• Multiple threads
– Sometimes called processes

• Single shared memory
• Objects live in memory
• Unpredictable asynchronous delays
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Road Map

• We are going to focus on principles
– Start with idealized models
– Look at a simplistic problem
– Emphasize correctness over pragmatism
– “Correctness may be theoretical, but 

incorrectness has practical impact”
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You may ask yourself …

I’m no theory weenie - why all 
the theorems and proofs?
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Fundamentalism

• Distributed & concurrent systems are 
hard
– Failures
– Concurrency

• Easier to go from theory to practice 
than vice-versa
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The Two Generals

Red army wins
If both sides 

attack together
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Communications

Red armies send 
messengers across valley
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Communications

Messengers
don’t always make it
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Your Mission

Design a protocol to ensure 
that red armies attack 

simultaneously
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Real World Generals

Date: Wed, 11 Dec 2002 12:33:58 +0100
From: Friedemann Mattern <mattern@inf.ethz.ch>
To: Roger Wattenhofer <wattenhofer@inf.ethz.ch>
Subject: Vorlesung

Sie machen jetzt am Freitag, 08:15 die Vorlesung 
Verteilte Systeme, wie vereinbart. OK? (Ich bin 
jedenfalls am Freitag auch gar nicht da.) Ich 
uebernehme das dann wieder nach den Weihnachtsferien. 
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Real World Generals

Date: Mi 11.12.2002 12:34
From: Roger Wattenhofer <wattenhofer@inf.ethz.ch>
To: Friedemann Mattern <mattern@inf.ethz.ch>
Subject: Re: Vorlesung

OK. Aber ich gehe nur, wenn sie diese Email nochmals 
bestaetigen... :-)

Gruesse -- Roger Wattenhofer
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Real World Generals

Date: Wed, 11 Dec 2002 12:53:37 +0100
From: Friedemann Mattern <mattern@inf.ethz.ch>
To: Roger Wattenhofer <wattenhofer@inf.ethz.ch>
Subject: Naechste Runde: Re: Vorlesung ...

Das dachte ich mir fast. Ich bin Praktiker und mache 
es schlauer: Ich gehe nicht, unabhaengig davon, ob Sie 
diese email bestaetigen (beziehungsweise rechtzeitig 
erhalten). (:-)
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Real World Generals

Date: Mi 11.12.2002 13:01
From: Roger Wattenhofer <wattenhofer@inf.ethz.ch>
To: Friedemann Mattern <mattern@inf.ethz.ch>
Subject: Re: Naechste Runde: Re: Vorlesung ...

Ich glaube, jetzt sind wir so weit, dass ich diese 
Emails in der Vorlesung auflegen werde...
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Real World Generals

Date: Wed, 11 Dec 2002 18:55:08 +0100
From: Friedemann Mattern <mattern@inf.ethz.ch>
To: Roger Wattenhofer <wattenhofer@inf.ethz.ch>
Subject: Re: Naechste Runde: Re: Vorlesung ...

Kein Problem. (Hauptsache es kommt raus, dass der 
Prakiker am Ende der schlauere ist... Und der 
Theoretiker entweder heute noch auf das allerletzte 
Ack wartet oder wissend das das ja gar nicht gehen 
kann alles gleich von vornherein bleiben laesst...
(:-))
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Theorem

There is no non-trivial 
protocol that ensures the red 
armies attacks simultaneously

Distributed Computing Group                   Roger Wattenhofer 19

Proof Strategy

• Assume a protocol exists
• Reason about its properties
• Derive a contradiction
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Proof

1. Consider the protocol that sends 
fewest messages

2. It still works if last message lost
3. So just don’t send it

– Messengers’ union happy
4. But now we have a shorter protocol!
5. Contradicting #1
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Fundamental Limitation

• Need an unbounded number of 
messages

• Or possible that no attack takes 
place
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You May Find Yourself …

I want a real-time YAFA 
compliant Two Generals 

protocol using UDP datagrams
running on our enterprise-level 

fiber tachyion network ...

I want a real-time YAFA 
compliant Two Generals 

protocol using UDP datagrams
running on our enterprise-level 

fiber tachyion network ...
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You might say

I want a real-time YAFA 
compliant Two Generals 

protocol using UDP datagrams
running on our enterprise-level 

fiber tachyion network ...

Yes, Ma’am, right away!Yes, Ma’am, right away!
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You might say

I want a real-time dot-net 
compliant Two Generals 

protocol using UDP datagrams
running on our enterprise-level 

fiber tachyion network ...

Yes, Ma’am, right away!

Advantage:
•Buys time to find another job
•No one expects software to work 
anyway

Advantage:
•Buys time to find another job
•No one expects software to work 
anyway
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You might say

I want a real-time dot-net 
compliant Two Generals 

protocol using UDP datagrams
running on our enterprise-level 

fiber tachyion network ...

