Location Models and Their Cell Phone Applications

May 31st, 2005 Seminar: Distributed Systems

Gabor Cselle gabor@student.ethz.ch

Advisor: Christian Frank

Overview

1. An introduction to location models

2. Automatic identification of locations on cell phones

3. Detecting human behavior patterns with cell phone data

1. Introduction to Location Models

Questions we can ask in an office building:

Position queries: Where am I?

Nearest neighbor queries: Where is the nearest printer?

Navigation: How do I get to room C42?

Range queries:

What printers are on floor C?

Challenge: Find data models so you're able to answer these questions quickly and efficiently.

Requirements

For many common queries, the model needs to support more than simple identification of positions.

Nearest neighbor queries:
Where is the nearest printer?
➡ We need a notion of distance

Navigation queries:

How do I get to room C42? We need a notion of **connectedness**

Range queries:
What printers are floor C?
We need a notion of containment

Why GPS isn't Enough

Let's ask:

Where is the nearest printer on floor C?

Global positioning could give us:

You are at: 8°15'E, 37°2'N, 424m

A database could give us nearest printers according to Euclidean 3D distance.

Printer 1: 8°16'E, 37°4'N, 427m Printer 2: 8°12'E, 37°2'N, 421m Printer 3: 8°15'E, 37°3'N, 424m

But how would we know: how easy it is to get to printers? - lacking distance/connectedness data if they're really on floor C - lacking containment data

Symbolic Location Models

A. Hierarchical models

ł

- B. Graph-based models
- C. Graph- and set-based models
- D. Subspace models

• A. Hierarchical Location Models

We group rooms R_i by: Building B Wing W_1 / W_2 Floor $F_1 / F_2 / ...$

Create sets for each group: Add all rooms contained in them.

For overlapping groups, we need to a set for every combination of them. $(F_1W_1, F_1W_2, ...)$

This results in a lattice with the property: A location I1 is an ancestor of a location I2 if I2 is spatially contained in I1.

• A. Hierarchical Location Models

Evaluation:

Unreliable distance queries only:
 R₁, R₂ have closer common ancestor than R₁, R₅
 R₁ closer to R₂ than to R₅

Unreliable connectedness queries only: R₁, R₂ in have common superset R₁, R₂ are neighbors"

Great for containment queries

B. Graph-Based Models

Use vertices to represent rooms Use edges to represent connections Edges may be weighted to model distances

Evaluation:

÷

Distance queries are easy

Connectedness queries are easy

Containment queries hard:

Given a room on C floor, we can find closeby rooms in graph:

they are likely to be on C floor also

C. Graph- & Set-Based Models

Idea: Take subgraphs of the total location graphs, stick them into sets identifying related locations.

Evaluation:

Containment queries much easier than with graph-based models

D. Subspace Models

Idea: Group into subgraphs as before, but attach geographic extent to each of the groups.

Evaluation:

- Distance queries are easy
- Connectedness queries are easy
- Containment queries are easy
- + A big plus: Can estimate position in space

Power Comes at a Price

2. Automatic Location Identification on Cell Phones

With PlaceLab, we can see how mobile end devices can be used to get geographic coordinates using a base station database.

But:

Sometimes, there is no base station data for the current location.

Instead of coordinate data (8°15' E, 37°2' N), user would like to see its description: "Home" "Work" "Coffee shop"

Input: Timestamps & Tower IDs

Install special software on cell phones that records changes of the primary cell tower along with a time stamp

-				
t = 15	t = 44 t = 90	t = 115	t = 169	t = 201
ID = A	ID = F ID = A	ID = G	ID = B	ID = A

Problems:

We get:

No one-to-one correspondence between physical location and cell used.

Cells can be very large or very small.

Areas covered by cells can overlap.

Cells can be non-contiguous areas.

