Machine Learning

Adrien Chabert

Digitalisation and the Rebound Effect seminar, HS2020, ETH Zürich

Motivation

Final energy consumption in the residential sector by use, EU-27, 2018

Source: Eurostat, https://ec.europa.eu/eurostat/statistics-

explained/index.php?title=Energy_consumption_in_households#Energy_products_used_in_the_residential_sector

How can we improve space heating ?

Improve the building

- Have a better isolation
- Buy solar panels
- Improve heat pump

How can we improve space heating

Improve the building

- Have a better isolation
- Buy solar panels
- Improve heat pump

Improve how we use heating

• Machine Learning to decide when to heat

Supervised Machine Learning

Source: https://elearningindustry.com/machine-learning-process-and-scenarios

1. Predict demand of electricity to reduce the lost

- Short term: optimal day-to-day operational efficiency of electrical power delivery
- Medium term: to schedule fuel supply and timely maintenance operations

A high precision is required

Source: Salah Bouktif, Ali Fiaz, Ali Ouni, Mohamed Adel Serhani. Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches, Energies, 11 (7), 2018

Source: Salah Bouktif, Ali Fiaz, Ali Ouni, Mohamed Adel Serhani. Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches, Energies, 11 (7), 2018

Figure 3. Proposed forecasting methodology.

Figure 5. Box Plot of Electric load (a) Yearly (b) Quarterly.

Source: Salah Bouktif, Ali Fiaz, Ali Ouni, Mohamed Adel Serhani. Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches, Energies, 11 (7), 2018

Features selection

Figure 8. Feature importance plot.

Source: Salah Bouktif, Ali Fiaz, Ali Ouni, Mohamed Adel Serhani. Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches, Energies, 11 (7), 2018

Results

Model	Mean	Std. Deviation	Forecasting Horizon	MAE	RMSE	CV (RMSE) %
RMSE Extra Trees	513.8	90.9	2 Weeks	251	339	0.61
RMSE LSTM	378	59.8	Between 2–4 Weeks	214	258	0.56
CV (RMSE) % Extra Trees	1.95	0.3	Between 2–3 Months	225	294	0.63
CV (RMSE) % LSTM	1.31	0.2	Between 3–4 Months	208	275	0.50
MAE Extra Trees	344	55.8	Mean-Medium term	215.6	275.6	0.56
MAE LSTM	270.4	45.4	Std. Dev.	8.6	18	0.06

- The predictions with the LSTM-RNN have a better accuracy than the ones with the other algorithms.
- The accuracy does not change over the time.

12

2. Optimize heating depending on electricity cost and productivity

- 1. Predict the inside temperature
- Find the best optimization for heating

- Irish study. They used an Irish house as reference
- 205m²

Table 1

- Solar panels of 6 kWp
- Space heating of 12kW

• Electricity price depend on the hour of the day

Weekdays					Weekends							
	Α	В	С	D	Flat	SMP (avg)	Α	В	С	D	Flat	SMP (avg)
00:00-08:00	0.12	0.11	0.1	0.09	0.135	0.046	0.12	0.11	0.1	0.09	0.135	0.044
08:00-17:00	0.14	0.135	0.13	0.125	0.135	0.065	0.14	0.135	0.13	0.125	0.135	0.062
17:00-19:00	0.2	0.26	0.32	0.38	0.135	0.097	0.14	0.135	0.13	0.125	0.135	0.088
19:00-23:00	0.14	0.135	0.13	0.125	0.135	0.071	0.14	0.135	0.13	0.125	0.135	0.067
23:00-00:00	0.12	0.11	0.1	0.09	0.135	0.053	0.12	0.11	0.1	0.09	0.135	0.053

1. Predict the inside temperature

<u>Heat on</u>

Outside temperature

Wind speed

Inside temperature

PV production

Storage tank temperature

Circulation pump electricity consumption

Tree model MP5 Feature Selection with Pearson correlation linear coefficient

<u>Heat off</u>

Outside temperature

Wind speed

Inside temperature

PV production

Storage tank temperature

Circulation pump electricity consumption

Tree model MP5

1. Predict the inside temperature

<u>Heat on</u>

Outside temperature

Inside temperature

Storage tank temperature

Circulation pump electricity consumption

Tree model MP5 Feature Selection with Pearson correlation linear coefficient

Heat off

Outside temperature

Inside temperature PV production

> Tree model MP5

2. Optimal strategy search

Minimize electricity expenditure and consumption

Optimization for the next 2 hours (15 minutes step)

Fig. 8. Optimal strategy search on solution tree.