Yes, Ma’am, right away!

Advantage:
•Buys time to find another job
•No one expects software to work 
anyway

Disadvantage:
•You’re doomed
•Without this course, you may 
not even know you’re doomed

Disadvantage:
•You’re doomed
•Without this course, you may 
not even know you’re doomed
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You might say

I want a real-time YAFA 
compliant Two Generals 

protocol using UDP datagrams
running on our enterprise-level 

fiber tachyion network ...

I can’t find a fault-tolerant 
algorithm, I guess I’m just a 

pathetic loser.

I can’t find a fault-tolerant 
algorithm, I guess I’m just a 

pathetic loser.
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You might say

I want a real-time YAFA 
compliant Two Generals 

protocol using UDP datagrams
running on our enterprise-level 

fiber tachyion network ...

I can’t find a fault-tolerant 
algorithm, I guess I’m just a 

pathetic loser

I can’t find a fault-tolerant 
algorithm, I guess I’m just a 

pathetic loser

Advantage:
•No need to take course

Advantage:
•No need to take course
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You might say

I want a real-time YAFA 
compliant Two Generals 

protocol using UDP datagrams
running on our enterprise-level 

fiber tachyion network ...

I can’t find a fault-tolerant 
algorithm, I guess I’m just a 

pathetic loser

I can’t find a fault-tolerant 
algorithm, I guess I’m just a 

pathetic loser

Advantage:
•No need to take course

Advantage:
•No need to take course

Disadvantage:
•Boss fires you, hires 
University St. Gallen graduate

Disadvantage:
•Boss fires you, hires 
University St. Gallen graduate
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You might say

I want a real-time YAFA 
compliant Two Generals 

protocol using UDP datagrams
running on our enterprise-level 

fiber tachyion network ...

Using skills honed in course, I 
can avert certain disaster!

•Rethink problem spec, or
•Weaken requirements, or
•Build on different platform

Using skills honed in course, I 
can avert certain disaster!

•Rethink problem spec, or
•Weaken requirements, or
•Build on different platform
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Consensus: Each Thread has a 
Private Input

32 19
21
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They Communicate
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They Agree on Some Thread’s 
Input

1919 19
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Consensus is important

• With consensus, you can implement 
anything you can imagine…

• Examples: with consensus you can 
decide on a leader, implement mutual 
exclusion, or solve the two generals 
problem
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You gonna learn

• In some models, consensus is possible
• In some other models, it is not

• Goal of this and next lecture: to learn 
whether for a given model consensus 
is possible or not … and prove it!
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Consensus #1
shared memory

• n processors, with n > 1
• Processors can atomically read or 

write (not both) a shared memory cell
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Protocol (Algorithm?)

• There is a designated memory cell c.
• Initially c is in a special state “?”
• Processor 1 writes its value v1 into c, 

then decides on v1.
• A processor j (j not 1) reads c until j 

reads something else than “?”, and 
then decides on that.
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Unexpected Delay

Swapped outback at

??? ???
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Heterogeneous Architectures 

??? ???

PentiumPentium
286

yawn

(1)
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Fault-Tolerance 

??? ???
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Consensus #2
wait-free shared memory

• n processors, with n > 1
• Processors can atomically read or 

write (not both) a shared memory cell
• Processors might crash (halt)
• Wait-free implementation… huh?
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Wait-Free Implementation

• Every process (method call) 
completes in a finite number of steps

• Implies no mutual exclusion
• We assume that we have wait-free 

atomic registers (that is, reads and 
writes to same register do not 
overlap)
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A wait-free algorithm…

• There is a cell c, initially c=“?”
• Every processor i does the following

r = Read(c);

if (r == “?”) then 

Write(c, vi); decide vi;

else 

decide r;
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Is the algorithm correct?

time

cell c32 17
?
?
?

32
1732! 17!
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Theorem:
No wait-free consensus

??? ???
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Proof Strategy

• Make it simple
– n = 2, binary input

• Assume that there is a protocol
• Reason about the properties of any 

such protocol
• Derive a contradiction
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Wait-Free Computation

• Either A or B “moves”
• Moving means

– Register read
– Register write

A moves B moves
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The Two-Move Tree
Initial 
state

Final 
states
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Decision Values

1 0 0 1 1 1
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Bivalent: Both Possible

1 1 1

bivalent

1 0 0
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Univalent: Single Value Possible

1 1 1

univalent

1 0 0
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1-valent: Only 1 Possible

0 1 1 1

1-valent

01
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0-valent: Only 0 possible

1 1 1

0-valent

1 0 0
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Summary

• Wait-free computation is a tree
• Bivalent system states

– Outcome not fixed
• Univalent states

– Outcome is fixed
– May not be “known” yet
– 1-Valent and 0-Valent states
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Claim

Some initial system state is bivalent

(The outcome is not always fixed from 
the start.)
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A 0-Valent Initial State

• All executions lead to decision of 0

0 0
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A 0-Valent Initial State

• Solo execution by A also decides 0

0
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A 1-Valent Initial State

• All executions lead to decision of 1

1 1
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A 1-Valent Initial State

• Solo execution by B also decides 1

1
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A Univalent Initial State?

