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1 Introduction

1.1 Sensor Networks: Basics

According to the vision of Mark Weiser, that the physical world will be connected
with pervasive networks and that everyday devices will be able to sense their rela-
tionship to humans and to each other, the ability to sense a broad set of physical
phenomena, will become a common aspect of small, embedded devices. Further-
more such devices shall communicate with each other to organize and coordinate
their actions. The physical world presents an incredibly rich set of input modalities,
including acoustics, image, motion, vibration, heat, light, moisture, pressure, radio,
magnetic, etc. Using (wireless) sensor networks it will be possible to observe (i.e.
measure) and to sample some of these environmental variables simultaneously at
different locations. Basically each sensor node has 3 main tasks:

1. sense
2. compute
3. communicate

Sensor Networks, which are predominantly data-centric rather than address-
centric, find application in monitoring environment and activities. Because a sensor
network consists of many (hunderds, thousands) nodes, sensor nodes should be as
cheap as possible. But using low cost devices results in limited functionality and
performance.

A user who wants information from the sensor network can ask queries to the
network. These queries are directed to a region containing a cluster of sensors rather
than specific sensor addresses. Given the similarity in the data obtained by sensors
in a dense cluster, aggregation of the data is performed locally. That is, a summary
or analysis of the local data is prepared by an aggregator node within the cluster,
thus reducing the communication bandwidth requirements.
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Figure 1: Basic Layout of a sensor network. Queries are sent from the base station to
the sensor nodes.

Aggregation of data increases the level of accuracy and incorporates data redun-
dancy to compensate node failures. A network hierarchy and clustering of sensor
nodes allows for network scalability, robustness, efficient resource utilization and
lower power consumption.



1.2 The Environment

Natural environments are often extremely dynamic and therefore sensors will need
to continously adjust to dynamic systems. The challenge is to represent an accurate
picture of the changes in the environmental variables. This can only be achieved if
the physical phenomenon is sensed or sampled from the environment at an accurate
rate. The physical phenomena measured ultimately dictates spatial and temporal
sampling scale. High-frequency waves typically require higher temporal and spatial
sampling than phenomena such as temperature or baromentric pressure, where spa-
tial and temporal fluctuations are coarser-grained. The sampling rate is a function
of both the phenomena and the application.

1.3 Sensor network properties

Since sensor networks differ from traditional distributed systems, hardware (sensor
nodes) and software (algorithms) must be adapted and take some special properties
of sensor networks into account. Focusing adaptive sampling algorithms, some of
the most important properties are listed below:

1.3.1 Density

In future applications sensor networks are envisioned to consist of hundreds or even
thousands of single nodes, which all communicate with each other through an ad-hoc
wireless network. At certain places nodes can easily reach a high density. System
density is a measure of sensor nodes per footprint of input stimuli. Higher-density
systems provide greater opportunities for exploiting redundancy to eliminate noise,
improve accuracy and extend system lifetime.

1.3.2 Self-organization

Sensor nodes organize themselves in an ad hoc fashion after the deployment. Since
physical access to the nodes will normally be extremely limited, sensor nodes should
work lifelong without human intervention. The sensor networks automatically de-
tects when a node crashes or runs out of batteries and re-configures itself.

1.3.3 Ressource constraints

Generally, we assume that each node in a wireless sensor network has certain con-
straints with respect to its energy source, power, memory, storage, and computa-
tional capabilities. Not only the ressources of the single sensor nodes are limited,
but also those of the network as a whole. Especially in wireless sensor networks,
which have one shared medium and therefore have to deal with packet collisions,
the network capacity is strongly limited.



Figure 2: Example of a sensor node: BTNode.

Microcontroller: | Atmel ATmega 128L (8 MHz @ 8 MIPS)

Memories: 224 Kbyte RAM, 128 Kbyte FLASH ROM, 4 Kbyte EEPROM

Communication: | Bluetooth, Zeevo ZV4002 or low power radio (868MHz)

Programming: Standard C, TinyOS compatible

Table 1: Specification of BTNode Rev. 3

1.4 Motivation for Adaptive Sampling

Given a set of network and environment characteristics and definitions, ressource
consumption (energy and network bandwidth) should be minimized while maximiz-
ing the measurement accuracy. The aim is to produce an accurate spatial picture
of a certain physical process, while making an efficient use of resources As events
are not uniformly distributed in the environment, not all sensor nodes sould collect
data samples at a common, fixed rate. Let us look at an example [6] to illustrate
this issue:

Habitat monitoring is a very well-known scenario for sensor network applications,
and a first concrete experiment in this field was carried out on the Great Duck
Island. Sensors were deployed in burrows of Storm Petrels (a seabird) for monitoring
purposes. During the day time, the burrows were expected to be empty, an thus
a low sampling rate should be sufficient (avoid idle listening). However, if some
unusual measurements are recorded at some burrows, it would be desirable to collect
samples from them more frequently than from other burrows. This can be achieved
by adaptive sampling.



