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Motivation

Source: Eurostat, https://ec.europa.eu/eurostat/statistics-
explained/index.php?title=Energy_consumption_in_households#Energy_products_used_in_the_residential_sector
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How can we improve space heating ?

Improve the building

• Have a better isolation

• Buy solar panels

• Improve heat pump
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Learning

Machine 
Learning
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How can we improve space heating

Improve how we use heating

• Machine Learning to decide 
when to heat
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Improve the building

• Have a better isolation

• Buy solar panels

• Improve heat pump



Supervised Machine Learning

Predictors
X

Labels
Y

Trained Model
h(X)

Source: https://elearningindustry.com/machine-learning-process-and-scenarios

• Linear Regression
• Logistic Regression
• SVM
• KNN
• Ensemble Method
• Neural Network
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1. Predict demand of electricity to reduce the 
lost
• Short term: optimal day-to-day operational efficiency of electrical 

power delivery

• Medium term: to schedule fuel supply and timely maintenance 
operations

A high precision is required 
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Source: Salah Bouktif, Ali Fiaz, Ali Ouni, Mohamed Adel Serhani. Optimal Deep Learning LSTM Model for Electric Load Forecasting using 
Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches, Energies, 11 (7), 2018



LSTM-RNN

8Source: https://adventuresinmachinelearning.com/recurrent-neural-networks-lstm-tutorial-tensorflow/
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Source: Salah Bouktif, Ali Fiaz, Ali 
Ouni, Mohamed Adel Serhani. 
Optimal Deep Learning LSTM 
Model for Electric Load 
Forecasting using Feature 
Selection and Genetic Algorithm: 
Comparison with Machine 
Learning Approaches, Energies, 
11 (7), 2018
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Source: Salah Bouktif, Ali Fiaz, Ali Ouni, Mohamed Adel Serhani. Optimal Deep Learning LSTM Model for Electric Load Forecasting using 
Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches, Energies, 11 (7), 2018



Features selection
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Source: Salah Bouktif, Ali Fiaz, Ali Ouni, Mohamed Adel Serhani. Optimal Deep Learning LSTM Model for Electric Load Forecasting using 
Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches, Energies, 11 (7), 2018



Results
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Source: Salah Bouktif, Ali Fiaz, Ali Ouni, Mohamed Adel Serhani. Optimal Deep Learning LSTM Model for Electric Load Forecasting using 
Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches, Energies, 11 (7), 2018

▪ The predictions with the LSTM-RNN have a better accuracy than 
the ones with the other algorithms.

▪ The accuracy does not change over the time.  



2. Optimize heating depending on electricity 
cost and productivity
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Source: Fabiano Pallonetto, Mattia De Rosa, Federico Milano, Donal P. Finn. Demand response algorithms for smart-grid ready residential 
buildings using machine learning models, Applied Energy 239, pp. 1265-1282, 2019

1. Predict the inside 
temperature

2. Find the best 
optimization for 
heating



• Irish study. They used an Irish house as reference

• 205m2

• Solar panels of 6 kWp

• Space heating of 12kW

• Electricity price depend on the hour of the day
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Source: Fabiano Pallonetto, Mattia De Rosa, Federico Milano, Donal P. Finn. Demand response algorithms for smart-grid ready residential 
buildings using machine learning models, Applied Energy 239, pp. 1265-1282, 2019



1. Predict the inside temperature

Heat on
Outside temperature

Wind speed

Inside temperature

PV production

Storage tank temperature

Circulation pump electricity 
consumption
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Source: Fabiano Pallonetto, Mattia De Rosa, Federico Milano, Donal P. Finn. Demand response algorithms for smart-grid ready residential 
buildings using machine learning models, Applied Energy 239, pp. 1265-1282, 2019



1. Predict the inside temperature

Heat on
Outside temperature

Inside temperature

Storage tank temperature

Circulation pump electricity 
consumption
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Heat off
Outside temperature

Inside temperature

PV production

Feature Selection with 
Pearson correlation 

linear coefficient

Tree model
MP5
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Source: Fabiano Pallonetto, Mattia De Rosa, Federico Milano, Donal P. Finn. Demand response algorithms for smart-grid ready residential 
buildings using machine learning models, Applied Energy 239, pp. 1265-1282, 2019



2. Optimal strategy search

Minimize electricity 
expenditure and 
consumption

Optimization for the next 2 
hours (15 minutes step)
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Source: Fabiano Pallonetto, Mattia De Rosa, Federico Milano, Donal P. Finn. Demand response algorithms for smart-grid ready residential 
buildings using machine learning models, Applied Energy 239, pp. 1265-1282, 2019
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Source: Fabiano Pallonetto, Mattia De Rosa, Federico Milano, Donal P. Finn. Demand response algorithms for smart-grid ready residential 
buildings using machine learning models, Applied Energy 239, pp. 1265-1282, 2019