• Can all executions lead to the same 
decision?

0 1
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State is Bivalent

• Solo execution by A
must decide 0

• Solo execution by B 
must decide 1

0 1
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0-valent

Critical States

1-valent

critical
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Critical States

• Starting from a bivalent initial state
• The protocol can reach a critical 

state
– Otherwise we could stay bivalent 

forever
– And the protocol is not wait-free

Distributed Computing Group                   Roger Wattenhofer 63

From a Critical State

c

If A goes first, 
protocol decides 0

If B goes first, 
protocol decides 1

0-valent 1-valent
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Model Dependency

• So far, memory-independent!
• True for

– Registers
– Message-passing
– Carrier pigeons
– Any kind of asynchronous computation



Distributed Computing Group                   Roger Wattenhofer 65

What are the Threads Doing?

• Reads and/or writes
• To same/different registers
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Possible Interactions

????y.write()

????x.write()

????y.read()

????x.read()

y.write()x.write()y.read()x.read()
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Reading Registers

A runs solo, 
decides 0

B reads x

1

0
A runs solo, 
decides 1

c

States look 
the same to A
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Possible Interactions

??nonoy.write()

??nonox.write()

nonononoy.read()

nonononox.read()

y.write()x.write()y.read()x.read()
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Writing Distinct Registers

A writes y B writes x

10

c

The song remains the same

A writes yB writes x
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Possible Interactions

?nononoy.write()

no?nonox.write()

nonononoy.read()

nonononox.read()

y.write()x.write()y.read()x.read()
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Writing Same Registers

States look 
the same to A

A writes x B writes x

1
A runs solo, 
decides 1

c

0

A runs solo, 
decides 0 A writes x

Distributed Computing Group                   Roger Wattenhofer 72

That’s All, Folks!

nonononoy.write()

nonononox.write()

nonononoy.read()

nonononox.read()

y.write()x.write()y.read()x.read()
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Theorem

• It is impossible to solve consensus 
using read/write atomic registers
– Assume protocol exists
– It has a bivalent initial state
– Must be able to reach a critical state
– Case analysis of interactions

• Reads vs others
• Writes vs writes
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What Does Consensus have to 
do with Distributed Systems?
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We want to build a 
Concurrent FIFO Queue
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With Multiple Dequeuers!
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A Consensus Protocol

2-element array

FIFO Queue 
with red and 
black balls

8

Coveted red ball Dreaded black ball
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Protocol: Write Value to Array

0 1
0

(3)
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0

Protocol: Take Next Item from 
Queue

0 1
8
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0 1

Protocol: Take Next Item from 
Queue

I got the 
coveted red ball, 
so I will decide 

my value

I got the dreaded 
black ball, so I will 
decide the other’s 
value from the 

array
8
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Why does this Work?

• If one thread gets the red ball
• Then the other gets the black ball
• Winner can take her own value
• Loser can find winner’s value in array

– Because threads write array
before dequeuing from queue
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Implication

• We can solve 2-thread consensus 
using only
– A two-dequeuer queue
– Atomic registers
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Implications

• Assume there exists
– A queue implementation from atomic registers

• Given
– A consensus protocol from queue and registers

• Substitution yields
– A wait-free consensus protocol from atomic 

registers

cont
radi

ction
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Corollary

• It is impossible to implement a two-
dequeuer wait-free FIFO queue with 
read/write shared memory.

• This was a proof by reduction; 
important beyond NP-completeness…
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Consensus #3
read-modify-write shared mem.
• n processors, with n > 1
• Wait-free implementation
• Processors can atomically read and

write a shared memory cell in one 
atomic step: the value written can 
depend on the value read

• We call this a RMW register
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Protocol

• There is a cell c, initially c=“?”
• Every processor i does the following

RMW(c), with

if (c == “?”) then 

Write(c, vi); decide vi;

else 

decide c;

atomic step

Distributed Computing Group                   Roger Wattenhofer 87

Discussion

• Protocol works correctly
– One processor accesses c as the first; 

this processor will determine decision
• Protocol is wait-free
• RMW is quite a strong primitive

– Can we achieve the same with a weaker 
primitive?
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Read-Modify-Write 
more formally