Cell Graph

Create a graph:

vertices = observed GSM cells

edges = observed transitions between two GSM cells

The Goal:

group GSM cells into sets representing "bases" each base represents a physical location where user spends a lot of time

We're building a graph & set-based location model

Identifying Bases

Step 1: Find Clusters

Required properties:

subgraphs with max. diameter 2

- average time spent visiting a cluster is larger than sum of individual visit times
- => Fulfilled only when user oscillates between cells in cluster

Step 2: Create Location Set \mathfrak{L}

Merge overlapping clusters

Location set \mathfrak{L} now contains:

Merged clusters

+ Individual vertices not contained in clusters

Identifying Bases

Step 3: Calculate (weighted) time spent in each location L

$$time(L) = at_{L}(t) r^{t_{now}-t} dt$$

at_L(t): indicator function: 1 if user is in location L at time t, 0 else *r*: aging factor: 0.95

Exponential weighting of past times when we were at a location

Step 4: Identify minimal set of locations

These locations must cover fraction p of time

$$B = \underset{B' \mathfrak{L}}{\operatorname{arg\,min}} |B'|: time(L) p r^{t_{now}} t_{t_0}$$

Identifying Bases: Naming

Step 5: User must name bases

We now have identified bases where the user spends a lot of time.

However, we don't know the meaning of these bases. The user must **manually assign names**.

Base Identification Results

Identified bases for one of the test users.

Home	Work		
Friends' home	Girlfriend's home		
Parents	Girlfriend's parents		
Shopping center	Vammala town center		
Girlfriend's summer cottage	Student association house		
Viitasaari accommodation	Family firm office		
Summer cottage	Helsinki center west		

••

Number of bases found with for different p

...

Number of bases to manually name per day during test

Possible Uses

Reno: Answering a location request by curious wife.

Automatically generate list of likely current locations

Dodgeball / Google: Instead of your having to send a manual login SMS, we could automatically infer which bar you're at.

....

3. **Detecting Human Behavior Patterns with Cell Phone Data** ÷

Big data collection experiment with 100 cell phones:

Satellite image source: maps.google.com

Locations determined using cell tower ID and Bluetooth. Recorded on phone's memory card. What can we find out using collected data?

On-Phone Application Usage

Aggregate Application use in Context

Communication Usage Patterns (%)

Location Patterns of Users

Daily distribution of home/work transitions and Bluetooth encounters for a 'low-entropy' user.

Relationship Inference

Sloan Students

For the study, test subjects gave a list of friends and aquaintances who were also test subjects.

The friendship graph is shown on the right.

Media Lab Students

The proximity pattern graph has a similar structure to the friendship graph.

Friends vs. Acquaintances

÷

2

Proximity frequencies depending on time, weekday and relationship.

Human Behavioral Patterns

Time series of maximum number of links in Media Lab proximity network during every one hour window.

And its Fourier transform ...

What do Participants Think?

From: "-----@sloan.mit.edu" <-----@sloan.mit.edu> To: "gabor@student.ethz.ch" <gabor@student.ethz.ch> CC: "-----@sloan.mit.edu" <-----@sloan.mit.edu> Subject: RE: Do you know any reality mining participants? Date: Mon, 30 May 2005 18:30:17 -0400

Hey Gabor,

I participated in the cell phone study for the past two semesters. [...] As for as your questions:

I didn't mind any of the privacy ideas but I'm a pretty open gal. Also, keep in mind we received a brand new, top of the line, Nokia cell to participate so bit of an incentive to forgo any hang-ups on privacy.

We were never told about any of the data collected. We dropped the phones off once a month to do a "data dump" and were asked to fill out an on-line survey about every 3 months.

What We've Seen

1. Location models

Powerful location models are available. But: high modelling effort.

2. Automatic identification of locations on cell phones

Possible to infer location model for cell phone users. Good accuracy of identified locations.

3. Detecting human behavior patterns with cell phone data

Once locations are identified and user's moves are recorded, interesting analyses can be performed. But: privacy concerns.

References

- [1] Summary of common location models: Becker C, Durr F: "On Location Models for Ubiquitous Computing" Personal and Ubiquitous Computing, Volume 9, Issue 1 (Jan 2005)
- [2] Inferring bases from GSM tower switch data: Laasonen K, et al: "Adaptive On-Device Location Recognition" *Pervasive 2004*, Vienna, Austria
- [3] Inferring human behavior from cell phone data:
 Eagle N, Pentland A: "Reality Mining: Sending Complex Social Systems" Personal and Ubiquitous Computing, to appear: June 2005
- [4] Source of Reno usage example: Smith I, et al: "Social Disclosure of Place: From Location Technology to Communication Practices" Pervasive 2005
- [5] Source of Dodgeball usage example: http://www.dodgeball.com