2 Adaptive Sampling

2.1 Sampling: Basics

Most physical phenomenas are widespread in time and space. Thus, they can be
analyzed in one or both these domains. For example a certain point in space can be
considered and the time dependency of the signal at this point is analyzed. However,
there also exists a space domain, which can only be examined with multiple sensors
at different positions in space. A lot of work in adaptive sampling has be done in
both the time- and space domain. In this study we focus on the time domain.

Time domain

In order to properly sample an analog signal the Nyquist-Shannon sampling theorem
must be satisfied. In short, the sampling frequency must be greater than twice the
bandwidth of the signal (provided it is filtered appropriately):

fs <2B, (1)

fs = sampling frequency
B,, = network bandwidth

Figure 3 illustrates how the sampling interval is defined. With adaptive sampling
the sampling interval may vary over time and adapts to the signal complexity. But
how can the sensor nodes determine the correct sampling rate? Should a central
server take part in this decision process? Following, 3 different possibilities for a
adaptive sampling approach in sensor networks are introduced:

e “God view”: A server knows everything (signal complexities at all sensor
positions) and communicates the sensor nodes the appropriate sampling rate.

e Completely autonomous nodes: Each sensor node determines on its own
the correct sampling rate.

e Partially autonomous nodes: Sensor nodes communicate with server only
from time to time and adapt sampling rate most of the time autonomously.

2.2 Oversampling

When measuring a signal, a minimal accuracy should always be guaranteed. This
can easily be achieved by using the naive solution of oversampling. An oversampled
signal can be defined as a signal, which is sampled at a higher rate than necessary
for the representation of the signal bandwidth. [wikipedial
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Figure 3: Example of a 1-dimensional signal and possibility how to sample it. The time
between two neighboured sampling points (e.g. t1 and t3) is called sampling interval.



Problems with oversampling

Sensor nodes using oversampling will run into several problems:

e Most of the sampled data must be transmitted to a central server, the base
station (see 1). The CPU at the central server might have to process un-
neccessary data from numerous sources, but this would not affect the result
significantly.

e Uneccessary data is transmitted through the communication channel. More-
over, in cases of low bandwidth networks the option of oversampling might
not be available at all.

e Power conservation is critical for sensor nodes. Oversampling leads to in-
creased power consumption because of increased data transmission.

Thus, oversampling is not a suitable solution for sensor networks. The goal of an
adaptive sampling approach is to make the rate of sensing dynamic and adaptable:
As signal complexity grows, the sampling interval is scaled down and vice-versa.
Two different approaches for realizing adaptive sampling for sensor networks are
introduced in the following part: The Feedback Control Mechansim and the Kalman
Filter.

2.3 “God view”

The “God view” approach mentioned can only be realized if a central server has the
complete information about the network and the environment. In other words, the
server must know the signal complexity at each sensor node. This is impracticable
without prior communication with the nodes. Furthermore the network bandwidth
would be heavily reduced by many “sampling instruction packets” sent out by the
server. Therefore, such an approach can not be taken into account.

2.4 Completely autonomous nodes: Feedback Control Mech-
anism

Each individual node adopts a feedback control mechanism in order to make the
rate of sensing dynamic and adaptable. Figure 4 presents the feedback control
mechanism proposed in [7]. With an internal model representing the environment,
each node can make predictions of future measurements. The real sampled data will
get compared to these model predictions and an error value will be calculated on
the basis of the comparison. If the error value is more than the predefined margin
of error, then the node will collect the data at higher sampling rate, and if it is
lower, the sampling rate will be decreased. Each node decides on its own how to
adapt the sampling rate. The adaptation works completely autonomous.
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Figure 4: Control mechanism used internally within the nodes to control the sampling
rate.



2.4.1 Experiments and preliminary results

An agent-based simulator was used to test the proposals and the following exper-
iment was set up. An individual sensor was placed in an environment where the
temperature is verying by a constant sinusoidal. So in this case the sensor is inter-
ested in tracking the temperature. The internal model of the node is a straight line,
given by the equation y, = ax + b, where y,, is the predicted tempereature and x is
the time at which the temperature occurs. The nodes measure the temperature of
the environment every so many units of time (epochs), and as soon two measured
values are available to the sensor node, it uses the model equation to calculate
the temperature of the environment until the next time the sensor makes a reading
from the environment. Then the actual temperature will be compared with the pre-
diction in order to calculate an error value. The experiment was repeated several
times with different sinusiodial frequencies and sampling rates. Figure 5 presents
the results of these experiments. As it was predicted the error was behaving in a
sinusoidal manner. It is apparant that for the same error to be achieved a higher
sampling rate is requiered the higher the frequency of the sinusoid.
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Figure 5: Left: Temperature variations against time. Right: Error calculated between
predicted and measured temperature.