• Method takes 2 arguments:
– Variable x
– Function f

• Method call:
– Returns value of x
– Replaces x with f(x)
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public abstract class RMW {
private int value;

public void rmw(function f) {
int prior  = this.value;
this.value = f(this.value);
return prior;

}

}

Read-Modify-Write

Return prior value

Apply function
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public abstract class RMW {
private int value;

public void read() {
int prior  = this.value;
this.value = this.value;
return prior;

}

}

Example: Read

identity function
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public abstract class RMW {
private int value;

public void TAS() {
int prior  = this.value;
this.value = 1;
return prior;

}

}

Example: test&set

constant function
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public abstract class RMW {
private int value;

public void fai() {
int prior  = this.value;
this.value = this.value+1;
return prior;

}

}

Example: fetch&inc

increment function
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public abstract class RMW {
private int value;

public void faa(int x) {
int prior  = this.value;
this.value = this.value+x;
return prior;

}

}

Example: fetch&add

addition function
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public abstract class RMW {
private int value;

public void swap(int x) {
int prior  = this.value;
this.value = x;
return prior;

}

}

Example: swap

constant function
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public abstract class RMW {
private int value;

public void CAS(int old, int new) {
int prior  = this.value;
if (this.value == old)

this.value = new;
return prior;

}

}

Example: compare&swap

complex function
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“Non-trivial” RMW

• Not simply read
• But

– test&set, fetch&inc, fetch&add, 
swap, compare&swap, general RMW

• Definition: A RMW is non-trivial if 
there exists a value v such that v ≠ 
f(v)
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Consensus Numbers (Herlihy)

• An object has consensus number n
– If it can be used

• Together with atomic read/write registers
– To implement n-thread consensus

• But not (n+1)-thread consensus
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Consensus Numbers

• Theorem
– Atomic read/write registers have 

consensus number 1

• Proof
– Works with 1 process
– We have shown impossibility with 2
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Consensus Numbers

• Consensus numbers are a useful way 
of measuring synchronization power

• Theorem
– If  you can implement X from Y
– And X has consensus number c
– Then Y has consensus number at least c
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Synchronization Speed Limit

• Conversely
– If X has consensus number c
– And Y has consensus number d < c
– Then there is no way to construct a 

wait-free implementation of X by Y
• This theorem will be very useful

– Unforeseen practical implications!



Distributed Computing Group                   Roger Wattenhofer 101

Theorem

• Any non-trivial RMW object has 
consensus number at least 2

• Implies no wait-free implementation 
of RMW registers from read/write 
registers

• Hardware RMW instructions not just 
a convenience
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Proof
public class RMWConsensusFor2

implements Consensus {
private RMW r;

public Object decide() {
int i = Thread.myIndex();
if (r.rmw(f) == v)

return this.announce[i];
else

return this.announce[1-i];    
}}

Initialized to v

Am I first?

Yes, return 
my input

No, return 
other’s input
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Proof

• We have displayed
– A two-thread consensus protocol
– Using any non-trivial RMW object
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Interfering RMW

• Let F be a set of functions such that 
for all fi and fj, either
– They commute: fi(fj(x))=fj(fi(x))
– They overwrite: fi(fj(x))=fi(x)

• Claim: Any such set of RMW objects 
has consensus number exactly 2
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Examples

• Test-and-Set
– Overwrite

• Swap
– Overwrite

• Fetch-and-inc
– Commute
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Meanwhile Back at the Critical 
State

c

0-valent 1-valent

A about to 
apply fA

B about to 
apply fB
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Maybe the Functions Commute

c

0-valent

A applies fA B applies fB

A applies fAB applies fB

0 1
C runs solo C runs solo

1-valent
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Maybe the Functions Commute

c

0-valent

A applies fA B applies fB

A applies fAB applies fB

0 1
C runs solo C runs solo

1-valent

These states look the same to CThese states look the same to C
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Maybe the Functions Overwrite

c

0-valent

A applies fA B applies fB

A applies fA

0

1

C runs solo

C runs solo

1-valent
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Maybe the Functions Overwrite

c

0-valent

A applies fA B applies fB

A applies fA

0

1

C runs solo

C runs solo

1-valent

These states look the same to CThese states look the same to C
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Impact

• Many early machines used these 
“weak” RMW instructions
– Test-and-set (IBM 360)
– Fetch-and-add (NYU Ultracomputer)
– Swap

• We now understand their limitations
– But why do we want consensus anyway?
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public class RMWConsensus
implements Consensus {

private RMW r;

public Object decide() {
int i = Thread.myIndex();
int j = r.CAS(-1,i);
if (j == -1)

return this.announce[i];
else

return this.announce[j];    
}}

CAS has Unbounded 
Consensus NumberInitialized to -1

Am I first?

Yes, return 
my input

No, return 
other’s input