Results
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Source: Fabiano Pallonetto, Mattia De Rosa, Federico Milano, Donal P. Finn. Demand 
response algorithms for smart-grid ready residential buildings using machine 
learning models, Applied Energy 239, pp. 1265-1282, 2019
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Results

Source: Fabiano Pallonetto, Mattia De Rosa, Federico Milano, Donal P. Finn. Demand response algorithms for smart-grid ready residential 
buildings using machine learning models, Applied Energy 239, pp. 1265-1282, 2019

Smart algorithm Baseline algorithm Rule-based algorithm

Electricity consumption 39% 22,90%

Costs 42%-49% 27%-40%

Environmental 38% 20%

Return of Investment 5-10 years



3. Optimize heating depending on the home 
presence

Source: Vincent Becker, Wilhelm Kleiminger, Vlad C. Coroamă, Friedemann Mattern. Estimating the savings 
potential of occupancy-based heating strategies, Energy Informatics 1, 2018

21



Heating planning

Building temperature : 

▪ 20° when it’s occupied

▪ 10° when it’s unoccupied

3476 households

75 weeks, every 30 minutes, between July 2009 and Decembre 2010

75.4 % of occupation
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Source: Vincent Becker, Wilhelm Kleiminger, Vlad C. Coroamă, Friedemann Mattern. Estimating the savings 
potential of occupancy-based heating strategies, Energy Informatics 1, 2018



Results

9% of overall saving

14% savings for the employed singles

23
Source: Vincent Becker, Wilhelm Kleiminger, Vlad C. Coroamă, Friedemann Mattern. Estimating the savings 
potential of occupancy-based heating strategies, Energy Informatics 1, 2018



Problems

• Privacy

• Discomfort

• Irrelevant in the future with global warning and more efficient 
building
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Problem of distribution

We have seen that with smart heating you can make more energy 
savings with a person leaving alone in a large house with poor 
isolation.

Should we favour such a person rather than a family living in a small
house? 
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Data Center

From previous presentation, we have seen that data center consume a 
lot. For now, it’s 1% of the world consumption of energy.

Google used Google DeepMind 

Source: Rich Evans and Jim Gao. DeepMind AI reduces energy used for cooling Google data 
centers by 40%, report, 2016

• Weather
• Interaction 

between env. 
and equipment

• Data center 
specification

Neural Network 
trained on PUE

40% of reduction 
of cooling.
15% less PUE
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Google DeepMind graph showing results of machine learning test 
on power usage effectiveness in Google data centers

Source: Rich Evans and Jim Gao. DeepMind AI reduces energy used for cooling Google data centers by 40%, report, 2016
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Rebound effects

• Higher comfort temperature in the dwelling
or to buy a newer or larger heating devices

• People may increase their energy consumption in other areas of the 
daily life
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Conclusion

With Machine Learning, we can: 

• Save electricity and energy

• Save money

• Without lose of comfort

We may imagine more automation … 
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Other applications to save energy

• Automate the temperature in each room separately (man and 
woman)

• For cooling

Google wanted to use their algorithm to:

• Improving power plant conversion efficiency

• Reducing semiconductor manufacturing energy and water usage,

Source: Rich Evans and Jim Gao. DeepMind AI reduces energy used for cooling Google data centers by 40%, 
report, 2016
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Thank you for 
your attention
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3 different applications of Machine Learning

1. Optimize heating in function of electricity cost and productivity
title: Fabiano Pallonetto, Mattia De Rosa, Federico Milano, Donal P. Finn. Demand response 
algorithms for smart-grid ready residential buildings using machine learning models, Applied Energy 
239, pp. 1265-1282, 2019

2. Predict demand of electricity to reduce the lost
title: Salah Bouktif, Ali Fiaz, Ali Ouni, Mohamed Adel Serhani. Optimal Deep Learning LSTM Model 
for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with 
Machine Learning Approaches, Energies, 11 (7), 2018

3. Optimize heating in function of home presence
title: Vincent Becker, Wilhelm Kleiminger, Vlad C. Coroamă, Friedemann Mattern. Estimating the 
savings potential of occupancy-based heating strategies, Energy Inoformatics 1, 2018
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Source: Salah Bouktif, Ali Fiaz, Ali Ouni, Mohamed Adel Serhani. Optimal Deep Learning LSTM Model for Electric Load Forecasting using 
Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches, Energies, 11 (7), 2018



To classify occupation

• Based on the use of electricity

• Hidden Markov Model

• Unsupervised algorithm

• To be able to deal with data without a ground truth of the occupancy
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Source: Vincent Becker, Wilhelm Kleiminger, Vlad C. Coroamă, Friedemann Mattern. Estimating the savings 
potential of occupancy-based heating strategies, Energy Informatics 1, 2018
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https://www.bfs.admin.ch/bfs/en/home/statistics/construction-housing/dwellings/housing-
conditions/floor-area-person.html