2.5 Partially autonomous nodes: Nodes with Kalman Filter

The approach proposed in [6] employs a Kalman-Filter-based estimation technique
wherein the sensor nodes can use the Kalman Filter estimation error to adaptively
adjust its sampling rate within a given range, autonomously. When the desired
sampling rate violates the range, a new sampling rate is requested from the server.

2.5.1 The Kalman Filter

The Kalman Filter is a linear algorithm taht estimates the internal state of a system
based on a prediction/correction paradigm. The system model is represented in the
form of the following equations:

Tht1 = QT + Wi (2)
2z = Hyxp + v (3)

x = state vector of the process

¢ = state transition matrix relating xy to Ti41

wg = process model noise

2z = measurement model noise

Hj. = matrix relating system state and measurement vector
v, = measurement noise



k = discrete time index

The advantage of using the Kalman Filter is that it gives satisfactory results even
when we cannot model the process accurately. Error estimates can be further
improved using more sophisticated solutions like Praticle Filter or condensation
as they work on non-Gaussian noise processes and multi-modal state propagation.
Such algorithms are likely to provide better results, but this performance upgrade
comes at increased cost of computational resources.

2.5.2 Sensor side module

Let SI; denote the current sampling interval at sensor node i. The sampling interval
is the inverse to the sampling rate. Let SIR; denote the range within which the
sampling interval can be adjusted by the source without any server mediation and
SI!*st denote the last sampling interval received form the server and SIfesired ig
desired sampling interval based on the Kalman Filter prediction error. Sensor node
1 need not to contact the server provided that

(SI,faSt — SIR;/2) < SIidesired < (SI,faSt + SIR;/2).

In this case, SI; directly takes the value of Slides"ed. Otherwise, if the equation
above is not satisfied, a new sampling interval is requested from the server. In
addition for each request of decrease in the sampling interval, the sensor node sends
the fractional error f; to the server.

2.5.3 Server side module

The server manages bandwidth allocation. The allocation algorithm is executed
each time a request for a change in sampling interval is received from a sensor node.
The server maintains a variable R,,.; that holds the amout of communication
resource available at any time. When a sensor node reports about an increase in its
sampling interval (decrease in the sampling rate), the server adds the proportional
amount of resource units to Rgyqi and sends an acknowledgment to the sensor
node. When a request for a decrease in a sampling interval is received, the request
is added to a job-queue that is processed continuously by a separate thread. Each
job J, in the job queue has 5 attributes:

1. Fractional error f, is received from the sensor node when it sends a request.
2. Request Req, is the units of resources requested.

3. History h, is the age of the request in the job-queue. Its value is incremented
each time the job queue is processed.

4. Grant g; is the fraction by which, the Regq, has been satisfied so far.
5. Query weight w, the weight of the streaming source from the query evaluator.

We can formulate a linear optimization problem, minimizing the total error over
all jobs. If the server allocates A, units of resources, then the residual error after
satisfying the job is proportional to (1 — A,/Reg,), and the objective function can
be formulated as:

: fp*hp*wp*gp*App>
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with the 2 constraints

Z Ap S Ravail (5)
0 < A4, < Reg, (6)

Once the optimization problem is solved, the resource units are distributed to the
requesting sensor nodes and the job-queue attributes are updated accordingly.

2.5.4 Results

Like the Feedback Control Mechanism, the Kalman Filter approach was tested by
computer simulation. The performance of the system was evaluated based on an
effective resource utilization (ERU) metric £, which is calculated as & = n*m where
m is the fraction of messages exchanged between sensor node and server, to the
total number of tuples read by the sensor node, where 7 is the mean fractional
error between the actual trajectory and that generated by interpolation. Results
are presented in Figure 6.
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Figure 6: ERU on varying number of sensor nodes.



3 Conclusions and Future Work

In this work it was showed how the properties of sensor networks and those of the
environment (e.g. irregular distribution of events in time and space) can juggled.
Resources in sensor networks are strongly limited and thus resource consumption
(energy, network bandwidth) must be minimized. Adaptive sampling handles this
issue by making the rate of sensing dynamic and adaptable to the signal complexity
of the environment. While trying to maximize accuracy, resource consumption
is minimized. Two possible approaches for implementing adaptive sampling were
introduced: The Feedback Control Mechanism and the Kalman Filter.

Feedback Control Mechanism Kalman Filter
- no communication overhead - most of the time no communication
(hopefully)
- fast adaptation possible - network performance optimized
(no acknowledgment to wait for)
- no additional requests to server necessary | - server side module necessary

3.1 Future Work

Both presented approaches for adaptive sampling were only tested by computer
simulations. In the real world the results could be affected by other aspects, such
as collision behavior or physical obstacles between sensor nodes. Further research
could be done in following directions:

e Extending current architecture to multi-hop sensor networks.

e Developping algorithms to incorporate adaptive SIRs in the Kalman Filter
approach.

e Testing the system performance on more real life data sets.
e Developping algorithms that can do adaptive sampling in the space domain.

e Testing behavior on node failures and on adding new nodes to the existing
network.
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