Sensor networks Exposure analysis

Baptiste Prêtre

Betreuer: Kay Römer

What's coming up

Introduction

What's coming up

Specs Location discovery Everyday utility

Exposure

Sensor networks

Conclusion

What I will try:

□ Introduction to sensor networks.

□ Exposure problem.

□ Algorithms for finding minimal exposure path in a network.

Philippe: Adaptive sampling.

Specs

Introduction

What's coming up

Specs

Location discovery Everyday utility

Exposure

Sensor networks

Conclusion

No fixed infrastructure.
Fragile - flexible.
Low computing power.
Low battery life.

□ Cheap.

Distributed.

Revolutions:Connection to the internet.MEMS sensors.

Location discovery

Introduction What's coming up Specs Location discovery Everyday utility	 Dterministic placement. GPS. Trilateration. 	
Sensor networks Conclusion	Where am I ?	

Location discovery

Everyday utility

Introduction

What's coming up Specs Location discovery Everyday utility

Exposure

Sensor networks

Conclusion

Real life examples:

□ Monitoring (enviromental, ...)

□ Robotics.

Industrial automation.

□ Military applications (smart dust).

□ Surveillance (mother-in-law detection, ...)

The problem

Introduction

The problem Why?

- vviiy:
- Voronoi diagram
- Sensibility
- Intensity
- Exposure
- Simple example

Sensor networks

Conclusion

Let's say we have deployed a sensor network.

□ How good is it?

- Efficient correction?
 - adding least sensors
 - getting best result

Exposure helps us answer such questions.

Why?

Introduction

Exposure

The problem Why?

Voronoi diagram Sensibility Intensity Exposure

Simple example

Sensor networks

Conclusion

Exposure is directly related to coverage in that it is an integral measure of how well the sensor network can observe an object, moving on an arbitrary path, over a period of time.

Why?

Introduction

Exposure The problem

Why?

Voronoi diagram Sensibility Intensity

Exposure

Simple example

Sensor networks

Conclusion

The minimal exposure path provides valuable information about the worst case exposure-based coverage in sensor networks.

Exposure

The problem Why?

Voronoi diagram

Sensibility

Intensity

Exposure

Simple example

Sensor networks

Conclusion

Intuition:

if sensors can sense you then stay away!

Introduction

Exposure

The problem Why? Voronoi diagram

Sensibility

Intensity

Exposure

Simple example

Sensor networks

Conclusion

Intuition:

if sensors can sense you then stay away!

In 2D, the Voronoi diagram of a set of discrete sites (points) partitions the plane into a set of convex polygons such that all points inside a polygon are closest to only one site.

Exposure

The problem

Why?

Voronoi diagram

Sensibility

Intensity

Exposure

Simple example

Sensor networks

Conclusion

Sensibility

Intensity

Introduction

```
Exposure
```

The problem Why? Voronoi diagram Sensibility Intensity Exposure Simple example

Sensor networks

Conclusion

Definition: All-Sensor Field Intensity $I_A(F, p)$ for a point p in the field F is defined as the effective sensing measures at point p from all sensors in F.

Intensity

Introduction

Exposure

The problem Why? Voronoi diagram Sensibility Intensity

Exposure

```
Simple example
```

Sensor networks

Conclusion

Definition: Closest-Sensor Field Intensity $I_C(F, p)$ for a point p in the field F is defined as the sensing measure at point p from the closest sensor in F, i.e. the sensor that has the smallest Euclidean distance from point p.

 $I_C(F,p) = S(s_{min},p)$

Introduction

Exposure

The problem Why? Voronoi diagram Sensibility Intensity Exposure

Simple example

Sensor networks

Conclusion

Definition: The exposure for an object in the sensor field during the interval [t1, t2] along the path p(t) is defined as

$$E(p(t), t1, t2) = \int_{t1}^{t2} I(F, p(t)) \left| \frac{dp(t)}{dt} \right| dp$$

Introduction

Exposure

The problem Why? Voronoi diagram Sensibility Intensity Exposure Simple example

Sensor networks

Conclusion

Definition: The exposure for an object in the sensor field during the interval [t1, t2] along the path p(t) is defined as

$$E(p(t), t1, t2) = \int_{t1}^{t2} I(F, p(t)) \left| \frac{dp(t)}{dt} \right| dp$$

Introduction

Exposure

The problem Why? Voronoi diagram Sensibility Intensity Exposure

Simple example

Sensor networks

Conclusion

Definition: The exposure for an object in the sensor field during the interval [t1, t2] along the path p(t) is defined as

$$E(\mathbf{p(t)}, t1, t2) = \int_{t1}^{t2} I(F, p(t)) \left| \frac{dp(t)}{dt} \right| dp$$