17

Fig. 10. Electricity consumption profiles for the month of January 2014.

Results

Fig. 12. Total heating electricity consumption for (January 2014).

Fig. 15. (a) Electricity generation cost and (b) Cumulative carbon emissions for January 2014.

Results

Smart algorithm	Baseline algorithm	Rule-based algorithm
Electricity consumption	39%	22,90%
Costs	42%-49%	27%-40%
Environmental	38%	20%
Return of Investment	5-10 years	

3. Optimize heating depending on the home presence

Source: Vincent Becker, Wilhelm Kleiminger, Vlad C. Coroamă, Friedemann Mattern. Estimating the savings potential of occupancy-based heating strategies, Energy Informatics 1, 2018

Heating planning

Building temperature :

- 20° when it's occupied
- 10° when it's unoccupied

3476 households

75 weeks, every 30 minutes, between July 2009 and Decembre 2010

75.4 % of occupation

Source: Vincent Becker, Wilhelm Kleiminger, Vlad C. Coroamă, Friedemann Mattern. Estimating the savings potential of occupancy-based heating strategies, Energy Informatics 1, 2018

Results

9% of overall saving

14% savings for the employed singles

Source: Vincent Becker, Wilhelm Kleiminger, Vlad C. Coroamă, Friedemann Mattern. Estimating the savings potential of occupancy-based heating strategies, Energy Informatics 1, 2018

 Irrelevant in the future with global warning and more efficient building

Problem of distribution

We have seen that with smart heating you can make more energy savings with a person leaving **alone** in a **large** house with **poor isolation**.

Should we favour such a person rather than a **family** living in a **small** house?

From previous presentation, we have seen that data center consume a lot. For now, it's 1% of the world consumption of energy.

Google used Google DeepMind

Source: Rich Evans and Jim Gao. DeepMind AI reduces energy used for cooling Google data centers by 40%, report, 2016

Google DeepMind graph showing results of machine learning test on power usage effectiveness in Google data centers

Source: Rich Evans and Jim Gao. DeepMind AI reduces energy used for cooling Google data centers by 40%, report, 2016

Rebound effects

• Higher comfort temperature in the dwelling or to buy a newer or larger heating devices

• People may increase their energy consumption in other areas of the daily life

Conclusion

With Machine Learning, we can:

- Save electricity and energy
- Save money
- Without lose of comfort

We may imagine more automation ...

Other applications to save energy

- Automate the temperature in each room separately (man and woman)
- For cooling

Google wanted to use their algorithm to:

- Improving power plant conversion efficiency
- Reducing semiconductor manufacturing energy and water usage,

Source: Rich Evans and Jim Gao. DeepMind AI reduces energy used for cooling Google data centers by 40%, report, 2016

Thank you for your attention

3 different applications of Machine Learning

- 1. Optimize heating in function of electricity cost and productivity title: Fabiano Pallonetto, Mattia De Rosa, Federico Milano, Donal P. Finn. Demand response algorithms for smart-grid ready residential buildings using machine learning models, Applied Energy 239, pp. 1265-1282, 2019
- 2. Predict demand of electricity to reduce the lost

title: Salah Bouktif, Ali Fiaz, Ali Ouni, Mohamed Adel Serhani. Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches, Energies, 11 (7), 2018

3. Optimize heating in function of home presence title: Vincent Becker, Wilhelm Kleiminger, Vlad C. Coroamă, Friedemann Mattern. Estimating the savings potential of occupancy-based heating strategies, Energy Inoformatics 1, 2018

Figure 6. Box Plot of Electric Load Consumption Weekend vs. Weekday.

Source: Salah Bouktif, Ali Fiaz, Ali Ouni, Mohamed Adel Serhani. Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches, Energies, 11 (7), 2018

To classify occupation

- Based on the use of electricity
- Hidden Markov Model
- Unsupervised algorithm
- To be able to deal with data without a ground truth of the occupancy

Period of construction	Floor space per occupant
Total	46m ²
before 1919	47m ²
1919 - 1945	44m ²
1946 - 1960	41m ²
1961 - 1970	41m ²
1971 - 1980	46m ²
1981 - 1990	49m ²
1991 - 2000	49m ²
2001 - 2005	49m ²
2006 - 2010	48m ²
2011 - 2015	48m ²
2016 - 2019	47m ²

Source: FSO - Buildings and dwellings statistics