Introduction

Exposure

The problem Why? Voronoi diagram Sensibility Intensity Exposure Simple example

Sensor networks

Conclusion

Definition: The exposure for an object in the sensor field during the interval [t1, t2] along the path p(t) is defined as

$$E(p(t), t1, t2) = \int_{t1}^{t2} I(F, p(t)) \left| \frac{dp(t)}{dt} \right| dp$$

Introduction

Exposure

The problem Why? Voronoi diagram Sensibility Intensity Exposure

Simple example

Sensor networks

Conclusion

Definition: The exposure for an object in the sensor field during the interval [t1, t2] along the path p(t) is defined as

$$E(p(t), t1, t2) = \int_{t1}^{t2} I(F, p(t)) \left| \frac{dp(t)}{dt} \right| dp$$

Simple example

Introduction

Exposure

The problem Why? Voronoi diagram Sensibility Intensity Exposure Simple example

Sensor networks

Conclusion

How *simple* is the Exposure?

What is the minimal exposure path from p to q?

Let us test if the Voronoi diagram approach is sufficient.

Simple example

Introduction

Exposure

The problem Why? Voronoi diagram Sensibility Intensity Exposure Simple example

Sensor networks

Conclusion

The Voronoi diagram approach would suggest sticking to the edges of the graph.

Simple example

Introduction

Exposure

The problem Why? Voronoi diagram Sensibility Intensity Exposure Simple example

Sensor networks

Conclusion

 step closer to sensor BUT
 reduced sensing time
 reduced path length
 overall exposure reduced

Introduction

Exposure

Sensor networks

First algorithm A few examples

Local knowledge

Flooding

Greedy

More examples

More local algorithms?

Conclusion

Generate grid.

 Transfrom grid into edge-weighted graph.
 Find minimal exposure path using Dijkstra's Single-Source-Shortest-Path algorithm.

Introduction

Exposure

Sensor networks

First algorithm A few examples

Local knowledge

Flooding

Greedy

More examples

More local algorithms?

Conclusion

□ Generate grid.

□ Transfrom grid into edge-weighted graph.

Introduction

Exposure

Sensor networks

First algorithm A few examples

Local knowledge

Flooding

Greedy

More examples

More local algorithms?

Conclusion

□ Generate grid.

□ Transfrom grid into edge-weighted graph.

Introduction

Exposure

Sensor networks

First algorithm A few examples

Local knowledge

Flooding

Greedy

More examples

More local algorithms?

Conclusion

□ Generate grid.

□ Transfrom grid into edge-weighted graph.

Introduction

Exposure

Sensor networks

First algorithm A few examples

Local knowledge

Flooding

Greedy

More examples

More local algorithms?

Conclusion

□ Generate grid.

□ Transfrom grid into edge-weighted graph.

Introduction

Exposure

Sensor networks

First algorithm A few examples

Local knowledge

Flooding

Greedy

More examples

More local algorithms?

Conclusion

□ Generate grid.

□ Transfrom grid into edge-weighted graph.

Introduction

Exposure

Sensor networks

First algorithm A few examples

Local knowledge

Flooding

Greedy

More examples

More local algorithms?

Conclusion

□ Generate grid.

□ Transfrom grid into edge-weighted graph.

Introduction

Exposure

Sensor networks

First algorithm A few examples

Local knowledge

Flooding

Greedy

More examples

More local algorithms?

Conclusion

□ Generate grid.

□ Transfrom grid into edge-weighted graph.

Introduction

Exposure

Sensor networks

First algorithm A few examples

Local knowledge

Flooding

Greedy

More examples

More local algorithms?

Conclusion

□ Generate grid.

□ Transfrom grid into edge-weighted graph.

Introduction

Exposure

Sensor networks

First algorithm A few examples

Local knowledge

Flooding

Greedy

More examples

More local algorithms?

Conclusion

□ Generate grid.

□ Transfrom grid into edge-weighted graph.

A few examples

Introduction

Exposure

Sensor networks

First algorithm

A few examples

Local knowledge

Flooding

Greedy

More examples

More local algorithms?

Conclusion

A few examples

A few examples

Local knowledge

Introduction

Exposure

Sensor networks

First algorithm A few examples

Local knowledge

Flooding

Greedy

More examples

More local algorithms?

Conclusion

Assumptions:

□ Location knowledge.

Neighbour knowledge.

Can compute Voronoi cells.

Specialities:

- Minimal communication.
- Minimize power consumption.
 VERSUS
- □ Response time.

Exposure

Sensor networks

First algorithm

A few examples

Local knowledge

Flooding

Greedy

More examples More local algorithms?

Conclusion

□ Agent starts algorithm at point p.

□ Sensor closest to p computes initial exposure profile (EP).

□ Forwards exposures to neighbouring sensors.

- □ If update smaller:
 - compute new values
 - send updates to concerned sensors
 - update parent
- □ else
 - send abort back
- □ Backtrack for solution.

Introduction

Exposure

Sensor networks

First algorithm

A few examples

Local knowledge

Flooding

Greedy

More examples More local algorithms?

Conclusion

Agent starts algorithm at point p.

□ Sensor closest to p computes initial exposure profile (EP).

□ Forwards exposures to neighbouring sensors.

- □ If update smaller:
 - compute new values
 - send updates to concerned sensors
 - update parent
- □ else
 - send abort back
- Backtrack for solution.

Introduction

Exposure

Sensor networks

First algorithm A few examples

Local knowledge

Flooding

Greedy

More examples More local algorithms?

Conclusion

□ Agent starts algorithm at point p.

□ Sensor closest to p computes initial exposure profile (EP).

Forwards exposures to neighbouring sensors.

- □ If update smaller:
 - compute new values
 - send updates to concerned sensors
 - update parent
- □ else
 - send abort back
- Backtrack for solution.

Exposure

Sensor networks

First algorithm

A few examples

Local knowledge

Flooding

Greedy

More examples More local algorithms?

Conclusion

□ Agent starts algorithm at point p.

□ Sensor closest to p computes initial exposure profile (EP).

□ Forwards exposures to neighbouring sensors.

- □ If update smaller:
 - o compute new values
 - send updates to concerned sensors
 - update parent
- □ else
 - send abort back
- Backtrack for solution.

Exposure

Sensor networks

First algorithm

A few examples

Local knowledge

Flooding

Greedy

More examples More local algorithms?

Conclusion

- □ Agent starts algorithm at point p.
- □ Sensor closest to p computes initial exposure profile (EP).

□ Forwards exposures to neighbouring sensors.

- □ If update smaller:
 - compute new values
 - send updates to concerned sensors
 - update parent
- □ else
 - send abort back
- Backtrack for solution.

Greedy

Introduction

Exposure

Sensor networks

First algorithm A few examples

Local knowledge

Flooding

Greedy

More examples More local algorithms?

Conclusion

□ Agent starts algorithm at point p.

Sensor closest to p computes node exposures in Voronoi cell.

□ Forward search message to sensor of most promising node.

□ Sensor computes new path portion.

Returns results.

□ Maybe updates parent.

□ Recompute most interesting node.

More examples

More examples

More examples

Exposure

Sensor networks

First algorithm A few examples

Local knowledge

Flooding

Greedy

More examples

More local algorithms?

Conclusion

Greedy:

Centralized algorithm.

Localized algorithm.

More local algorithms?

Introduction

Exposure

Sensor networks

First algorithm A few examples

Local knowledge

Flooding

Greedy

More examples

More local algorithms?

Conclusion

- □ Simultated annealing.
- □ Swarm approach.
- □ Simplex.
- □ Genetic algorithms.
- □ Random-restart hill climbing.

□ ...

Recap

Introdu	uction
---------	--------

Sensor networks

Conclusion

Recap

My opinion Sources What we saw:

□ Introduction to sensor networks (location discovery...)

- □ Introduction to exposure problem.
 - Voronoi diagram
 - mathematical models
- □ Algorithms for minimal exposure path.
 - centralized knowledge
 - localized knowledge

My opinion

Introduction	
Evenesure	
Sensor networks	
Conclusion	
Recap	
My opinion	
Sources	Г

Interesting theme.

BUT

Very mathematical.

Not as creative as I hoped.

□ Algorithms much more interesting!

Sources

Introd	uction

Exposure

Sensor networks

Conclusion

Recap My opinion Sources Exposure In Wireless Ad-Hoc Sensor Networks Seapahn Meguerdichian

Coverage Problems in Wireless Ad-hoc Sensor Networks

Seapahn Meguerdichian

- Localized Algorithms In Wireless Ad-Hoc Networks: Location Discovery And Sensor Exposure Seapahn Meguerdichian
- Minimal and Maximal Exposure Path Algorithms for Wireless Embedded Sensor Networks Giacomino Veltri
- Sensor Deployment Strategy for Detection of Targets: Traversing a Region Thomas Clouqueur
- Internet: Wikipedia, Google, ...